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Abstract

A variable screening procedure via correlation learning was proposed
in Fan and Lv (2008) to reduce dimensionality in sparse ultra-high di-
mensional models. Even when the true model is linear, the marginal
regression can be highly nonlinear. To address this issue, we further ex-
tend the correlation learning to marginal nonparametric learning. Our
nonparametric independence screening is called NIS, a specific mem-
ber of the sure independence screening. Several closely related variable
screening procedures are proposed. Under the nonparametric additive
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models, it is shown that under some mild technical conditions, the pro-
posed independence screening methods enjoy a sure screening property.
The extent to which the dimensionality can be reduced by independence
screening is also explicitly quantified. As a methodological extension, an
iterative nonparametric independence screening (INIS) is also proposed
to enhance the finite sample performance for fitting sparse additive
models. The simulation results and a real data analysis demonstrate
that the proposed procedure works well with moderate sample size and
large dimension and performs better than competing methods.

Keywords: Additive model, independent learning, nonparametric regression,

sparsity, sure independence screening, nonparametric independence screening,

variable selection.

1 Introduction

With rapid advances of computing power and other modern technology, high-

throughput data of unprecedented size and complexity are frequently seen in

many contemporary statistical studies. Examples include data from genetic,

microarrays, proteomics, fMRI, functional data and high frequency financial

data. In all these examples, the number of variables p can grow much faster

than the number of observations n. To be more specific, we assume log p =

O(na) for some a ∈ (0, 1/2). Following Fan and Lv (2009), we call it non-

polynomial (NP) dimensionality or ultra-high dimensionality. What makes

the under-determined statistical inference possible is the sparsity assumption:

only a small set of independent variables contribute to the response. Therefore,

dimension reduction and feature selection play pivotal roles in these ultra-high

dimensional problems.

The statistical literature contains numerous procedures on the variable

selection for linear models and other parametric models, such as the Lasso
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(Tibshirani, 1996), the SCAD and other folded-concave penalty (Fan, 1997;

Fan and Li, 2001), the Dantzig selector (Candes and Tao, 2007), the Elastic

net (Enet) penalty (Zou and Hastie, 2005), the MCP (Zhang, 2009) and re-

lated methods (Zou, 2006; Zou and Li, 2008). Nevertheless, due to the “curse

of dimensionality” in terms of simultaneously challenges on the computational

expediency, statistical accuracy and algorithmic stability, these methods meet

their limits in ultra-high dimensional problems.

Motivated by these concerns, Fan and Lv (2008) introduced a new frame-

work for variable screening via correlation learning with NP-dimensionality in

the context of least squares. Hall et al. (2009) used a different marginal util-

ity, derived from an empirical likelihood point of view. Hall and Miller (2009)

proposed a generalized correlation ranking, which allows nonlinear regression.

Huang et al. (2008) also investigated the marginal bridge regression in the or-

dinary linear model. These methods focus on studying the marginal pseudo-

likelihood and are fast but crude in terms of reducing the NP-dimensionality

to a more moderate size. To enhance the performance, Fan and Lv (2008) and

Fan et al. (2009) introduced some methodological extensions include iterative

SIS (ISIS) and multi-stage procedures, such as SIS-SCAD and SIS-LASSO, to

select variables and estimate parameters simultaneously. Nevertheless, these

marginal screening methods have some methodological challenges. When the

covariates are not jointly normal, even if the linear model holds in the joint

regression, the marginal regression can be highly nonlinear. Therefore, sure

screening based on nonparametric marginal regression becomes a natural can-

didate.

In practice, there is often little prior information that the effects of the

covariates take a linear form or belong to any other finite-dimensional para-
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metric family. Substantial improvements are sometimes possible by using

a more flexible class of nonparametric models, such as the additive model

Y =
∑p

j=1 mj(Xj) + ε, introduced by Stone (1985). It increases substantially

the flexibility of the ordinary linear model and allows a data-analytic transform

of the covariates to enter into the linear model. Yet, the literature on vari-

able selection in nonparametric additive models are limited. See, for example,

Koltchinskii and Yuan (2008), Ravikumar et al. (2009), Huang et al. (2009)

and Meier et al. (2009). Koltchinskii and Yuan (2008) and Ravikumar et al.

(2009) are closely related with COSSO proposed in Lin and Zhang (2006) with

fixed minimal signals, which does not converge to zero. Huang et al. (2009)

can be viewed as an extension of adaptive lasso to additive models with fixed

minimal signals. Meier et al. (2009) proposed a penalty which is a combination

of sparsity and smoothness with a fixed design. Under ultra-high dimensional

settings, all these methods still suffer from the aforementioned three challenges

as they can be viewed as extensions of penalized pseudo-likelihood approaches

to additive modeling. The commonly used algorithm in additive modeling

such as backfitting makes the situation even more challenging, as it is quite

computationally expensive.

In this paper, we consider independence learning by ranking the magnitude

of marginal estimators, nonparametric marginal correlations, and the marginal

residual sum of squares. That is, we fit p marginal nonparametric regressions

of the response Y against each covariate Xi separately and rank their im-

portance to the joint model according to a measure of the goodness of fit of

their marginal model. The magnitude of these marginal utilities can preserve

the non-sparsity of the joint additive models under some reasonable condi-

tions, even with converging minimum strength of signals. Our work can be

4



regarded as an important and nontrivial extension of SIS procedures proposed

in Fan and Lv (2008) and Fan and Song (2009). Compared with these papers,

the minimum distinguishable signal is related with not only the stochastic error

in estimating the nonparametric components, but also approximation errors

in modeling nonparametric components, which depends on the number of ba-

sis functions used for the approximation. This brings significant challenges to

the theoretical development and leads to an interesting result on the extent

to which the dimensionality can be reduced by nonparametric independence

screening. We also propose an iterative nonparametric independence screen-

ing procedure, INIS-penGAM, to reduce the false positive rate and stabilize

the computation. This two-stage procedure can deal with the aforementioned

three challenges better than other methods, as will be demonstrated in our

empirical studies.

We approximate the nonparametric additive components by using a B-

spline basis. Hence, the component selection in additive models can be viewed

as a functional version of the grouped variable selection. An early litera-

ture on the group variable selection using group penalized least-squares is

Antoniadis and Fan (2001) (see page 966), in which blocks of wavelet coef-

ficients are either killed or selected. The group variable selection was more

intensively and thoroughly studied in Yuan and Lin (2006), Kim et al. (2006),

Wei and Huang (2007) and Meier et al. (2009). Our methods and results have

important implications on the group variable selections.

The rest of the paper is organized as follows. In Section 2, we intro-

duce the nonparametric independence screening (NIS) procedure in additive

models. The theoretical properties for NIS are presented in Section 3. As

a methodological extension, INIS-penGAM is outlined in Section 4. Monte
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Carlo simulations and a real data analysis in Section 5 demonstrate the effec-

tiveness of the INIS method. We conclude with a discussion in Section 6 and

relegate the proofs to Section 7.

2 Nonparametric independence screening

Suppose that we have a random sample {(Xi, Yi)}n
i=1 from the population

Y = m(X) + ε, (1)

in which X = (X1, . . . , Xp)
T , ε is the random error with conditional mean

zero. To expeditiously identify important variables in model (1), without the

“curse-of-dimensionality”, we consider the following p marginal nonparametric

regression problems:

min
fj∈L2(P )

E
(
Y − fj(Xj)

)2

, (2)

where P denotes the joint distribution of (X, Y ) and L2(P ) is the class of

square integrable functions under the measure P . The minimizer of (2) is

fj = E(Y |Xj), the projection of Y onto Xj. We rank the utility of covariates

in model (1) according to, for example, Ef 2
j (Xj) and select a small group of

covariates via thresholding.

To obtain a sample version of the marginal nonparametric regression, we

employ a B-Spline basis. Let Sn be the space of polynomial splines of degree

l ≥ 1 and {Ψjk, k = 1, · · · , dn} denote a normalized B-Spline basis with
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‖Ψjk‖∞ ≤ 1, where ‖ · ‖∞ is the sup norm. For any fnj ∈ Sn, we have

fnj(x) =
dn∑

k=1

βjkΨjk(x), 1 ≤ j ≤ p,

for some coefficients {βjk}dn

k=1. Under some smoothness conditions, the non-

parametric projections {fj}p
j=1 can well be approximated by functions in Sn.

The sample version of the marginal regression problem can be expressed as

min
fnj∈Sn

Pn

(
Y − fnj(Xj)

)2

= min
β

j
∈Rdn

Pn

(
Y − ΨT

j βj

)2

, (3)

where Ψj ≡ Ψj(Xj) = (Ψ1(Xj), · · · , Ψdn
(Xj))

T denotes the dn dimensional

basis functions and Png(X, Y ) is the expectation with respect to the empir-

ical measure Pn, i.e., the sample average of {g(Xi, Yi)}n
i=1. The least square

estimator f̂nj of (3) can thus be viewed as a projection by smoothing the re-

sponse. This can be rapidly computed, even for NP-dimensional problems. We

correspondingly define the population version of the minimizer of the compo-

nentwise least square regression,

fnj(Xj) = ΨT
j (EΨjΨ

T
j )−1EΨjY, j = 1, · · · , p.

where E denotes the expectation under the true model.

We now select a set of variables

M̂νn
= {1 ≤ j ≤ p : ‖f̂nj‖2

n ≥ νn}, (4)

where ‖f̂nj‖2
n = n−1

∑n
i=1 f̂nj(Xij)

2 and νn is a predefined threshold value.

Such an independence screening ranks the importance according to the marginal
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strength of the marginal nonparametric regression. This screening can also be

viewed as ranking by the magnitude of the correlation of the marginal non-

parametric estimate {f̂nj(Xij)}n
i=1 (note that it is different from the joint non-

parametric component) with the response {Yi}n
i=1, since ‖f̂nj‖2

n = ‖Y f̂nj‖n. In

this sense, the proposed NIS procedure is related to the correlation learning

proposed in Fan and Lv (2008).

Another screening approach is to rank according to the descent order of

the residual sum of squares of the componentwise nonparametric regressions,

where we select a set of variables:

M̂γn
= {1 ≤ j ≤ p : uj ≤ γn},

with uj = minβ
j

Pn(Y −ΨT
j βj)

2 is the residual sum of squares of the marginal

fit and γn is a predefined threshold value. It is straightforward to show that

uj = Pn(Y 2 − f̂ 2
nj). Hence, the two methods are equivalent.

The nonparametric independence screening reduces the dimensionality from

p to a possibly much smaller space with model size |M̂νn
| or |M̂γn

|. It is appli-

cable to all models. The question is whether we have mistakenly deleted some

active variables in model (1). In other words, whether the procedure has a sure

screening property as postulated by Fan and Lv (2008). In the next section,

we will show that the sure screening property indeed holds for nonparametric

additive models with limited false selection rate.
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3 Sure Screening Properties

In this section, we establish the sure screening properties for additive models

with results presented in three steps.

3.1 Preliminaries

We now assume that the true regression function admits the additive structure:

m(X) =

p∑

j=1

mj(Xj). (5)

For identifiability, we assume {mj(Xj)}p
j=1 have mean zero. Consequently, the

response Y has zero mean, too. Let M⋆ = {j : Emj(Xj)
2 > 0} be the true

sparse model with non-sparsity size sn = |M⋆|. We allow p to grow with n

and denote it as pn whenever needed.

The theoretical basis of the sure screening is that the marginal signal of

the active components (‖fj‖, j ∈ M⋆) does not vanish, where ‖fj‖2 = Ef 2
j .

The following conditions make this possible. For simplicity, let [a, b] be the

support of Xj.

A. The nonparametric marginal projections {fj}p
j=1 belong to a class of

functions F whose rth derivative f (r) exists and is Lipschitz of order α:

F =
{
f(·) :

∣∣∣f (r)(s) − f (r)(t)
∣∣∣ ≤ K|s − t|α, for s, t ∈ [a, b]

}
,

for some positive constant K, where r is a non-negative integer and

α ∈ (0, 1] such that d = r + α > 0.5.

B. The marginal density function gj of Xj satisfies 0 < K1 ≤ gj(Xj) ≤
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K2 < ∞ on [a, b] for 1 ≤ j ≤ p for some constants K1 and K2.

C. minj∈M⋆
E{E(Y |Xj)

2} ≥ c1dnn−2κ, for some 0 < κ < d/(2d + 1) and

c1 > 0.

Under conditions A and B, the following three facts hold when l ≥ d and will

be used in the paper. We state them here for readability.

Fact 1. There exists a positive constant C1 such that (Stone, 1985)

‖fj − fnj‖2 ≤ C1d
−2d
n . (6)

Fact 2. There exists a positive constant C2 such that (Stone, 1985; Huang et al.,

2009)

EΨ2
jk(Xij) ≤ C2d

−1
n . (7)

Fact 3. There exist some positive constants D1 and D2 such that (Zhou et al.,

1998)

D1d
−1
n ≤ λmin(EΨjΨ

T
j ) ≤ λmax(EΨjΨ

T
j ) ≤ D2d

−1
n . (8)

The following lemma shows that the minimum signal of {‖fnj‖}j∈M∗
is at

the same level of the marginal projection, provided that the approximation

error is negligible.

Lemma 1. Under conditions A–C, we have

minj∈M⋆
‖fnj‖2 ≥ c1ξdnn

−2κ,
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provided that d−2d−1
n ≤ c1(1 − ξ)n−2κ/C1 for some ξ ∈ (0, 1).

A model selection consistency result can be established with nonpara-

metric independence screening under the partial orthogonality condition, i.e.,

{Xj, j /∈ M⋆} is independent of {Xi, i ∈ M⋆}. In this case, there is a sep-

aration between the strength of marginal signals ‖fnj‖2 for active variables

{Xj; j ∈ M⋆} and inactive variables {Xj, j /∈ M⋆}, which are zero. When

the separation is sufficiently large, these two sets of variables can be easily

identified.

3.2 Sure Screening

In this section, we establish the sure screening properties of the nonparametric

independence screening (NIS). We need the following additional conditions:

D. ‖m‖∞ < B1 for some positive constant B1, where ‖ · ‖∞ is the sup norm.

E. The random error {εi}n
i=1 are i.i.d. with conditional mean zero and for

any B2 > 0, there exists a positive constant B3 such that E[exp(B2|εi|)|Xi] <

B3.

F. There exist a positive constant c1 and ξ ∈ (0, 1) such that d−2d−1
n ≤

c1(1 − ξ)n−2κ/C1.

The following theorem gives the sure screening properties. It reveals that

it is only the size of non-sparse elements sn that matters for the purpose of

sure screening, not the dimensionality pn. The first result is on the uniform

convergence of ‖f̂nj‖2
n to ‖fnj‖2.

Theorem 1. Suppose that Conditions A, B, D and E hold.
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(i) For any c2 > 0, there exist some positive constants c3 and c4 such that

P
(

max
1≤j≤pn

∣∣∣‖f̂nj‖2
n − ‖fnj‖2

∣∣∣ ≥ c2dnn
−2κ

)

≤ pndn

{
(8 + 2dn) exp

(
−c3n

1−4κd−3
n

)
+ 6dn exp

(
−c4nd−3

n

)}
. (9)

(ii) If, in addition, Conditions C and F hold, then by taking νn = c5dnn
−2κ

with c5 ≤ c1ξ/2, we have

P (M⋆ ⊂ M̂νn
) ≥ 1 − sndn

{
(8 + 2dn) exp

(
−c3n

1−4κd−3
n

)
+ 6dn exp

(
−c4nd−3

n

)}
.

Note that the second part of the upper bound in Theorem 1 is related to the

uniform convergence rates of the minimum eigenvalues of the design matrices.

It gives an upper bound on the number of basis dn = o(n1/3) in order to have

the sure screening property, whereas Condition F requires dn ≥ B4n
2κ/(2d+1),

where B4 = (c1(1 − ξ)/C1)
−1/(2d+1).

It follows from Theorem 1 that we can handle the NP-dimensionality:

log pn = o(n1−4κd−3
n + nd−3

n ). (10)

Under this condition,

P (M⋆ ⊂ M̂νn
) → 1,

i.e., the sure screening property. It is worthwhile to point out that the number

of spline basis dn affects the order of dimensionality, comparing with the results

of Fan and Lv (2008) and Fan and Song (2009) in which univariate marginal

regression is used. Equation (10) shows that the larger the minimum signal

level or the smaller the number of basis functions, the higher dimensionality
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the nonparametric independence screening (NIS) can handle. This is in line

with our intuition. On the other hand, the number of basis functions can not

be too small, since the approximation error can not be too large. As required

by Condition F, dn ≥ B4n
2κ/(2d+1); the smoother the underlying function, the

smaller dn we can take and the higher the dimension that the NIS can handle.

If the minimum signal does not converge to zero, as in Lin and Zhang (2006),

Koltchinskii and Yuan (2008) and Huang et al. (2009), then κ = 0. In this

case, dn can be taken to be finite as long as it is sufficiently large so that

minimum signal in Lemma 1 exceeds the noise level and threshold by a large

enough margin. By taking dn = n1/(2d+1), the optimal rate for nonparametric

regression (Stone, 1985), we have log pn = o(n2(d−1)/(2d+1)). In other words,

the dimensionality can be as high as exp{o(n2(d−1)/(2d+1))}.

3.3 Controlling false selection rates

The sure screening property, without controlling false selection rates, is not

insightful. It basically states that the NIS has no false negatives. An ideal

case for the vanishing false positive rate is that

max
j /∈M⋆

‖fnj‖2 = o(dnn
−2κ),

so that there is a gap between active variables and inactive variables in model

(1) when using the marginal nonparametric screener. In this case, by Theorem

1(i), if (9) tends to zero, with probability tending to one that

max
j /∈M⋆

‖f̂nj‖2
n ≤ c2dnn

−2κ, for any c2 > 0.
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Hence, by the choice of νn as in Theorem 1(ii), we can achieve model selection

consistency:

P (M̂νn
= M⋆) = 1 − o(1).

We now deal with the more general case. The idea is to bound the size

of the selected set by using the fact that var(Y ) is bounded. In this part, we

show that the correlations among the basis functions, i.e., the design matrix

of the basis functions, are directly related to the dimension reduction with

additive models.

Theorem 2. Suppose Conditions A–F hold and var(Y ) = O(1). Then, for

any νn = c5dnn
−2κ, there exist positive constants c3 and c4 such that

P [|M̂νn
| ≤ O{n2κλmax(Σ)}]

≥ 1 − pndn

{
(8 + 2dn) exp(−c3n

1−4κd−3
n ) + 6dn exp(−c4nd−3

n )
}
,

where Σ = EΨΨT and Ψ = (Ψ1, · · · ,Ψpn
)T .

The significance of the result is that when λmax(Σ) = O(nτ), the se-

lected model size with the sure screening property is only of polynomial order,

whereas the original model size is of NP-dimensionality. In other words, the

false selection rate converges to zero exponentially fast. The size of the se-

lected variables is of order O(n2κ+τ). This is of the same order as in Fan and

Lv (2008). Our result is an extension of Fan and Lv (2008), even in this very

specific case without the condition 2κ + τ < 1. The results are also consistent

with that in Fan and Song (2009): the number of selected variables is related

to the correlation structure of the covariance matrix.

In the specific case where the covariates are independent, then the matrix Σ
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is block diagonal with j-th block Σj . Hence, it follows from (8) that λmax(Σ) =

O(d−1
n ). In general, since the B-spline basis is local, the covariance between

Ψjk(Xj) and Ψil(Xi) is small and hence λmax(Σ) can not grow too quickly.

4 INIS Method

After variable screening, the next step is naturally to select the variables using

more refined techniques in the additive model. For example, the penalized

method for additive model (penGAM) in Meier et al. (2009) can be employed

to select a subset of active variables. This results in NIS-penGAM. To fur-

ther enhance the performance of the method, in terms of false selection rates,

following Fan and Lv (2008) and Fan et al. (2009), we can iteratively employ

the large-scale screening and moderate-scale selection strategy, resulting in the

INIS-penGAM.

Given the data {(Xi, Yi)}, i = 1, · · · , n, for each component fj(·), j =

1, · · · , p, we choose the same truncation term dn = O(n1/5). In the algorithm,

a predetermined sparsity size parameter s0 for the NIS procedure is needed.

It is recommended to take s0 = O(n/ log(n)). However, it can be adjusted

accordingly depending whether sure screening or reducing false selection rate

is more important. The algorithm works as follows:

Step 1: For every j ∈ {1, · · · , p}, we compute

min
fnj∈Sn

Pn

(
Y − fnj(Xj)

)2

, for 1 ≤ j ≤ p.

Using the NIS, we can pick a set A1 of indices of size k1. In our imple-

mentation, we choose k1 = ⌊2s0/3⌋ to guarantee it will take at least two
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iterations.

Step 2: We apply further the penalized method for additive model (penGAM)

in Meier et al. (2009) on the set A1 to select a subset M1. Inside the

penGAM algorithm, the penalty parameter is selected by cross valida-

tion.

Step 3: Instead of computing residuals, for every j ∈ Mc
1 = {1, · · · , p}\M1, we

minimize

Pn

(
Y −

∑

i∈M1

fni(Xi) − fnj(Xj)
)2

, for 1 ≤ j ≤ p, (11)

with respect to fni ∈ Sn for all i ∈ M1 and fnj ∈ Sn. This regression

reflects the additional contribution of the j-th components conditioning

on the existence of the variable set M1. After marginally screening as

in the first step, we can pick a set A2 of indices of size k2 = s0 − |M1|.
Then we apply further the penGAM algorithm on the set M1

⋃A2 to

select a subset M2.

Step 4: We iterate the process until |Ml| ≥ s0 or Ml = Ml−1.

Here are a few comments about the method. In Step 2, we use the penGAM

method. In fact, any variable selection method for additive models will work

such as the SpAM in Ravikumar et al. (2009) and also the adaptive group

LASSO for additive models in Huang et al. (2009). A similar sample splitting

idea as described in Fan et al. (2009) can be applied here to further reduce

false selection rate.
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5 Numerical Results

In this section, we will illustrate our method by studying the performance on

the simulated data and a real data analysis. Part of the simulation settings

are adapted from Fan and Lv (2008), Meier et al. (2009), Huang et al. (2009),

and Fan and Song (2009).

5.1 Comparison of Minimum Model Size

We first illustrate the behavior of the NIS procedure under different correlation

structures. Following Fan and Song (2009), the minimum model size(MMS)

required for the NIS procedure and the penGAM procedure to have the sure

screening property, i.e., to contain the true model M∗, is used as a measure

of the effectiveness of a screening method. We also include the correlation

screening of Fan and Lv (2008) for comparison. The advantage of the MMS

method is that we do not need to choose the thresholding parameter or penal-

ized parameters. For NIS, we take dn = ⌊n1/5⌋ + 2 = 5. We set n = 400 and

p = 1000 for all examples.

Example 1. Following Fan and Song (2009), let {Xk}950
k=1 be i.i.d standard

normal random variables and

Xk =
s∑

j=1

Xj(−1)j+1/5 +

√
1 − s

25
εk, k = 951, · · · , 1000,

where {εk}1000
k=951 are standard normally distributed. We consider the following

linear model as a specific case of the additive model: Y = β∗T
X+ ε, in which

ε ∼ N(0, 1) and β∗ = (3,−3, · · · )T has s non-vanishing components, taking

values ±3 alternately.
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Example 2. In this example, the data is generated from the simple linear

regression Y = X1+X2+X3+ε, where ε ∼ N(0, 1). However, the covariates are

not normally distributed: {Xk}k 6=2 are i.i.d standard normal random variables

whereas X2 = −1
3
X3

1 + ε̃, where ε̃ ∼ N(0, 1). In this case, E(Y |X1) and

E(Y |X2) are nonlinear.

Table 1: Minimum model size and robust estimate of standard deviations (in
parentheses).

Model NIS PenGAM SIS
Ex 1 (s = 3) 3(0) 3(0) 3(0)
Ex 1 (s = 6) 56(0) 103(703) 56(0)
Ex 1 (s = 12) 63(3) — 62(0)
Ex 1 (s = 24) 228(130) — 102(34)
Ex 2 3(0) 3(0) 297(357)

The minimum model size(MMS) for each method and its associated ro-

bust estimate of the standard deviation(RSD = IQR/1.34) are shown in

Table 1. The column “NIS”, “penGAM”, and “SIS” summarizes the results

on the MMS based on 100 simulations, respectively for the nonparametric in-

dependence screening in the paper, penalized method for additive model of

Meier et al. (2009), and the linear correlation ranking method of Fan and Lv

(2008). For Example 1, when the nonsparsity size s > 5, the irrepresentable

condition required for the model selection consistency of LASSO fails. For

these cases, penGAM performs poorly. When s = 12 and s = 24, penGAM

fails even to include the true model until the last step. In contrast, the pro-

posed nonparametric independence screening performs reasonably well. It is

also worth noting that SIS performs better than NIS in the first example,

particularly for s = 24. This is due to the fact that the true model is lin-
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ear and the covariates are jointly normally distributed, which implies that the

marginal projection is also linear. In this case, NIS selects variables from pdn

parameters whereas SIS selects only from p parameters. However, for the non-

linear problem like Example 2, we can see that both nonlinear method NIS and

penGAM behave nicely. However, SIS fails badly even though the underlying

true model is indeed linear.

5.2 Comparison of Model Selection and Estimation

As in the last section, we set n = 400 and p = 1000 for all the examples

to demonstrate the power of our newly proposed method. The number of

simulations is 100. Here, we use ten-fold cross validation in Step 2 of the INIS

algorithm. For simplicity of notations, we let

f1(x) = x, f2(x) = (2x − 1)2, f3(x) =
sin(2πx)

2 − sin(2πx)

and

f4(x) = 0.1 sin(2πx)+0.2 cos(2πx)+0.3 sin(2πx)2+0.4 cos(2πx)3+0.5 sin(2πx)3.

Example 3. Following Meier et al. (2009), we generate the data from the

following additive model:

Y = 5f1(X1) + 3f2(X2) + 4f3(X3) + 6f4(X4) +
√

1.74ε

The covariates X = (X1, · · · , Xp)
T are simulated according to the random

effect model

Xj =
Wj + tU

1 + t
, j = 1, · · · , p,
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where W1, · · · , Wp and U are i.i.d. Unif(0, 1) and ε ∼ N(0, 1). When t = 0,

the covariates are all independent, and when t = 1 the pairwise correlation of

covariates is 0.5.

Example 4. We adapt the simulation model from Meier et al. (2009) but

reduce the variance of the error from 0.5184 to 0.5184/4=0.1296, since we

decrease sample size and increase the scale of the model from n = 100, p = 60

to n = 400, p = 1000:

Y = f1(X1) + f2(X2) + f3(X3) + f4(X4)

+ 1.5f1(X5) + 1.5f2(X6) + 1.5f3(X7) + 1.5f4(X8)

+ 2f1(X9) + 2f2(X10) + 2f3(X11) + 2f4(X12) +
√

0.1296ε,

where ε ∼ N(0, 1). The covariates are simulated as in Example 3.

Example 5. We follow the simulation model of Fan et al. (2009), in

which Y = β1X1 + β2X2 + β3X3 + β4X4 + ε is simulated, where ε ∼ N(0, 1).

The covariates X1, · · · , Xp are jointly Gaussian, marginally N(0, 1), and with

corr(Xi, X4) = 1/
√

2 for all i 6= 4 and corr(Xi, Xj) = 1/2 if i and j are dis-

tinct elements of {1, · · · , p}\{4}. The coefficients β1 = 4, β2 = 4, β3 = 4, β4 =

−6
√

2, and βj = 0 for j > 4 are taken so that X4 is independent of Y , even

though it is the most important variable in the joint model, in terms of the

regression coefficient.

For each example, we compare the performances of INIS-penGAM pro-

posed in the paper, penGAM(Meier et al., 2009), and ISIS-SCAD (Fan et al.,

2009) which aims for sparse linear model. Their results are shown respectively

in the rows “INIS”, “penGAM”, and “ISIS” of Table 2, in which the True Pos-

itives(TP), False Positives(FP), and the Prediction Error(PE) are reported for
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each method. Here the prediction error is calculated on an independent test

data set of size n/2. First of all, it is easy to notice that the number of false

positive for both INIS-penGAM and ISIS-SCAD are much smaller than that

for penGAM. In terms of false positives, we can see that in Examples 3 and

4, INIS-penGAM and penGAM have similar performance, whereas penGAM

almost always misses one variable in Example 5. The linear method ISIS-

SCAD missed important variables in the nonlinear models in Examples 3 and

4. In the perspective of the prediction error, INIS-penGAM and penGAM

outperforms ISIS-SCAD in the nonlinear models whereas their performances

are worse than ISIS-SCAD in the linear model, Example 5. Overall, in the

designed simulation settings, the ISIS-SCAD and INIS-penGAM outperform

the penGAM in terms of smaller false selection rates.

5.3 Boston Housing Data Analysis

The Boston housing data were collected to study house values in the suburbs

of Boston. There are 506 observations with 10 covariates. To save space,

we omit the description of those variables. Interested readers can find more

details from http://lib.stat.cmu.edu/datasets/boston. The dataset has

been studied by many other authors (Härdle et al., 2004; Lin and Zhang, 2006;

Ravikumar et al., 2009), with various transformations proposed for different

covariates. To demonstrate the effectiveness of our method, following a similar

idea of Ravikumar et al. (2009), we add 90 irrelevant variables, which are ran-

domly drawn from Uniform(0, 1). Therefore, there are 100 covariates, among

which the last 90 covariates are known to be irrelevant variables and the first

10 variables might be relevant to the housing value. Therefore, we fit the

100-dimensional sparse additive model, using INIS-penGAM and penGAM.

21

http://lib.stat.cmu.edu/datasets/boston


Table 2: Average values of the numbers of true (TP) and false (FP) positives.
Robust standard deviations are given in parentheses.

Model Method TP FP PE
INIS 4.00(0.00) 28.96(0.00) 2.57(0.33)

Ex 3 (t = 0) penGAM 4.00(0.00) 45.81(26.31) 2.46(0.28)
ISIS 3.03(0.00) 29.97(0.00) 15.92(1.66)
INIS 3.99(0.00) 29.00(0.00) 2.59(0.31)

Ex 3 (t = 1) penGAM 4.00(0.00) 55.41(17.35) 2.62(0.29)
ISIS 3.01(0.00) 29.99(0.00) 12.89(1.46)
INIS 11.97(0.00) 21.03(0.00) 0.32(0.04)

Ex 4 (t = 0) penGAM 12.00(0.00) 109.94(21.64) 0.52(0.09)
ISIS 8.24(0.75) 24.76(0.75) 4.08(0.37)
INIS 11.58(0.75) 21.42(0.75) 0.33(0.05)

Ex 4 (t = 1) penGAM 11.31(0.75) 96.81(26.87) 0.54(0.09)
ISIS 6.89(1.49) 26.11(1.49) 3.73(0.43)
INIS 4.00(0.00) 29.00(0.00) 3.26(0.62)

Ex 5 penGAM 3.05(0.00) 200.37(9.89) 5.61(0.87)
ISIS 4.00(0.00) 29.00(0.00) 1.35(0.15)

We randomly divide the data into two parts, the first 2/3 as the training data

and the remaining 1/3 as the test data. The above experiment is repeated 100

times to test the stability of the method.

Among the 100 experiments (fitting sparse 100-variable additive model 100

times), the false selection of the 90 known irrelevant variables is recorded and

so are the relevant covariates selected. Among 10 potential relevant covariates,

the variables nox(nitric oxides concentration), rm(average number of rooms per

dwelling), dis(weighted distances to five Boston employment centres), tax(full-

value property-tax rate per $10,000), ptratio(pupil-teacher ratio by town), b

(1000(Bk− 0.63)2 where Bk is the proportion of blacks by town) and lstat(%

lower status of the population) are always selected by both INIS-penGAM and
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penGAM in the 100 numerical experiments. The selected frequencies for other

three variables are given in Table 3. The average number of false positive and

prediction error on the test data along with their robust estimate of standard

deviations are also depicted in Table 3. This shows our method has a smaller

false selection rate, and at the same time, it gives us better prediction accu-

racy. Using ten-fold cross validation as tuning criterion, we discovered that

indus and probably crim for the penGAM method are estimated to be irrel-

evant, which is consistent with Ravikumar et al. (2009). The non-vanishing

estimated additive components in a typical experiment are shown in Figure 1.

Table 3: Selected frequency for variables “crim”, “indus” and “age” and av-
erage selected model size and average number of false positives and average
prediction error. Robust estimates of standard deviations are given in paren-
theses.

Method crim indus age model size false positive prediction error
INIS 0.77 0.15 0.62 17.02(2.99) 8.48 (2.24) 17.48(0.98)
penGAM 0.17 0.02 0.35 17.63(9.89) 10.09(8.58) 18.45 (0.41)

6 Remarks

In this paper, we studied the nonparametric independence screening (NIS)

method for variable selection in additive models. B-spline basis functions

are used for fitting the marginal nonparametric components. The proposed

marginal projection criteria is an important extension of the marginal corre-

lation. Iterative NIS procedures are also proposed such that variable selection

and coefficient estimation can be achieved simultaneously. By applying the
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Figure 1: Non-vanishing estimated additive components in one repetition.

INIS-penGAM method, we can preserve the sure screening property and sub-

stantially reduce the false selection rate. Moreover, we can deal with the case

where some variable is marginally uncorrelated but jointly correlated with

the response. The proposed method can be easily generalized to generalized

additive model with appropriate conditions.

As the additive components are specifically approximated by truncated

series expansions with B-spline bases in this paper, the theoretical results

should hold in general and the proposed framework can be readily adap-

tive to other smoothing methods with additive models (Horowitz et al., 2006;
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Silverman, 1984), such as local polynomial regression (Fan and Jiang, 2005),

wavelets approximations(Antoniadis and Fan, 2001; Sardy and Tseng, 2004)

and smoothing spline (Speckman, 1985). This is an interesting topic for fu-

ture research.

7 Proofs

Proof of Lemma 1.

By the property of the least-squares, E(Y −fnj)fnj = 0 and E(Y −fj)fnj =

0. Therefore,

Efnj(fj − fnj) = E(Y − fnj)fnj − E(Y − fj)fnj = 0.

It follows from this and the orthogonal decomposition fj = fnj + (fj − fnj)

that

‖fnj‖2 = ‖fj‖2 − ‖fj − fnj‖2.

The desired result follows from Condition C together with Fact 1. �

The following two types of Bernstein’s inequality in van der Vaart and Wellner

(1996) will be needed. We reproduce them here for the sake of readability.

Lemma 2 (Bernstein’s inequality, Lemma 2.2.9, van der Vaart and Wellner

(1996)). For independent random variables Y1, · · · , Yn with bounded ranges

[−M, M ] and zero means,

P (|Y1 + · · ·+ Yn| > x) ≤ 2 exp{−x2/(2(v + Mx/3))},
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for v ≥ var(Y1 + · · ·+ Yn).

Lemma 3 (Bernstein’s inequality, Lemma 2.2.11, van der Vaart and Wellner

(1996)). Let Y1, · · · , Yn be independent random variables with zero mean such

that E|Yi|m ≤ m!Mm−2vi/2, for every m ≥ 2 (and all i) and some constants

M and vi. Then

P (|Y1 + · · ·+ Yn| > x) ≤ 2 exp{−x2/(2(v + Mx))},

for v ≥ v1 + · · · vn.

The following two lemmas will be needed to prove Theorem 1.

Lemma 4. Under Conditions A, B and D, for any δ > 0, there exist some

positive constants c6 and c7 such that

P (|(Pn − E)ΨjkY | ≥ δn−1) ≤ 4 exp(−δ2/2(c6nd−1
n + c7δ)),

for k = 1, · · · , dn, j = 1, · · · , p.

Proof of Lemma 4.

Denote by Tjki = Ψjk(Xij)Yi − EΨjk(Xij)Yi. Since Yi = m(Xi) + εi, we

can write Tjki = Tjki1 + Tjki2, where

Tjki1 = Ψjk(Xij)m(Xi) − EΨjk(Xij)m(Xi),

and Tjki2 = Ψjk(Xij)εi.
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By Conditions A, B, D and Fact 2, recalling ‖Ψjk‖∞ ≤ 1, we have

|Tjki1| ≤ 2B1, var(Tjki1) ≤ EΨ2
jk(Xij)mi(Xij)

2 ≤ B2
1C2d

−1
n . (12)

By Bernstein’s inequality (Lemma 2), for any δ1 > 0,

P (
∣∣∣

n∑

i=1

Tjki1

∣∣∣ > δ1) ≤ 2 exp
(
−1

2

δ2
1

nB2
1C2d−1

n + 2B1δ1/3

)
. (13)

Next, we bound the tails of Tjki2. For every r ≥ 2,

E|Tjki2|r ≤ E|Ψjk(Xij)|2E(|εi|r|Xi)

≤ r!B−r
2 E|Ψjk(Xij)|2E exp(B2|εi||Xi)

≤ B3C2d
−1
n r!B−r

2 ,

where the last inequality utilizes Condition E and Fact 2. By Bernstein’s

inequality (Lemma 3), for any δ2 > 0,

P (
∣∣∣

n∑

i=1

Tjki2

∣∣∣ > δ2) ≤ 2 exp
(
−1

2

δ2
2

2nB−2
2 B3C2d−1

n + B−1
2 δ2

)
. (14)

Combining (13) and (14), the desired result follows by taking c6 = max(B2
1C2, 2B

−2
2 B3C2)

and c7 = max(2/3B1, B
−1
2 ). �

Throughout the rest of the proof, for any matrix A, let ‖A‖ =
√

λmax(A
TA)

be the operator norm and ‖A‖∞ = maxi,j |Aij| be the infinity norm. The next

lemma is about the tail probability of the eigenvalues of the design matrix.
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Lemma 5. Under Conditions A and B, for any δ > 0,

P (|λmin(PnΨjΨ
T
j ) − λmin(EΨjΨ

T
j )| ≥ dnδ/n)

≤ 2d2
n exp

{
−1

2

δ2

C2nd−1
n + δ/3

}
.

In addition, for any given constant c4, there exists some positive constant c8

such that

P
{∣∣∣

∥∥(PnΨjΨ
T
j )−1

∥∥ −
∥∥(EΨjΨ

T
j )−1

∥∥
∣∣∣ ≥ c8

∥∥(EΨjΨ
T
j )−1

∥∥
}

≤ 2d2
n exp

(
−c4nd−3

n

)
. (15)

Proof of Lemma 5.

For any symmetric matrices A and B and any ‖x‖ = 1, where ‖ · ‖ is the

Euclidean norm,

xT (A + B)x = xT Ax + xTBx ≥ min
‖x‖=1

xT Ax + min
‖x‖=1

xT Bx.

Taking minimum among ‖x‖ = 1 on both sides, we have

min
‖x‖=1

xT (A + B)x ≥ min
‖x‖=1

xT Ax + min
‖x‖=1

xTBx,

which is equivalent to λmin(A + B) ≥ λmin(A) + λmin(B).

Then we have

λmin(A) ≥ λmin(B) + λmin(A −B),
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which is the same as

λmin(A− B) ≤ λmin(A) − λmin(B).

By switching the roles of A and B, we also have

λmin(B − A) ≤ λmin(B) − λmin(A)

In other words,

|λmin(A) − λmin(B)| ≤ max{|λmin(A− B)|, |λmin(B − A)|} (16)

Let Dj = PnΨjΨ
T
j − EΨjΨ

T
j . Then, it follows from (16) that

|λmin(PnΨjΨ
T
j ) − λmin(EΨjΨ

T
j )| ≤ max{|λmin(Dj)|, |λmin(−Dj)|}. (17)

We now bound the right-hand side of (17). Let D
(i,l)
j be the (i, l) entry of Dj .

Then, it is easy to see that for any ‖x‖ = 1,

|xTDjx| ≤ ‖Dj‖∞
( dn∑

i=1

|xi|
)2

≤ dn‖Dj‖∞. (18)

Thus,

λmin(Dj) = min
‖x‖=1

xTDjx ≤ dn‖Dj‖∞.

On the other hand, by using (18) again, we have

λmin(Dj) = − max
‖x‖=1

(−xTDjx) ≥ −dn‖Dj‖∞.

29



We conclude that

|λmin(Dj)| ≤ dn‖Dj‖∞.

The same bound on |λmin(−Dj)| can be obtained by using the same argument.

Thus, by (17), we have

|λmin(PnΨjΨ
T
j ) − λmin(EΨjΨ

T
j )| ≤ dn‖Dj‖∞. (19)

We now use Bernstein’s inequality to bound the right-hand side of (19).

Since ‖Ψjk‖∞ ≤ 1, and by using Fact 2, we have that

var(Ψjk(Xj)Ψjl(Xj)) ≤ EΨ2
jk(Xj)Ψ

2
jl(Xj) ≤ EΨ2

jk(Xj) ≤ C2d
−1
n .

By Bernstein’s inequality (Lemma 2), for any δ > 0,

P (|(Pn − E)Ψjk(Xj)Ψjl(Xj)| > δ/n) ≤ 2 exp
{
− δ2

2(C2nd−1
n + δ/3)

}
. (20)

It follows from (19), (20) and the union bound of probability that

P (|λmin(PnΨjΨ
T
j ) − λmin(EΨjΨ

T
j )| ≥ dnδ/n)

≤ 2d2
n exp

{
− δ2

2(C2nd−1
n + δ/3)

}
.

This completes the proof of the first inequality.

To prove the second inequality, let us take δ = c9D1nd−2
n in (20), where

c9 ∈ (0, 1). By recalling Fact 3, it follows that

P (|λmin(PnΨjΨ
T
j ) − λmin(EΨjΨ

T
j )| ≥ c9λmin(EΨjΨ

T
j ))

≤ 2d2
n exp

(
−c4nd−3

n

)
, (21)
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for some positive constant c4. The second part of the lemma thus follows from

the fact that λmin(H)−1 = λmax(H
−1), if we establish

P

(∣∣∣∣
{
λmin(PnΨjΨ

T
j )

}−1

−
{

λmin(EΨjΨ
T
j )

}−1
∣∣∣∣ ≥ c8

{
λmin(EΨjΨ

T
j )

}−1
)

≤ 2d2
n exp

(
−c4nd−3

n

)
, (22)

by using (21), where c8 = 1/(1 − c9) − 1.

We now deduce (22) from (21). Let A = λmin(PnΨjΨ
T
j ) and B = λmin(EΨjΨ

T
j ).

Then, A > 0 and B > 0. We aim to show for a ∈ (0, 1),

|A−1 − B−1| ≥ cB−1 implies |A − B| ≥ aB,

where c = 1/(1 − a) − 1.

Since

|A−1 − B−1| ≥ (1/(1 − a) − 1)B−1,

we have

A−1 − B−1 ≤ −(1/(1 − a) − 1)B−1, or ≥ (1/(1 − a) − 1)B−1.

Note that for a ∈ (0, 1), we have 1−1/(1+a) < 1/(1−a)−1. Then it follows

that

A−1 − B−1 ≤ −(1 − 1/(1 + a))B−1, or ≥ (1/(1 − a) − 1)B−1,

which is equivalent to |A − B| ≥ aB.

This concludes the proof of the lemma. �

Proof of Theorem 1.
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We first show part (i). Recall that

‖f̂nj‖2
n = (PnΨjY )T (PnΨjΨ

T
j )−1

PnΨjY,

and

‖fnj‖2 = (EΨjY )T (EΨjΨ
T
j )−1EΨjY.

Let an = PnΨjY , Bn = (PnΨjΨ
T
j )−1, a = EΨjY and B = (EΨjΨ

T
j )−1.

By some algebra,

aT
nBnan − aTBa = (an − a)TBn(an − a) + 2(an − a)TBna + aT

n (Bn − B)a,

we have

‖f̂nj‖2
n − ‖fnj‖2 = S1 + S2 + S3, (23)

where

S1 =
(

PnΨjY − EΨjY
)T

(PnΨjΨ
T
j )−1

(
PnΨjY − EΨjY

)
,

S2 = 2
(
PnΨjY − EΨjY

)T

(PnΨjΨ
T
j )−1EΨjY ,

S3 = (EΨjY )T
(
(PnΨjΨ

T
j )−1 − (EΨjΨ

T
j )−1

)
EΨjY .

Note that

S1 ≤ ‖(PnΨjΨ
T
j )−1‖ · ‖PnΨjY − EΨjY ‖2. (24)
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By Lemma 4 and the union bound of probability,

P (‖PnΨjY − EΨjY ‖2 ≥ dnδ
2n−2) ≤ 4dn exp(−δ2/2(c6nd−1

n + c7δ)). (25)

Recall the result in Lemma 5 that, for any given constant c4, there exists a

positive constant c8 such that

P
{∣∣∣‖(PnΨjΨ

T
j )−1‖ − ‖(EΨjΨ

T
j )−1‖

∣∣∣ ≥ c8‖(EΨjΨ
T
j )−1‖

}

≤ 2d2
n exp

(
−c4nd−3

n

)
.

Since by Fact 3,

∥∥∥(EΨjΨ
T
j )−1

∥∥∥ ≤ D−1
1 dn,

it follows that

P
{∥∥∥(PnΨjΨ

T
j )−1

∥∥∥ ≥ (c8 + 1)D−1
1 dn

}
≤ 2d2

n exp
(
−c4nd−3

n

)
. (26)

Combining (24)–(26) and the union bound of probability, we have

P (S1 ≥ (c8 + 1)D−1
1 d2

nδ
2/n2) ≤ 4dn exp(−δ2/2(c6nd−1

n + c7δ)) + 2d2
n exp

(
−c4nd−3

n

)
.(27)

To bound S2, we note that

|S2| ≤ 2‖PnΨjY − EΨjY ‖ · ‖(PnΨjΨ
T
j )−1EΨjY ‖

≤ 2‖PnΨjY − EΨjY ‖ · ‖(PnΨjΨ
T
j )−1‖ · ‖EΨjY ‖. (28)
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Since by Condition D,

‖EΨjY ‖2 =

dn∑

k=1

(EΨjkY )2 =

dn∑

k=1

(EΨjkm)2 ≤
dn∑

k=1

B2
1EΨ2

jk ≤ B2
1C2, (29)

it follows from (25), (26), (28), (29) and the union bound of probability that

P (|S2| ≥ 2(c8 + 1)D−1
1 C

1/2
2 B1d

3/2
n δ/n)

≤ 4dn exp(−δ2/2(c6nd−1
n + c7δ)) + 2d2

n exp
(
−c4nd−3

n

)
. (30)

Now we bound S3. Note that

S3 = (EΨjY )T (PnΨjΨ
T
j )−1

(
E − Pn

)
ΨjΨ

T
j (EΨjΨ

T
j )−1EΨjY . (31)

By the fact that ‖AB‖ ≤ ‖A‖ · ‖B‖, we have

|S3| ≤ ‖(Pn − E)ΨjΨ
T
j ‖ · ‖(PnΨjΨ

T
j )−1‖ · ‖(EΨjΨ

T
j )−1‖ · ‖EΨjY ‖2. (32)

For any ‖x‖ = 1 and dn-dimensional square matrix D,

xTDTDx =
∑

i

(
∑

j

dijxj)
2 ≤ ‖D‖2

∞dn

( dn∑

j=1

|xi|
)2

≤ d2
n‖D‖∞.

Therefore, ‖D‖ ≤ dn‖D‖∞. We conclude that

∥∥∥
(

Pn − E
)
ΨjΨ

T
j )

∥∥∥ ≤ dn‖(Pn − E)ΨjΨ
T
j ‖∞. (33)

By (20), (26), (29), (32), (33) and the union bound of probability, it follows
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that

P (|S3| ≥ (c8 + 1)D−2
1 B2

1C2d
3
nδ/n)

≤ 2d2
n exp(−δ2/2(c6nd−1

n + c7δ)) + 2d2
n exp

(
−c4nd−3

n

)
. (34)

It follows from (23), (27), (30), (34) and the union bound of probability

that for some positive constants c10, c11 and c12,

P
(∣∣∣‖f̂nj‖2

n − ‖fnj‖2
∣∣∣ ≥ c10d

2
nδ

2/n2 + c11d
3/2
n δ/n + c12d

3
nδ/n

)

≤ (8dn + 2d2
n) exp(−δ2/2(c6nd−1

n + c7δ)) + 6d2
n exp

(
−c4nd−3

n

)
. (35)

In (35), let c10d
2
nδ

2/n2 + c11d
3/2
n δ/n + c12d

3
nδ/n = c2dnn

−2κ for any given

c2 > 0, i.e., taking δ = n1−2κd−2
n c2/c12, there exist some positive constants c3

and c4 such that

P (
∣∣∣‖f̂nj‖2

n − ‖fnj‖2
∣∣∣ ≥ c2dnn−2κ)

≤ (8dn + 2d2
n) exp(−c3n

1−4κd−3
n ) + 6d2

n exp
(
−c4nd−3

n

)
.

The first part thus follows the union bound of probability.

To prove the second part, note that on the event

An ≡ {max
j∈M⋆

∣∣∣‖f̂nj‖2
n − ‖fnj‖2

∣∣∣ ≤ c1ξdnn
−2κ/2},

by Lemma 1, we have

‖f̂nj‖2
n ≥ c1ξdnn

−2κ/2, for all j ∈ M⋆. (36)
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Hence, by the choice of νn, we have M⋆ ⊂ M̂νn
. The result now follows from

a simple union bound:

P (Ac
n) ≤ sn

{
(8dn + 2d2

n) exp
(
−c3n

1−4κd−3
n

)
+ 6d2

n exp
(
−c4nd−3

n

)}
.

This completes the proof. �

Proof of Theorem 2. The key idea of the proof is to show that

‖EΨY ‖2 = O(λmax(Σ)). (37)

If so, by definition and ‖Ψjk‖∞ ≤ 1, we have

pn∑

j=1

‖fnj‖2 ≤ max
1≤j≤pn

λmax{(EΨjΨ
T
j )−1}‖EΨY ‖2 = O(dnλmax(Σ)).

This implies that the number of {j : ‖fnj‖2 > εdnn
−2κ} can not exceed

O(n2κλmax(Σ)) for any ε > 0. Thus, on the set

Bn = { max
1≤j≤pn

∣∣∣‖f̂nj‖2
n − ‖fnj‖2

∣∣∣ ≤ εdnn
−2κ},

the number of {j : ‖f̂nj‖2
n > 2εdnn

−2κ} can not exceed the number of {j :

‖fnj‖2 > εdnn
−2κ}, which is bounded by O{n2κλmax(Σ)}. By taking ε = c5/2,

we have

P [|M̂νn
| ≤ O{n2κλmax(Σ)}] ≥ P (Bn).

The conclusion follows from Theorem 1(i).

It remains to prove (37). Note that (37) is more related to the joint regres-
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sion rather than the marginal regression. Let

αn = argminαE
(
Y − ΨT α

)2

,

which is the joint regression coefficients in the population. By the score equa-

tion of αn, we get

EΨ(Y −ΨT αn) = 0.

Hence

‖EΨY ‖2 = αT
nEΨΨT EΨΨT αn ≤ λmax(Σ)αT

nEΨΨT αn,

Now, it follows from the orthogonal decomposition that

var(Y ) = var(ΨT αn) + var(Y − ΨT αn).

Since var(Y ) = O(1), we conclude that var(ΨT αn) = O(1), i.e.

αT
nEΨΨT αn = O(1).

This completes the proof. �.
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