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Abstract

Recent proposals for implementation of kernel based nonparamet
ric curve estimators are seen to be faster than naive direct imple
mentations by factors up into the hundreds. The main ideas behind
two different approaches of this type are made clear. Careful speed
comparisons in a variety of settings, and using a variety of machines
and software is done. Various issues on computational accuracy and
stability are also discussed. The fast methods are seen to be some
what better than methods traditionally considered very fast, such as
LOWESS and smoothing splines.

1 Introduction

Smoothing techniques can be viewed as a set of useful and powerful methods
for finding insights from sets of numbers. There are a wide array of these,
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and they are used and understood in quite different ways. See for example,
the books by Eubank [6], HardIe [10] and Silverman [18].

A widely popular choice of smoothers, is kernel - local polynomial meth
ods, which are appealing because of their simplicity and interpretability.
These methods have been considered computationally slow in comparison
to other methods though. In this paper, we discuss and compare two quite
different approaches to this problem. These give implementations of kernel 
local polynomial methods which are far faster than naive direct implementa
tions. In particular speed factors well into the lOa's, are available for larger
sample sizes. To understand the implications of a factor of 100, note that it
is the difference between:

• a picture appearing on the screen in a few seconds, during an interactive
data analysis, versus several minutes (we have to meet an analyst who
can wait this long, and call it "interactive").

• a "batch type" job (e.g. a bootstrap analysis, or other type of simula
tion, etc.) which runs over night, versus in several months.

The above comparisons are not academic, but quite realistic. In particular,
direct implementation of kernel - local polynomial estimators, with larger
data sets, typically requires computation times well into minutes. However
both fast methods discussed here are almost always well within our per
sonal "patience zone" of 3 seconds, and frequently need much less than 1
second. These fast methods make kernel - local polynomial estimators at
least as good, and occasionally somewhat better than, smoothers that have
previously been considered "very fast", such as LOWESS and clever imple
mentations of smoothing splines.

Some have expressed the opinion that because computational speeds are
improving so rapidly there is no need to worry about careful programming or
fast implementations. We agree that computational speeds are dramatically
improving (although it does require a number of generations to give a speed
factor of lOa!), but disagree with the notion that fast methods are not worth
while (when the improvement is of this order of magnitude). In particular, we
would like to stress that as computational capability improves, computational
appetite grows at least as fast. Witness the big boom in computationally
intensive statistical methods, for example:
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• "dimensionality reduction methods", such as Projection Pursuit, Alter
nating Conditional Expectations, Generalized Additive Models, Sliced
Inverse Regression, Multivariate Additive Regression Splines, ...

• dynamic graphics

• bootstrap methods

• Gibbs sampling

• other types of simulation

• smoothing parameter selection

• image analysis

We agree that in the future, we will be able to perform our current tasks
much more quickly, but expect that far more sophisticated methods will be
attempted. We also feel that smoothers will form essential building blocks
for some these, so fast implementations of smoothers is not a topic only of
short term interest.

In section 2, we introduce the settings in which we consider smoothers:
nonparametric density and regression estimation. A popular use of these
kernel - local polynomial smoothers in these settings is graphical analysis
of data. For this we recommend evaluation of the estimators at an equally
spaced grid of 400 points. We have found fewer than 400 often results in
distracting "granularity", while more grid points often gives negligible im
provement in the resolution.

In section 3 we describe, and motivate two different fast methods for
implementation of kernel - local polynomial estimators. The first is an ap
proximation, based on "binning" the data. The second involves "updating"
ideas, based essentially on recursively computing averages. The latter tech
nique involves some deep ideas, that are relatively new, and quite obscure.
These are much deeper than the widely known updating ideas, because gen
eral polynomial window shapes are allowed.

We have done a very wide array of comparisons of computational speeds
of both these implementations are compared with each other, and with di
rect implementations. A selected representative part of these comparisons
are presented in section 4. As noted above it is seen that improvements of
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the fast methods over the direct involving speed factors in the 100's are avail
able. Neither of the two methods dominates the other, with one being faster
in some situations, but the other faster in different contexts. Models are pre
sented which demonstrate how computational speed for each implementation
depends on the sample size and the number of grid points. Comparison is
also made across different settings, such as density and regression estimation,
and across different kernel shapes.

Section 5 discusses "accuracy issues". For the binned approximation,
it is seen that the difference between the binned approximation and the
direct versions are surprisingly small. For visual purposes, these completely
negligible in almost all cases, when our recommendation of 400 grid points
is followed (and in fact for substantially smaller grids as well). The updated
methods is seen to have some potential for problems for numerical instability.
This is quite often not a problem (in particular for reasonable bandwidths,
and not too high a degree polynomial kernel). However, there is potential
for complete breakdown of the estimator, so the ideas behind this are worth
clarification.

In our comparisons, we also considered quite a wide array of computa
tional environments. In particular, we used different combinations of ma
chines and software languages. The machines included a variety of PC's and
workstations. The software languages ranged from the "low level" language
C, to the "intermediate level" languages GAUSS and S. See section 6 for
representative results of this type.

Section 7 provides comparison of the binned and updated algorithms dis
cussed here, to the popular fast smoother LOWESS, and to fast implemen
tations of the smoothing spline. As noted above, the present methods work
impressively well in comparison to the other methods, which have been con
sidered noteworthy because of their computational speed.

Extensions to other estimation settings, including equally spaced designs,
derivative estimation, estimation of functionals and estimation in higher di
mensions are commented upon in section 8.

While the algorithms suggested in section 3 do provide massive improve
ments in speed over direct implementations, there is a price to be paid. This
comes in terms of extra effort in programming. Hence, we do not expect
individuals to use these methods in all situations, although they will be very
useful in many cases involving heavy iteration of smoothers. However, in
our opinion, for any software package to be called "modern", it should use
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algorithms of this type in a central way.

2 Settings

An appealing method for seeing structure in a univariate set of data is the
kernel density estimator. Given a set of data Xl, ... , X n this estimator is
defined by

(1)

(2)

where J{h(') = tJ{(iJ, for some "kernel" function, J{, using a "bandwidth"
h. If the~data are thought of as a random sample from a probability density
f, then fh may be viewed as an estimate of f. See Silverman [18] for many
useful facts about this estimator.

An intuitively attractive scatterplot smoother is a moving local average.
Given a set of bivariate data (XI, Yi), ... , (Xn , Yn ), the Nadaraya - Watson
kernel regression estimator is given by

_ ( ) L1 2:::i=l J{h (x - Xi) Yi
mh x = n ,

2:::i=l J{h (x - Xi)

using the above notation. See HardIe [10] and Eubank [6] for discussion of
relevant issues for this method.

An improved (significantly so at boundaries and for nonequally spaced
data) scatterplot smoother is based on moving local linear regression. Again
for bivariate data, this estimator is given by

(3)

(4)

where, for e= 0,1,2,

S((x) ~ 2:::i=l J{h (x - Xd (x - xd~

T((x) ~ 2:::~1 J{h (x - Xd (x - X i )( Yi

See Fan [4] and Hastie and Loader [12] for discussion.
Note that the kernel density and regression estimators also have repre

sentations in terms of the notation (4):
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The most common use of these kernel estimators is construction of a plot
for graphical analysis. This requires the estimator be evaluated at a grid of
x locations, Xll ... , X g • The most time consuming part of the simplest direct
implementation is usually kernel evaluation. Note that this entails O(n . g)
kernel evaluations. In section 3.1 we describe a far faster method, requiring
only O(g) kernel evaluations. In section 3.2 we discuss another far faster
method which implicitly calculates kernel evaluations, using essentially O(n)
operations.

The main family of kernel functions considered here is the "symmetric
Beta family"

K(x) ~ Ca (1 - x2
): '

where the subscript + denotes "positive part" (which is assumed to be taken
before the exponentiation, so this function is supported on [-1, 1]), and the
constant Ca ~ f(2a + 2)f(a + 1)-22-20'-1 makes K integrate to 1. As
noted in Marron and Nolan [16] this family includes most widely used kernel
functions, including the Gaussian, K(x) = </>(x), in the limit as a -+ 00. We
explicitly treat here the "uniform" with a = 0, the "Epanechnikov" with
a = 1, the "biweight" with a = 2, the "triweight" with a = 3, and the
Gaussian.

3 Fast Algorithms

3.1 Binning Methods

Binned implementations have been suggested by a number of authors, see
HardIe and Scott [11] and Silverman [18] for access to earlier work. The key
idea of binned implementations is to greatly reduce the number of kernel
evaluations, through the fact that many of these evaluations are nearly the
same. This requires that the grid xl, ... , xg be equally spaced. The data are
also approximated by "equally spaced data". A simple way of doing this is to
"bin" the data, by replacing each Xi by the nearest grid point Xj(i), denoted
by Xi t---+ Xj(i), and conceptually to do the estimation using this modified
data set. The modified data set is conveniently handled through the index
sets:
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Visual insight comes from thinking ofthe original data {(Xi, Yi) : i = 1, ... , n}
(or the modified data) as being summarized by the "binned data"

using the "bin averages" ,

and the "bin counts"

The most direct use of the modified data is to approximate Tt ( x jl), for
j' = 1, ... ,g, by

Tt(Xjl) ~ Li=l J(h (Xjl - Xj(i)) (xj' - Xj(i))t Yi
= L]=l LiEI) J(h (Xjl - Xj) (Xjl - Xj/ Yi

= L]=l J(h (Xjl - Xj) (Xjl - Xj)t Yj!;,

(5)

where Yj'E = cjYj = LiEI
j

Yi, By a similar but easier calculation, St(x) is
approximated by

(6)

A naive implementation of (5) or (6) (usually) reduces the number of kernel
evaluations from O(n . g) to O(g2).

But much more dramatic savings are available through careful calculation
of (5) and (6), because many of the kernel evaluations are the same, as
illustrated in Figure 1. In particular, letting ~ = Xj - Xj-l denote the
"binwidth" or "grid spacing", note that each Xj - Xj-k = k~, independent
of j.

[put Figure'1 about here]

FIGURE 1: Many pairwise differences are same for equally spaced
grid points.
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This structure gives large computational savings when (5) is calculated
as

(7)

where "'e,j = J(h (j~) (j~)e, since now the number of kernel evaluations is
O(g) (and similarly for Se). vVith so few kernel evaluations, the time to
compute the discrete convolution becomes an important factor. vVe have
experimented with both Fast Fourier Transform methods, such as recom
mended in section 3.5 of Silverman [18], and with direct implementations.
For 9 :s 401, we have not observed the anticipated large gains for the FFT.
In fact we found the FFT to be occasionally slower. The main reason for
this was the need to pad with zeros (resulting in a vector of length 2g - 2)
to eliminate "boundary problems" caused by the circularity of the FFT. Ad
ditional padding may be needed to make 2g - 2 a power of 2 (or an integer
with few prime factors). Another reason for the slowness of the FFT, is that
it appears impossible to exploit zeros among the ej, which is important for
n «g. So we believe the FFT is usually not worth the extra trouble. The
major benefits from binning come from the reduction in kernel evaluations,
not the FFT calculation of the convolution, as suggested in section 3.5 of
Silverman [18].

The number of convolutions required is quite different for the different
estimators. In particular

requires one convolution,

mf(x) ~ To(x)
So(x)

requires two convolutions, and

~:(x) ~ S2(x)To(x) - Sl(x)T1(x)
S2(X)SO(x) - S~(x)

requires five convolutions. This generalizes to higher degree local polynomial
regression, where a polynomial of degree p requires 3p + 2 convolutions.

A refinement of the binning procedure, is "linear binning" also discussed
(together with early references) in Silverman [18]. The idea behind this is
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illustrated in Figure 2. Conceptually think of "splitting" each point (Xi, Y;)
into two "fractional points" , which are shared by the 2 nearest bin centers (i.e.
"grid points"). The fraction assigned to each side is taken to be proportional
to the distance from Xi to the nearest bin center on the opposite side. For
this define, for i = 1, ... , nand j = 1, ... , 9

W . . ~ (1 _IXi - X j I)
I,) ~

+

and "put fraction Wi,j into the bin centered at Xj, and fraction Wi,j+l into
the bin centered at Xj+l'"

[put figure 2 about here]

FIGURE 2: Linear binning "splits" data points between two near
est bin centers.

Evaluation of (7) and its SI analog requires storage, for j = 1, ... , g, of

Cj = L:i=l Wi,j
Y E _ "n w . ."t/; ,

j - L.i=l I,) I i

which are used as above to calculate the Se and Te. At first glance, both
linear and simple binning appear to require O(ng), operations (essentially
a double loop through both i and j). But a much faster O(n) algorithm is
available through recognition of the fact that simple binning is essentially
the quotient of an integer division. Linear binning can also be done in O(n)
operations, since Wi,j is the remainder of that division. Because linear binning
is also more precise, we use it in all examples in this paper. The O(n) linear
binning operation is based on the linear transformation L(·) = ±(. - Xl) + 1,
which maps {XI""'Xg } onto {l, ... ,g}. Then for i = 1, ... ,n, the integer
part of L(Xi), denoted here by j'(i) = LL(Xi)J , indicates the two nearest
bin centers to Xi, and the fractional part, L(Xi) - j'( i), gives the "weights"
assigned to the two nearest bin centers, as

Wi,j'(i) = 1 - (L(Xi ) - j'(i)), Wi,j'(i)+l = L(Xi ) - j'(i).

Note that only a loop through i is required (not the double loop it is natural
to first consider).
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For handling endpoints, we have found that in some situations it is de
sirable to delete observations "outside the grid" (i.e. outside the interval
[Xl - !::../2, x g + !::../2]), and in others it is preferable to move such observa
tions to the nearest bin centers. Hence we prefer programs which allow a
choice between these.

Careful comparison of the binned and direct implementations is done in
section 5.1.

3.2 Updating Methods

A time honored approach to fast computation of smoothers is based on an
"updating" idea. Simple understanding of this is provided by regression at an
equally spaced grid of design points. In particular, consider a uniform kernel
Nadaraya-Watson smooth of data {(I, Yi), , (n, Yn )}, to be evaluated at the
same design points {I, ... ,n}. For j = I, ,n, each mh(j) is essentially an
ordinary average of {Yj-ih' ... , Yj+ih}, for some ih determined by the band
width. After mh(j) has been computed, calculation of mh(j + 1) does not
require recalculation of the entire average, but instead only deletion of Yj-ih,
and insertion of Yj+ih+!' For evaluation at the entire grid, this requires only
O(n) operations, compared to O(n2 h) for a direct implementation.

For nonequally spaced data, there are two different directions in which
this idea may be extended. One is the "nearest neighbor" approach which
keeps the idea of updating the moving average by one observation at each
end of the moving window, and thus necessitates different bandwidths at
different locations. We do not recommend this, as the result is inefficient (in
the statistical sense) and hard to interpret, as noted in sections 2.5 and 5.2.1
of Silverman [18] and in Fan and Marron [5]. Another direction is more in
the spirit of conventional kernel estimation, keeping the bandwidth the same,
but updating by an appropriate (and differing) number of observations each
time.

There are some clever further generalizations of updating. The LOWESS
idea of Cleveland [3] is a further extension of the nearest neighbor approach,
to robust local linear estimation. The "supersmoother" of Friedman [7] uses
updating ideas for local bandwidth adjustment.

A serious drawback to all of the above ideas, is that the uniform kernel
is at their heart, which entails rough looking plots. Extension to smoother
nonuniform kernels is not obvious, because they involve weighted local aver-
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ages, and all of the weights change with location. However, updating ideas
have been adapted for polynomial kernels (e.g the beta family above, for
integer a) by the Heidelberg school, see Gasser and Kneip [8] (there is also
some interesting unpublished work on this by Brockmann, Engel, Gasser and
Herrman). The key is to expand the polynomial into terms, in such a way
that each can be calculated rapidly by "updating".

For a given point, x, when the kernel function is supported on [-1, 1], the
data points which have a contribution to the Sl(X) and T1(x) are indexed by

Ix ~ {i :Ix ~Xi I< I} .
For a kernel of the form I«x) = Ca (1 - X2)~ = Ca L~=o (~)(_x2 )1I, note
that

~ (x) = ""~ 1 I< (x-X,) (x - Xo)l y; .
l w,=l h h "

= C ""0 ""a (a)h- 211- 1(_1)11 (x _ Xo)211+1 y;
a w'El:r Wll=O 11 "

= C "". 0 ""a (a)h- 211- 1(_1)11 ",,211+1 (211+1) k (_Xo)211H-k y;a wlEl:r WlI:;:O 11 wk=O k X , 1

= C ""a (a)(_l)l1 ",,211+1 (211+1)xk ""0 h-211- 1 (_Xo)211H-k y;a WlI=O 11 wk=O k wlEl:r ' 1
0

(8)

For a grid of Xj values, "updating" ideas can be used to rapidly compute
summations of the form LiElx h- 211 - 1 (_Xd 211H

-
k Yi, The same idea is the

key to LOWESS [3] and "supersmoother" [7], in the case of the uniform
kernel (a = 0). This is accomplished by first sorting the data, so that
we may assume that Xl :::; ... :::; X n (this is assumed to be already done
through the rest of this section). Next note that differencing the cumulative

U- ~ ""m h- 211- 1 ( X )211+1-k v . ldsums m = wi=l - i L i Yle s

for appropriately chosen indices L(xj) and I(xj). Exactly the same formulas,
except with Yi replaced by 1 are used to calculate the Sl.

Note that the calculation of the cumulative sums requires only O(n) oper
ations, although the presorting (which needs to be done only once) requires
at worst O(n log n) operations (of a type which is generally much faster) 0

From a practical point of view (i.e. ignoring sorting time), this results in an
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algorithm with O(n) behavior. Note however that the constant coefficient in
these speed calculations grows rapidly with a.

A major strength of this algorithm, over the binned methods described
in section 3.1, is that they allow for bandwidth variation. There are two
major types of bandwidth variation, where one replaces f{h (x - Xi) by either
f{h(x) (x - Xi) or J(h, (x - X;). To use Gasser's fast method with the first
type of bandwidth variation, calculate

based on the cumulative sums Um =E~l (_Xi )2
v
+l-k Ii. For the second

type, calculate

based on the cumulative sums Um =E~l hi2v- 1 (_X;)2
v
+l-k Ii.

Explicit representations for these formulas in the cases a = 0,1,2,3 and
e= 0,1,2 are given in the appendix.

4 Speed Comparisons

For simulated density estimation data, we drew 10, 000 pseudo random re
alizations from the N (0, 2

11l") distribution (this scale makes the maximum
height = 1, which assists in comparing accuracies). For the simulated regres
sion data, we drew 10, 000 pseudo random pairs (X, V), where X was dis
tributed uniformly on [0,1], and Y IX = m(X) + €, for m(x) = 64x3(1- x)3
(again chosen to have maximum height = 1) and € distributed N (0,1/4).
Visual impression for this regression setting is given in Figure 7.

For each of the sample sizes n = 25, 100, 250, 1000, 2500, and 10, 000,
we split the data into 10, OOOln samples of size n, and calculated the aver
age time required to compute each of the estimators discussed above at an
equally spaced grid of 9 = 401 points, using each implementation, for the
each of the kernels given at the end of section 2. Estimates were constructed
for grids over the intervals [-1.2, 1.2] for density estimation and [0, 1] for
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regression. Computation speed for most methods depends on the choice
of bandwidth. As a reasonably representative choice we started with the
Asymptotic Mean Integrated Squared Error optimal bandwidth hAMISE (see
for example, (2.2) of HardIe, Hall and Marron [9]). The binned and updated
methods involve some "preprocessing" that needs only be done once for a
given data set, e.g. binning and sorting. This need not be repeated for the
calculation of additional estimates, e.g. with a different bandwidth, so we
also timed each method for a total of three estimates, using the bandwidths
hA~rSE, hAMISE, 3hAMISE.

We tried these using a variety of hardware and software, discussed in
detail in section 6 below. All calculations were done in double precision. In
this section, we only present results using the programming language GAUSS
on a 486 PC, and the programming language C on a SUN SPARC 2.

4.1 Comparison of Implementations

Figure 3 allows graphical comparison of the computation times for the various
implementations.

[put Figure 3 about here]

FIGURE 3: Comparison of average speeds for Direct, Binned and
Updated Implementations, for the biweight kernel, for one and
three estimates. Vertical bars show factors of 100 and 10. Figure
3a is for density estimation, running GA USS on a 486 PC. Figure
3b is for local linear regression, using C on a SPARC 2.

The horizontal line indicates a time of 3 seconds. We felt this was a rea
sonable "comfort threshold" , meaning when doing interactive data analysis,
most people have no problem waiting this long for a picture to appear, but
become impatient with longer times. Note that in both cases the Direct Im
plementation leaves this range for n between 100 and 1000. However both of
the fast implementations are essentially within this range for all sample sizes
considered.

A rough rule of thumb is that for n = 25, there are not important differ
ences between any of the implementations. However, important differences
rapidly appear. In Figure 3a, the Direct Implementation is already slower
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by a factor of nearly 10 for n = 100. For large samples this factor can be as
large as 100.

Direct:
Binned (bin + convolve):
Updated (sort + update):

1 Estimate
CDng

CBln +CB2,(g)
CUIn log n + Cu2(n + g)

3 Estimates
3CDng

CBln + 3CB2,(g)
CuInlogn + 3Cu2 (n + g)

TABLE 1: Approximate dependence of computation times on sam
ple and grid sizes. The convolution time ,(g) depends on the
convolution algorithm used.

The approximate shapes of the curves in Figure 3 are explained by the
entries in Table 1. The curves for the Direct Implementation are nearly linear
(with slope 1 on the log-log scale), because these speeds grow linearly in n
(recall 9 is fixed at 401). They are separated by different intercepts, which
essentially reflects the fact that it takes three times as long to calculate
three estimates. The curves for the Binned Implementation are not linear,
because they are essentially the sums of 2 components, the binning time
(CBIn, which is thus linear with slope 1, on this log-log scale), and the time
for evaluation of the rest of the estimate (CB2,(g), roughly constant with
respect to the sample size, with precise form depending on computational
method used). Hence they are essentially constant for n small, and then
become linear (although in Figure 3b, this "asymptotic effect has not yet set
in" for n = 10,000). The curves for the Updated Implementation are also
not linear, because there are again essentially two components, the time for
sorting (Culn log n), plus the time for the updating part of the calculation
(roughly of the form Cu2 (n + g)). Thus these are also roughly constant for
small n and become nearly linear for larger n. Figure 4 shows how these
binning and sorting times (the left hand term in each entry of the table)
determine the behavior seen in Figure 3.

[put figure 4 here]

FIGURE 4: Display of effects of binning and sorting times on
speeds shown in Figure 3. Upper curve of each type is the time
for one estimate shown in Figure 3, and the lower curve is the
preprocessing time.
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The curve for binning times is essentially (except for problems at the
low end, caused by difficulties in the timing process with measuring times so
small) linear (with slope 1), because as indicated in Table 1, binning time
grows linearly with n. However the curves for the total time converge to the
binning curves, because the time for the rest of the calculation is independent
of n (again for fixed g). Also for this reason, the curves for three estimates
in Figure 3a also converge to the binning time curve. This will also happen
in Figure 3b, had we considered larger n, but the asymptotic effects have
not yet "kicked in" for the sample sizes considered. Clearly these trends
continue for larger n. A reasonable rule of thumb is that for large enough
n, the Binned Implementation is faster than the Direct Implementation by
roughly a factor of 100 (i.e. GDg ~ GB d100). The difference is even more
dramatic when doing several smooths for the same data set. However there
is very little significant difference between the binned and updated methods.
For smaller sample sizes, sometimes one is better, sometimes the other. Note
that GDg « 10(GU1 + GU2 ), so for reasonable sample sizes updating is
significantly better, although the improvements are not quite so dramatic as
for binning over the direct method.

The curves for the Binned Implementations in Figures 3b and 4b are con
cave (at first glance surprising, since all other curves are convex), because
for smaller n, a convolution algorithm was used which exploited the sparsity
of the data (n < g). For the larger n in these figures, the time is roughly
constant, because the binning time has not yet become an important com
ponent. Note that some of the binned implementation times decrease in n,
because for larger samples, the bandwidths (recall these are all multiples of
the asymptotically optimal bandwidth) decrease, which means fewer terms
in the convolution are needed.

The curves for sorting times are not quite linear, because this requires or
der n log n operations. The total time for the Updated Implementation does
not get very close to the sorting time in these pictures, because the remainder
of the time grows linearly in n. Asymptotically, the time for the Updated
Implementation will be the same as the sorting time. This will eventually
be slower than even the Direct Implementation, but because of the relative
magnitudes of the constant coefficients, this will require astronomically large
samples (e.g. roughly speaking in this picture, the "trade-off point" will be
of the order of magnitude of n = e9 = e401 ~ 10174 ). However, for reason
able sample sizes, the Updated Implementation is quite competitive with the
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Binned Implementation.

4.2 Comparison of Settings

This section compares how computation times vary across the settings of
density estimation, Nadaraya-vVatson regression and local linear regression.
Figure 5 shows computation times, organized in a convenient way for this
purpose.

[put Figure 5 about here]

FIGURE 5: Comparison of average speeds across estimation set
tings, for one (top curves of each type) and three (bottom curves
of each type) estimates, all using the biweight kernel. Vertical
bars show factors of 100 and 10. Figure 5a is for the Binned Im
plementation running in GA USS on a 486 PC, and Figure 5b is
for the Updated Implementation

Figure 5a is quite representative of a number of similar pictures we have
made for the Binned Implementation. Note that the computation times for
the Nadaraya-Watson estimator are roughly twice those for the density es
timator, for all n. This is because both the binning time (CBln), and the
convolution time (CB2,(g)) are essentially doubled. The local linear esti
mator is slower than the Nadaraya-Watson estimator by a factor of slightly
more than two for small samples, decreasing to one for large samples. The
reason for this is that local linear estimation requires 5 convolutions, versus
two for the Nadaraya-Watson, which is important for small samples (where
the convolution time CB2,(g) is dominant). However for large samples, the
binning time CB1n becomes dominant, and this is the same for both.

Figure 5b is also quite representative, for the Updated Implementation.
The Nadaraya-Watson estimator is slower than density estimation, by a fairly
constant factor of about 1.3. This is much less than 2, because the similar
forms of So and To (needed by the Nadaraya-Watson) allow simultaneous
calculation with much less than twice the effort for So alone (as needed
for density estimation). The local linear estimator is far slower (roughly a
factor of 2 for smaller samples), because 51, S2, and T1 require a different
structure, and calculation of more terms. For larger samples, there is less dif
ference between the settings, because the sorting time (Cu1n log n) becomes
an important component of the total time.
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4.3 Comparison of Kernels

This section studies the relative computation times for the different kernels.

[put Figure 6 about here]

FIGURE 6: Comparison of average speeds across kernels, for one
Nadaraya Watson estimate. Vertical bars show factors of 100
and 10. Figure 6a is for the Binned Implementation running in
GA USS on a 486 PC, and Figure 6b is for the Updated Imple
mentation running in C on a SPARC 2.

These pictures are very representative of the corresponding ones for other
settings. In all cases, the symmetric beta family is faster for smaller a, by a
factor which is linear in a.

For the Binned Implementation, shown in Figure 6a, the triweight kernel
is about 1 to 1.4 times as slow as the Uniform. The Gaussian is somewhat
slower than all members of the beta family (by a factor of 1.2 - 3). One
reason is that the Gaussian is infinitely supported (thus requiring more terms
in the "convolution). This can be improved somewhat, by truncating the
Gaussian kernel, e.g. beyond 4 standard deviations (this value was suggested
by M. Wand). From Figure 6a it is apparent that the gains from this can
be noticeable but limited. Another reason that the Gaussian is slower is
that it requires exponentiation in the kernel evaluation. For larger sample
sizes, the times converge, because the constant binning time (CBIn) becomes
dominant.

For the Updated Implementation, shown in Figure 6b, there is no Gaus
sian kernel, because that idea only applies to polynomial kernels. There is
now a more important difference between each of the symmetric beta ker
nels, because higher degree polynomials take more time to compute using
this algorithm. The triweight is slower than the Uniform by factors of 2 
3, depending on n. For larger sample sizes, the times converge somewhat,
because the sorting time (CUI n log n) plays an increasingly significant role.

5 Accuracy Issues

There are two important points to consider about accuracy. One is how close
the Binned Implementation is to direct versions. The other is assessing round
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off error in the Updated Implementation.

5.1 Binned vs. Direct Implementations

An interesting issue in comparing the direct and binned estimators is: which
should be regarded as "truth"? Certainly the direct estimator has histor
ical precedence, but each is after all only an estimate. Since the binned
estimator is so much more useful (because it can be computed much more
rapidly), a case can be made for considering this to be "the" estimator, and
the direct method an approximant which is perhaps easier to analyze, and
intuitively understand. Fortunately, we will see in this section that the point
is essentially moot, because there is rarely an important practical difference.

Figure 7 demonstrates the visual difference between the Binned and Di
rect Implementations, for some different choices of 9 and n .

.
[put Figure 7 about here]

FIGURE 7: Simulated Data, with Binned and Direct Nadaraya
Watson estimates. Figures 7a and c each show three estimates
using the Gaussian kernel, at hAMISE/3, hAMISE, and 3hAMISE.
Figures 7b and d each show one estimate using the Uniform ker
nel, at hAMISE.

The Gaussian kernel gives both implementations remarkably close to each
other, even for the quite sparse grid with 9 = 51. Although there are 6
separate curves, 3 dotted and 3 dashed, they look much like 3 dot and dashed
curves. Careful inspection shows a few separations, which are easiest to see
for the smaller bandwidth, and 9 = 51. But for the goal of visual data
analysis, the differences are clearly negligible in all cases.

There are much larger differences for the Uniform kernel. The moving of
observations done in the binning operation has a much larger effect for this
kernel, because slight movements in the x direction can determine whether
or not an observation is in or out of a given window. This effect is worse for
smaller bandwidths, because averages with fewer observations change more
when points are added or deleted, although to save space we decided not
to include a figure demonstrating this. This effect is also worse for 9 = 51,
because observations are moved much further. For 9 = 401, the Binned and
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Direct Implementations look visually fairly similar, although their sup norm
difference is actually fairly large, because a slight "horizontal shift" in the
step function, can mean a "big vertical jump". For example, in Figure 7d,
near x = .09, note that the Direct Implementation appears to "jump up"
one bin center before the Binned Implementation.

Figure 8 contains a summary of part of a more extensive comparison of
the Binned and Direct Implementations. For kernel density estimation, this
shows the "Relative Accuracy Measure" given by

max (Jh) - min (h) , (9)

for different choices of hand g, calculated for just one set of the data used
in the speed comparisons.

[put Figure 8 about here]

FIGURE 8: Relative Accuracy Measures for kernel density estima
tion, sample size n = 1000. Bandwidths are: hAMISE/3 in Figure
Ba, hAMISE in Figure Bb.

The horizontal lines show error thresholds of 5% (considered a lower
bound for "visually distracting") and 1% (considered a lower bound for "vi
sually noticeable"). Except for the uniform kernel, for 9 2: 100 all kernels
are always below the "noticeable threshold". The uniform kernel usually gets
better for increasing g, with exceptions caused by random variation (most
noticeable at the smallest bandwidth, for the reason explained above). We
do not advocate use of the uniform kernel, but for those who prefer it, the
picture is not so gloomy as presented here, for the reasons given above about
the difference between "visual impression" and the sup norm.

We also looked at the same picture for 3hAMISE, but do not include it,
because (except for the uniform kernel) the relative accuracy is essentially
indistinguishable from O. In addition, we made all 3 pictures for n = 100,
but the ideas are essentially the same, so these are not shown either.

This is only one example, and the specific numbers may vary in other
examples (particularly for other density shapes), but we believe the main
lessons are generally applicable. Although 9 = 401 is more than enough for
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acceptable accuracy, we prefer this value for resolution reasons. In particular,
smaller values often result in a picture which is "too granular" , with the grid
discreteness being visually less pleasant especially for curves with sharper
features.

See Jones [14] for asymptotic results, and earlier references, showing how
well these binned estimators approximate the unbinned versions, in the case
of density estimation.

5.2 Instability in the Updated Implementation

To see how updating methods can have trouble with numerical instability,
consider the Epanechnikov kernel for example. Note that So(Xj) is calculated
essentially as

For small bandwidths, each of the three summations will involve large values,
which upon subtraction, results in a loss of precision. This effect is illustrated
in Figure 9.

[put Figure 9 here]

FIGURE 9: Relative accuracy (9) for the updated method, com
pared to the direct. For Nadaraya Watson regression, with one
data set of size n = 1000, using g = 401. Vertical bars show the
asymptotically optimal bandwidth for each kernel.

As indicated by the above heuristics, the accuracy is worse for smaller
bandwidths. The horizontal lines show the same error thresholds discussed
in the previous section. Note that in most cases, there is no visual difference
between estimators. The exception is the triweight kernel, which for small
enough bandwidths gives an estimator which is completely different from the
direct one (relative accuracy> 1, i.e. more than the vertical range of mh!)'
However, note that this only occurs for bandwidths::; hAMISE/10, which in
most situations is a very small amount of smoothing. Hence we feel that in
most situations, this problem is negligible (but double precision calculations
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are strongly recommended). However, this is only one example, and the
breakdown is alarmingly complete when it does occur, so the potential for
this problem should be kept in mind.

Note also that errors are worse for larger a. The log-log scale in Figure
9 makes it clear that relative accuracy'" h-2cx. This fits with the above
heuristics, because for large a the terms in the resulting summations depend
on h through h-2cx . For example the uniform kernel has relative accuracy
which is essentially double precision roundoff error, because no subtraction
of large terms is done, regardless of how small the bandwidth is. Also note
that the relative accuracies converge at h = 1.

6 Machines and Software

In this section we compare the machine and software language combinations
C on a SUN SPARC 2, GAUSS on a 33 mHz 486 PC, GAUSS on a SUN
SPARC 2, and S on a SUN SPARC IPX. Figure 10 shows curves that are of
the same type as in Figures 3-6, but organized to highlight this comparison.
The main ideas seen here again apply quite generally to the other settings
we have considered.

[put Figure 10 about here]

FIGURE 10: Comparison of average speeds across computa
tion environments, for one Nadaraya- Watson regression estimate.
Vertical bars show factors of 100 and 10. Figure lOa is for the
binned implementation using the biweight kernel. Figure lOb is
for the Updated Implementation using the biweight kernel. Figure
10c is for the direct implementation and the uniform kernel. Fig
ure 10d is for the direct implementation and the Gaussian kernel.

The software language S gives performance much slower than all the oth
ers, by factors of 10-100. GAUSS on the SPARC 2 is only marginally better
than GAUSS on the PC. C on the SPARC 2 is better than all others we tried
by roughly a factor of 3-5.

The excruciatingly slow performance of S is due to extremely poor mem
ory management. In Figure 10c, the computation times grow faster than any
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polynomial (recall polynomials are linear on this log-log scale), for this rea
son. For this same reason, we were not even able to complete the n = 10,000
part of our program, which is why this is missing in Figure 10d. S does
not appear in Figure lOb, because we did the computations for the updated
method later in the study, and had decided S was just not sufficiently com
petitive to continue with it.

vVe made similar pictures (but do not show them to save space) for com-
parisons of different generations of PC's. Rough rules of thumb are:

• The 33 mHz 486 is faster than a 20 mHz 386 by a factor of 3-5.

• The 20 mHz 386 is faster than a 6 mHz 286 by a factor of 10.

Another issue which we studied, (but again have decided not to add a
figure to this paper), is the issue of looped vs. matrix implementations. This
is important for "intermediate level" languages like GAUSS and S (vs. "low
level" languages such as C or FORTRAN), where one has a choice, and most
people's backgrounds leave them naturally thinking in terms of DO loops.
We found that in S we were not able to run the looped version of any of our
programs, again because of the memory management problems. In GAUSS
we found that the difference was very large indeed, with roughly a speed
factor of 100, when comparing a looped direct implementation with a matrix
based direct implementation. When this is combined with the speed factor
of up to 100 that is available for a binned or updated implementation, one
has a speed factor of up to 10,000 available between what might be one's
first attempt, and what is available using the ideas in this paper!

7 Other Smoothers

In this section we discuss how our fast implementations of kernel estimators
compare with other popular smoothers, that are known for being computa
tionally fast. Both are regression estimators, so we consider only that setting
in this section.

7.1 LOWESS

The smoother LOWESS, proposed by Cleveland [3], has achieved popularity
because it is prominently featured in the software package S. Current imple-
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mentations are not exactly comparable with those presented here, because
the estimate may only be evaluated at the data points. Although evaluation
only at the data points is desirable for certain applications, it is less pleasing
for visual data analysis, unless n is close to a reasonable value, and the data
are reasonably "uniform". Smaller n (and lor data with "large gaps" in the
x direction) will result in excessively granular pictures. For larger n this can
be computationally inefficient.

A major weakness of LOWESS is that it only allows the uniform kernel,
which entails substantial roughness in the resulting estimate as discussed
in section 5. It is possible to overcome this difficulty, using the updating
ideas discussed in section 3.2, but this is not currently available. A less
important weakness of LOWESS is that it uses "nearest neighbor", versus
fixed window methods, which have problems as discussed in section 3.2. An
important strength of LOWESS is that it does a type of robust regression,
giving an estimate which is less sensitive to "outliers" among the Y; than any
other method considered here.

Figure lla shows how this method compares in terms of speed with the
estimators we have considered, which are closest in spirit. In our compu
tations, we chose the smoothing parameter to approximate those we used
for the above methods. We used the default value in S for determining the
"amount of robustness" .

[put Figure 11 here]

FIGURE 11: Comparison of average speeds for 1 and 3 estimates,
using other popular methods. Vertical bars show factors of 100
and 10. LOWESS vs. using the binned and updated local linear
methods, with the uniform kernel in Figure lla. A smoothing
spline vs. the fastest and slowest binned regression estimators in
Figure lib.

For smaller n all three estimators are roughly comparable, but for larger
n LOWESS is substantially slower, by a factor of 10 or more, relative to both
the binned and updated methods. The slower speed of LOWESS at the larger
sample sizes is not surprising because it is evaluating at more places (g = n
vs. g = 401). However we expected LOWESS to be substantially faster for
smaller n because then it is evaluating at fewer locations (g = n << 401),
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but note that these anticipated gains are not realized. There are other factors
which also make it difficult to compare. For example, both LOWESS and
our updating methods require a sort of the data, but it is .unclear to us which
sorting algorithm is used by LOWESS. Also the robustness part of LOWESS
requires additional time.

However, it seems clear that methods described in this paper are very
competitive (in terms of computational speed) with LOvVESS, which has
been considered a useful smoother because it is viewed as being very fast to
compute.

7.2 Smoothing Splines

Calculation of smoothing splines is most simply done for evaluation of the
estimate at the "design points", Xl, ... , X n . It involves solving a O(n) x O(n)
system of linear equations. However, the coefficient matrix has a banded
structure, which allows a solution in order O(n) calculations, so this is usually
considered a very fast method for smoothing. As noted above, evaluation at
the design points yields poor resolution for small n and is wasteful for large
n. To overcome this problem, and to do as fair a comparison as possible, we
first binned the data, and applied smoothing spline ideas to the pseudo data
(Xl, CI, Yd, ... , (xg , Cg , Y g ), in particular fitting a weighted smoothing spline,
with weights of each observation proportional to Cj. This essentially gave an
estimate at the same grid as the other methods discussed in this paper. One
exception was bins with Cj = 0, which had to be omitted from the system of
equations. so at those locations, the spline was evaluated by interpolation.

Figure 11b shows how the spline compares with our fastest and slowest
binned implementation, where all programs are done in GAUSS on the 486
PC. Note that performance is roughly comparable, although the spline is
slightly slower for all n. It may be surprising that the spline is slowest for
n = 100,250. This is because of the interpolation process over the bins with
Cj = O. For n 2: 400, there was essentially no interpolation to be done (and
interpolation was slower than equation solving in our algorithm).

We feel the important lesson here is that binned and updated methods are
very competitive with smoothing splines, which have previously been consid
ered outstanding in terms of speed. In addition, when there is a premium
on speed, use of the uniform kernel Nadaraya-Watson estimator can give big
savings over the smoothing spline.
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vVe also did a comparison of binned and updated methods with the default
smoothing spline in S. No pictures are included here to save space and because
the main lessons are the same.

8 Extensions and Related Issues

8.1 Equally Spaced Designs

The regression examples in this paper are all for "random design regression" ,
where the Xi are not equally spaced. However, there are many real data
situations, e.g. "designed experiments" and "time series data", where a
smooth is desired based on data where the Xi are equally spaced and in
increasing order, and it is desired to use these same points as the grid for
plotting. In this case substantial savings in computational speed are available
for both the binned and updated implementations discussed here.

For the binned method, the savings come from the fact that there is no
need to bin, but the equal spacing of the data themselves may be exploited
as described in section 3.1 to yield a fast algorithm. This requires no new
programming, since the same algorithms can be used, with the substitutions
j +- i, ~'E +- Yi, Cj +- 1. The effect of this on the computation times is
easily understood by noting that the first term of the entries of Table 1 now
disappears.

For the updated method, big savings come from the fact that there is no
need to sort the data. This also requires no new programming. Here again
the first term in Table 1 disappears.

Exact comparison, of the binned and updated methods with the direct, in
this case requires additional computation (because g is no longer constant).
We do not feel a strong desire to explicitly do this, because we think it is
clear that improvements of the suggested methods over the direct will be
even more dramatic.

Note also the error analysis, as in section 5.1, is no longer such an inter
esting issue. In particular the binned method now is an exact version of the
original estimator. The numerical instabilities in the updated method will
still follow the pattern indicated in section 5.2.
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8.2 Derivatives

Proposed estimates of derivatives of densities and regression functions have
been based on differentiating kernel estimates, and also on using higher degree
coefficients in local polynomial estimates. Binned and updated ideas provide
computational savings of similar orders of magnitude, compared to direct
implementation, to those observed in this paper.

The error analyses in section 5 will be different here though. The dif
ference between the binned and direct estimators will be some what larger
(because the corresponding kernels now have "more detail", e.g oscillations).
A more important difference appears for the updated method. In particular,
the numerical instabilities indicated in Figure 9 will be a more important
problem. In some unpublished work by Brockman, Engel, Gasser and Her
mann, this problem is attacked by some clever "restart" ideas. The idea
is that after the error accumulates to unacceptable levels, the updating is
discontinued, and a fresh start is made.

8.3 Functionals

Kernel - local polynomial methods are also very useful for estimation of
functionals. For example the functional J(J(k))2, for various k is of great
interest in such diverse fields as bandwidth selection, robust estimation, and
classical rank based nonparametric statistics. A natural estimator involves
substituting a density estimate, i.e. JCflk

))2. There are many closely re
lated functionals in the regression case, and estimators based on similar local
polynomial ideas.

Binned and updated ideas extend naturally and simply to such function
als (modulo the above considerations about derivative estimation), but we
do not give details here. The speed improvements in using fast methods in
this context are potentially even more dramatic than shown in the settings of
this paper (for example, a binned implementation requires O(g) kernel eval
uations, vs. O(n 2

) required for calculating this directly, and O(n) operations
vs. 0(n2

) for the updated version). Precise speed and accuracy comparisons,
of the type done in this paper is an interesting open problem. See Aldershof
[1] for some work in this direction.

Binned implementations have already been used in bandwidth selection
for kernel density estimation, see Jones, Marron and Sheather [15] for discus-
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sion and access to earlier uses. Note that in the simulations presented in that
paper, sample sizes as large as n = 100, 000 are considered, while in some
contemporary simulation studies, see e.g. Park and Turlach [17], where only
far smaller samples of n = 100, are considered, because only direct imple
mentations were used there. Cao, Cuevas and Gonzales-Mantiega [2] do use a
binned method, with FFT calculation of the convolution, but also only treat
n = 100. An interesting updated version of least squares cross-validation. for
density estimation, has been proposed by Lee and Kim [13].

8.4 Higher Dimensions

Computational speed is a very important consideration for estimation of
functions in higher dimensions, for example, a regression or density in IR d is
typically evaluated on a rectangular grid with gd points. We do not see how
to extend updating ideas, but binned methods do extend naturally, with
again dramatic savings. Interesting work is underway by Hall and vVand,
who report large savings. An important difference in their conclusions and
ours, is that they find FFT based convolutions provide large improvements
over the direct ones we have found preferable in R1. An alternative to FFT's
is sophisticated handling of pointers to "zero bins", as discussed in HardIe
and Scott [11]. This issue appears to be unsettled as yet. Accuracy questions
are also still wide open, but we anticipate the answers will again be different
from those here.

9 Appendix

Explicit formulas, for convenience in programming, are given here for the
calculation of the polynomials

a (0:') 211+l (211 + f)
Pa,t{a,fl.) = Ca ~ 1I (-It E k akb2I1H_k,

where b is a sequence of coefficients, in the cases 0:' = 0,1,2,3 and e= 0,1,2.
Note for each 0:' and each f, that Sl(Xj) = hlPa,( (¥-,fl.) and Tl(xj) =

hl Pa,l (¥-, fl.) for fl. with components b2l1H- k = LiEl
r
(-'{i) 211H-k and b2l1H- k =

LiEl
r

( -'{; ) 211H-k Y; respectively.
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Straightforward calculations show that

1
Poo = -bo, 2

1
PO,1 = :2 [abo + bl ]

1 [ 2. ]PO,2 = :2 a bo+ 2ab l + b2

PI,o = i [(1- a2 )bo - 2bl - b2]

PI,1 = i [a(l - a2)bo+ (1 - 3a2)bl - 3ab2 - b3]

PI,2 = i [a2(1 - a2)bo + a(2 - 4a2)bl + (1 - 6a2)b2 - 4ab3 - b4 ]

P2,o = ~~ [(1 - a2?bo - 4a(1 - a2)bl - 2(1 - 3a2 )b2 +4ab3+ b4 ]

P2,1 = i~ [a(l ~ a2 )2bo + (1 - a2)(1 - 5a2)bl ~ a(6 - 10a2 )b2
-2(1 - 5a2)b3 + 5ab4 + bs]

P2,2 = i~ [a 2(1 - a2)2bo+ 2a(1 - a2)(1 - 3a2)bl

+(1 - 12a2 + 15a4 )b2 - 4a(2 - 5a2)b3
-(2 - 15a2)b4 + 6abs + b6 ]

P3,o = ~~ [(1 - a2)3bo - 6a(1 - a2)2bl - 3(1 - a2)(1 - 5a2)b2

+4a(3 - 5a2)b3+ 3(1 - 5a2)b4 - 6abs - b6 ]

P3,1 = ~~ [a(l - a2)3bo + (1 - a2)2(1 - 7a2)b1

-3a(1 - a2 )(3 - 7a2)b2 - (3 - 30a2 + 35a4 )b3
+5a(3 - 7a2 )b4 + 3(1 - 7a2)bs - 7ab6 - b7 ]

P3,2 = ~~ [a 2(1 - a2)3bo + 2a(1 - a2)2(1 - 4a2)b1

+(1 - a2)(1 - 17a2 + 28a4 )b2 - 4a(3 - 15a2 + 14a4 )b3
-(3 - 45a2 + 70a4 )b4 + a(18 - 56a2)bs + (3 - 28a2)b6 - 8ab7 - bs]
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