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Abstract
Improving efficiency for regression coefficients and predicting trajectories of individuals are two
important aspects in analysis of longitudinal data. Both involve estimation of the covariance function.
Yet, challenges arise in estimating the covariance function of longitudinal data collected at irregular
time points. A class of semiparametric models for the covariance function is proposed by imposing
a parametric correlation structure while allowing a nonparametric variance function. A kernel
estimator is developed for the estimation of the nonparametric variance function. Two methods, a
quasi-likelihood approach and a minimum generalized variance method, are proposed for estimating
parameters in the correlation structure. We introduce a semiparametric varying coefficient partially
linear model for longitudinal data and propose an estimation procedure for model coefficients by
using a profile weighted least squares approach. Sampling properties of the proposed estimation
procedures are studied and asymptotic normality of the resulting estimators is established. Finite
sample performance of the proposed procedures is assessed by Monte Carlo simulation studies. The
proposed methodology is illustrated by an analysis of a real data example.
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1 Introduction
Estimation of covariance functions is an important issue in the analysis of longitudinal data. It
features prominently in forecasting the trajectory of an individual response over time and is
closely related with improving the efficiency of estimated regression coefficients. Challenges
arise in estimating the covariance function due to the fact that longitudinal data are frequently
collected at irregular and possibly subject-specific time points. Interest in this kind of
challenges has surged in the recent literature. Wu and Pourahmadi (2003) proposed
nonparametric estimation of large covariance matrices using two-step estimation procedure
(Fan and Zhang, 2000), but their method can deal with only balanced or nearly balanced
longitudinal data. Recently, Huang, et al. (2006) introduced a penalized likelihood method for
estimating covariance matrix when the design is balanced and Yao, Müller and Wang
(2005a, b) approached the problem from the point of view of functional data analysis.
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In this paper, we consider a semiparametric varying-coefficient partially linear model:

(1.1)

where α(t) consists of p unknown smooth functions, β is a q-dimensional unknown parameter
vector, and E{ε(t)|x(t), z(t)} = 0. Nonparametric models for longitudinal data (Lin and Carroll,
2000; Wang, 2003) can be viewed as a special case of model (1.1). Moreover, model (1.1) is
a useful extension of the partially linear model, systematically studied by Härdle, Liang and
Gao (2000), and of the time-varying coefficient model (Hastie and Tibshirani, 1993). It has
been considered by Zhang, Lee and Song (2002), Xia, Zhang and Tong (2004) and Fan and
Huang (2005) in the case of iid observations, and by Martinussen and Scheike (1999) and Sun
and Wu (2005) for longitudinal data. It is a natural extension of the models studied by Lin and
Carroll (2001) (with identity link), He, Zhu and Fung (2002), He, Fung and Zhu (2005), Wang,
Carroll and Lin (2005), and Huang and Zhang (2004).

We focus on parsimonious modeling of the covariance function of the random error process
ε (t) for the analysis of longitudinal data, when observations are collected at irregular and
possibly subject-specific time points. We approach this by assuming that var{ε (t)|x(t), z(t)} =
σ2(t), which is a nonparametric smoothing function, but the correlation function between ε
(s) and ε (t) has a parametric form corr{ε (s), ε (t)} = ρ (t, s, θ), where ρ (s, t, θ) is a positive
definite function of s and t, and θ is an unknown parameter vector.

The covariance function is fitted by a semiparametric model, which allows the random error
process ε (t) to be nonstationary as its variance function σ2(t) may be time-dependent.
Compared with a fully nonparametric fit defined in (6.1) to the correlation function, our
semiparametric model guarantees positive definiteness for the resulting estimate; it retains the
flexibility of nonparametric modeling and parsimony and ease of interpretation of parametric
modeling. To improve the efficiency of the regression coefficient, one typically takes the
weight matrix in the weighted least squares method to be the inverse of estimated covariance
matrix. Thus, the requirement on positive definiteness becomes necessary. Our semiparametric
model allows a data analyst to easily incorporate prior information about the correlation
structure. It can be used to improve the estimation efficiency of β. For example, let ρ0(s, t) be
a working correlation function (e.g. working independence) and ρ (s, t, θ) be a family of
correlation functions, such as AR or ARMA correlation structure, that contains ρ0, our method
allows us to choose an appropriate θ to improve the efficiency of the estimator of β. Obviously,
to improve the efficiency, the family of correlation functions {ρ (s, t, θ)} is not necessary to
contain the true correlation structure.

We will also introduce an estimation procedure for the variance function, and propose two
approaches to estimating the unknown vector θ, motivated from two different principles. We
also propose an estimation procedure for the regression function α(t) and coefficient β using
the profile least squares. Asymptotic properties of the proposed estimators are investigated,
and finite sample performance is assessed via Monte Carlo simulation studies. A real data
example is used to illustrate the proposed methodology.

This paper is organized as follows. We propose estimation procedures for variance function
and unknown parameters in the correlation matrix in Section 2. An efficient estimation
procedure for α(t) and β is proposed based on the profile least squares techniques in Section
3. Sampling properties of the proposed procedures are presented in Section 4. Simulation
studies and real data analysis are given in Section 5. All technical proofs are relegated to the
Appendix.
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2 Estimation of covariance function
Suppose that a random sample from model (1.1) consists of n subjects. For the i-th subject, i
= 1,···, n, the response variable yi(t) and the covariates {xi(t), zi(t)} are collected at time points
t = tij, j = 1, ···, Ji, where Ji is the total number of observations for the i-th subject. Denote

and ri(α, β) = (ri1, ···, riJi)
T. Here we adopt the notation rij(α, β) to emphasize the parameters

α and β, although for true values of α and β, rij(α, β) = εi(tij).

To motivate the proposed estimation procedures below, pretend for the moment that εi is
normally distributed with zero mean and covariance matrix Σi. Then, the logarithm of the
likelihood function for α, β, σ2 and θ is

(2.1)

after dropping a constant. Maximizing the log-likelihood function yields a maximum likelihood
estimate (MLE) for the unknown parameters. The parameters can be estimated by iterating
between estimation of (α, β) and estimation of (σ2, θ). We shall discuss the estimation procedure
of (α, β) for model (1.1) in details in the next section. Thus, we may substitute their estimates
into rij(α, β), and rij(α ̂, β ̂) is computable and is denoted by r ̂ij for simplicity.

2.1 Estimation of variance function
We first propose an estimation procedure for σ2(t). Note that

A natural estimator for σ2(t) is the kernel estimator:

where Kh1 (x) = h1
−1K(x/h1), and K(x) is a kernel density function and h1 is a smoothing

parameter. Note that locally around a time point, there are few subjects that contribute more
than one data point to the estimation of σ2(t). Thus, the estimator should behave locally as if
data were independent. Ruppert et al (1997) studied local polynomial estimation of the variance
function when observations are independently taken from the canonical nonparametric
regression model: Y = m(X) + ε with E(ε|X) = 0 and var(ε|X) = σ2(X). Fan and Yao (1998) further
showed that the local linear fit of variance function performs as well as the ideal estimator,
which is a local linear fit to the true squared residuals {(Yi − m(Xi))2}, allowing data to be taken
from a stationary mixing process. A similar result was obtained by Müller and Stadtmüller
(1993). The consistency and asymptotic behavior of σ ̂2(t) will be studied in Theorem 4.2(B),
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from which we may choose an optimal bandwidth for σ ̂2(t) using various existing bandwidth
selectors for independent data (for example, Ruppert, Sheather and Wand, 1995).

2.2 Estimation of θ
Decompose the covariance matrix Σi into variance-correlation form, that is,

where Vi = diag{σ (ti1), ···, σ (tiJi)} and Ci(θ) is the correlation matrix of εi, whose (k, l)-element
equals ρ (tik, til, θ). To construct an estimator for θ, we maximize ℓ (α ̂, β ̂, σ ̂2, θ) with respect
to θ. In other words,

(2.2)

where V̂i = diag{σ ̂(ti1), ···, σ ̂(tiJi)}, and r̂i = (r ̂i1, ···, r ̂iJi)
T. The estimator in (2.2) is referred to

as a quasi-likelihood (QL) estimator.

Optimizing QL may provide us a good estimate for θ when the correlation structure is correctly
specified, but when it is misspecified, the QL might not be the best criterion to optimize. We
may, for example, be interested in improving the efficiency for β, treating α, σ2 and θ as
nuisance parameters. In such a case, we are interested in choosing θ to minimize the estimated
variance of β ̂. For example, for a given working correlation function ρ0(s, t) (e.g. working
independence), we can embed this matrix into a family of parametric models ρ (s, t, θ) (e.g.
autocovariance function of the ARMA(1, 1) model). Even though ρ (s, t, θ) might not be the
true correlation function, we can always find a θ to improve the efficiency of β. More generally,
suppose that the current working correlation function is ρ0(s, t; θ0). Let ρ1(s, t), ···, ρm(s, t) be
given family of correlation functions. We can always embed the current working correlation
function ρ0(s, t; θ0) into the family of the correlation functions

where θ = (θ0, τ0, ···, τm), and τ0 + ··· + τm = 1 with all τi ≥ 0. Thus, by optimizing the parameters
θ0, τ0, ···, τm, the efficiency of the resulting estimator β ̂ can be improved.

To fix the idea, let Γ(σ ̂2, θ) be the estimated covariance matrix of β ̂ derived in (3.7) for a given
working correlation function ρ (s, t, θ). Define the generalized variance of β ̂ as the determinant
of Γ(σ ̂2, θ). Minimizing the volume of the confidence ellipsoid of (β ̂ − β)TΓ−1(σ ̂2, θ)(β ̂ − β) <
c for any positive constant c is equivalent to minimizing the generalized variance. Thus, we
may choose θ to minimize the volume of the confidence ellipsoid:

(2.3)

We refer to this approach as the minimum generalized variance (MGV) method.
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3 Estimation of regression coefficients
As mentioned in Section 2, the estimation of σ2 and θ depends on the estimation of α(t) and
β. On the other hand, improving the efficiency of the estimate for (α, β) relies on the estimation
of σ2 and θ. In practice, therefore, estimation needs to be done in steps: the initial estimates of
(α(t), β) are constructed by ignoring within subject correlation. With this initial estimate, one
can further estimate σ2(t) and θ. Finally, we can now estimate α(t) and β more efficiently by
using the estimate of σ2(t) and θ. In this section, we propose efficient estimates for α(t) and
β using profile least squares techniques.

For a given β, let y*(t) = y(t) − z(t)Tβ. Then model (1.1) can be written as

(3.1)

This is a varying coefficient model, studied by Fan and Zhang (2000) in the context of
longitudinal data and by Hastie and Tibshirani (1993) for the case of iid observations. Thus, α
(t) can be easily estimated by using any linear smoother. Here we employ local linear regression
(Fan and Gijbels, 1996). For any t in a neighborhood of t0, it follows from Taylor’s expansion
that

Let K(·) be a kernel function and h be a bandwidth. Thus, we can find local parameters (a1, ···,
aq, b1, ···, bq) that minimize

(3.2)

where Kh(·) = h −1K(·/h). The local linear estimate for α(t0) is then simply α ̂ (t0, β ̂) = (a1, ···,
aq)T. Note that since the data are localized in time, the covariance structure does not greatly
affect the local linear estimator.

The profile least-squares estimator of (α, β) has a closed form using the following matrix
notation. Let yi = (yi(ti1), ···, yi(tiJi))

T, Xi = (xi(ti1), ···, xi(t iJi))
T, Zi = (zi(ti1), ···, zi(tiJi))

T, and
mi = (xi(ti1)Tα(ti1), ···, xi(tiJi)

Tα(tiJi))
T. Denote by

, and . Then, model
(3.1) can be written as

(3.3)

where ε = (ε1(t11), ···, ε n(t nJn))T. It is known that the local linear regression results in a linear
estimate in y*(tij) for α(·) (Fan and Gijbels, 1996). Thus, the estimate of α(·) is linear in y −
Zβ, and the estimate of m is of the form m ̂ = S(y − Zβ). The matrix S is usually called a
smoothing matrix of the local linear smoother, and depends only on the observations {tij,
xi(tij), j = 1, ···, Ji, i = 1, ···, n}. Substituting m ̂ into (3.3) results in the synthetic linear model
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(3.4)

where I is the identity matrix of order .

To improve efficiency for estimating β, we minimize the weighted least squares

(3.5)

where W is a weight matrix, called a working covariance matrix. As usual, misspecification
of the working covariance matrix does not affect the consistency of the resulting estimate, but
it does affect the efficiency. The weighted least squares estimator for β is

(3.6)

This estimator is called the profile weighted least squares estimator. The profile least squares
estimator for the nonparametric component is simply α ̂ (·; β ̂). Using (3.4), it follows that when
the weight matrix does not depend on y,

(3.7)

where D = ZT(I − S)TW(I − S)Z and V = cov{ZT(I − S)TWε}. In practice, Γ ̂ (σ ̂2, θ) is estimated
by a sandwich formula by taking V ̂ = ZT(I − S)TWRWT (I − S)Z, where

 with ri = yi − ŷi. Speckman (1988) derived a partial residual estimator
of β for partially linear models with independent and identically distributed data; the form of
this estimator is the same as that in (3.5) with W set to be an identity matrix. However, the idea
of partial residual approach is difficult to implement for model (1.1).

4 Sampling properties
In this section, we investigate sampling properties of the profile weighted least squares
estimator. The proposed estimation procedures are applicable for various formulations on how
the longitudinal data are collected. Here we consider the collected data as a random sample
from the population process {y(t), x(t), z(t)}, t ∈ [0, T]. To facilitate the presentation, we assume
that Ji, i = 1, ···, n are independent and identically distributed with 0 < E(Ji) < ∞, and for a given
Ji, tij, j = 1, ···, Ji are independent and identically distributed according to a density f(t).
Furthermore, suppose that the weight matrix W in (3.5) is block diagonal, i.e., W = diag
{W1, ···, Wn}, where Wi is a Ji × Ji matrix. Moreover, assume that the (u, v)-element of Wi is
set to be w(tiu, tiv) for a bivariate positive function w(·, ·). When the weight function w(·, ·) is
data-dependent, assume that it tends to a positive definite function in probability. Thus, for
simplicity, assume that w(·, ·) is deterministic.

Let G(t) = Ex(t)xT(t), Ψ(t) = Ex(t)zT(t), and denote by
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Set

where εi = (εi(ti1), ···, εi(tiJi))
T. Let

Denote by α0(t) and β0 the true values of α(t) and β, respectively.

Theorem 4.1
Under the regularity conditions (1)–(5) in the Appendix, if the matrices A and B exist, and if
A is positive definite, then as n → ∞,

where n is the number of subjects.

When Wi is taken to be the inverse of the conditional variance-covariance matrix of εi given
xi(tij) and zi(tij) for j = 1, ···, Ji, then A = B. In this case,

where B0 = E{Z1 − X ̃1)T cov−1 (ε1|X1, Z1)(Z1 − X ̃1)}. It will be shown in the Appendix that
for any weight matrix Wi,

(4.1)

where the symbol D ≥ 0 means that the matrix D is nonnegative definite. Thus, the most efficient
estimator for β among the profile weighted least-squares estimates given in (3.6) is the one that
uses the inverse of the true variance-covariance matrix of εi as the weight matrix Wi.

One could also use a working independence correlation structure, i.e. let W be a diagonal
matrix. Under conditions of Theorem 4.1, the resulting estimate of β is still root n consistent.

Let μi = ∫uiK(u)du and νi = ∫uiK2(u)du. For a vector of functions α(u) of u, denote α ̇ (u) = dα
(u)/du and α ̈(u) = d2α(u)/du2, which are the componentwise derivatives. The following theorem
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presents the asymptotic normality for α ̂ (t) and σ ̂2(t), and its proof was given the earlier version
of this paper (Fan, Huang and Li, 2005).

Theorem 4.2
Suppose that conditions of Theorem 4.1 hold.

A. If nh5 = O(1) as n → ∞, then

B. Under conditions (5) and (6) in the Appendix, if , and c < h/h1 < C for some
positive constants c and C, then, as n → ∞,

where the bias

and the variance

Since the parametric convergence rate of β ̂ is faster than the nonparametric convergence rate
of α ̂ (t), the asymptotic bias and variance have similar forms to those of varying coefficient
model (Cai, Fan and Li, 2000). The choice of the weight matrix W determines the efficiency
of β ̂, but it does not affect the asymptotic bias and variance of α(t).

From Theorem 4.2 (B), the asymptotic bias and variance do not depend on the choice of the
weight matrix W. Therefore, one may use the residuals obtained by using the working
independence correlation matrix to estimate σ2(t). This is consistent with our empirical findings
from the simulation studies. Therefore, in next section σ2(t) will be estimated using residuals
obtained under working independence. Theorem 4.2 (B) implies that we may choose a
bandwidth by modifying one of existing bandwidth selectors used for independent data.

5 Numerical comparison and application
In this section, we investigate finite sample properties of the proposed estimators in Sections
2 and 3 via Monte Carlo simulation. All simulation studies are conducted using Matlab code.
We have examined the finite sample performance and numerical comparisons for the proposed
estimate σ ̂2(t), β ̂ and α ̂ (t) in the earlier version of this paper. See technical report (Fan, Li and
Huang, 2005) for details. To save space, we focus on the inference on β in this section.
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5.1 Simulation study
We generate 1000 data sets, each consisting of n = 50 subjects, from the following model:

(5.1)

In practice, observation times are usually scheduled but may be randomly missed. Thus, we
generate the observation times in the following way. Each individual has a set of ‘scheduled’
time points, {0,1,2,…,12}, and each scheduled time, except time 0, has a 20% probability of
being skipped. The actual observation time is a random perturbation of a scheduled time: a
uniform [0, 1] random variable is added to a non-skipped scheduled time. This results in
different observed time points tij per subject.

In our simulation, the random error process ε(t) in (5.1) is taken to be a Gaussian process with
zero mean, variance function

and ARMA(1,1) correlation structure

for s ≠ t. We consider three pairs of (γ, ρ), namely, (0.85, 0.9), (0.85, 0.6) and (0.85, 0.3), which
correspond to strongly, moderately and weakly correlated errors, respectively.

We let the coefficients of α(t) and β both be two-dimensional in our simulation, and further set
x1(t) ≡ 1 to include an intercept term. We generate the covariates in the following way: for a
given t, (x2(t), z1(t))T follows a bivariate normal distribution with means zero, variances one
and correlation 0.5, and z2(t) is a Bernoulli-distributed random variable with success probability
0.5 and independent of x2(t) and z1(t). In this simulation, we set β = (1, 2)T,

Presumably we can gain some efficiency by incorporating the correlation structure, and it is
of interest to study the size of gain. We consider the case in which the working correlation
structure is taken to be the true one, which is ARMA(1,1) correlation structure. For comparison,
we also estimate β using working independence correlation structure and using the true
correlation structure in which the parameter (γ, ρ)T is set to be the true value. Profile weighted
least squares estimate using the true correlation is shown to be the most efficient estimate
among the profile weighted least squares estimates and serves as a benchmark, while the
working independence correlation structure is supposed to be a commonly used one in practice.

Table 1 presents a summary of the results over 1000 simulations. In Table 1, “bias” stands for
the sample average over 1000 estimates subtracting the true value of β, “SD” stands for the
sample standard deviation over 1000 estimates. “Median” represents the median of the 1000
estimates subtracting the true value and “MAD” represents the median absolute deviation of
the 1000 estimates divided by a factor of 0.6745. From Table 1, both QL and MGV approaches
yield estimates for β as good as the estimate using the true correlation function, and is much
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better than the estimate using working independence correlation structure. The relative
efficiency (MAD(Indep.)/MAD(QL)) is about 3 for high correlation random error, 2 for
moderately correlated error and 1.3 for weakly correlated error.

The simulation results also indicate that the MGV method is more stable and robust than the
QL method. This is evidenced in the case of low correlated random error, in which for a few
realizations, the estimates were apparently quite bad (the SD is much higher than the MAD).
Note the object function to optimize in (2.2) may not be a concave function of θ. Thus, the
numerical algorithm may not converge when it stops. This may yield a bad estimate for β and
contributes to the issues of the robustness of the algorithm. In addition, the QL criterion is
similar to the least-squares criterion and hence is not very robust. On the other hand, the MGV
method, aiming directly at minimizing the precision of estimated standard errors, does not
allow estimates to have large SEs.

We next study the impact of misspecification of correlation structure, by comparing the
performance of β ̂ using independent and AR(1) working correlation structures, when the true
correlation structure is ARMA(1,1). The top panel of Table 2 summarizes the simulation
results. From Table 2, we can see that AR(1) working correlation structure produces much
more efficient estimate than working independence correlation structure. For example, the
relative efficiency for high correlated random error is about (30.066/19.975)2 ≈ 2.3. Thus, even
when the true correlation structure is unavailable, it is still quite desirable to choose a structure
close to the truth.

In practice, one may try several values for ρ and choose the best one using the QL or MGV
method rather than using an optimization algorithm. We refer to such search as the rough grid
point search. We next examine how such search works in practice, using the points {0.05, 0.1,
0.25, 0.5, 0.75, 0.9, 0.95} for ρ. The bottom panel of Table 2 presents the simulation results.
Comparing the bottom panel with the top panel of Table 2, the performance of the resulting
estimates using the rough grid point search is very close to that using an optimization algorithm.

Now we test the accuracy of the proposed standard error formula (3.7). Table 3 depicts the
simulation results for the case (γ, ρ) = (0.85, 0.9). Results for other cases are similar. In Table
3, “SD” stands for the sample standard deviation of 1000 estimates of β and can be viewed as
the true standard deviation of the resulting estimate. “SE” stands for the sample average of
1000 estimated standard errors using formula (3.7), and “Std” presents the standard deviation
of these 1000 standard errors. From Table 3, the standard error formula works very well for
both correctly specified and misspecified correlation structures.

5.2 Some comparison with traditional approach
The purpose of this section is to demonstrate the flexibility and efficiency of model (1.1) by
comparing its performance with linear models for longitudinal data:

(5.2)

which can be viewed as a special case of model (1.1) with constant function α(·). We employed
the weighted least squares method to estimate α and β in model (5.2). To make a fair
comparison, we generated 1000 data sets, each consisting of n = 50 samples, from model (5.1)
with

Case I:  and α2(t) = sin(2πt/12). This is exactly the same as those in Section 5.1.

Case II: α1(t) = 2 and α2(t) = 1. That is, both α1(t) and α2(t) are constant functions.
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and all others parameters and generation scheme of observation times are the same as those in
Section 5.1.

To illustrate the flexibility of model (1.1), we fit data generated under the setting of Case I
using the linear model (5.2). The error correlation structure is no longer to be ARMA if model
(5.2) is fitted under the setting of Case I. Thus, we did not include “True” correlation structure
in our simulation. Simulation results are summarized in the top panel of Table 4, in which the
caption is the same as that in Tables 1 and 2. To save space, we present only the simulation
results with (γ, ρ) = (0.85, 0.6). Results for other (γ, ρ) pairs are similar. Compared with results
in Tables 1 and 2, it can be found that misspecification α(t) may yield an estimate with larger
bias and less efficient.

Simulation results of models (5.2) and (1.1) for Case II are summarized in the middle panel
and the bottom panel of Table 4, respectively. The bias of the resulting estimates for all
estimation procedures are in the same magnitude. Comparing the simulation of models (5.2)
and (1.1) with independent working correlation matrix and with the true/QL ARMA(1,1)
correlation matrix, the proposed models do not lose much efficiency. In summary, the proposed
estimation procedure with the model (1.1) offers us a good balance between model flexibility
and estimation efficiency.

5.3 An application
We next demonstrate the newly proposed procedures by an analysis of a subset of data from
the Multi-Center AIDS Cohort study. The data set contains the human immunodeficiency virus
(HIV) status of 283 homosexual men who were infected with HIV during the following-up
period between 1984 and 1991. This data set has been analyzed by Fan and Zhang (2000) and
Huang, Wu and Zhou (2002) using functional linear models. Details of the study design,
methods, and medical implications are given by Kaslow et al. (1987).

All participants were scheduled to have their measurements taken during semiannual visits,
but, because many participants missed some of their scheduled visits and the HIV infections
occurred randomly during the study, there are unequal numbers of repeated measurements and
different measurement times per individual. Our interest is to describe the trend of the mean
CD4 percentage depletion over time and to evaluate the effects of cigarette smoking, pre-HIV
infection CD4 percentage, and age at infection on the mean CD4 percentage after the infection.
Huang, Wu and Zhou (2002) took the response y(t) to be CD4 cell percentage and considered
the functional linear model,

(5.3)

The results of the hypothesis testing in Huang, Wu and Zhou (2002) indicate that the baseline
function varies over time; neither Smoking nor Age has a significant impact on the mean CD4
percentage; and it is unclear whether PreCD4 has a constant effect over time or not. The P-
value for testing whether β3(t) varies over time or not is 0.059. Thus, we fit the data using a
simpler semiparametric varying coefficient partially linear model

where, for numerical stability, X1 is the standardized variable for PreCD4, Z1 is the smoking
status (1 for a smoker and 0 for a nonsmoker), Z2 is the standardized variable for age, and the
unit for observation time t is one month.
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Bandwidth selection—We employ a multifold cross-validation method to select a
bandwidth for α ̂ (t). We partition the data into Q groups, each of which has approximately the
same number of subjects. For each k, k = 1, ···, Q, model (5.3) is fitted for the data excluding
the k-group of data. Cross-validation score is defined as the sum of residual squares:

where ŷ−dk (tij) is the fitted value for the i-th subject at observed time tij with the data in dk
being deleted, using a working independence correlation matrix. In the implementation, we
choose Q = 15. Figure 1(a) depicts the cross-validation score function CV (h) which gives the
optimal bandwidth h = 21.8052. Note that σ ̂2(t) is a one-dimensional kernel regression of the
squared residuals over time. Thus, various bandwidth selectors for one-dimensional smoothing
can be used to choose a bandwidth for σ ̂2(t). In this application, we directly use the plug-in
bandwidth selector (Ruppert, Sheather and Wand, 1995), and the bandwidth h1 = 12.7700 is
chosen.

Estimation—The resulting estimate of α(t) is depicted in Figures 1(b) and (c). The intercept
function decreases as time increases. This implies that the overall trend of CD4 cell percentage
decreases over time. The trend of α2(t) implies that the impact of PreCD4 on CD4 cell
percentage decreases gradually as time evolves. The results are consistent with our expectation.
They quantify the extent to which the mean CD4 percentage depletes over time and how the
association between CD4 percentage and PreCD4 varies as time evolves. The resulting estimate
of σ ̂ (t) is depicted in Figure 1(d), from which we can see that σ (t) seems to be constant during
the first and half year, and then increases as time increases. This shows that the CD4 percentage
gets harder to predict as time evolves.

We next estimate β. Here we consider ARMA(1,1) correlation structure. The proposed
estimation procedures in Section 2 were applied for estimating (γ, ρ). The resulting estimates
are displayed in the top panel of Table 5, and the corresponding estimates for β are depicted
in the bottom panel of Table 5. The quasi-likelihood approach yields a correlation structure
with moderate correlation, and the standard error for the resulting estimate of β is smaller than
that using independence correlation structure. The minimum generalized variance method
results in a correlation structure with low correlation, but the corresponding standard error is
still smaller than that of independence correlation structure. From Table 5, the effects of
smoking status and age are not significant under the three estimation schemes.

Prediction of individual trajectory—We now illustrate how to incorporate correlation
information into prediction. Let us assume that given the covariates x(t) and z(t), the error
process ε (t) is a Gaussian process with zero mean and covariance function c(t, s). Denote by
μ (t) = x(t)Tα(t)+z(t)Tβ. Suppose that data for an individual are collected at t = t1, ···, tJ and we
want to predict his/her y(t) at t = t* with covariates x(t*) and z(t*). Let yo = (y(t1), ···, y(tJ ))T

be the observed response and μ = (μ(t1), ···, μ(tJ ))T be its associated mean. Let Σ be the
covariance matrix of (ε (t1), ···, ε (tJ ))T, and c* = (c(t1, t*), ···, c(tJ, t*))T. Then, by the properties
of the multivariate normal distribution, we have

and
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Thus, the prediction of y(t*) is

Since the errors in estimating the unknown regression coefficients and parameters of
covariance matrix are negligible relative to random error, the (1 − α)100% predictive interval
is

where z1− α/2 is the 1 − α/2 quantile of the standard normal distribution. In particular, it is easy
to verify that when t* is one of the observed time points, the prediction error is zero, a desired
property.

We now apply the prediction procedure for this application. Assume that ε (t) has AMRA(1,1)
correlation structure. As an illustration, here we only consider the prediction with (γ, ρ)
estimated by quasi-likelihood approach. That is, (γ ̂, ρ̂) = (0.8575, 0.9852). Predictions and their
95% predictive intervals for 4 typical subjects are displayed in Figure 2.

6 Discussions
In this paper, we proposed a class of semiparametric models for the covariance function of
longitudinal data. We further developed an estimation procedure for σ2(t) using kernel
regression, estimation procedures for θ in correlation matrix using quasi-likelihood and
minimum generalized variance approaches, and estimation procedure for regression
coefficients α(t) and β using profile weighted least squares. Robust method estimation
procedures have been proposed for semiparametric regression modeling with longitudinal data
(He, Zhu and Fung, 2002; He, Fung and Zhu, 2005). In the presence of outliers, one should
consider robust method to estimate α(t) and β.

Although misspecification of the correlation structure ρ (s, t, θ) does not affect the consistency
of the resulting estimate of α(t) and β, it may lead to nonexistence or inconsistency of the
estimates of θ. Thus, it is of interest to check whether the imposed correlation structure is
approximately correct. To address this issue, we may consider a full nonparametric estimate
for the correlation function ρ (s, t)

(6.1)

for s ≠ t, where ê (tij) = r ̂ij/σ ̂ (tij), the standardized residual.
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The nonparametric covariance estimator cannot be guaranteed to be positive definite, but it
may be useful in specifying an approximate correlation structure, or checking whether the
imposed correlation structure ρ (s, t, θ) its approximately correct. This is a two-dimensional
smoothing problem, but the effective data points in (6.1) can be small unless the time points
for each subject are nearly balanced.

Some alternative estimation procedures for α(t) and β may also be considered. For example,
an alternative strategy to estimate β is to first decorrelate data within subjects, and then apply
the profile least squares techniques to the decorrelated data. Further research and comparison
may be of interest.

In this paper, we have not discussed the sampling property of θ ̂ derived by QL and MGV
approaches. If the correlation function is correctly specified, the asymptotic property of θ ̂ may
be derived by following conventional techniques related to linear mixed effects models. It is
an interesting topic to investigate the asymptotic behaviors of θ ̂ when the correlation function
is misspecified. Some new formulation may be needed to establish the asymptotic property of
θ ̂. This research topic is out of scope of this paper. Further research is needed.
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Appendix

Appendix
The following technical conditions are imposed. They are not the weakest possible conditions,
but they are imposed to facilitate the proofs.

1. The density function f(·) is Lipschitz continuous and bounded away from 0. The
function K(·) is a symmetric density function with a compact support.

2. nh8 → 0 and nh2/(log n)3 → ∞.

3. Ex(t)x(t)T and Ex(t)z(t)T are Lipschitz continuous.

4. Ji has a finite moment generating function. In addition, E||x(t)||4 +E||z(t)||2 < ∞

5. α(t) has a continuous second derivative.

6. σ2(·) has a continuous second derivative.
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Proof of Theorem 4.1
First, by condition (4), we can easily show almost surely that max1≤i≤n Ji = O(log n). For each
given β, the estimator α ̂ (t; β) is a local linear estimator by minimizing (3.2) based on data

Observe that { , j = 1, ···, Ji} is a realization from the process

Note that the consistency of α ̂ (t; β) is not affected by ignoring the correlation within subjects.
Following the proof of Fan and Huang (2005), α ̂ (t; β) is a consistent estimator of the function

(A.1)

Indeed, uniformly in t,

(A.2)

where cn = h2 + {− log h/(nh)}1/2. Let m ̂ij(β) = xi(tij)Tα ̂ (tij; β) and m ̂i(β) = (m ̂i1, ···, m ̂iJi)
T. Note

that the profile weighted least squares estimate β ̂ is the minimizer of the following weighted
quadratic function:

(A.3)

which is a convex and quadratic function of β. This allows us to apply the convexity lemma
and the quadratic approximation lemma (see, for example, Fan and Gibjels, 1996, pp.209–210)
to establish the asymptotic normality of β ̂.

We next decompose ℓn(β). Denote

where mi(β) = (mi1, ···, miji)
Tα(tij, β). Then
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(A.4)

Note that In,2(β) and In,3(β) are quadratic in β. Using techniques related to Müller and
Stadtmüller (1993) and Fan and Huang (2005), following some tedious calculations, it follows
that for each given β

(A.5)

We now deal with the main term In,1(β). Using the model

and (A.1), we have

(A.6)

The minimization of In,1 is given by

where Σn and ξn are defined before Theorem 4.1. By the WLLN and CLT,

(A.7)

where A and B are defined in Section 3.2. Finally, we apply the convexity lemma to show that

(A.8)

This together with (A.7) proves the results. To show (A.8), first of all, by the convexity lemma,
β ̂ is a consistent estimator of β0. From (A.4), we have

Since I2(β) and I3(β) are quadratic in β, it follows from (A.5) that
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This completes the proof of Theorem 4.1.

Proof of (4.1)
Denote U = (Z1 − X ̃1), and W0 = cov(ε|X1, Z1). Define

Then

Since DDT is nonnegative definite, we have

is nonnegative definite. Hence,

The equality holds if and only if D = 0, which occurs when 
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Figure 1.
(a) Plot of the cross-validation score against the bandwidth. (b) and (c) are plots of estimate of
α1(t) and α2(t) with bandwidth 21.8052, chosen by the cross-validation method. (d) Plot of
estimated σ (t) with bandwidth 12.7700, chosen by the plug-in method.
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Figure 2.
Plot of pointwise predictions and their 95% predictive intervals for 4 typical subjects. Solid
line is the prediction, dashdot lines stand for the limits for the 95% pointwise predictive
confidence interval, and “o” is the observed value of y(t).
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Table 3
Standard Errors

β ̂1 β ̂2

SD SE (Std) SD SE (Std)

ARMA(1,1) working correlation matrix

Independence 0.0478 0.0464(0.0065) 0.0825 0.0800 (0.0108)

QL 0.0252 0.0254 (0.0030) 0.0449 0.0440 (0.0047)

MGV 0.0252 0.0257 (0.0031) 0.0456 0.0446 (0.0049)

AR(1) working correlation matrix

QL 0.0319 0.0307 (0.0078) 0.0609 0.0541 (0.0131)

MGV 0.0331 0.0316 (0.0084) 0.0635 0.0557 (0.0141)
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Table 5
Estimates of (γ, ρ) and β

Independence QL MGV

γ ̂ 0.8575 0.5334

ρ̂ 0.9852 0.0804

β ̂1 0.8726(1.1545) 0.6848(0.9972) 0.6328(1.0864)

β ̂2 − 0.5143(0.6110) 0.0556(0.4718) − 0.3658(0.5488)
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