
Comments on \Wavelets in Statistics: A Review" byA. AntoniadisJianqing FanUniversity of North Carolina, Chapel Hilland University of California, Los AngelesI would like to congratulate Professor Antoniadis for successfully outlining the current state-of-art of wavelet applications in statistics. Since wavelet techniques were introduced to statisticsin the early 90's, the applications of wavelet techniques have mushroomed. There is a vast forestof wavelet theory and techniques in statistics and one can �nd himself easily lost in the jungle.The review by Antoniadis, ranging from linear wavelets to nonlinear wavelets, addressing boththeoretical issues and practical relevance, gives in-depth coverage of the wavelet applications instatistics and guides one entering easily into the realm of wavelets.1 Variable smoothing and spatial adaptationWavelets are a family of orthonormal bases having ability of representing functions that are local inboth time and frequency domains (subjects to the contraints as in Heisenberg's uncertainty princi-ple). These properties allow one to compress e�ciently a wide array of classes of signals, reducingdimensionality from n \highly-correlated" dimensions to much smaller \nearly-independent dimen-sions", without introducing large approximation errors. These classes of signals include piecewisesmooth functions and functions with variable degrees of smoothness and functions with variablelocal frequencies. The adaptation properties of nonlinear wavelet methods to the Besov classes offunctions are thoroughly studied by Donoho, Johnstone, Kerkyacharian and Picard [37, 38]. Theadaptation properties of nonlinear wavelet methods to the functions with variable frequencies canbe found in Fan, Hall, Martin and Patil [3]. The time and frequency localization of wavelet func-tions permits nonlinear wavelets methods to conduct automatically variable smoothing: di�erentlocation uses a di�erent value of smoothing parameter. This feature enables nonlinear waveletestimators to recover functions with di�erent degrees of smoothness and di�erent local frequencies.Namely, nonlinear wavelet estimators possess spatial adaptation property.As pointed out in Donoho, Johnstone, Kerkyacharian and Picard [37], linear estimators, includ-ing linear wavelet, kernel and spline methods, can not e�ciently estimate functions with variabledegrees of smoothness. A natural question is if the traditional methods can be modi�ed to e�-ciently estimate the functions with variable degrees of smoothness. The answer is positive. Torecover functions with di�erent degrees of smoothness, variable bandwidth schemes have to be in-corporated into kernel or local polynomial estimators, resulting in highly nonlinear estimators. Forexample, with the implementation of variable bandwidth as in Fan and Gijbels [2] , it is shown via1



simulations that the resulting local linear estimator performs at least comparably with the nonlinearwavelet techniques. See also Fan, Hall, Martin and Patil [4] for the idea of using cross-validation tochoose variable bandwidths. However, there is a premium for using the variable bandwidth method:The computational cost can be high. In a seminal work by Lepski, Mammen and Spokoiny[6], itis shown that with a variable bandwidth selection, the kernel regression smoother can also enjoythe optimal rates of convergence for Besov classes of functions in a similar fashion to the nonlinearwavelet estimators.Nonlinear wavelets and variable bandwidth smoothing are no monopoly in adaptation to variabledegrees of smoothness. When variable smoothing is incorporated in smoothing splines, the resultingestimator can also possess spatial adaptation property. See Luo and Wahba [9] for details.2 Thresholding and subset selectionThresholding rules have strong connections with model selection in the traditional linear models.Suppose that we have a linear model Y = X� + ":Then, the least-squares estimate is �̂ = (XTX)�1XTY . Now suppose that the columns of Xare orthonormal. Then, the least-square estimate in the full model is �̂ = XTY , the orthogonaltransform of the vector Y . Let �̂i be ith smallest value of the vector j�̂j. The stepwise deletionalgorithm in the linear model is to delete a variable, one at a time, with the smallest absolute t-value. For the orthonormal design matrix, this corresponds to delete the variable with the smallestabsolute value of the estimated coe�cients. When a variable is deleted, the remaining variablesare still orthonormal and the estimated coe�cients remain unchanged. So, in the second step, thealgorithm deletes the variable that has the second smallest estimated coe�cient �̂ in the full model.If the stepwise deletion is carried out m times, the remaining variables are those with the largestn�m values of j�̂j, namely fi : j�̂ij > �g; with �m < � < �m+1:Therefore, the stepwise deletion algorithm leads to the hard thresholding rule. Since the wavelettransforms are orthonormal, the hard-thresholding estimator is the same as the least-squares esti-mator by using the stepwise deletion rule.The soft-thresholding rule can be viewed similarly. Let us for a moment assume that we haven-dimensional Gaussian white noise model:z = � + "; with " � N(0; �2In): (2.1)Suppose that the vector � is sparse so that it can reasonably be modeled as an i.i.d. realizationfrom a double exponential distribution with a scale parameter �1. Then, the Bayesian estimate isto �nd �̂ that minimizes 12 nXi=1(zi � �i)2 + � nXi=1 j�ij (2.2)2



where � = �2=�1. Minimization of (2.2) is eqivalent to minimizing (2.2) componentwise. Thesolution to the above problem yields the soft-thresholding rule.�̂j = sgn(zj)(jzjj � �)+:This connection was observed by Donoho, Johnstone, Hoch and Stern [1] and forms the core of thelasso introduced by Tibshirani [10].The minimization problem (2.1) is closely related to (11) in the review paper with p = 1. Ifthe L1-penality in (2.1) is replaced by the weighted L2-loss, then we obtain a shrinkage rule that issimilar to equation (12) of the review paper. In wavelet applications, one applies the above methodto wavelet coe�cients from resolution J0 + 1 to log2 n. This results in the Donoho and Johnstonesoft-shrinkage rule.We would like to note a few other penalty functions. Consider the more general form of penalizedleast-squares: 12 nXi=1(zi � �i)2 + � nXi=1 p(j�ij) (2.3)It can be shown that with the discontinuous penality p2(�) = j�jI(jthetaj � �)+�=2I(jthetaj> �),which remains constant for large values of j�j, the resulting solution is the harding thresholdingrule: �̂j = jzj jI(jzjj > �):With the continuous penality function p3(�) = min(j�j; �), the solution is a mixture of soft andhard thresholding rule: �̂j = (jzj j � �)+Ifjzjj � 1:5�g+ jzj jIfjzjj > 1:5�gWhen the continuous di�erentiable penalty-functionp04(�) = I(� � �) + (a�� �)+(a� 1)� I(� > �); for � > 0 and a > 2is used, the resulting solution is a piecewise linear thresholding:�̂j = 8>><>>: (jzj j � �)+ when jzj j � 2�(a�1)zj�a�a�2 when 2� < jzj j � a�zj when jzj j > a�This thresholding function is in the same spirit to that in Bruce and Gao [20]. The penalityfunction, its derivative and the solution �j as a function of zj are depicted in the following �gure.3 Robustness and likelihood based modelsBecause of the localization nature of wavelets transform, the wavelets coe�cients are seriouslya�ected by outliers, particularly for those at high-resolution levels. These contaminated coe�-cients are usually large and they can not be eliminated by thresholding rules. Hence, the waveletestimators are highly a�ected by outliners. 3
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Figure 1: (a) Derivative of penalty function p4; (b) Thresholding functions. Solid line | piecewiselinear thresholding, dotted line | soft-thresholding, dashed line | hard thresholding.It is easier and more interpretable to model directly the unknown function. Let us assume thatthe collected data (Xi; Yi) are independent. Conditioning on Xi, Yi has a density fi(g(Xi); Yi).Model (9) in the review article is a special case of this likelihood modeling with fi being a normaldensity. For simplicity, we consider the uniform density case with xi = i=n. Let W be theorthornormal matrix corresponding to a wavelet transform. Let � = Wg be the wavelet transformof the vector g = (g(1=n); � � � ; g(n=n))T . Then, g(i=n) = �Twi where wi is the ith column of W .The likelihood function can be written as nXi=1 `i(�Twi; yi);where `i = log fi is the log-likelihood.Like in the normal-likelihood case, using all n variables fw1; � � � ; wng to model the function gover parameterizes the problem. We can select a useful basis via introducing L1 penalty as in (2.2)or its generalization (2.3). For simplicity, we focus only on the L1-penality. Let w1; � � � ; wm bethe columns that correspond to the �rst J0-resolution level, where m = 2J0 . As in the Donohoand Johnstone [33], wavelet coe�cients at the coarse level will not be thresholded. The abovediscussions lead to the following penalized likelihood estimation: MinimizenXi=1 `i(�Twi; yi)� � nXi=m j�ij; (3.1)for some thresholding parameter �. As noted in the last section, when `i is the normal likelihood,the resulting estimator is the Donoho and Johnstone soft-thrinkage estimator. Thus, the penalizedlikelihood estimator is an extension of the wavelet shrinkage estimator. It also admits Bayesianinterpretation as in (2.2).When `i(g; y) = �(y � g), then (3.1) becomesnXi=1 �(yi � �Twi)� � nXi=m j�ij: (3.2)4



If an outlier-resistant loss function such as the L1-loss or more generally Huber's psi-function (seeHuber [8]) is used, the resulting wavelet estimator is robust.We now close this section by introducing an iterative algorithm to compute the estimator de�nedby (3.1). Let us assume that `(t; y) is smooth in t so that its �rst two partial derivatives `0(t; y) and`00(t; y) are continuous. Suppose that we are given the initial value �0 that is close to the minimizerof (3.1). Then, (3.1) can locally be approximated by a quadratic function:`(�0) + (� � �0)T 5 `(�0) + 12(� � �0)T 52 `(�0)(� � �0)� � nXi=m �2i =j�i0j; (3.3)where `(�0) = nXi=1 `i(�T0 wi; yi); 5`(�0) = nXi=1 `0i(�T0 wi; yi)wi:and 52`(�0) = nXi=1 `00i (�T0 wi; yi)wiwTi :The quadratic minimization problem (3.3) yields the solution�1 = �0 � f52`(�0)� 2��(�0)g�1f5`(�0)� 2�sgn(�0)g; (3.4)where�(�0) = diag(0; � � �0; j�m+1;0j�1; � � � ; j�n;0j�1) and sgn(�0) = (0; � � � ; 0; sgn(�m+1;0); � � � ; sgn(�n;0))T :A drawback of the above algorithm is that once a coe�cient is shrunk to zero, it will remain zero.The bene�t is that it reduces a lot of computation burden. A reasonable initial value �0 is to usethe soft-threholded wavelet coe�cients. This would shrink many coe�cients to zero, resulting in amuch smaller dimension of minimization problem.The estimator (3.4) can be regarded as a one-step procedure to the constrained likelihoodproblem (3.1). Like in parametric case, with good initial value �0, the one-step procedure �1 can beas e�cient as the fully iterative MLE. Now, regarding �1 as a good initial value, the next iterationcan also be regarded as a one-step procedure and the resulting estimator can still be as e�cient asthe fully iterative MLE. Therefore, estimators de�ned by (3.4) after a few iterations can always beregarded as an one-step estimator, which is expected to be as e�cient as the fully iterative methodas long as the initial estimator is good enough. In this sense, one does not have to iterate (3.4)until it converges.When the L1-loss is used in (3.2), one can not directly approximate it by a quadratic equationas (3.3). However, it can be approximated asnXi=1(yi � �Twi)2=jyi � �T0 wij+ � nXi=m �2i =j�i0j:From this quadratic approximation, an iterative algorithm can easily be obtained:.�1 = fWR(�0)WT + ��(�0)g�1WR(�0)Y;where R(�0) = diag(jr1j�1; � � � ; jrnj�1) with ri = jyi � �T0 wij.5



In the penalized likelihood (3.1), one can also use the quadratic penality if the prior distributionof �i is Gaussian instead of double exponential. This leads to the following minimization problem:�Xi=1 n`i(�Twi; yi) + � mXi=1 �i�2i (3.5)for some given �i. Note that (3.5) can also be regarded as a constrained MLE with parameter spacef� : nXi=m �i�2i � Constantg;which imposes some smoothness constraints on the underlying function. As in (3.4), the solutionto the minimization problem (3.5) can be obtained via the following iterative algorithm:�1 = �0 � f52`(�0)� 2��0g�1f5`(�0)� 2��0�0g;where �0 = diag(�1; � � � ; �n).The above algorithms involve solving equation of form:(WR1W +R2)�1a (3.6)for given diagnonal matrix R1 and R2 with nonnegative elements. A fast algorithm for computingsuch a vector is needed. One possible way is to use the following iterative algorithm. Let b =(WR1W + R2)�1a. Then, (WR1W +R2)b� a = 0:This suggests the following iterative algorithm for �nding b:bi+1 = bi � (�In + R2)�1(WTR1Wbi +R2bi � a); (3.7)for some given value of � > 0. The operations on the right hand side of equation (3.7) is easy tocompute: Since R2 is a diagonal matrix, one can explicitly compute the inverse matrix (�In+R2)�1.The vector WTR1Wb can be computed by discrete wavelet transform and the inverse wavelettransform of the transformed vector multiplied with the diagonal matrix R1. The e�ectiveness forthis algorithm remains to be seen.4 Applications to functional data analysisWith advantage of modern technology, data can easily be collected in a form of curves fXi(tj)g(i = 1; � � � ; n; j = 1; � � � ; T ) | the ith observation at time tj . Such a kind of data are calledfunctional data. For details on functional data analyses, see Ramsey and Silverman [7]. We outlinehere how wavelets can be used for comparing two sets of curves. Details can be found in Fan andLin [5].Suppose that we have two sets of functional data fXi(tj)g and fYi(tj)g, collecting at equip-spaced time point tj . We are interested in testing if the mean curves are the same or not. If thedata are only collected at one time point, then the above problem is the standard two-sample t-test6



problem. We assume that each observed curve is the true mean curve contaminated with stationarystochastic noise. The approach of Fan and Lin [5] can be outlined as follows.Firstly, apply Fourier transform to each observed curve and obtain the transformed data. TheFourier transform converts stationary errors into nearly independent Gaussian errors. Secondly,compute the two-sample t-test statistic at each coordinate of the transformed data. This basicallytests if the two groups have the same mean at each given frequency. The resulting t-test statis-tics form a T -dimensional vector. When n is reasonably large, this t-vector follows basically theGaussian model. Our original problem becomes to test if the mean vector is zero or not. Thirdly,apply the wavelet threshold tests in Fan [42] to obtain an overall test-statistic. The role of waveletthresholding can be regarded as to select powerful coordinates to test. From this, an overall P-valuecan be obtained.References[1] Donoho, D.L., Johnstone, I.M., Hock, J.C. and Stern, A.S. (1992). Maximum entropy and thenearly black object (with discussions). Jour. Roy. Statist. Soc. B, 54, 41-81.[2] Fan, J. and Gijbels, I. (1995). Data-driven bandwidth selection in local polynomial �tting:variable bandwidth and spatial adaptation. J. Royal Statist. Soc. B, 57, 371{394.[3] Fan, J., Hall, P., Martin, M. and Patil, P. (1993). Adaptation to high spatial inhomogene-ity based on wavelets and on local linear smoothing. Research report SMS-59-93, Centre forApplied Mathematics, Australian National University.[4] Fan, J., Hall, P., Martin, M. and Patil, P. (1996). On the local smoothing of nonparametriccurve estimators. J. Amer. Statist. Assoc., 91, 258 { 266.[5] Fan, J. and Lin, S. (1996). Test of signi�cance when data are curves. Unpublished manuscript.[6] Lepski, O.V., Mammen, E., Spokoiny, V.G. (1997). Optimal spatial adaptation to inhomoge-neous smoothness: an approach based on kernel estimates with variable bandwidth selectors.Ann. Statist., 25, 929-947.[7] Ramsay, J.O. and Silverman, B.W. (1997). The analysis of Functional Data. Springer-verlag,New York.[8] Huber, P. (1981). Robust estimation. Wiley, New York.[9] Luo, Z. and Wahba, G. (1997). Hybrid adaptive splines. Jour. Ameri. Statist. Assoc., 92,107{116.[10] Tibshrani, R. (1996). Regression shrinkage and selection via lasso. Jour. Roy. Statist. Soc. B.,58, 267-288.
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