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Abstract
We introduce the large portfolio selection using gross-exposure constraints. We show that with
gross-exposure constraint the empirically selected optimal portfolios based on estimated
covariance matrices have similar performance to the theoretical optimal ones and there is no error
accumulation effect from estimation of vast covariance matrices. This gives theoretical
justification to the empirical results in Jagannathan and Ma (2003). We also show that the no-
short-sale portfolio can be improved by allowing some short positions. The applications to
portfolio selection, tracking, and improvements are also addressed. The utility of our new
approach is illustrated by simulation and empirical studies on the 100 Fama-French industrial
portfolios and the 600 stocks randomly selected from Russell 3000.
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1 Introduction
Portfolio selection and optimization have been a fundamental problem in finance ever since
Markowitz (1952, 1959) laid down the ground-breaking work on the mean-variance
analysis. Markowitz posed the mean-variance analysis by solving a quadratic optimization
problem. This approach has had a profound impact on the financial economics and is a
milestone of modern finance. It leads to the celebrated Capital Asset Pricing Model
(CAPM), developed by Sharpe (1964), Lintner (1965) and Black (1972). However, there are
documented facts that the Markowitz portfolio is very sensitive to errors in the estimates of
the inputs, namely the expected return and the covariance matrix. The problem gets more
severe when the portfolio size is large.

To appreciate the challenge of dimensionality, suppose that we have a pool of 2,000
candidate assets and wish to select some for investment. The covariance matrix alone
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involves over 2,000,000 unknown parameters. Yet, the sample size n is usually no more than
400 (about 1.5 years daily data). Now, each element in the covariance matrix is estimated

with the accuracy of order  or 0.05. Aggregating them over millions of estimates can
lead to devastating effects, resulting in adverse performance in the selected portfolio. As a
result, the allocation vector that we get based on the empirical data can be very different
from the allocation vector we want based on the theoretical inputs. Hence, the optimal
portfolio does not perform well in empirical applications, and it is very important to find a
robust portfolio that does not depend on the aggregation of estimation errors.

Several techniques have been suggested to reduce the sensitivity of the Markowitz optimal
portfolios to input uncertainty. Chopra and Ziemba (1993) proposed a James-Stein estimator
for the means and Ledoit and Wolf (2003) proposed to shrink the sample covariance matrix.
Fan et al. (2008) studied the covariance matrix estimated based on the factor model and
demonstrated that the resulting allocation vector significantly outperforms the allocation
vector based on the sample covariance. Pesaran and Zaffaroni (2008) investigated how the
optimal allocation vector depends on the covariance matrix with a factor structure when
portfolio size is large. However, these techniques, while reducing the sensitivity of input
vectors in the mean-variance allocation, are inadequate to address the adverse effect due to
the accumulation of estimation errors, particularly when portfolio size is large.

Various efforts have been made to modify the Markowitz mean-variance optimization
problem to make the resulting allocation depend less sensitively on the input vectors. De
Roon et al. (2001) considered testing-variance spanning with the no-short-sale constraint.
Goldfarb and Iyengar (2003) studied some robust portfolio optimization problems.
Jagannathan and Ma (2003) imposed the no-short-sale constraint on the Markowitz mean-
variance optimization problem and gave insightful explanation and demonstration of why
the constraints help. However, as to be shown in this paper, the optimal no-short-sale
portfolio is not diversified enough. The constraint on gross exposure needs relaxing in order
to enlarge the pools of admissible portfolios. We will provide statistical insights to the
question why the constraint prevents the risks or utilities of selected portfolios from
accumulation of statistical estimation errors. This is a prominent contribution of this paper in
addition to the utilities of our formulation in portfolio selection, tracking, and improvement.
Our result provides a theoretical insight to the phenomenon, observed by Jagannathan and
Ma (2003), why the wrong constraint helps on risk reduction for large portfolios.

We approach the utility optimization problem by introducing a gross-exposure constraint on
the allocation vector. A sketch of the idea appeared in Fan (2007). This makes not only the
Markowitz problem more practical, but also bridges the gap between the no-short-sale utility
optimization problem of Jagannathan and Ma (2003) and the unconstrained utility
optimization problem of Markowitz (1952, 1959). As the gross exposure parameter
increases from 1 to infinity, our utility optimization progressively ranges from no-short-sales
constraint to no constraint on short sales. We will demonstrate that for a wide range of the
constraint parameters, the optimal portfolio does not sensitively depend on the estimation
errors of the input vectors. The oracle and empirical optimal portfolios, based respectively
on the true and estimated parameters, have approximately the same utility. In addition, the
empirical and theoretical risks are also approximately the same for any allocation vector
satisfying the gross-exposure constraint. The extent to which the gross-exposure constraint
impacts on utility approximations is explicitly unveiled. These theoretical results are
demonstrated by several simulation and empirical studies. They lend further support to the
conclusions made by Jagannathan and Ma (2003) in their empirical studies.

Our approach has important implications in practical portfolio selection and allocation.
Monitoring and managing a portfolio of many stocks is not only time consuming but also
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expensive. Therefore, it is ideal to pick a reasonable number of assets to mitigate these two
problems. Ideally, we would like to construct a robust portfolio of a reasonably small size to
reduce trading, re-balancing, monitoring, and research costs. We also want to control the
gross exposure of the portfolio to avoid too extreme long and short positions. As
demonstrated later, the exposure constrained optimization problem (2.1) provides a good
solution to the problem.

The paper is organized as follows. Section 2 introduces the constrained utility optimization
and demonstrates that the estimation error has limited impact on the utility optimization. Its
applications to portfolio tracking and selection are discussed in Section 3. The proposed
techniques are illustrated by simulation studies in Section 4 and by real data in Section 5.
Section 6 concludes and all technical proofs and conditions are relegated to the appendix.

2 Portfolio optimization with gross-exposure constraints
Suppose we have p assets with returns R1, ···, Rp to be managed. Let R be the return vector,
Σ be its associated covariance matrix, and w be its portfolio allocation vector, satisfying wT

1 = 1. Then the variance of the portfolio return wT R is given by wT Σw.

2.1 Constraints on gross exposure
For a given portfolio with allocation w, the total proportions of long and short positions are

respectively, since w+ + w− = ||w||1 and w+ − w− = 1. The constraint ||w||1 ≤ c prevents
extreme positions in the portfolio. When c = 1, this means that no short sales are allowed.
When c = ∞, there is no constraint on short sales. As a generalization to the work by
Markowitz (1952), Jagannathan and Ma (2003) and Fan (2007), our utility optimization
problem with gross-exposure constraint is

(2.1)

The utility function U(·) can also be replaced by any risk measures such as those in Artzner
et al. (1999), and in this case the utility maximization should be risk minimization.

The extra constraints Aw = a are related to the constraints on percentage of allocations on
each sector or industry. It can also be the constraint on the expected return of the portfolio or
factor exposures. For example, the portfolios can be constrained without exposure (market-
neutral) to the market risk such as the returns of SP500. The problem (2.1) has
independently investigated in several fields from different angles. See Fan (1997), Fan,
Zhang and Yu (2008), which is an earlier draft of this paper, DeMiguel et al. (2008), and
Bordie et al. (2009).

2.2 Utility and risk approximations
It is well known that when the return vector R ~ N(μ, Σ) and U(x) = 1 − exp(−Bx), with B
being the absolute risk aversion parameter, the utility optimization is equivalent to
maximizing the Markowitz mean-variance function:
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(2.2)

where λ = B/2. The solution to (2.2) is wopt = c1Σ−1 μ+c2Σ−11 with c1 and c2 depending on
μ and Σ as well. The solution depends sensitively on the input vectors μ and Σ, and their
accumulated estimation errors. The problem can result in extreme positions, which make it
impractical.

These two problems disappear when the gross-exposure constraint ||w||1 ≤ c is imposed for a
moderate c. The sensitivity of utility function to the estimation errors can easily be bounded
as follows:

(2.3)

where ||μ̂ − μ||∞ and ||Σ̂ − Σ||∞ are the maximum componentwise estimation errors.
Therefore, as long as each element is estimated well, the overall utility is approximated well
without accumulation of estimation errors. The story is very different in the case that there is
no constraint on the short-sale in which c = ∞. In this case, the estimation error does
accumulate and they are negligible only for a portfolio with a moderate size, as
demonstrated in Fan et al. (2008).

Specifically, if we consider the risk minimization with no short-sale constraint, then
analogously to (2.3), we have

(2.4)

where the risk is defined by R(w, Σ) = wT Σw. The right hand of (2.4) obtains its minimum
when ||w||1 = 1, the no-short-sale portfolio. In this case,

(2.5)

The inequality (2.5) is the mathematics behind the conclusions in Jagannathan and Ma
(2003). In particular, we see easily that estimation errors from (2.5) do not accumulate in the
risk. Even when the constraint is wrong (excluding the optimal portfolio), we lose somewhat
the theoretical optimal risk due to the limited space of portfolios, yet we gain substantially
the reduction of the error accumulation of statistical estimation. As a result, the actual risks
of the empirical optimal portfolios selected based on wrong constraints can outperform the
Markowitz portfolio.

2.3 Risk optimization: some theory
As it is very hard to estimate accurately the expected returns μ, the focus is shifted to the
risk minimization in empirical finance. From now on, we consider the risk minimization
problem:

(2.6)
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This is a simple quadratic programming problem and can be computed easily for each given
c. The problem with linear constraints can be solved similarly.

To simplify the notation, we let

(2.7)

be respectively the theoretical and empirical portfolio risks with allocation w, where Σ̂ is an
estimated covariance matrix based on the data with sample size n. Let

(2.8)

be respectively the theoretical optimal allocation vector we want and empirical optimal
allocation vector we get.

Theorem 1—Let an = ||Σ̂ − Σ||∞ Then, we have (without any conditions)

and E{Rn(ŵopt)} ≤ R(wopt) ≤ R(ŵopt).

Theorem 1 shows the theoretical minimum risk R(wopt) (also called the oracle risk) and the
actual risk R(ŵopt) of the invested portfolio are approximately the same as long as the c is
not too large and the accuracy of estimated covariance matrix is not too poor. Both of these
risks are unknown. The empirical minimum risk Rn(ŵopt) is known, and can be overly
optimistic (too small). But, it is close to both the theoretical risk and the actual risk. The
results hold without any conditions on Σ̂. In particular, elementwise estimation of covariance
matrix is allowed. The concept of risk approximation is similar to persistent(Greenshtein and
Ritov, 2004).

In Theorem 1, we do not specify the rate an. This depends on the model assumption and
method of estimation. For example, one can use the factor model to estimate the covariance
matrix as in Jagannathan and Ma (2003), Ledoit and Wolf (2003), and Fan et al. (2008). One
can also estimate the covariance via the dynamic equi-correlation model of Engle and Kelly
(2011) or more generally dynamically equi-factor loading models. One can also aggregate
the large covariance matrix estimation based on the high frequency data (Barndorff-Nielsen
and Shephard, 2002; Zhang, et al., 2005; Barndorff-Nielsen et al., 2011).

To understand the impact of the portfolio size p on the accuracy an, let us consider the
sample covariance matrix Sn based on a sample  over n periods. We assume herewith
that p is large relative to sample size to reflect the size of the portfolio, i.e., p = pn → ∞.
When p is fixed, the following results hold trivially.

Theorem 2—Under Condition 1 in the Appendix, we have
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This theorem shows that the portfolio size enters into the maximum estimation error only at
the logarithmic order. Hence, the portfolio size does not play a significant role in risk
minimization as long as the constraint on gross exposure is in place.

In general, the uniform convergence result in Theorem 2 typically holds as long as the
estimator of each element of the covariance matrix is root-n consistent with exponential
tails.

Theorem 3—Let σij and σ̂ij be the (i, j)th element of the matrices Σ and Σ̂, respectively. If
for a sufficiently large x,

for two positive constants a and C, then

(2.9)

In addition, if Condition 2 in Appendix holds, then (2.9) holds for sample covariance matrix,
and if Condition 3 holds, then (2.9) holds for a = 1/2.

2.4 Relation with Covariance Regularization
By the Lagrange multiplier method, problem (2.6) is to minimize

Let g be the subgradient vector of the function ||w||1, whose ith element being − 1, 1 or any
values in [− 1, 1] depending on whether wi is positive, negative or zero. Then, the Karush-
Kuhn-Tucker conditions for the constrained optimization (2.6) are

(2.10)

(2.11)

in addition to the constraints wT 1 = 1 and ||w||1 ≤ c. Let w̃ be the solution to (2.10) and
(2.11).

Theorem 4—The constrained portfolio optimization (2.6) is equivalent to the mean-
variance problem
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(2.12)

with the regularized covariance matrix

(2.13)

where g̃ is the subgradient evaluated at w̃ and &lambda;1 is the Language multiplier defined
by (2.10) and (2.11).

The result is of a similar spirit of Jagannathan and Ma (2003) and DeMiguel et al. (2008).

2.5 Choice of gross exposure parameter
The gross exposure parameter c is typically given by investors. As referees pointed out, a
data-driven choice will be helpful for investors. Let m be the number of data used in the
testing period. A natural estimate of the risk profile with gross exposure c is to use the first n
− m data points to get a sample covariance matrix and hence the allocation vectors {ŵc}.
Then, compute the risk profile

(2.14)

in which the learning period up to time n − m and the testing period of length m are stressed.
The function R(c; n − m, m) is useful for investors to choose c. The optimal data-driven
choice is the one that minimizes the function.

In practice, one is not willing to use a large m. This leaves the risk evaluation (2.14)
unstable. To increase the reliability of risk evaluations, we can use

(2.15)

This increases the testing period by a factor of K times and was advocated in Fan and Yao
(2003). For example, if K = 4 and m = n/10, 40% of data are used in the evaluation of the
risks in (2.15), while only 10% are used in (2.14).

3 Portfolio tracking and asset selection
The risk minimization problem (2.6) has important applications in portfolio tracking and
asset selection. It also allows one to improve the utility of existing portfolios. We first
illustrate its connection to a penalized least-squares problem, upon which the whole solution
path can easily be found (Efron, et al. 2004) and then outline its applications in finance.

3.1 Connection with regression problem
Markowitz’s risk minimization problem can be recast as a regression problem. By using the
fact that the sum of total weights is one, we have
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(3.1)

where Y = Rp and Xj = Rp − Rj (j = 1, ···, p − 1). Finding the optimal weight w is the same
as finding the regression coefficient w* = (w1, ···, wp−1)T.

The gross-exposure constraint ||w||1 ≤ c can now be expressed as ||w*||1 ≤ c − |1 − 1T w*|.
The latter cannot be expressed as

(3.2)

for a given constant d. Thus, problem (2.6) is similar to

(3.3)

where X = (X1, ···, Xp−1)T. But, they are not equivalent. The latter depends on the choice of
asset Y, while the former does not.

Efron et al. (2004) developed an efficient algorithm by using the least-angle regression
(LARS), called the LARS-LASSO algorithm, to efficiently find the whole solution path

, for all d ≥ 0, to (3.3). The number of non-vanishing weights varies as d ranges from
0 to ∞. It recruits successively more assets and gradually all assets.

3.2 Portfolio tracking and asset selection
If the variable Y is the portfolio to be tracked, problem (3.3) can be interpreted as finding a
limited number of stocks with a gross-exposure constraint to minimize the expected tracking
error. As d increases, the number of selected stocks increases, the tracking error decreases,
but the short percentage increases. With the LARS-LASSO algorithm, we can plot the
expected tracking error and the number of selected stocks, against d. This enables us to
make an optimal decision on how many stocks to pick to manage the trade-off among the
expected tracking errors, the number of selected stocks and short positions.

3.3 An approximate solution path to risk minimization
The solution path to (3.3) also provides a nearly optimal solution path to the problem (2.6).

For example, the allocation with  on the first p − 1 stocks and the rest on the last
stock is a feasible allocation vector to the problem (2.6) with

(3.4)

This will not be the optimal solution to the problem (2.6) as it depends on the choice of Y.
However, when Y is properly chosen, the solution is nearly optimal, as to be demonstrated.
For example, by taking Y to be the no-short-sale portfolio, then problem (3.3) with d = 0 is
the same as the solution to problem (2.6) with c = 1. We can then use (3.3) to provide a
nearly optimal solution.
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In summary, to compute (2.6) for all c, we first find the solution with c = 1 using a quadratic
programming. This yields the optimal no-short-sale portfolio. We then take this portfolio as
Y in problem (3.3) and apply the LARS-LASSO algorithm to obtain the solution path

 . Finally, compute the gross-exposure of the portfolio with  on the first p − 1
stocks and the rest on the optimal no-short-sale portfolio, called it c, namely, regard the
aforementioned portfolio as an approximate solution to the problem (2.6). This yields the
whole solution path to the problem (2.6). As shown in Figure 1(a) below and the empirical
studies, the approximation is indeed quite accurate.

In the above algorithm, one can also take a tradable index or an ETF (electronically traded
fund) in the set of stocks under consideration as Y and applies the same technique to obtain
a nearly optimal solution. We have experimented this and obtained good approximations,
too.

4 Simulation studies
In this section, we use simulations to verify our theoretical results and to quantify the finite
sample behaviors. In particular, we would like to demonstrate that the risk profile of the
optimal no-short-sale portfolio can be improved substantially and that the LARS algorithm
yields a good approximate solution to the risk minimization with gross-exposure constraint.
In addition, we would like to demonstrate that when the covariance matrix is estimated

reasonably accurately, the risk that we want (the oracle risk, ) and the risk that we

get (the actual risk of the empirical optimal portfolio, ) are approximately the same
for a wide range of the exposure coefficient. However, the story is very different when the
constraint is loose. All the simulation studies are out-of-sample studies.

4.1 A simulated Fama-French three-factor model
Let Ri be the excessive return over the risk free interest rate of the ith stock. Fama and
French (1993) identified three key factors that capture the cross-sectional risk in the US
equity market. The first factor is the excess return of the proxy of the market portfolio and
the other two factors are related to the market capitalizations and book-to-market ratios.
More specifically, we assume that the excess return follows the following three-factor
model:

(4.1)

where {bij} are the factor loadings of the ith stock on the factor fj, and εi is the idiosyncratic
noise, independent of the three factors. We assume further that the idiosyncratic noises are
independent of each other, whose marginal distributions are the Student-t with degree of
freedom 6 and standard deviation σi.

To facilitate the presentation, we write the factor model (4.1) in the matrix form:

(4.2)

where B is the factor loading coefficient matrix. Throughout this simulation, we assume that

E(ε|f) = 0 and . Then, model (4.2) implies that R has the
covariance
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(4.3)

We simulate the n-period returns of p assets as follows. See Fan et al. (2008) for additional
details. First of all, the factor loadings are generated from the trivariate normal distribution
N(μb, covb), where the parameters are given in Table 1. Once the factor loadings are
generated, they are taken as the parameters and thus kept fixed throughout simulations. The
levels of idiosyncratic noises are generated from a gamma distribution with the shape
parameter 3.3586 and the scale parameter 0.1876, conditioned on the noise level of at least
0.1950. The returns of the three factors over n periods are drawn from the trivariate normal
distribution N(μf, covf), with the parameters given in Table 1. The parameters are calibrated
to the market data of 30 industrial portfolios from May 1, 2002 to August 29, 2005 and are
taken from Fan et al. (2008). Thus, our numerical experiments simulate the portfolio returns,
which are less volatile than individual stocks. They allow a larger choice of c.

4.2 Accuracy of LARS approximation
As mentioned in §3.3, the LARS algorithm provides an approximate solution. The first
question is then the accuracy of the approximation. As a byproduct, we also demonstrate
that the optimal no-short-sale portfolio is not diversified enough and can be significantly
improved.

To demonstrate this, we took 100 stocks with covariance matrix given by (4.3). For each
given c in the interval [1, 3], we applied a quadratic programming algorithm to solve
problem (2.6) and obtained its associated minimum portfolio risk, depicted in Figure 1(a).
We also employed the LARS algorithm using the optimal no-short-sale portfolio as Y, with
d ranging from 0 to 3. This yields a solution path along with its associated portfolio risk
path. The risk profiles are in fact very close. The number of stocks for the optimal no-short-
sale portfolio is 9. As c increases, the number of stocks picked by (2.6) also increases, as
demonstrated in Figure 1(b) and the portfolio gets more diversified.

The approximated and exact solutions have very similar risk functions. Figure 1(a) shows
that the optimal no-short-sale portfolio is very conservative and can be improved drastically
as the constraint relaxes. At c = 2 (corresponding to 18 stocks with 50% short positions and
150% long positions), the risk decreases from 8.1% to 4.9%. The decrease of risks slows
down drastically after that point. This shows that the optimal no-short-sale constraint
portfolio can be improved substantially by using our method.

The next question is whether the improvement can be realized with the estimated covariance
matrix. To illustrate this, we simulated n = 252 from the three-factor model (4.1) and
estimated the covariance matrix by the sample covariance matrix. The actual and empirical
risks of the selected portfolio for a typical simulated data set are depicted in Figure 1(c). For
a range up to c = 1.7, they are approximately the same. The range widens when the
covariance matrix is estimated with a better accuracy. To demonstrate this effect, we show
in Figure 1(d) the case with sample size n = 756. However, when the gross exposure
parameter is large, they can differ substantially.

4.3 Portfolio improvement
To demonstrate further how much our method can be used to improve the existing portfolio,
we assume that the current portfolio is an equally weighted portfolio among 200 stocks. This
is the portfolio Y. The returns of these 200 stocks are simulated from model (4.1) over a
period of n = 252. The theoretical risk of this equally weighted portfolio is 13.58%, while
the empirical risk of this portfolio is 13.50% for a typical realization. Here, the typical
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sample refers to the one that has the median value of the empirical risks among 200
simulations. This particular simulated data set is used for the further analysis.

We now pretend that this equally weighted portfolio is the one that an investor holds and the
investor seeks possible improvement of the efficiency by modifying some of the weights.
The investor employs the LARS-LASSO technique (3.3), taking the equally weighted
portfolio as Y and the 200 stocks as potential X. Figure 2 depicts the empirical and actual
risks, and the number of stocks whose weights are modified in order to improve the risk
profile of equally weighted portfolio.

The risk profile of the equally weighted portfolio can be improved substantially. When the
sample covariance is used, at d = 1, Figure 2(a) reveals the empirical risk is only about one
half of the equally weighted portfolio, while Figure 2(b) shows that the number of stocks
whose weights have been modified is only 4. The total percentage of short positions is only
about 48%. The actual risk of this portfolio is very close to the empirical one, giving an
actual risk reduction of nearly 50%. At d = 2, corresponding to about 130% of short
positions, the empirical risk is reduced by a factor of about 3. Increasing the gross exposure
parameter only slightly reduces the empirical risk, but quickly increases the actual risk.
Applying our criterion to the empirical risk, which is known at the time of decision making,
one would have chosen a gross exposure parameter somewhat less than 1.5 (the place where
the empirical fails to decrease quickly), realizing a sizable reduction of the actual risk.

Similar conclusions can be made for the covariance matrix based on the factor model. In this
case, the covariance matrix is estimated more accurately and hence the empirical and actual
risks are closer for a wider range of the gross exposure parameter d. This is consistent with
our theory. The substantial gain in this case is due to the fact that the factor model is correct
and hence incurs no modeling biases in estimating covariance matrices. For the real
financial data, however, the accuracy of the factor model is unknown. As soon as d ≥ 3 the
empirical reduction of risk is not significant.

4.4 Risk approximations
We now use simulations to demonstrate the closeness of the risk approximations with the
gross-exposure constraints. The factor model (4.1) is used to generate the returns of p stocks
over a period of n = 252 days. The number of simulations is 101. The covariance matrix is
estimated by either the sample covariance or the factor model (4.3) whose coefficients are
estimated from the sample. We examined two cases: p = 200 and p = 500. The first case
corresponds to a non-degenerate sample covariance matrix whereas the second case
corresponds to a degenerate one.

We first examine the case p = 200 with a sample of size 252. Figure 3(a) summarizes the
10th, 50th and 90th percentiles of the actual risks of empirically selected portfolios among
101 simulations. They summarize the distributions of these actual risks. The sampling
variation is indeed small. It is clear from Figure 3(c) that the theoretical risk fails to decrease
noticeably when c = 3 and increasing the gross-exposure will not improve very much the
theoretical optimal risk profile. In fact, for the true covariance, the global minimum variance
portfolio has c = 4.22, which involves 161% of short positions, and minimum risk 2.68%.
For any c ≥ 4.22, the theoretical risk is constant. On the other hand, increasing gross
exposure c makes it harder to estimate theoretical allocation vector. As a result, the actual
risk increases when c gets larger. When c gets larger (beyond the scale plotted here), the
actual risk increases steadily, while empirical risk decreases.

Combining the results in both top and bottom panels, Figure 3 gives a comprehensive
overview of the risk approximations. The top panel shows the sampling variability of the
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actual risks, whereas the bottom panel depicts the approximation errors of the actual risks
(biases). For example, when c is small, both approximation errors and sampling variabilities
are small, whereas the approximation errors dominate the sampling variability when the
global exposure parameter is large. It is clear that the risk approximations are much more
accurate for the covariance matrix estimation based on the factor model. This is somewhat
expected as the data generating process is a factor model.

We now consider the case where there are 500 potential stocks with only a year of data (n =
252). In this case, the sample covariance matrix is always degenerate. Therefore, the global
minimum portfolio based on the sample covariance always has zero empirical risk. On the
other hand, with the gross-exposure constraint, the actual and empirical risks approximate
quite well for a wide range of gross exposure parameters (Figure 4). To gauge the relative
scale of the range, we note that for the given theoretical covariance, the global minimum
portfolio has c = 4.01, which involves 150% of short positions with the minimal risk 1.69%.
The optimal no-short-sale portfolio, selected from 500 stocks, has actual risk 6.47%, which
is not much smaller than 7.35% selected from 200 stocks.

5 Empirical Studies
5.1 Fama-French 100 Portfolios

We use the daily returns of 100 industrial portfolios formed on size and book to market ratio
from the website of Kenneth French from Jan 2, 1998 to December 31, 2007. These 100
portfolios are formed by the two-way sort of the stocks in the CRSP database, according to
the market equity and the ratio of book equity to market equity, 10 categories in each
variable. At the end of each month from 1998 to 2007, the covariance matrix of the 100
assets is estimated according to three estimators, the sample covariance, Fama-French 3-
factor model, and the RiskMetrics with λ = 0.97, using the past 12 months’ daily return
data. These covariance matrices are then used to construct optimal portfolios under various
exposure constraints. The portfolios are then held for one month and rebalanced at the
beginning of the next month. The means, standard deviations and other characteristics of
these portfolios are recorded and presented in Table 2. They represent the actual returns and
actual risks. The optimal portfolios with the gross-exposure constraints pick certain numbers
of assets each month. The average numbers of assets over the study period are presented in
Table 2.

First of all, the optimal no-short-sale portfolios, while selecting about 6 assets from 100
portfolios, are not diversified enough. Their risks can easily be improved by relaxing the
gross-exposure constraint with c = 2. This is shown in Table 2 and Figure 5(a), no matter
which method is used to estimate the covariance matrix. The risk stops decreasing
drastically when c = 2.5. Interestingly, the Sharpe ratios peak around c = 2.5 stocks too.
After that point, the Sharpe Ratio actually falls for the covariance estimation based on the
sample covariance and the factor model.

For c < 2.5, the portfolios selected using the RiskMetrics have lower risks. In comparison
with the sample covariance matrix, the RiskMetrics estimates the covariance matrix using a
much smaller effective time window. As a result, the biases are usually smaller than the
sample covariance matrix. Since each asset is a portfolio in this study, its risk is smaller than
stocks. Hence, the covariance matrix can be estimated more accurately with the RiskMetrics
in this study. This explains why the resulting selected portfolios by using RiskMetrics have
smaller risks. However, their associated returns tend to be smaller too. As a result, their
Sharpe ratios are actually smaller. The Sharpe ratios actually peak at around c = 1.5 assets.
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It is surprising to see that the unmanaged equally weighted portfolio, which invests 1 percent
on each of the 100 industrial portfolios, is far from optimal in terms of the risk during the
study period. The value-weighted index CRSP does not fare much better. They are all
outperformed by the optimal portfolios with gross-exposure constraints during the study
period. This is in line with our theory. Indeed, the equally weighted portfolio and CRSP
index are two specific members of the no-short-sale portfolio, and should be outperformed
by the optimal no-short-sale portfolio, if the covariance matrix is estimated with reasonable
accuracy.

5.2 Russell 3000 Stocks
We now apply our techniques to study the portfolio behavior using Russell 3000 stocks. The
study period is from January 2, 2003 to December 31, 2007. To avoid computation burden
and the issues of missing data, we picked 600 stocks randomly from 1000 stocks in the 3000
stocks that constitute Russell 3000 on December 31, 2007. Those 1000 stocks have least
percents of missing data in the five-year study period. This forms the universe of the stocks
under our study.

At the end of each month from 2003 to 2007, the covariance of the 600 stocks is estimated
according to various estimators using the past 24 months’ daily returns. As a result, the
sample covariance matrix is degenerate. We use these covariance matrices to construct
optimal portfolios under various gross-exposure constraints and hold these portfolios for one
month. The daily returns of these portfolios are recorded and hence the standard deviations
are computed.

Table 3 summarizes the risks of the optimal portfolios constructed using 3 different methods
of estimating covariance matrix and using 6 different gross-exposure constraints. The global
minimum portfolio, which does not exist empirically but is approximated by c = 8, is not
efficient for vast portfolios due to accumulation of errors in the estimated covariance matrix.
This can be seen easily from Figure 6. The ex-post annualized volatilities of constructed
portfolios using the sample covariance and RiskMetrics shoot up quickly (beyond c = 2).
The risk continues to grow if we relax further the gross-exposure constraint, which is
beyond the range of our pictures. This provides further evidence to support the claim of
Jagannathan and Ma (2003).

The optimal no-short-sale portfolios are not efficient in terms of ex-post risk calculation.
They can be improved, when portfolios are allowed to have 50% short positions, say,
corresponding to c = 2. This is due to the fact that the no-short-sale portfolios are not
diversified enough. The risk approximations are still accurate when c ≤ 2. On the other hand,
the optimal no-short-sale portfolios outperform substantially the global minimum portfolio
(proxied by c = 8), which is consistent with the conclusion drawn in Jagannathan and Ma
(2003) and with our risk approximation theory.

The risks of optimal portfolios tend to be smaller and stable, when the covariance matrix is
estimated from the factor model. For vast portfolios, such an estimation of covariance matrix
tends to be most stable among the three methods that we considered here. As a result, its
associated portfolio risks tend to be the smallest among the three methods. As the covariance
matrix estimated by RiskMetrics uses a shorter time window than that based on the sample
covariance matrix, the resulting estimates tend to be even more unstable. As a result, its
associated optimal portfolios tend to have the highest risks.
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6 Conclusion
The portfolio optimization with the gross-exposure constraint bridges the gap between the
optimal no-short-sale portfolio and no constraint on short-sale in the Markowitz’s
framework. The gross-exposure constraint helps control the discrepancies between the
empirical risk which can be overly optimistic, oracle risk which is not obtainable, and the
actual risk of the selected portfolio which is unknown. We demonstrate that for a range of
gross exposure parameters, these three risks are actually very close. The approximation
errors are controlled by the worst elementwise estimation error of the covariance matrix.
There is no accumulation of estimation errors.

We provided theoretical insights into the observation made by Jagannathan and Ma (2003)
that the optimal no-short-sale portfolio has smaller actual risk than that for the global
minimum portfolio and offered empirical evidence to strengthen the conclusion. We
demonstrated that the optimal no-short-sale portfolio is not diversified enough. It is still a
conservative portfolio that can be improved by allowing some short positions. This is
demonstrated by our empirical studies and supported by our risk approximation theory:
Increasing gross exposure somewhat does not excessively increase the risk approximation
errors, but increases significantly the space of allowable portfolios and hence decreases
drastically the oracle and actual risks.

Practical portfolio choices always involve constraints on individual assets. This is
commonly understood as an effort of reducing the risks of the selected portfolios. Our
theoretical result provides further mathematical insights to support such a statement. The
constraints on individual assets also put a constraint on the gross exposure and hence control
the risk approximation errors, which makes the empirical risk and actual risk closer.
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Appendix: Conditions and Proofs

Throughout this appendix, we will assume that μ = ERt and  are independent of
t. Let  be the filtration generated by the process {Rt}.

Condition 1

Let Yt be the p(p +1)/2-dimensional vector constructed from the symmetric matrix .
Assume that μ = 0 and Yt follows the vector autoregressive model:
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for coefficient matrices A1, ···, Ak with E{εt| } = 0 and supt E||εt||∞ < ∞. Assume in
addition that supt E||AjYt||∞ = Op(n1/2) for all 1 ≤ j ≤ k and ||b(j)||1 < ∞ where b(j) is the j-th
row of matrix B−1, with B = I − A1 –···– Ak.

The conditions are imposed to facilitate the technical proof. They are not weakest possible.
In particular, the condition such as maxt E||εt||∞ < ∞ can be relaxed by replacing an upper
bound depending on p such as log p, and the conclusion continues to hold with some simple
modifications. The assumptions on matrices {Aj} can easily be checked when they are
diagonal. In particular, the assumption holds when {Rt} are a sequence of independently
identically distributed random vectors. Since we assume μ = 0, the sample covariance
matrix refers to the second moment.

Before introducing Condition 2, let us introduce the strong mixing coefficient α(k) of the
process {Rt}, which is given by

where σ (Rs, s ≤ t) is the sigma-algebra generated by {Rs, s ≤ t}.

Condition 2
Suppose that ||Rt||∞ < B for a constant B > 0 and that as q → ∞, α(q) = O(exp(−Cq1/b)) and
a > (b + 1)/2 in Theorem 3. In addition, log n = O(log p).

Condition 3
Let ηt be RtiRtj − ERtiRtj or Rti − ERti (we suppress its dependence on i and j). Assume that
there exist nonnegative constants a, b, and B and a function ρ(·) such that

for all i and j and any 1 ≤ s1 ≤ ··· ≤ su ≤ t1 ≤ ··· ≤ tv ≤n where

and

In addition, we assume that log p = o(n1/(2a+2b+3)).
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For AR and ARCH processes, Neumann and Paraporodidis (2008) show that this covariance
weak dependence condition holds with a = 1, b = 0 and ρ(s) = hs for some h < 1.

Proof of Theorem 1
First of all, it is easy to see that

(A.1)

which is bounded by anc2. This proves the second inequality.

To prove the first inequality, by using R(wopt) − R(ŵopt) ≤ 0, we have that

where the last inequality follows from (A.1). Similarly, it follows from Rn(wopt) − Rn(ŵopt)
≥ 0 that

Combining the last two results, the third inequality follows.

Now, let us prove the third inequality. Using again R(ŵopt) − R(wopt) ≥ 0 and Rn(ŵopt) −
Rn(wopt) ≤ 0, we have

(A.2)

This together with (A.1) proves the third inequality. The last inequality follows from the fact
that

This completes the proof.

We need the following lemma to prove Theorem 2.

Fan et al. Page 17

J Am Stat Assoc. Author manuscript; available in PMC 2013 January 03.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Lemma 1
Let ξ1, ···, ξn be a series of p-dimensional random vectors. Assume that ξt is -adaptive and
each component is a martingale difference: E(ξt+1| ) = 0. Then, for any p ≥ 3 and r ∈ [2,
∞], we have for some universal constant C

(A.3)

where ||ξt||r is the lr-norm of the vector ξt in Rp.

This is an extension of the Nemirovski’s inequality to the marginale difference sequence.
The proof follows similar arguments on page 188 of Emery el al (2000) and Dumbgen et al.
(2010).

Proof of lemma 1

Let . Then, there exists a universal constant C such that

where V′(x) is the gradient vector of V (x). Using this, we have

(A.4)

Since ξn is a martingale difference and  is  adaptive, we have

By taking the expectation on both sides of (A.4), we have

Iteratively applying the above formula, we have

(A.5)

This proves the first half of the inequality (A.3).
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To prove the inequality (A.3), without loss of generality, assume that r ≥ log p. Let r′ = log
p > 1. Then, for any x in the p-dimensional space,

Hence, by (A.5)

Using the simple fact , we complete the proof of the inequality (A.3).

Proof of Theorem 2
Applying lemma 1, with r = ∞, we have

(A.6)

for all t, where . As a result, by Condition 1, an application of (A.6)
to p(p + 1)/2-element of εt yields

Note that each of the summation  (for j ≤ k) is approximately

the same as  since k is finite, by appealing to Condition 1. Hence, we can easily
show that

By the assumption on the matrix B, we can easily deduce that
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Rearranging this into matrix form, we conclude that

Proof of Theorem 3
Note that by the union bound of probability, we have for any D > 0,

By the assumption of the theorem, the above probability is bounded by

which tends to zero when D is large enough. This proves the first part of the theorem.

We now prove the second part of the α-mixing process. Let ξt be an  adaptive random
variable with Eξt = 0 and assume that |ξt| ≤ B for all t. Then, by Theorem 1.3 of Bosq
(1998), for any integer q ≤ n/2, we have

(A.7)

where  . Taking  and q = n(log p)1−2a/2, we obtain from
(A.7) that

Now, the assumption on the mixing coefficient α(·), we conclude that for sufficiently large
D,

(A.8)

for a > (b + 1)/2.

Applying (A.8) to ξt = RtiRtj − ERtiRtj with a sufficiently large D, we have
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This together with the first part of the proof of Theorem 2 yield that

where we borrow the notation from the proof of Theorem 2. Similarly, by an application of
(A.8), we obtain

Combining the last two results, we prove the second part of the theorem.

The proof of the third part of the theorem follows similar steps. By Theorem 1 of Doukhan
and Neumann (2007), under Condition 3, we have

for some C > 0, where c = 1/(a + b + 2). Now, taking x = D(log p)1/2, we have

since log p = o(n1/(2μ+2ν+3)). Thus, the exponent is as large as

for sufficiently large n. Consequently,

for sufficiently large D. Now, substituting the definition of ηt, we have
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(A.9)

(A.10)

Combining the results in (A.9) and (A.10) and using the same argument as proving the first
part of Theorem 2, we have

and

The conclusion follows from these two results.

Proof of Theorem 4
First of all, note that the solution to problem (2.12) is given by

By w̃T 1 = 1 and g̃T w̃ = ||w̃||1, we have

in which the last equality utilizes (2.10) and (2.11). Thus, , which has the
same direction wopt. Since 1T w̃ = 1, they must be equal. This completes the proof.
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Figure 1.
Comparisons of optimal portfolios selected by the exact and approximate algorithms with a
known covariance matrix. (a) The risks for the exact algorithm (dashed line) and the LARS
(approximate) algorithm. (b) The number of stocks picked by the optimization problem (2.6)
as a function of the gross exposure coefficient c. (c) The actual risk (dashed line) and
empirical risk (solid) of the portfolio selected based on the sample covariance matrix (n =
252). (d) The same as (c) except n = 756.

Fan et al. Page 23

J Am Stat Assoc. Author manuscript; available in PMC 2013 January 03.

$w
aterm

ark-text
$w

aterm
ark-text

$w
aterm

ark-text



Figure 2.
Risk improvement of the 200 equally weighted portfolio by modifying the weights of the
portfolio using (3.3). As the exposure parameter d increases, more weights are modified and
the risks of new portfolios decrease. (a) The empirical and actual risks of the modified
portfolios are plotted against exposure parameter d, based on the sample covariance matrix.
(b) The number of stocks whose weights are modified as a function of d. (c) and (d) are the
same as (a) and (b) except that the covariance matrix is estimated based on the factor model.
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Figure 3.
The 10%, 50% and 90% quantiles of the actual risks of the 101 empirically chosen
portfolios for each given gross exposure parameter c are shown in (a) (sample covariance
matrix) and (b) (factor model) for the case with 200 stocks. They indicate the sampling
variability among 101 simulations. The theoretical optimal risk, the median of the actual
risks and the median of the empirical risks of 101 empirically selected portfolios are also
summarized in (c) (based on the sample covariance) and (d) (based on the factor model).
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Figure 4.
This is similar to Figure 3 except p = 500. The sample covariance matrix is always
degenerate under this setting (n = 252). Nevertheless, for the given range of c, the gross-
constrained portfolio performs normally. The same captions as Figure 3 are used.
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Figure 5.
Characteristics of invested portfolios as a function of exposure constraints(c) from the
Fama-French 100 industrial portfolios formed by the size and book to market from Jan 2,
1998 to December 31, 2007. (a) Annualized risk of portfolios. (b) Sharpe ratio of portfolios.
(c) Max weight of allocations. (d) Annualized return of portfolios
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Figure 6.
Risks of the optimal portfolios as a function of the gross exposure constraint. They are the
annualized volatilities as a function of the gross exposure parameter c.
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