
An Overview on the Estimation of Large

Covariance and Precision Matrices

Jianqing Fan∗, Yuan Liao‡ and Han Liu∗

∗Department of Operations Research and Financial Engineering, Princeton University

‡ Department of Mathematics, University of Maryland

October 5, 2017

Abstract

Estimating large covariance and precision matrices are fundamental in modern

multivariate analysis. The problems arise from statistical analysis of large panel

economics and finance data. The covariance matrix reveals marginal correlations

between variables, while the precision matrix encodes conditional correlations be-

tween pairs of variables given the remaining variables. In this paper, we provide a

selective review of several recent developments on estimating large covariance and

precision matrices. We focus on two general approaches: rank based method and

factor model based method. Theories and applications of both approaches are pre-

sented. These methods are expected to be widely applicable to analysis of economic

and financial data.

Keywords: High-dimensionality, graphical model, approximate factor model, prin-

cipal components, sparse matrix, low-rank matrix, thresholding, heavy-tailed, elliptical

distribution, rank based methods.

1 Introduction

Estimating large covariance and precision (inverse covariance) matrices becomes fun-

damental problems in modern multivariate analysis, which find applications in many
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fields, ranging from economics and finance to biology, social networks, and health sci-

ences (Fan et al., 2014a). When the dimension of the covariance matrix is large, the

estimation problem is generally challenging. It is well-known that the sample covariance

based on the observed data is singular when the dimension is larger than the sample size.

In addition, the aggregation of massive amount of estimation errors can make consider-

able adverse impacts on the estimation accuracy. Therefore, estimating large covariance

and precision matrices attracts rapidly growing research attentions in the past decade.

In recent years researchers have proposed various regularization techniques to con-

sistently estimate large covariance and precision matrices. To estimate large covariance

matrices, one of the key assumptions made in the literature is that the target matrix of

interest is sparse, namely, many entries are zero or nearly so (Bickel and Levina, 2008;

Lam and Fan, 2009; El Karoui, 2010; Rigollet and Tsybakov, 2012). To estimate large

precision matrices, it is often the case that the precision matrix is sparse. A commonly

used method for estimating the sparse precision matrix is to employ an `1-penalized max-

imum likelihood, see for instance, Banerjee et al. (2008); Yuan and Lin (2007); Friedman

et al. (2008); Rothman et al. (2008). To further reduce the estimation bias, Lam and

Fan (2009); Shen et al. (2012) proposed non-convex penalties for sparse precision matrix

estimation and studied their theoretical properties. For more general theory on penalized

likelihood methods, see Fan and Li (2001); Fan and Peng (2004); Zou (2006); Zhao and

Yu (2006); Bickel et al. (2009); Wainwright (2009).

The literature has been further expanded into robust estimation based on regularized

rank-based approaches (Liu et al., 2012a; Xue and Zou, 2012). The rank-based method

is particularly appealing when the distribution of the data generating process is non-

Gaussian and heavy-tailed. It is particularly appealing for analysis of financial data.

The literature includes, for instance, Han and Liu (2013); Wegkamp and Zhao (2013);

Mitra and Zhang (2014), etc. The heavy-tailed data are often modeled by the elliptical

distribution family, which has been widely used for financial data analysis. See Owen

and Rabinovitch (1983); Hamada and Valdez (2004) and Frahm and Jaekel (2008).

In addition, in many applications the sparsity property is not directly applicable. For

example, financial returns depend on the equity market risks, housing prices depend on

the economic health, gene expressions can be stimulated by cytokines, among others.

Due to the presence of common factors, it is unrealistic to assume that many outcomes

are uncorrelated. A natural extension is the conditional sparsity, namely, conditional

on the common factors, the covariance matrix of the remaining components of the out-

come variables is sparse. In order to do so, we consider a factor model. The factor

model is one of the most useful tools for understanding the common dependence among

multivariate outputs, which has broad applications in the statistics and econometrics lit-

erature. For instance, it is commonly used to measure the vector of economic outputs or

excessive returns of financial assets over time, and has been found to produce good out-
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of-sample forecast for macroeconomic variables (Boivin and Ng, 2005; Stock and Watson,

2002). In high dimensions, the unknown factors and loadings are typically estimated

by the principal components method, and the separations between the common factors

and idiosyncratic components are characterized via pervasiveness assumptions. See, for

instance, Stock and Watson (2002); Bai (2003); Bai and Ng (2002); Fan et al. (2008);

Breitung and Tenhofen (2011); Onatski (2012); Lam and Yao (2012); Fan et al. (2013),

among others. In the statistical literature, the separations between the common factors

and idiosyncratic components are carried out by the low-rank plus sparsity decomposi-

tion. See, for example, Candès and Recht (2009); Koltchinskii et al. (2011); Fan et al.

(2011); Negahban and Wainwright (2011); Cai et al. (2013); Ma (2013).

In this paper, we provide a selective review of several recent developments on esti-

mating large covariance and precision matrices. We focus on two general approaches:

rank-based method and factor model based method. Theories and applications of both

approaches are presented. Note that this paper is not an exhaustive survey, and many

other regularization methods are also commonly used in the literature, e.g., the shrink-

age method (Ledoit and Wolf, 2003, 2004). We refer to Fan and Liu (2013), Pourahmadi

(2013) and the references therein for reviews of other commonly used methods.

This paper is organized as follows. Section 2 presents methods of estimating sparse

covariance matrices. Section 3 reviews methods of estimating sparse precision matrices.

Section 4 discusses robust covariance and precision matrix estimations using rank-based

estimators. Sections 5 and 6 respectively presents factor models based method, respec-

tively in the cases of observable and unobservable factors. Section 7 introduces the

structured factor model. Finally, Section 8 provides further discussions.

Let λmin(A) and λmax(A) respectively denote the minimum and maximum eigenval-

ues of A. Let ψmax(A) be the largest singular value of A. We shall use ‖A‖2 and

‖A‖F to denote the operator norm and Frobenius norm of a matrix A, respectively de-

fined as λ
1/2
max(A′A) and tr 1/2(A′A). Throughout this paper, we shall use p and T to

respectively denote the dimension of the covariance matrix of interest, and the sam-

ple size. Let v = (v1, . . . , vp)
′ ∈ Rp be a real valued vector, we define the vector norms:

‖v‖1 =
∑p

j=1 |vj|, ‖v‖2
2 =

∑p
j=1 v

2
j , ‖v‖∞ = max1≤j≤p |vj|. Let S be a subspace of Rp, we

use vS to denote the projection of v onto S: vS = argminu∈S ‖u−v‖2
2. We also define the

orthogonal complement of S as S⊥ =
{
u ∈ Rp

∣∣∣ u′v = 0, for any v ∈ S
}

. Let A ∈ Rp×p

and I, J ⊂ {1, . . . , N} be two sets. Denote by AI,J the submatrix of A with rows and

columns indexed by I and J . Letting A∗j = (A1j, ...,Apj)
′ and Ak∗ = (Ak1, ...,Akp)

′ de-

note the jth column and kth row of A in vector forms, we define the matrix norms: ‖A‖1 =

maxj ‖A∗j‖1, ‖A‖∞ = maxk ‖Ak∗‖1, ‖A‖max = maxj ‖A∗j‖∞. We also define matrix el-

ementwise (pseudo-) norms: ‖A‖1,off =
∑

j 6=k |Ajk| and ‖A‖∞,off = maxj 6=k |Ajk|. We

write an � bn if there are positive constants c1 and c2 independent of n such that

c1bn ≤ an ≤ c2bn.
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2 Estimating sparse covariance matrix

Let Yit be the observed data for the ith (i = 1, ..., p) individual at time t = 1, ..., T

(or the tth observation for the ith variable). We are interested in estimating the p × p

covariance matrix Σ = (σij)p×p of Yt = (Y1t, ..., Ypt)
′, assumed to be independent of t.

The sample covariance matrix is defined as

S =
1

T − 1

T∑
t=1

(Yt − Ȳ )(Yt − Ȳ )′, Ȳ =
1

T

T∑
t=1

Yt.

When p > T , however, it is well-known that S is singular. It also accumulates many

estimation errors due to the large number of free parameters to estimate.

Sparsity is one of the most essential assumptions for high-dimensional covariance

matrix estimation, which assumes that a majority of the off-diagonal elements are nearly

zero, and effectively reduces the number of free parameters to estimate. Specifically, it

assumes that there is q ≥ 0, so that the following defined quantity

mp =

maxi≤p
∑p

j=1 1{σij 6= 0}, if q = 0

maxi≤p
∑p

j=1 |σij|q, if 0 < q < 1
(1)

is either bounded or grow slowly as p → ∞. Here 1{·} denotes the indicator function.

Such an assumption is reasonable in many applications. For instance, in a longitudinal

study where variables have a natural order, variables are likely weakly correlated when

they are far apart (Wu and Pourahmadi, 2003). Under the sparsity assumption, many

regularization based estimation methods have been proposed. This section selectively

overviews several state-of-the-art statistical methods for estimating large sparse covari-

ance matrices.

2.1 Thresholding estimation

One of the most convenient methods to estimate sparse covariance matrices is the

thresholding, which sets small estimated elements to zero (Bickel and Levina, 2008). Let

sij be the (i, j)th element of S. For a pre-specified thresholding value ωT , define

Σ̂ = (σ̂ij)p×p, σ̂ij =

sij, if i = j

sij1{|sij| > ωT}, if i 6= j
. (2)
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The thresholding value should dominate the maximum estimation error maxi 6=j |sij−σij|.
When the data are Gaussian or sub-Gaussian, it can be taken as

ωT = C

√
log p

T
, for some C > 0

so that the probability of the exception event {maxi 6=j |sij−σij| > ωT} tends to zero very

fast.

The advantage of thresholding is that it avoids estimating small elements so that

noise does not accumulate. The decision of whether an element should be estimated is

much easier than the attempt to estimate it accurately. Indeed, under some regularity

conditions, Bickel and Levina (2008) showed that, if mpω
1−q
T → 0 as p, T →∞, we have

‖Σ̂−Σ‖2 = OP (mpω
1−q
T ) and ‖Σ̂−1 −Σ−1‖2 = OP (mpω

1−q
T ), (3)

where mp and q are as defined in (1). In the case that all the “small” elements of Σ are

exactly zero so that we take q = 0, the above convergence rate becomes OP (
√

log p
T

) if mp

is bounded. Since each element in the covariance matrix can be estimated with an error

of order OP (T−1/2), it hence only costs us a log(p) factor to learn the unknown locations

of the non-zero elements.

2.2 Adaptive thresholding and entry-dependent thresholding

The simple thresholding (2) does not take the varying scales of the marginal standard

deviations into account. One way to account this is to threshold on the t-type statis-

tics. For example, using the simple thresholding, we can define the adaptive thresholding

estimator (Cai and Liu, 2011):

Σ̂ = (σ̂ij)p×p, σ̂ij =

sij, if i = j

sij1{|sij|/SE(sij) > ωT}, if i 6= j
, (4)

where SE(sij) is the estimated standard error of sij.

A simpler method to take the scale into account is to directly apply thresholding

on the correlation matrix. Let R = diag(S)−1/2Sdiag(S)−1/2 = (rij)p×p be the sample

correlation matrix. We then apply the simple thresholding on the off-diagonal elements

of R, and obtain the thresholded correlation matrix RT . So the (i, j)th element of RT is

rij1{|rij| > ωT} when i 6= j, and one if i = j. Then the estimated covariance matrix is

defined as

Σ̂∗ = diag(S)1/2RT diag(S)1/2.

In particular, when ωT = 0, it is exactly the sample covariance matrix since no thresh-
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olding is employed, whereas when ωT = 1, it is a diagonal matrix with marginal sample

variances on its diagonal. This form is more appropriate than the simple thresholding

since it is thresholded on the standardized scale. Moreover, Σ̂∗ is equivalent to applying

the entry dependent thresholding

ωT,ij =
√
siisjjωT

to the original sample covariance S.

2.3 Generalized thresholding

The introduced thresholding estimators (2) and (4) are based on a simple thresholding

rule, known as the hard-thresholding. In regression and wavelet shrinkage contexts (see,

for example, Donoho et al. (1995)), hard thresholding performs worse than some more

flexible regularization methods, such as the soft-thresholding and the smoothly clipped

absolute deviation (SCAD) (Fan and Li, 2001), which combine thresholding with shrink-

ages. The estimates resulting from such shrinkage typically are continuous functions of

the maximum likelihood estimates (under Gaussianity), a desirable property that is not

shared by the hard thresholding method.

Therefore, the generalized thresholding rules of Antoniadis and Fan (2001) can be ap-

plied to estimating large covariance matrices. The generalized thresholding rule depends

on a thresholding parameter ωT and a shrinkage function h(·;ωT ) : R→ R, which satisfies

(i) |h(z, ωT )| ≤ |z|; (ii) h(z;ωT ) = 0 for |z| ≤ ωT ; (iii) |h(z;ωT )− z| ≤ ωT .

There are a number of useful thresholding functions that are commonly used in the

literature. For instance, the soft-thresholding takes h(z;ωT ) =sgn(z)(|z| − ωT )+, where

(x)+ = max{x, 0}. Moreover, the SCAD thresholding is a compromise between hard and

soft thresholding, whose amount of shrinkage decreases as |z| increases and hence results

in a nearly unbiased estimation. Another example is the MCP thresholding, proposed by

Zhang (2010).

We can then define a generalized thresholding covariance estimator:

Σ̂ = (σ̂ij)p×p, σ̂ij =

sij, if i = j

h(sij;ωT ), if i 6= j
. (5)

Note that this admits the hard-thresholding estimator (2) as a special case by taking

h(z;ωT ) = z1{|z| > ωT}. Both the adaptive thresholding and entry dependent threshold-

ing can also be incorporated, by respectively setting h(sij, SE(sij)ωT ) and h(sij,
√
siisjjωT )

on the (i, j)th element of the estimated covariance matrix when i 6= j. In addition, it is
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shown by Rothman et al. (2009) that the use of generalized thresholding rules does not

affect the rate of convergence in (3), but it increases the family of shrinkages.

2.4 Positive definiteness

If the covariance matrix is sparse, it then follows from (3) that the thresholding esti-

mator Σ̂ is asymptotically positive definite. On the other hand, it is often more desirable

to require the positive definiteness under finite samples. We discuss two approaches to

achieving the finite sample positive definiteness.

2.4.1 Choosing the thresholding constant

For simplicity, we focus on the constant thresholding value ωT,ij = ωT ; the case of

entry-dependent thresholding can be dealt similarly. The finite sample positive defi-

niteness depends on the choice of the thresholding value ωT , which also depends on a

prescribed constant C through ωT = C
√

log p
T

. We write Σ̂(C) = Σ̂ to emphasize its

dependence on C. When C is sufficiently large, the estimator becomes diagonal, and its

minimum eigenvalue is strictly positive. We can then decreases the choice of C until it

reaches

Cmin = inf{C > 0 : λmin(Σ̂(M)) > 0, ∀M > C}.

Thus, Cmin is well defined and for all C > Cmin, Σ̂(C) is positive definite under finite

sample. We can obtain Cmin by solving λmin(Σ̂(C)) = 0, C 6= 0. Figure 1 plots the

minimum eigenvalue of Σ̂(C) as a function of C for a random simple from a Gaussian

distribution with p > T , using three different thresholding rules. It is clearly seen from

the figure that there is a range of C in which the covariance estimator is both positive

definite and non-diagonal. In practice, we can choose C in the range (Cmin + ε,M) for

a small ε and large enough M by, e.g., cross-validations. This method was suggested by

Fan et al. (2013) in a more complicated setting. Moreover, we also see from Figure 1

that the hard-thresholding rule yields the narrowest range for the choice C to give both

positive definiteness and the non-diagonality.

2.4.2 Nearest positive definite matrices

An alternative approach to achieving the finite sample positive definiteness is through

solving a constraint optimization problem. Qi and Sun (2006) introduced an algorithm for

computing the nearest correlation matrix : recall that RT is the thresholded correlation

matrix, defined in Section 2.2, we find its nearest positive definite correlation matrix R̂

by solving:

R̂ = argmin
A
‖RT −A‖2

F, s.t. A ≥ 0, diag(A) = Ip.

7



Figure 1: Minimum eigenvalue of Σ̂(C) as a function of C for three choices of thresh-
olding rules. When the minimum eigenvalue reaches its maximum value, the covariance
estimator becomes diagonal.
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We can then transform back to the covariance matrix as: Σ̂ = diag(S)1/2R̂diag(S)1/2.

Note that if RT itself is positive semi-definite, R̂ = RT ; otherwise R̂ is the nearest posi-

tive semi-definite correlation matrix. This procedure is often called “nearest correlation

matrix projection”, and can be solved effectively using the R-package “nearPD”.

The nearest correlation matrix projection, however, does not necessarily result in a

sparse solution when RT is not positive definite. Liu et al. (2014a) introduced a covariance

estimation method named EC2 (Estimation of Covariance with Eigenvalue Constraints).

To motivate this method, note that the thresholding method (5) can be equivalently

casted as the solution to a penalized least squares problem:

Σ̂ = argmin
Σ=(σij)

{
1

2
‖S−Σ‖2

F +
∑
i 6=j

PωT
(σij)

}

where PωT
(·) is a penalty function, which corresponds to the shrinkage function h(·, ωT ).

For instance, when

PωT
(t) = ω2

T − (|t| − ωT )21{|t| < ωT},

the solution is the hard-thresholding estimator (2) (Antoniadis (1997)). See Antoniadis

and Fan (2001) for the corresponding penalty functions of several popular shrinkage

functions. The sparsity of the resulting estimator is hence due to the penalizations. We

can modify the above penalized least squares problem by adding an extra constraint to

obtain positive definiteness:

Σ̃ = argmin
λmin(Σ)≥τ

{
1

2
‖S−Σ‖2

F +
∑
i 6=j

PωT
(σij)

}
(6)
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where τ > 0 is a pre-specified tuning parameter that controls the smallest eigenvalue of

the estimated covariance matrix Σ̃. As a result, both sparsity and positive definiteness

are guaranteed. Liu et al. (2014a) showed that the problem (6) is convex when the penalty

function is convex, and develops an efficient algorithm to solve it. More details on the

algorithm and theory of this estimator will be explained in Section 4.

3 Estimating sparse precision matrix

Estimating a large inverse covariance matrix Θ = Σ−1 is another fundamental prob-

lem in modern multivariate analysis. Unlike the covariance matrix Σ which only cap-

tures the marginal correlations among Yt = (Y1t, . . . , Ypt)
′, the inverse covariance matrix

Θ captures the conditional correlations among these variables and is closely related to

undirected graphs under a Gaussian model.

More specifically, we define an undirected graph G = (V,E), where V contains nodes

corresponding to the p variables in Yt and the edge (j, k) ∈ E if and only if Θjk 6= 0. Un-

der a Gaussian model Yt ∼ N(0,Σ), the graph G describes the conditional independence

relationships among Yt = (Y1t, . . . , Ypt)
′. More specifically, let Yt,\{j,k} = {Y`t : ` 6= j, k}.

Yjt is independent of Ykt given Yt,\{j,k} for all (j, k) /∈ E.

To illustrate the difference between the marginal and conditional uncorrelatedness.

We consider a Gaussian model Yt ∼ N(0,Σ) with

Σ =


1.05 −0.23 0.05 −0.02 0.05

−0.23 1.45 −0.25 0.10 −0.25

0.05 −0.25 1.10 −0.24 0.10

−0.02 0.10 −0.24 1.10 −0.24

0.05 −0.25 0.10 −0.24 1.10

 and Θ =


1 0.2 0 0 0

0.2 1 0.2 0 0.2

0 0.2 1 0.2 0

0 0 0.2 1 0.2

0 0.2 0 0.2 1

 .

We see that the inverse covariance matrix Θ has many zero entries. Thus the undirected

graph G defined by Θ is sparse. However, the covariance matrix Σ dense, which implies

that every pair of variables are marginally correlated. Thus the covariance matrix and in-

verse covariance matrix encode different relationships. For example, even though Y1t and

Y5t are conditionally uncorrelated given the other variables, they are marginally corre-

lated. In addition to the graphical model problem, sparse precision matrix estimation has

many other applications. Examples include high dimensional discriminant analysis (Cai

et al., 2011), portfolio allocation (Fan et al., 2008, 2012), principal component analysis,

and complex data visualization (Tokuda et al., 2011).

Estimating the precision matrix Θ requires very different techniques from estimating

the covariance matrix. In the following subsections, we introduce several large precision

estimation methods under the assumption that Θ is sparse.
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3.1 Penalized likelihood method

One of the most commonly used approaches to estimating sparse precision matrices

is through the maximum likelihood. When Y1, · · · ,YT are independently and identi-

cally distributed as N(0,Σ), the negative Gaussian log-likelihood function is given by

`(Θ) = tr(SΘ)− log |Θ|. When either the data are non-Gaussian or the data are weakly

dependent, `(Θ) becomes the quasi negative log-likelihood. Nevertheless, we then con-

sider the following penalized likelihood method:

Θ̂ = argmin
Θ=(θij)p×p

{
tr(SΘ)− log |Θ|+

∑
i 6=j

PωT
(|θij|)

}

where the penalty function PωT
(|θij|), defined the same way as in Section 2.4.2, encourages

the sparsity of Θ̂. One of the commonly used convex penalty is the `1 penalty PωT
(t) =

ωT |t|, and the problem is then well studied in the literature (e.g., Yuan and Lin (2007);

Friedman et al. (2008); Banerjee et al. (2008)). Other related works are found in, e.g.,

Meinshausen and Bühlmann (2006a); Wille et al. (2004).

In general, we recommend to use folded concave penalties such as SCAD and MCP,

as these penalties do not introduce extra bias for estimating nonzero entries with large

absolute values (Lam and Fan, 2009). Using local linear approximations, the penalized

likelihood can be computed by an iterated reweighed Lasso: Given the estimate Θ̂(k) =

(θ̂
(k)
ij ) at the kth iteration, by the Taylor’s expansion, we approximate

PωT
(|θij|) ≈ PωT

(|θ̂(k)
ij |) + P ′ωT

(|θ̂(k)
ij |)(|θij| − |θ̂

(k)
ij |) ≡ QωT

(|θij).

The linear approximation QωT
is the convex majorant of the folded concave function at

|θ̂(k)
ij |, namely, it satisfies

PωT
(|θij|) ≤ QωT

(|θij|), and PωT
(|θ̂(k)

ij |) = QωT
(|θ̂(k)

ij |).

Then the next iteration is approximated by

Θ̂(k+1) = arg min
Θ=(θij)

{
tr(SΘ)− log |Θ|+

∑
i 6=j

P ′ωT
(|θ̂(k)

ij |)|θij|
}

+ c, (7)

where c is a constant that does not depend on Θ. The problem (7) is convex and can be

solved by the graphical Lasso algorithm of Friedman et al. (2008). Such an algorithm is

called majorization-minimization algorithm (Lange et al., 2000). Since the penalty func-

tion is majorized from above, it can easily be shown that the original objective function is

decreasing in the iterations. Indeed, let f(Θ) = tr(SΘ)− log |Θ|+
∑

i 6=j PωT
(|θij|) be the

target value and g(Θ) be its majorization function with PωT
(|θij|) replaced by QωT

(|θij|).
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Then,

f(Θ̂(k+1)) ≤ g(Θ̂(k+1)) ≤ g(Θ̂(k)) = f(Θ̂(k)),

where the first inequality follows from the majorization, the second inequality comes from

the minimization, and the last equality follows the majorization at the point Θ̂(k).

Theoretical properties of Θ̂ have been thoroughly studied by Rothman et al. (2008)

and Lam and Fan (2009).

3.2 Column-by-column estimation method

Under the Gaussian model Yt ∼ N(0,Σ), another approach to estimating the preci-

sion matrix Θ is through column-by-column regressions. For this, Yuan (2010) and Cai

et al. (2011) propose the graphical Dantzig selector and CLIME respectively, which can

be solved by linear programming. More recently, Liu and Luo (2012) and Sun and Zhang

(2012) propose the SCIO and scaled-Lasso methods. Compared to the penalized likeli-

hood methods, the column-by-column estimation methods are computationally simpler

and more amenable to theoretical analysis.

The column-by-column precision matrix estimation method exploits the relationship

between conditional distribution of multivariate Gaussian and linear regression. More

specifically, let Y ∼ N(0,Σ), the conditional distribution of Yj given Y\j satisfies

Yj |Y\j ∼ N
(
α′jY\j , σ

2
j

)
.

where αj = (Σ\j,\j)
−1Σ\j,j ∈ Rp−1 and σ2

j = Σjj − Σ\j,j(Σ\j,\j)
−1Σ\j,j. Hence, we can

write

Yj = α′jY\j + εj, (8)

where εj ∼ N
(
0 , σ2

j

)
is independent of Y\j. Using the block matrix inversion formula,

we have

Θjj = σ−2
j , , Θ\j,j = −σ−2

j αj. (9)

Therefore, we can recover Θ in a column-by-column manner by regressing Yj on Y\j for

j = 1, 2, · · · , p. For example, let Y ∈ RT×p be the data matrix. We denote by αj :=

(αj1, . . . , αj(p−1))
′ ∈ Rp−1. Meinshausen and Bühlmann (2006b) propose to estimate each

αj by solving the Lasso regression:

α̂j = argmin
αj∈Rp−1

1

2T

∥∥Y∗j −Y∗\jαj
∥∥2

2
+ λj

∥∥αj∥∥1
,

where λj is a tuning parameter. Once α̂j is obtained, we get the neighborhood edges by

reading out the nonzero coefficients of αj. The final graph estimate Ĝ is obtained by

either the “AND” or “OR” rule on combining the neighborhoods for all the N nodes.

11



To estimate Θ, we also estimate the σ2
j ’s using the fitted sum of squared residuals σ̂2

j =

T−1
∥∥Y∗j −Y∗\jαj

∥∥2

2
, then plug it into (9).

In another work, Yuan (2010) proposes to estimate αj by solving the Dantzig selector:

α̂j = argmin
αj∈Rp−1

∥∥αj∥∥1
subject to

∥∥S\j,j − S\j,\jαj
∥∥
∞ ≤ γj,

where S := T−1Y′Y is the sample covariance matrix and γj is a tuning parameter. The

constraint corresponds to a sample version of Σ\j,j − Σ\j,\jαj = 0, with γj indicating

the estimation error. Once α̂j is given, we can estimate σ2
j by σ̂2

j =
[
1 − 2α̂′jS\j,j +

α̂′jS\j,\jα̂j
]−1

. We then obtain an estimator Θ̂ of Θ by plugging α̂j and σ̂2
j into (9).

Yuan (2010) analyzes the L1-norm error ‖Θ̂ − Θ‖1 and shows its minimax optimality

over certain model space.

More recently, Sun and Zhang (2012) propose to estimate αj and σj by solving a

scaled-Lasso problem:

b̂j, σ̂j = argmin
b=(b1,...,bp)′,σ

{
b′Sb

2σ
+
σ

2
+ λ

p∑
k=1

Skk
∣∣bk∣∣ subject to bj = −1

}
.

Once b̂j is obtained, we estimate α̂j = (̂b1, . . . , b̂j−1, b̂j+1, . . . , b̂p)
′ . We then obtain

the estimator of Θ by plugging α̂j and σ̂j into(9). Sun and Zhang (2012) provide the

spectral-norm rate of convergence of the obtained precision matrix estimator.

Similar to the idea of the graphical Dantzig selector, Cai et al. (2011) propose the

CLIME estimator, which stands for “Constrained `1-Minimization for Inverse Matrix

Estimation”. This method directly estimates the jth column of Θ by solving

Θ̂∗j = argmin
Θ∗j

∥∥Θ∗j∥∥1
subject to

∥∥SΘ∗j − ej
∥∥
∞ ≤ δj, for j = 1, . . . , p,

where ej is the jth canonical vector (i.e., the vector with the jth element being 1, while the

remaining elements being 0) and δj is a tuning parameter. Again, the constraint represent

a sample version of ΣΘ∗j − ej = 0. This optimization problem can be formulated into

a linear program and has the potential to scale to large problems. Under regularity

conditions, Cai et al. (2011) show that the estimator Θ̂ is asymptotically positive definite,

and derive its rate of convergence.

In a closely related work of CLIME, Liu and Luo (2012) propose the SCIO estimator,

which estimates the jth column of Θ by

Θ̂∗j = argmin
Θ∗j

{
1

2
Θ′∗jSΘ∗j − e′jΘ∗j + λj

∥∥Θ∗j∥∥1

}
.

The SCIO estimator can be solved efficiently by the pathwise coordinate descent algorithm
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(Friedman et al., 2007).

3.3 Tuning-insensitive precision matrix estimation

Most of the methods described in the former subsection require choosing some tuning

parameters that control the bias-variance tradeoff. Their theoretical justifications are

usually built on some theoretical choices of tuning parameters that cannot be implemented

in practice. For example, in the neighborhood pursuit method and the graphical Dantzig

selector, the theoretically optimal tuning parameters λj and γj depend on σ2
j , which is

unknown. The optimal tuning parameters of the CLIME and SCIO depend on ‖Θ‖1,

which is unknown.

3.3.1 The TIGER method

To handle the challenge of tuning parameter selection, Liu and Wang (2012) propose

the TIGER (Tuning-Insensitive Graph Estimation and Regression) method, which is

asymptotically tuning-free and only requires very few efforts to choose the regularization

parameter in finite sample settings.

The idea of TIGER is to estimate the precision matrix Θ in a column-by-column

fashion. This idea has been adopted by many methods described in Section 3.2. These

methods differ from each other mainly in how they solve the sparse regression subproblem.

The only difference between TIGER and these methods is that TIGER solves its column-

wise sparse regression problem using the SQRT-Lasso (Belloni et al., 2012).

The SQRT-Lasso is a penalized optimization algorithm for solving high dimensional

linear regression problems. For a linear regression problem Ỹ = X̃β + ε, where Ỹ ∈ RT

is the response vector, X̃ ∈ RT×p is the design matrix, β ∈ Rp is the vector of unknown

coefficients, and ε ∈ RT is the noise vector. The SQRT-Lasso estimates β by solving

β̂ = arg min
β∈Rp

{ 1√
T
‖Ỹ − X̃β‖2 + λ‖β‖1

}
,

where λ is a tuning parameter. It is shown in Belloni et al. (2012) that the choice of

λ for the SQRT-Lasso method is asymptotically universal in the sense that it does not

depend on any unknown parameters such as the noise variance. In contrast, most of other

methods, including the Lasso and Dantzig selector, rely heavily on variance of the noise.

Moreover, the SQRT-Lasso method achieves near oracle performance for the estimation

of β.

In Liu and Wang (2012), they show that the objective function of the scaled-Lasso is

a variational upper bound of the SQRT-Lasso. Thus the TIGER method is numerically

equivalent to the method in Sun and Zhang (2012). However, the SQRT-Lasso is more

amenable to theoretical analysis and allows us to simultaneously establish optimal rates
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of convergence for the precision matrix estimation under many different norms.

In our setting, recall that S is the sample covariance matrix of Yt = (Y1t, . . . , Ypt)
′.

Let Γ̂ = diag(S) be a p-dimensional diagonal matrix with the diagonal elements be the

same as those in S. Consider the marginally standardized variables

Z := (Z1, . . . , Zp)
′ = Y Γ̂−1/2.

By (8), we have

ZjΓ̂
1/2
jj = α′jZ\jΓ̂

1/2
\j,\j + εj. (10)

We define

βj := Γ̂
1/2
\j,\jΓ̂

−1/2
jj αj and τ 2

j = σ2
j Γ̂
−1
jj .

Therefore, we have

Zj = β′jZ\j + Γ̂
−1/2
jj εj. (11)

We define R̂ to be the sample correlation matrix: R̂ :=
(
diag(S)

)−1/2
S
(
diag(S)

)−1/2
.

Motivated by the model in (11), we propose the following precision matrix estimator.

TIGER Estimator

For j = 1, . . . , p, we estimate the jth column of Θ by solving :

β̂j := argmin
βj∈Rp−1

{√
1− 2β′jR̂\j,j + β′jR̂\j,\jβj + π

√
log p

2T

∥∥βj∥∥1

}
, (12)

τ̂j :=

√
1− 2β̂′jR̂\j,j + β̂′jR̂\j,\jβ̂j, (13)

Θ̂jj = τ̂−2
j Γ̂−1

jj and Θ̂\j,j = −τ̂−2
j Γ̂

−1/2
jj Γ̂

−1/2
\j,\j β̂j.

Note that the first term in (12) is just the square-root of the the sum of the square

loss for the standardized variable under model (11); see (14). We see that the TIGER

procedure is tuning free. If a symmetric precision matrix estimate is preferred, we conduct

the following correction: Θ̃jk = min
{
Θ̂jk, Θ̂kj

}
for all k 6= j. Another symmetrization

method is

Θ̃ =
Θ̂ + Θ̂′

2
.

Cai et al. (2011) show that, if Θ̂ is a good estimator, then Θ̃ will also be a good estimator:

they achieve the same rates of convergence in the asymptotic settings.

Let Z ∈ RT×p be the normalized data matrix, i.e., Z∗j = Y∗jΓ̂
−1/2
jj for j = 1, . . . , p.
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An equivalent form of (12) and (13) is

β̂j = argmin
βj∈Rp−1

{
1√
T

∥∥Z∗j − Z∗\jβj
∥∥

2
+ λ
∥∥βj∥∥1

}
, (14)

τ̂j =
1√
T

∥∥Z∗j − Z∗\jβ̂j
∥∥

2
. (15)

Once Θ̂ is estimated, we can also estimate the graph Ĝ := (V, Ê) based on the sparsity

pattern of Θ̂jk 6= 0.

Liu and Wang (2012) establish the rates of convergence of the TIGER estimator Θ̂

to the true precision matrix Θ under different norms. Under the assumption that the

condition number of Θ is bounded by a constant, we have

∥∥Θ̂−Θ
∥∥

max
= OP

(
‖Θ‖1

√
log p

T

)
. (16)

Under mild conditions, the obtained rate in (16) is minimax optimal over the model class

consisting of precision matrices with bounded condition numbers.

The result in (16) implies that the Frobenious norm error and spectral norm error

between Θ̂ and Θ satisfy the following: let s :=
∑

j 6=k 1 {Θjk 6= 0} be the number of

nonzero off-diagonal elements of Θ; let k := maxi=1,...,p

∑
j 1{Θij 6= 0},

∥∥Θ̂−Θ
∥∥

F
= OP

(
‖Θ‖1

√
(p+ s) log p

T

)
, (17)

∥∥Θ̂−Θ
∥∥

2
= OP

(
k‖Θ

∥∥
2

√
log p

T

)
. (18)

The obtained rates in (18) and (17) are minimax optimal over the same model class as

before.

3.3.2 The EPIC method

Another tuning-insensitive precision matrix estimation method is EPIC (Estimating

Precision matrIx with Calibration), proposed by Zhao and Liu (2014). While TIGER

can be viewed as a tuning-insensitive extension of the nodewise Lasso method proposed

by Meinshausen and Bühlmann (2006b), EPIC can be viewed as a tuning-insensitive

extension of the CLIME estimator proposed by Cai et al. (2011). Unlike the TIGER

method which relies on the normality assumption, the EPIC method can be used to

handle both sub-Gaussian and heavy-tailed data. We postpone the details of the EPIC

method to Section 4 where we discuss robust estimators of covariance and precision

matrices for heavy-tailed data.

15



4 Robust precision and covariance estimators

The methods introduced in Section 2 and Section 3 exploit the sample covariance

matrix as input statistics. The theoretical justification of these methods relies on the

sub-Gaussian assumption of the data. However, many types of financial data are be-

lieved to follow the elliptical distributions, which are often heavy-tailed. This section

introduces a regularized rank-based framework for estimating large precision and covari-

ance matrices under elliptical distributions. First, we introduce a rank-based precision

matrix estimator which naturally handles heavy-tailness and conducts parameter esti-

mation under the elliptical models. Secondly, we introduce an adaptive rank-based co-

variance matrix estimator which extends the generalized thresholding operator by adding

an explicit eigenvalue constraint. We also provide interpretations of these rank-based

estimators under the more general elliptical copula model, which illustrates a tradeoff

between model flexibility and interpretability.

Throughout this section, we assume the data follow an elliptical distribution (Fang

et al., 1990), defined as below.

Definition 1 (Elliptical Distribution). Given µ ∈ Rp and a symmetric positive semidef-

inite matrix Σ ∈ Rp×p with rank(Σ) = r ≤ p, a p-dimensional random vector Y =

(Y1, ..., Yp)
′ follows an elliptical distribution with parameters µ, ξ, and Σ, denoted by

Y ∼ EC(µ, ξ,Σ), if Y has a stochastic representation

Y
d
=µ+ ξAu, (19)

where ξ ≥ 0 is a continuous random variable independent of u. Here u ∈ Sr−1 is uniformly

distributed on the unit sphere in Rr, and Σ = AA′.

For notation convenience, we use ξ instead the distribution of ξ in the notation

EC(µ, ξ,Σ). Note that the model in (19) is not identifiable since we can rescale A

and ξ without changing the distribution. In this section, we require E(ξ2) < ∞ and

rank(Σ) = p to ensure the existence of the inverse of Σ. In addition, we impose an

identifiability condition E(ξ2) = p to ensure that Σ is the covariance matrix of Y . We

still denote Θ := Σ−1.

4.1 Robust precision matrix estimation

To estimate Θ, our key observation is that the covariance matrix Σ can be decomposed

as Σ = DRD, where R is the Pearson’s correlation matrix, and D = diag(σ1, ..., σp)

where σj is the standard deviation of Yj. Since D is diagonal, we can represent the

precision matrix as Θ = D−1∆D−1, where ∆ = R−1 is the inverse correlation matrix.

Based on this relationship, the EPIC method of Zhao and Liu (2014) has three steps:
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first obtain estimators R̂ and D̂ for R and D; then apply a calibrated inverse correlation

matrix estimation procedure on R̂ to obtain ∆̂, an estimator for ∆. Finally, assemble ∆̂

and D̂ to obtain a sparse precision matrix estimator Θ̂.

For light-tailed distributions (e.g., Gaussian or sub-Gaussian), we can directly use

the sample correlation matrix and sample standard deviation to estimate the matrices

R and D. However, for heavy-tailed elliptical data, the sample correlation matrix and

standard deviation estimators are inappropriate. Instead, we exploit a combination of the

transformed Kendall’s tau estimator and Catoni’s M-estimator, which will be explained

in details in the following subsections.

4.1.1 Robust estimation of correlation matrix

To estimate R, we adopt a transformed Kendall’s tau estimator proposed in Fang

et al. (1990). Define the population Kendall’s tau correlation between Yjt and Ykt as

τkj = P
(

(Yjt − Ỹjt)(Ykt − Ỹk) > 0
)
− P

(
(Yjt − Ỹj)(Ykt − Ỹk) < 0

)
,

where Ỹj and Ỹk are independent copies of Yjt and Ykt respectively. For elliptical distri-

butions, it is a well known result that Rkj and τkj satisfy1

R = [Rkj] =
[
sin
(π

2
τkj

)]
. (20)

The sample version Kendall’s tau statistic between Yj and Yk is

τ̂kj =
2

T (T − 1)

∑
t<t′

sign
(

(Ykt − Ykt′)(Yjt − Yjt′)
)

for all k 6= j, and τ̂kj = 1 otherwise. We can plug τ̂kj into (20) and obtain a rank-based

correlation matrix estimator

R̂ = [R̂kj] =
[
sin
(π

2
τ̂kj

)]
. (21)

4.1.2 Robust estimation of standard deviations

To estimate D, we exploit an M-estimator proposed by Catoni (2012). Specifically,

let ψ(t) = sign(t) · log(1 + |t| + t2/2) be a univariate function where sign(0) = 0. Let

µ̂j and m̂j be the estimators of EYjt and EY 2
jt by solving the following two estimating

1More details can be found in Fang et al. (1990).
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equations:

T∑
t=1

ψ

(
(Yjt − µj)

√
2

TKmax

)
= 0, (22)

T∑
t=1

ψ

(
(Y 2

jt −mj)

√
2

TKmax

)
= 0, (23)

where Kmax is an upper bound of maxj Var(Yjt) and maxj Var(Y 2
jt). We assume Kmax is

known. Catoni (2012) shows that the solutions to (22) and (23) must exist and can be

efficiently solved using the Newton-Raphson algorithm (Stoer et al., 1993). Once m̂j and

µ̂j are obtained, we estimate the marginal standard deviation σj by

σ̂j =
√

max
{
m̂j − µ̂2

j , Kmin

}
, (24)

where Kmin is a lower bound of minj σ
2
j and is assumed to be known.

Compared to the sample covariance matrix, a remarkable property of R̂ and σ̂j is that

they concentrate to their population quantities exponentially fast even for heavy-tailed

data. More specifically, Liu et al. (2012b) show that

‖R̂−R‖max = OP

(√ log p

T

)
and max

1≤j≤p

∣∣σ̂j − σj∣∣ = OP

(√ log p

T

)
. (25)

In contrast, the sample correlation matrix and sample standard deviation do not have

the above properties for heavy-tailed data.

4.1.3 The EPIC method for inverse correlation matrix estimation

Once R̂ and D̂ are obtained, we need to estimate the inverse correlation matrix

∆ = R−1. In this subsection, we introduce the EPIC method for estimating ∆, which

estimates the jth column of ∆ by plugging the transformed Kendall’s tau estimator R̂

into the convex program,

(∆̂∗j, τ̂j) = argmin
∆∗j ,τj

‖∆∗j‖1 +
1

2
τj, s.t. ‖R̂∆∗j − I∗j‖∞ ≤ λτj, ‖∆∗j‖1 ≤ τj. (26)

Here τj serves as an auxiliary variable which ensures that we can use the same regular-

ization parameter λ for estimating different columns of ∆ (Gautier and Tsybakov, 2011).

Both the objective function and constraints in (26) contain τj, which ensures that τj is

bounded. Zhao and Liu (2014) show that the regularization parameter λ in (26) does not

depend on the unknown quantity ∆. Thus we can use the same λ to estimate different

columns of ∆.

The optimization problem in (26) can be equivalently formulated as a linear program.
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For notational simplicity, we omit the index j in (26). We denote ∆∗j, I∗j, and τj by

γ, e, and τ respectively. Let γ+ and γ− be the positive and negative parts of γ. By

reparametrizing γ = γ+ − γ−, we rewrite (26) as the following linear program

(γ̂+, γ̂−, τ̂) = argmin
γ+,γ−,τ

1′γ+ + 1′γ− + cτ (27)

s.t.

 R̂ −R̂ −λ
−R̂ R̂ −λ

1′ 1′ −1


 γ

+

γ−

τ

 ≤
 e

−e

0

 ,
γ+ ≥ 0, γ− ≥ 0, τ ≥ 0,

where λ = λ1. The optimization problem in (27) can be solved by any linear program

solver (e.g., the classical simplex method as suggested in Cai et al. (2011)). In particu-

lar, it can be efficiently solved using the parametric simplex method (Vanderbei, 2008),

which naturally exploits the underlying sparsity structure, and attains better empirical

performance than a general-purpose solver.

4.1.4 Symmetric precision matrix estimation

Once we obtain the inverse correlation matrix estimate ∆̂, we can estimate Θ by

Θ̃ = D̂−1∆̂D̂−1.

The EPIC method does not guarantee the symmetry of Θ̃. To obtain a symmetric

estimator, we take an additional projection step:

Θ̂ = argmin
Θ
‖Θ− Θ̃‖∗ s.t. Θ = Θ′, (28)

where ‖ · ‖∗ can be the matrix `1-, Frobenius, or elementwise max norm. For both the

Frobenius and elementwise max norms, (28) has a closed form solution

Θ̂ =
1

2

(
Θ̃ + Θ̃′

)
.

When using the matrix `1-norm, the optimization problem in (28) does not have a closed-

form solution. For this, we can exploit the smoothed proximal gradient algorithm to solve

it. More details about this algorithm can be found in Zhao and Liu (2014).

Consider a class of sparse symmetric matrices

U(s,M, κu) =
{

∆ ∈ Rp×p
∣∣∣ ∆ � 0, max

j

∑
k

1 {∆kj 6= 0} ≤ s, ‖∆‖1 ≤M,Λmax(∆) ≤ κu

}
,

where κu is a constant, and (s, p,M) may scale with the sample size T . Under some mild
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conditions, Zhao and Liu (2014) show that if we take λ = κ1

√
(log p)/T and choose the

matrix `1-norm as ‖ · ‖∗ in (28), then for large enough T , we have

‖Θ̂−Θ‖2 = OP

(
M · s

√
log p

T

)
. (29)

Moreover, if we choose the Forbenius norm as ‖ · ‖∗ in (28), then for large enough T ,

1

p
‖Θ̂−Θ‖2

F = OP

(
M2 s log p

T

)
. (30)

4.2 Robust covariance matrix estimation

In this subsection, we consider the problem of estimating the covariance matrix Σ

under the elliptical model (19). Similar to Section 2, we impose sparsity assumption

on Σ. To estimate Σ, Liu et al. (2014b) introduce a regularized rank-based estimation

method named EC2 (Estimation of Covariance with Eigenvalue Constraints), which can

be viewed as an extension of the generalized thresholding operator (Rothman et al.,

2009). The EC2 estimator can be formulated as the solution to a convex program which

ensures the positive definiteness of the estimated covariance matrix. Unlike most existing

methods, the EC2 estimator explicitly constrains the smallest eigenvalue of the estimated

covariance matrix.

4.2.1 The EC2 Estimator

Recall that Σ = DRD. Similar to the EPIC method, we calculate the EC2 estimator

in three steps: In the first step, we obtain robust estimators R̂ and D̂ for R and D.

In the second step, we apply an optimization procedure on R̂ to obtain R̂EC2, a sparse

estimator for R. In the third step, we assemble R̂EC2 and D̂ to obtain the final sparse

covariance matrix estimator Σ̂ = D̂R̂EC2D̂. Specifically, we calculate R̂ and D̂ as in (21)

and (24). In the following, we focus on explaining how to obtain R̂EC2 based on R̂.

Recall that R̂ is the transformed Kendall’s tau matrix, the R̂EC2 is calculated as

R̂EC2 := argmin
diag(R)=1

1

2
‖R̂−R‖2

F + λ‖R‖1,off s.t. τ ≤ Λmin(R) (31)

where λ > 0 is a regularization parameter, and τ > 0 is a desired minimum eigenvalue

lower bound of the estimator which is assumed to be known. The EC2 method simultane-

ously conducts sparse estimation and guarantees the positive-definiteness of the solution.

The equality constraint diag(R) = 1 ensures that R̂EC2 is a correlation matrix. Once

R̂EC2 is obtained, we convert it to the final covariance matrix estimator Σ̂ as described

above. Liu et al. (2014b) prove the convexity of the formulation in (31). Alternatively,

one can apply thresholding on R̂ to obtain a positive definite estimator.
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4.2.2 Asymptotic properties of the EC2 estimator

To establish the asymptotic properties of the EC2 estimator, for 0 ≤ q < 1, we

consider the following class of sparse correlation matrices:

M (q,Mp, δ) :=

{
R : max

1≤j≤p

∑
k 6=j

∣∣Rjk

∣∣q ≤Mp and Rjj = 1 for all j,Λmin

(
R
)
≥ δ

}
.

We also define a class of covariance matrices:

U(κ, q,Mp, δ) :=

{
Σ : max

j
Σjj ≤ κ and D−1ΣD−1 ∈M (q,Mp, δ)

}
, (32)

where D = diag(
√

Σ11, ...,
√

Σpp). The definition of this class is similar to the “universal

thresholding class” defined by Bickel and Levina (2008).

Under the assumption that the data follow an elliptical distribution, Liu et al. (2014b)

show that, for large enough T , the EC2 estimator Σ̂ satisfies

sup
Σ∈U(κ,q,Mp,δmin)

E
∥∥Σ̂EC2 −Σ

∥∥
2
≤ c1 ·Mp

( log p

T

) 1−q
2
. (33)

Cai and Zhou (2012) show that the rate in (33) attains the minimax lower bound

over the class U(κ, q,Md, δmin) under the Gaussian model. Thus the EC2 estimator is

asymptotically rate optimal under the flexible elliptical model with covariance matrix in

U(κ, q,Md, δmin).

4.3 Extension to the elliptical copula family

In Sections 4.1 and 4.2, we introduced the regularized rank-based covariance and

precision matrix estimation methods by assuming the underlying distribution of Y =

(Y1, . . . , Yp)
′ is elliptical. In fact, these rank-based procedures also work within the more

general transelliptical family (Liu et al., 2012c), which is exactly the elliptical copula fam-

ily but with different identifiability conditions. More specifically, we say Y = (Y1, . . . , Yp)
′

follows a transelliptical distribution, denoted by Y ∼ TE(µ,Σ, ξ; f), if there exists a set

of strictly increasing functions {fj}pj=1 such that f(Y ) = (f1(Y1), . . . , fp(Yp))
′ follows the

elliptical distribution EC(µ, ξ,Σ). To ensure the model is identifiable, Liu et al. (2012c)

impose the identifiability condition that, for j ∈ {1, . . . , p},

Efj(Yj) = EYj and Var(fj(Yj)) = Var(Yj). (34)

As the Kendall’s tau statistics in (21) are invariant under the monotonic transform,

the Kendall’s tau statistics for the elliptical data f(Y ) are the same as those for the

transellipitical data Y . Therefore, we do not need to estimate the monotonic trans-
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(a) The Vein  diagram (b) The perspective plot of a transelliptical density

Elliptical

Nonparanormal

Transelliptical

Multivariate t

Gaussian

Figure 2: Transelliptical family. (a) The Vein diagram illustrating the relationships of
the distribution families (The Nonparanomral family is equivalent to the Gaussian copula
family). (b) The perspective plot of a transelliptical density.

formations f for computing the Kendall’s tau. On the other hand, these monotonic

transforms are not hard to estimate. For example, for the Gaussian copula such that the

marginal distribution fj(Yj) ∼ N(0, 1), then based on the empirical distribution of the

observed data Yj and the known marginal distribution N(0, 1), we can easily estimate fj.

Figure 2(a) illustrates the relationships between the transelliptical, elliptical, and

nonparanormal families (Liu et al., 2009, 2012b). The nonparanormal family is a a proper

subset of the transelliptical family. We define Y = (Y1, . . . , Yp)
′ to be a nonparanormal

distribution, denoted by Y ∼ NPN(µ,Σ, f), if there exists a set of strictly increasing

functions {fj}pj=1 such that f(Y ) = (f1(Y1), . . . , fp(Yp))
′ follows the Gaussian distribution

N(µ,Σ). Liu et al. (2012c) show that the intersection between the nonparanomral family

and elliptical family is the Gaussian family. Figure 2(b) visualizes the perspective plot of a

bivariate transelliptical density with certain marginal transformations. The transelliptical

family is much richer than the elliptical family and its density function does not have to

be symmetric.

The rank-based EPIC and EC2 methods can be directly applied to the transellipti-

cal family. To understand the semantics of a transelliptical graphical model, Liu et al.

(2012c) proved that a transelliptical distribution admits a three-layer hierarchical la-

tent variable representation as illustrated in Figure 3: The observed vector, denoted by

Y = (Y1, . . . , Yp)
′ as presented in the first layer, has a transelliptical distribution, and

a latent random vector, Z = (Z1, . . . , Zp)
′ in the second-layer, is elliptically distributed.

Variables in the first and second layers are related through the transformation Zj = fj(Yj)

with fj being an unknown strictly increasing function. The latent vector Z can be fur-

ther represented by a third-layer latent random vector X = (X1, . . . , Xp)
′, which is a

multivariate Gaussian with a covariance matrix Σ (called latent covariance matrix) and
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Figure 3: The hierarchical latent variable representation of the transelliptical graphical
model with the latent variables grey-colored. Here the first layer is composed of observed
Yj’s, and the second and third layers are composed of latent variables Zj’s and Xj’s. The
solid undirected lines in the third layer encode the conditional independence graph of
X1, . . . , Xp (Adapted from a manuscript that is under review).

an inverse covaraince matrix Θ = Σ−1 (called latent precision matrix).

We define the transelliptical graph G = (V,E) with the node set V = {1, . . . , p} and

the edge set E encoding the nonzero entries of Θ. The interpretations of the graph G

are different for the variables in different layers: (i) For the observed variables in the

first layer, the absence of an edge between two variables means the absence of a certain

rank-based association (e.g., Kendall’s tau) of the pair given other variables; (ii) For

the latent variables in the second layer, the absence of an edge means the absence of the

conditional Pearson’s correlation of the pair; (iii) For the third layer variables, the absence

of an edge means the conditional independence of the pair. Compared with the Gaussian

and elliptical graphical model, the transelliptical graphical model has richer structure

with more relaxed modeling assumptions. The three layers of hierarchy also reflects an

interesting tradeoff between model flexibility and interpretability. In the third layer,

the model is the most restrictive Gaussian family, but we can get strong conditional

independence arguments. In contrast, in the first layer, the model is the much more

flexible transelliptical family, but we can only get weaker conditional uncorrelatedenss

(with respect to the rank correlation) statements.

Since the Kendall’s tau statistic is monotone transformation invariant, it is easy to

see that the theory and methods of the EPIC and EC2 procedures introduced in Section

4.1 and Section 4.2 are also applicable to the transelliptical distributions, though the
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interpretations of the fitted results are different (as explained in this section).

5 Factor model-based covariance estimation with

observable factors

Most of the aforementioned methods of estimating Σ assumes that the covariance

matrix is sparse. Though this assumption is reasonable for many applications, it is

not always appropriate. For example, financial stocks share the same market risks and

hence their returns are highly correlated; all the genes from the same pathway may be

co-regulated by a small amount of regulatory factors, which makes the gene expression

data highly correlated; when genes are stimulated by cytokines, their expressions are also

highly correlated. The sparsity assumption is obviously unrealistic in these situations.

In many applications, the responses of cross-sectional units often depend on a few

common factors f :

Yit = b′ift + uit. (35)

Here bi is a vector of factor loadings; ft is a K × 1 vector of common factors, and uit

is the error term, usually called idiosyncratic component, uncorrelated with ft. Factor

models have long been employed in financial studies, where Yit often represents the excess

returns of the ith asset (or stock) on time t. The literature includes, for instance, Fama

and French (1992); Chamberlain and Rothschild (1983); Campbell et al. (1997). It is

also commonly used in macroeconomics for forecasting diffusion index (e.g., Stock and

Watson (2002)). We allow p, T → ∞ and that p can grow much faster than T does. In

contrast, the number of factors K needs to be either bounded or grows slowly.

This section introduces a method of estimating Σ using factor models. We will fo-

cus on the case when the factors are observable. The observable factor models are of

considerable interest as they are often the case in empirical analyses in finance.

5.1 Conditional sparsity

The factor model (35) can be put in a matrix form as

Yt = Bft + ut. (36)

where B = (b1, ...,bp)
′ and ut = (u1t, ..., upt)

′. We are interested in Σ, the p×p covariance

matrix of Yt, and its inverse Θ = Σ−1, which are assumed to be time-invariant. Under

model (36) and the independence assumption between ft and ut, Σ is given by

Σ = B Cov(ft)B
′ + Σu, (37)
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where Σu = (σu,ij)p×p is the covariance matrix of ut. Estimating the covariance matrix

Σu of the idiosyncratic components {ut} is also important for statistical inferences.

Fan et al. (2008) studied model (37) when p → ∞ possibly faster than T . They

assumed Σu to be a diagonal matrix, which corresponds to the classical “strict factor

model”, and might be restrictive in practical applications. On the other hand, factor

models are often only justified as being “approximate”, in which the Y1t, ..., Ypt are still

mutually correlated given the factors, though the mutual correlations are weak. This gives

rise to the approximate factor model studied by Chamberlain and Rothschild (1983). In

the approximate factor model, Σu is a non-diagonal covariance matrix, and admits many

small off-diagonal entries.

In the decomposition (37), we assume Σu to be sparse. This can be interpreted as the

conditional sparse covariance model: Given the common factors f1, ...,fT , the conditional

(after taking out the linear projection on to the space spanned by the factors) covariance

matrix of Yt is sparse. Let

mu,p =

maxi≤p
∑p

j=1 1{σu,ij 6= 0}, if q = 0

maxi≤p
∑p

j=1 |σu,ij|q, if 0 < q < 1
. (38)

We require mu,p be either bounded or grow slowly as p→∞. The conditional sparsity as-

sumption is slightly stronger than those of the approximate factor model in Chamberlain

and Rothschild (1983), but is still a natural assumption: the idiosyncratic components

are mostly uncorrelated. In contrast, note that in the presence of common factors, Σ

itself is hardly a sparse matrix.

5.2 Estimation

When the factors are observable, one can estimate B by the ordinary least squares

(OLS): B̂ = (b̂1, ..., b̂N)′, where,

b̂i = arg min
bi

1

T

T∑
t=1

(Yit − b′ift)
2, i = 1, ..., N.

Then, ût = Yt − B̂ft is the residual vector at time t. We then construct the residual

covariance matrix as:

Su =
1

T

T∑
t=1

ûtû
′
t = (su,ij).

Since Σu is sparse, we now apply thresholding on Su to regularize the estimator.

Define

Σ̂u = (σ̂u,ij)p×p, σ̂u,ij =

su,ii, i = j;

h(su,ij;ωT,ij), i 6= j.
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Here h(.;ωT,ij) is a general thresholding rule as described in Section 2. Both the adaptive

thresholding and entry dependent thresholding can also be incorporated, by respectively

setting ωT,ij = SE(su,ij)ωT and ωT,ij =
√
su,iisu,jjωT , with

ωT = CK

√
log p

T

for some C > 0. As in the discussions in Section 2, C > 0 can be chosen via cross-

validation in a proper range to guarantee the finite sample positive definiteness.

The covariance matrix Cov(ft) can be estimated by the sample covariance matrix

Ĉov(ft) =
1

T

T∑
t=1

(ft − f̄)(ft − f̄)′, f̄ =
1

T

T∑
t=1

ft,

which does not require regularization since the number of factor is assumed to be small.

Therefore we obtain a substitution estimator:

Σ̂ = B̂Ĉov(ft)B̂
′ + Σ̂u.

By the Sherman-Morrison-Woodbury formula, we estimate the precision matrix as

Σ̂−1 = Σ̂−1
u − Σ̂−1

u B̂[Ĉov(ft)
−1 + B̂′Σ̂−1

u B̂]−1B̂′Σ̂−1
u .

Under regularity conditions, Fan et al. (2011) showed that when mu,pω
1−q
T → 0,

‖Σ̂u −Σu‖2 = OP (mu,pω
1−q
T ), ‖Σ̂−1

u −Σ−1
u ‖2 = OP (mu,pω

1−q
T ),

On the other hand, it is difficult to obtain a satisfactory convergence rate for Σ̂ under

either the operator or the Frobenius norm. We illustrate this problem in the following

example. Let 0d be a d-dimensional row vector of zeros.

Example 1. Consider the specific case K = 1 with the known loading B = 1p and

Σu = I. Then Σ = Var(f1)1p1
T
p + I, where 1p denotes the p-dimensional column vector

of ones with ‖1p1′p‖2 = p, and we only need to estimate Var(f1) using the sample variance.

Then, it follows that

‖Σ̂−Σ‖2 = | 1
T

T∑
t=1

(f1t − f̄1)2 − Var(f1t)| · ‖1p1′p‖2,

Therefore, it follows from the central limit theorem that
√
T
p
‖Σ̂ − Σ‖2 is asymptotically

normal. Hence ‖Σ̂−Σ‖2 diverges if p�
√
T , even for such a simplified toy model.

In the above toy example, the bad rate of convergence is mainly due to the large
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quantity ‖1p1′p‖2, which comes from the high-dimensional factor loadings. In general,

the high-dimensional loading matrix accumulates many estimation errors.

On the other hand, Fan et al. (2011) showed that we can obtain a good convergence

rate when estimating Σ−1:

‖Σ̂−1 −Σ−1‖2 = OP (mu,pω
1−q
T ).

Intuitively, the good performance of Σ̂−1 follows from the fact that the eigenvalues of

Σ−1 are uniformly bounded, whereas the leading eigenvalues of Σ may diverge fast.

6 Factor models-based covariance estimation with la-

tent factors

In many empirical studies using factor models, the common factors are often latent,

that is, they are unobservable. In this case, the covariance matrix of Yt has the same

decomposition as before:

Σ = B Cov(ft)B
′ + Σu, (39)

but the latent factors also need to be estimated. Similar to the case of observable factors,

the model can be assumed to be conditionally sparse, where Σu is a sparse matrix but

not necessarily diagonal. In this section we shall assume the number of factors to be

bounded.

6.1 The pervasive condition

Note that unlike the classical factor analysis (e.g., Lawley and Maxwell (1971)), when

Σu is non-diagonal, the decomposition (39) is not identifiable under fixed (p, T ), since Yt

is the only observed data in the model. Here the identification means the separation of the

low-rank part B Cov(ft)B
′ from Σu in the decomposition (39). Interestingly, however,

the identification of B Cov(ft)B
′ can be achieved asymptotically, by letting p→∞ and

requiring the eigenvalues of Σu to be either uniformly bounded or grow slowly relative to

p.

What makes the “asymptotic identification” possible is the following pervasive as-

sumption, which is one of the key conditions assumed in the literature (e.g., Stock and

Watson (2002); Bai (2003)):

Assumption 1. The eigenvalues of the K ×K matrix p−1B′B = 1
p

∑p
i=1 bib

′
i are uni-

formly bounded away from both zero and infinity, as p→∞.

When this assumption is satisfied, the factors are said to be “pervasive”. It requires

the factors impact on most of the cross-sectional individuals. It then follows that the
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first K eigenvalues of B Cov(ft)B
′ are bounded from below by cλmin(Cov(ft))p for some

c > 0, and should grow fast with p. On the other hand,

‖Σu‖2 ≤ max
i≤p

p∑
j=1

|σu,ij|q|σu,iiσu,jj|(1−q)/2 ≤ mu,p max
i≤p

σ1−q
u,ii . (40)

Hence when mu,p grows slower than O(p), the leading eigenvalues of the two components

on the right hand side of (39) are well separated as p → ∞. This guarantees that

the covariance decomposition is asymptotically identified. Intuitively, as the dimension

increases, the information about the common factors accumulates, while the information

about the idiosyncratic components does not. This eventually distinguishes the factor

components Bft from ut.

Below we shall introduce a principal component analysis (PCA) based method to

estimate the covariance matrix.

6.2 Principal Component and Factor Analysis

Before introducing the estimator of Σ in the case of latent factors, we first elucidate

why PCA can be used for the factor analysis when the number of variables is large.

First of all, note that even if B Cov(ft)B
′ is asymptotically identifiable, B and ft are

not separately identifiable, since the pair (B,ft) is equivalent to the pair (BH−1,Hft)

for any K ×K nonsingular matrix H. To resolve the ambiguity between B and ft, we

impose the identifiability constraint that Cov(ft) = IK and that the columns of B are

orthogonal. Under this canonical form, it then follows from (39) that

Σ = BB′ + Σu.

Let b̃1, ..., b̃K be the columns of B. Since the columns of B are orthogonal,

BB′b̃j = b̃j‖b̃j‖2
2, for j ≤ K.

Therefore, b̃1/‖b̃1‖2, · · · , b̃K/‖b̃K‖2 are the eigenvectors of BB′, corresponding to the

largest K eigenvalues {‖b̃j‖2
2}Kj=1; the rest p−K eigenvalues of BB′ are zeros. To guar-

antee the uniqueness (up to a sign change) of the leading eigenvectors, we also assume

{‖b̃j‖2}Kj=1 are distinct and sorted in a decreasing order. To see how large these eigen-

values are, note that the first K eigenvalues of BB′ are the same as those of B′B. Hence

it follows from the pervasive assumption (Assumption 1) that

‖b̃j‖2
2 ≥ cp, j = 1, ..., K. (41)

Next, let us associate the leading eigenvalues of BB′ with those of Σ. Let λ1, ..., λK
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denote the K largest eigenvalues of Σ, and let ξ1, ..., ξK be the corresponding eigenvectors.

Applying Wely’s theorem and the sin(θ)-theorem of Davis (1963), Fan et al. (2013) showed

‖ξj − b̃j/‖b̃j‖2‖2 = O(p−1‖Σu‖2), for all j ≤ K.

and

|λj − ‖b̃j‖2
2| ≤ ‖Σu‖2, for j ≤ K , |λj| ≤ ‖Σu‖2, for j > K.

These results demonstrate:

1. The leading eigenvectors of Σ are approximately equal to the normalized columns

of B, as p→∞. In other words, the factor analysis and the principal analysis are

approximately the same.

2. The leading eigenvalues of Σ grow at rate O(p). This can be seen from applying

the triangular inequality and (40), (41):

λj > ‖b̃j‖2
2 − |λj − ‖b̃j‖2| ≥ cp−mu,p max

i≤p
σ1−q
u,ii , ∀j = 1, ..., K.

3. The latent factor fjt is approximately ξ′jYt/
√
λj for j = 1, ..., K. To see this, left-

multiplying b̃′j/‖b̃j‖2
2 to Yt = Bft + ut, and noting that the columns of B are

orthogonal, we have

fjt = b̃′jYt/‖b̃j‖2
2 − b̃′jut/‖b̃j‖2

2.

The second term on the right is the weighted average of noise ut over all p individuals

and hence typically negligible when p is large. The first term is

b̃′jYt

‖b̃j‖2
2

=
b̃′j/‖b̃j‖2Yt

‖b̃j‖2

≈
ξ′jYt√
λj
.

Hence as p→∞, fjt ≈ ξ′jYt/
√
λj.

Therefore, we conclude that the first K eigenvalues of Σ are very spiked, whereas the

remaining eigenvalues are either bounded or grow slowly. In addition, both the latent

factors and loadings can be approximated using the eigenvalues and eigenvectors of Σ and

Yt. This builds the connection between the PCA and high-dimensional factor models.

6.3 POET estimator

Fan et al. (2013) proposed a nonparametric estimator of Σ when the factors are

unobservable, named POET (Principal Orthogonal complEment Thresholding). To mo-

tivate their estimator, note that BB′ =
∑K

j=1 b̃jb̃
′
j. From the discussions of the previous
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subsection, heuristically we have

K∑
j=1

b̃jb̃
′
j ≈

K∑
j=1

λjξjξ
′
j.

In fact, it can be formally proved that

‖BB′ −
K∑
j=1

λjξjξ
′
j‖max = O(p−1/2),

which can be understood as the (asymptotic) identification for BB′. In addition, note

that Σ has the spectral decomposition Σ =
∑p

j=1 λjξjξ
′
j and the factor decomposition

Σ = BB′ + Σu. Therefore,

Σu ≈
p∑

j=K+1

λjξjξ
′
j.

Under the conditional sparsity assumption,
∑p

j=K+1 λjξjξ
′
j is approximately a sparse

matrix. One can then estimate Σu by thresholding the sample analogue of
∑p

j=K+1 λjξjξ
′
j.

Specifically, the POET estimator is defined as follows. Let λ̂1 ≥ λ̂2 ≥ · · · ≥ λ̂p be the

ordered eigenvalues of the sample covariance matrix S, and ξ̂1, ..., ξ̂p be the corresponding

eigenvectors. Then the sample covariance has the following spectral decomposition:

S =
K∑
i=1

λ̂iξ̂iξ̂
′
i + Su,

where Su =
∑p

k=K+1 λ̂kξ̂kξ̂
′
k = (su,ij), called “the principal orthogonal complement”. We

apply the generalized thresholding rule on Su. Define

Σ̂u = (σ̂u,ij)p×p, σ̂u,ij =

su,ii, i = j;

h(su,ij; ω̃T,ij), i 6= j.

For instance, the entry dependent thresholding sets ω̃T,ij =
√
su,iisu,jjω̃T . Importantly,

ω̃T is different from before when the factors are latent, and should be set to

ω̃T = C

(√
log p

T
+

1
√
p

)
.

It was then shown by Fan et al. (2013) that

max
i,j≤p
|su,ij − σu,ij| = OP (ω̃T ).

The extra term 1√
p

in ω̃T is the price paid for not knowing the latent factors, and is
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negligible when p grows faster than T . Intuitively, when the dimension is sufficiently

large, the latent factors can be estimated accurately enough as if they were observable.

The POET estimator of Σ is then defined as:

Σ̂K =
K∑
i=1

λ̂iξ̂iξ̂
′
i + Σ̂u. (42)

This estimator is optimization-free and is very easy to compute.

Note that Σ̂K requires the knowledge of K, which is the number of factors and prac-

tically unknown. There has been a large literature on determining the number of factors

and many consistent estimators have been proposed, such as Bai and Ng (2002); Alessi

et al. (2010); Hallin and Lǐska (2007), and Ahn and Horenstein (2013). In addition,

numerical studies in Fan et al. (2013) showed that the covariance estimator is robust to

over-estimating K. Therefore, in practice, we can also choose a relatively large number

for K even if it is not a consistent estimator of the true number of factors. In the sequel,

we suppress the subscript K, and simply write Σ̂ as the POET estimator.

6.4 Asymptotic Results

Under the conditional sparsity assumption and some regularity conditions, Fan et al.

(2013) showed that when ω̃1−q
T mu,p → 0, we have

‖Σ̂u −Σu‖2 = OP

(
ω̃1−q
T mu,p

)
, ‖Σ̂−1

u −Σ−1
u ‖2 = OP

(
ω̃1−q
T mu,p

)
.

On the other hand, the problem of bad rate of convergence for Σ is still present,

because the first K eigenvalues of Σ grow with p. We can further illustrate this point in

the following example (taken from Fan et al. (2013)):

Example 2. Consider an ideal case where we know the spectrum except for the first

eigenvector of Σ, and assume that the largest eigenvalue λ1 ≥ cp for some c > 0. Let

ξ̂1 be the estimated first eigenvector and define the covariance estimator Σ̂ = λ1ξ̂1ξ̂
′
1 +∑p

j=2 λjξjξ
′
j. Assume that ξ̂1 is a good estimator in the sense that ‖ξ̂1− ξ1‖2 = Op(T

−1).

However,

‖Σ̂−Σ‖2 = ‖λ1(ξ̂1ξ̂
′
1 − ξ1ξ

′
1)‖2 = λ1Op(‖ξ̂ − ξ‖2) = Op(λ1T

−1/2),

which can diverge when T = O(p2).

Similar to the case of observable factors, we can estimate the precision matrix with a

satisfactory rate under the operator norm. The intuition still follows from the fact that

Σ−1 has bounded eigenvalues. Indeed, Fan et al. (2013) showed that Σ̂−1 has the same

rate of convergence as that of Σ̂−1
u .
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7 Structured factor models

7.1 Motivations

In the usual asymptotic analysis for factor models, accurate estimations of the space

spanned by the eigenvectors of Σ require a relatively large T . In particular, the individual

loadings can be estimated no faster than OP (T−1/2). But data sets of large sample size

are not always available. Often we face the “high-dimensional-low-sample-size” (HDLSS)

scenario, as described in Jung and Marron (2009). This is particularly the case in financial

studies of asset returns, as their dynamics can vary substantially over a longer time

horizon. Therefore, to capture the current market condition, financial analysts wish

to use short time horizon to infer as good as possible the risk factors as well as their

associated loading matrix. To achieve this, we need additional data covariate information

and modeling of the factor loadings.

Suppose that there is a d-dimensional vector of observed covariates associated with the

ith variable: Xi = (Xi1, · · · , Xid), which is independent of uit. For instance, in financial

applications, Xi can be a vector of firm-specific characteristics (market capitalization,

price-earning ratio, etc); in health studies, Xi can be individual characteristics (e.g. age,

weight, clinical and genetic information). To incorporate the information carried by

the observed characteristics, Connor and Oliver (2007) and Connor et al. (2012) model

explicitly the loading matrix as a function of covariates X. This reduces significantly

the number of paramters in B. Specifically, they proposed and studied the following

semi-parametric factor model:

Yit =
K∑
k=1

gk(Xi)fkt + uit, i = 1, · · · , p, t = 1, · · · , T. (43)

Here gk(Xi) is an unknown function of the characteristics and they assume further the

additive modeling

gk(Xi) = gk1(Xi1) + · · ·+ gkd(Xid). (44)

Fan et al. (2014b) recognized that the above semi-parametric model (43) might be

restrictive for applications, as we do not expect that the covariates capture completely

the factor loadings. They extend the model to the following more flexible semiparametric

mixed effect model:

Yit =
K∑
k=1

[gk(Xi) + γik]fkt + uit, i = 1, · · · , p, t = 1, · · · , T. (45)

Here γik is an unobservable random component with mean zero. They developed econo-

metric techniques to test the model specifications (43) and (45). Their empirical results,
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using the returns of the components of the S&P500 index and 4 exogenous variables (size,

value, momentum, and volatility) as in Connor et al. (2012), provide stark evidence that

model (43) can not be validated empirically whereas (45) is consistent with the empirical

data.

7.2 Projected PCA

The basic idea of projected PCA is to smooth the observations {Yit}pi=1 for each given

day t against its associated covariates {Xi}pi=1. More specifically, let {Ŷit}pi=1 be the fitted

value after run a regression of {Yit}pi=1 against {Xi}pi=1 for each given t. The regression

model can be the usual linear regression or additive regression model (44). This results

in a smooth or projected observation matrix Ŷ, which will also be denoted by PY. The

projected PCA is then to run PCA based on the projected data Ŷ.

To provide the rationale behind this idea, we now generalize model (45) further to

illustrate the idea behind the projected PCA. Specifically, consider the factor model

Y = BF′ + U

where Y and U are p× T matrices of yit and uit. Suppose that there is a d-dimensional

vector of observed covariates associated with the ith variable: Xi = (Xi1, · · · , Xid), which

is independent of uit. For a pre-determined J , let φ1, ..., φJ be a set of basis functions.

Let φ(Xi)
′ = (φ1(Xi1), ...., φJ(Xi1), ...., φJ(Xid)) and Φ(X) = (φ(X1), ..., φ(Xp))

′ be a

p × (Jd) matrix of the sieve-transformed X. Then the projection matrix on the space

spanned by X = (X1, ...,Xp) can be taken as

P = Φ(X)(Φ(X)′Φ(X))−1Φ(X)′.

This corresponds to modeling gk(Xi) in (45) by the additive model (44) and approximat-

ing each term using the series expansion. The projected data PY is the fitted value of

the additive model (44) with basis functions φ1, ..., φJ :

Yit =
K∑
k=1

[
J∑
j=1

βjk,tφj(Xik)] + εit, i = 1, · · · , p; t = 1, · · · , T.

The design matrix does not vary with t, neither does the projection matrix P.

We make the following key assumptions:

Assumption 2. (i) Pervasiveness: With probability approaching one, all the eigenval-

ues of 1
p
(PB)′PB are bounded away from both zero and infinity as p→∞.

(ii) Orthogonality: E(uit|Xi1, ..., Xid) = 0, for all i ≤ p, t ≤ T.
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The above conditions require that the strengths of the loading matrix should be as

strong after the projection, and B should be associated with X. Condition (ii) implies

that if we apply P to both sides of Y = BF′ + U, then

PY ≈ PBF′,

where PU ≈ 0 due to the orthogonality condition. Hence the projection removes the

noise in the factor model. In addition, for the purpose of normalizations, we assume

Cov(ft) = IK , and that (PB)′PB is a diagonal matrix.

We now describe the rationale of the projected PCA. For simplicity, we ignore the

effect of PU. Let us consider the p× p covariance matrix of the projected data PY. The

previous discussions show that 1
T
PY(PY)′ ≈ PB(PB)′. Since (PB)′PB is a diagonal

matrix, the columns of PB are the eigenvectors of the p× p matrix 1
T
PY(PY)′, up to a

factor
√
p. Next, consider the T × T matrix 1

T
(PY)′PY ≈ 1

T
F(PB)′(PB)F′. It implies

1

T
(PY)′PYF ≈ F(PB)′(PB).

Still by the diagonality of (PB)′PB, we infer that the columns of F are approximately

the eigenvectors of the T × T sample covariance matrix 1
T

(PY)′PY, up to a factor
√
T .

In addition, since the diagonal elements of (PB)′PB grow fast as the dimensionality

diverges, the corresponding eigenvalues are asymptotically the first K leading eigenvalues

of 1
T

(PY)′PY. This motivates the so-called “projected PCA” (Fan et al. (2014b)), a new

framework of estimating the parameters for factor analysis in the presence of a known

space X . The projected PCA can be more accurate than the usual PCA in the HDLSS

scenario. It applies really the PCA to the projected data (smoothed data) PY.

Let Ṽ be a T ×K matrix, whose columns are the eigenvectors of the T × T matrix
1
T
Y′PY corresponding to the larges K eigenvalues. Following the previous discussions,

we respectively estimate the projected loading matrix PB and latent factors F by

G̃(X) =
1

T
PYF̃, F̃ =

√
T Ṽ.

A nice feature of the projected-PCA is that the consistency is achieved even when the

sample size T is finite, as shown in Fan et al. (2014b). Thus, it is particularly appealing

in the HDLSS context. Intuitively, there are two sources of the approximation errors:

(i) P approximates P and (ii) the normalized B approximates the leading eigenvectors

of Σ. Neither of the approximation errors require a large sample size T in order to be

asymptotically negligible. This implies the consistency under a finite T . See Fan et al.

(2014b) for more detailed discussions on this aspect.
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7.3 Semi-parametric factor model

In the model (45), let G(X) and Γ respectively denote the p×K matrices of gk(Xi)

and γij. Then the matrix form of the model can be written as

Y = [G(X) + Γ]F′ + U.

So the model assumes that the loading matrix can be decomposed into two parts: a part

that can be explained by X and the part cannot. To deal with the curse of dimensionality,

we assume gk(·) to be additive: gk(Xi) =
∑d

l=1 gkl(Xil), with d = dim(Xi).

Applying the projected-PCA onto the semi-parametric factor model, Fan et al. (2014b)

showed that as p, J →∞, T may either grow or stay constant,

1√
T
‖F̃− F‖2 = OP (

1

p
),

1
√
p
‖G̃(X)−G(X)‖2 = OP (

1

(pmin{T, p})1/2−1/(2κ)
),

where κ is the degree of smoothness constant for gk(·). Clearly under the high dimension-

ality, the rate of convergence is fast even if T is finite. We refer the readers to Fan et al.

(2014b) for more detailed discussions on the impacts of improved rates of convergence in

factor models.

8 Discussions

This paper introduces several recent developments on estimating large covariance and

precision matrices. We focus on two general approaches: rank-based method and factor

model based method. We also extend the usual factor model to a projected PCA setup,

and show that the newly introduced projected PCA is appealing in the high-dimensional-

low-sample-size scenario. Such an approach has drawn growing attentions in the recent

literature on high-dimensional PCA (e.g., Jung and Marron (2009); Shen et al. (2013a,b);

Ahn et al. (2007)). In addition, we introduce the rank-based approaches, including the

EPIC and EC2 estimators, for estimating large precision and covariance matrices under

the elliptical distribution family. These rank-based methods are robust to heavy-tailed

data and achieve the nearly optimal rates of convergence in terms of spectral norm errors.

A promising future direction is to combine the factor based analysis and rank-based

analysis into an integrated framework. For instance, consider the factor model

Yt = Bft + ut

with observed factors {ft}. Here the idiosyncratic components ut’s are heavy-tailed but

follow the elliptical distribution. Define the population Kendall’s tau correlation between
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ujt and ukt as

τu,kj = P ((ujt − ũjt)(ukt − ũk) > 0)− P ((ujt − ũj)(ukt − ũk) < 0) ,

where ũj and ũk are independent copies of ujt and ukt respectively. Let Ru be the

correlation matrix of ut, and Du be the diagonal matrix of the individual standard

deviations of {ujt}. Then Σu = DuRuDu. For elliptical distributions, we have

Ru = [Ru,kj] =
[
sin
(π

2
τu,kj

)]
. (46)

Under the conditional sparsity condition, Ru is a sparse matrix.

Given the “estimated residuals” {ûit}, the sample version Kendall’s tau statistic is

τ̂u,kj =
2

T (T − 1)

∑
t<t′

sign
(

(ûkt − ûkt′)(ûjt − ûjt′)
)

for all k 6= j, and τ̂u,kj = 1 otherwise. We can plug τ̂u,kj into (46) and obtain a rank-based

error correlation estimator R̂u = [R̂u,kj] =
[
sin
(
π
2
τ̂u,kj

)]
. We then apply thresholding on

R̂u to produce a sparse matrix estimator:

R̂Tu = (R̂Tu,ij)p×p, R̂Tu,ij =

1, i = j;

h(R̂u,kj;ωT ), i 6= j.

Here h(.;ωT ) is a general thresholding rule as described in Section 2, with a properly

chosen threshold value ωT . The entry-dependent threshold can also be used. Alterna-

tively, we can apply the nearest positive definite projection to produce a sparse covariance

estimator based on R̂u.

Given the estimated residuals, standard deviations in Du can be estimated similarly

as before. Specifically, let m̂j be the estimators of Eu2
jt by solving:

T∑
t=1

ψ

(
(û2

jt −mj)

√
2

TKmax

)
= 0, (47)

where Kmax is an upper bound of maxj Var(u2
jt). Then the rank-based estimator of Du is

a diagonal matrix D̂u, whose diagonal elements are σ̂u,j =
√

max
{
m̂j, Kmin

}
, where Kmin

is a lower bound of minj Eu2
jt and is assumed to be known. This leads to the rank-based

error covariance estimator:

Σ̂u = D̂uR̂
T
u D̂u.

When the factors are observable, the residuals should be obtained by estimating B.

The robust regression estimator B̂ can be employed, e.g., L1 regression. With the esti-
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mated B, we set ût = Yt− B̂ft. The final factor-based covariance estimator is then given

by:

Σ̂ = B̂Ĉov(ft)B̂
′ + Σ̂u.

The resulting estimator is expected to naturally handle heavy-tailed data.

When the common factors are latent, they need to be estimated using robust PCA

(that is, applying PCA on the rank covariance matrix of Yt). The theoretical properties

of such hybrid estimators are left for future investigations.
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Wille, A., Zimmermann, P., Vranová, E., Fürholz, A., Laule, O., Bleuler,

S., Hennig, L., Prelic, A., von Rohr, P., Thiele, L. et al. (2004). Sparse

graphical gaussian modeling of the isoprenoid gene network in arabidopsis thaliana.

Genome Biol 5 R92.

Wu, W. B. and Pourahmadi, M. (2003). Nonparametric estimation of large covariance

matrices of longitudinal data. Biometrika 90 831–844.

Xue, L. and Zou, H. (2012). Regularized rank-based estimation of high-dimensional

nonparanormal graphical models. The Annals of Statistics 40 2541–2571.

Yuan, M. (2010). High dimensional inverse covariance matrix estimation via linear

programming. Journal of Machine Learning Research 11 2261–2286.

Yuan, M. and Lin, Y. (2007). Model selection and estimation in the gaussian graphical

model. Biometrika 94 19–35.

Zhang, C.-H. (2010). Nearly unbiased variable selection under minimax concave

penalty. The Annals of Statistics 894–942.

Zhao, P. and Yu, B. (2006). On model selection consistency of lasso. Journal of

Machine Learning Research 7 2541–2563.

Zhao, T. and Liu, H. (2014). Calibrated precision matrix estimation for high-

dimensional elliptical distributions. IEEE Transactions on Information Theory 60

7874–7887.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American

Statistical Association 101 1418–1429.

43


	1 Introduction
	2 Estimating sparse covariance matrix 
	2.1 Thresholding estimation
	2.2 Adaptive thresholding and entry-dependent thresholding
	2.3 Generalized thresholding
	2.4 Positive definiteness
	2.4.1 Choosing the thresholding constant
	2.4.2 Nearest positive definite matrices


	3 Estimating sparse precision matrix
	3.1 Penalized likelihood method
	3.2 Column-by-column estimation method
	3.3  Tuning-insensitive precision matrix estimation
	3.3.1 The TIGER method
	3.3.2 The EPIC method


	4 Robust precision and covariance estimators
	4.1 Robust precision matrix estimation
	4.1.1 Robust estimation of correlation matrix
	4.1.2 Robust estimation of standard deviations
	4.1.3 The EPIC method for inverse correlation matrix estimation
	4.1.4 Symmetric precision matrix estimation

	4.2 Robust covariance matrix estimation
	4.2.1 The EC2 Estimator
	4.2.2 Asymptotic properties of the EC2 estimator

	4.3 Extension to the elliptical copula family

	5  Factor model-based covariance estimation with observable factors
	5.1 Conditional sparsity
	5.2 Estimation

	6 Factor models-based covariance estimation with latent factors
	6.1 The pervasive condition
	6.2 Principal Component and Factor Analysis
	6.3 POET estimator
	6.4 Asymptotic Results

	7 Structured factor models
	7.1 Motivations
	7.2 Projected PCA
	7.3 Semi-parametric factor model

	8 Discussions

