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1 INTRODUCTION

1.1 High Dimensionality in Economics and Finance

High dimensional models recently have gained considerable importance in sev-

eral areas of economics. For example, vector autoregressive (VAR) model (Sims

(1980), Stock & Watson (2001)) is the key technique to analyze the joint evo-

lution of macroeconomic time series, and can deliver a great deal of structural

information. Because the number of parameters grows quadratically with the

size of model, standard VARs usually include no more than ten variables. How-

ever econometricians may observe hundreds of data series. In order to enrich the
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model information set, Bernanke et al. (2005) proposed to augment standard

VARs with estimated factors (FAVAR) to measure the effects of monetary policy.

Factor analysis also plays an important role in forecasting using large dimensional

data sets. See Stock & Watson (2006) and Bai & Ng (2008) for reviews.

Another example of high dimensionality is large home price panel data. To

incorporate cross-sectional effects, price in one county may depend upon several

other counties, most likely its geographic neighbors. Since such correlation is un-

known, initially the regression equation may include about one thousand counties

in US, which makes direct ordinary least squares (OLS) estimation impossible.

One technique to reduce dimension is variable selection. Recently, statisticians

and econometricians have developed algorithms to simultaneously select rele-

vant variables and estimate parameters efficiently. See Fan & Lv (2010) for an

overview. Variable selection techniques have been widely used in financial port-

folio construction, treatment effects models, and credit risk models.

Volatility matrix estimation is a high dimensional problem in finance. To opti-

mize the performance of a portfolio (Campbell et al. (1997),Cochrane (2005)) or

to manage the risk of a portfolio, asset managers need to estimate the covariance

matrix or its inverse matrix of the returns of assets in the portfolio. Suppose

that we have 500 stocks to be selected for asset allocation. There are 125,250

parameters in the covariance matrix. High dimensionality here poses challenges

to estimate matrix parameters, since small element-wise estimation errors may

result in huge error matrix-wise. In the time domain, high frequency financial

data also provide both opportunities and challenges to high dimensional model-

ing in economics and finance. On a finer time scale, the market microstructure

noise may no longer be negligible.

1.2 High Dimensionality in Science and Technology

High dimensional data have commonly emerged in other fields of sciences, engi-

neering, and humanities, thanks to the advances of computing technologies. Ex-

amples include marketing, e-commerce, and warehouse data in business; genetic,
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microarray and proteomics data in genomics and heath sciences; and biomedical

imaging, functional magnetic resonance imaging, tomography, signal processing,

high resolution images, functional and longitudinal data, among many others.

For instance, for drug sales collected in many geographical regions, cross-sectional

correlation makes the dimensionality increase quickly; the consideration of 1000

neighborhoods requires 1 million parameters. In meteorology and earth sciences,

temperatures and other attributes are recorded over time and in many regions.

Large panel data over a short time horizon are frequently encountered. In bio-

logical sciences, one may want to classify diseases and predict clinical outcomes

using microarray gene expression or proteomics data, in which tens of thousands

of expression levels are potential covariates but there are typically only tens or

hundreds of subjects. Hundreds of thousands of SNPs are potential predictors in

genome-wide association studies. The dimensionality of the feature space grows

rapidly when interactions of such predictors are considered. Large scale data

analysis is also a common feature of many problems in machine learning such as

text and document classification and computer vision. See, e.g., Donoho (2000),

Fan & Li (2006), and Hastie et al. (2009) for more examples.

All of the above examples exhibit various levels of high dimensionality. To be

more precise, relatively high dimensionality refers to the asymptotic framework

where the dimensionality p is growing but is of a smaller order of the sample size

n (i.e., p = o(n)), moderately high dimensionality to the asymptotic framework

where p grows proportionately to n (i.e., p ∼ cn for some c > 0), high dimension-

ality to the asymptotic framework where p can grow polynomially with n (i.e.,

p = O(nα) for some α > 1), and ultra-high dimensionality to the asymptotic

framework where p can grow non-polynomially with n (i.e., log p = O(nα) for

some α > 0), the so-called NP-dimensionality. The inference and prediction are

based on high dimensional feature space.
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1.3 Challenges of High Dimensionality

High dimensionality poses numerous challenges to statistical theory, methods,

and implementations in those problems. For example, in linear regression model

with noise variance σ2, when the dimensionality p is comparable to or exceeds

sample size n, the ordinary least squares (OLS) estimator is not well behaved or

even no longer unique due to the (near) singularity of the design matrix. Re-

gression model built on all regressors usually has prediction or forecast error of

order (1 + p/n)1/2σ when p ≤ n rather than (1 + s/n)1/2σ when there are only s

intrinsic predictors. This reflects two well-known phenomena in high dimensional

modeling: the collinearity or spurious correlations and the noise accumulation.

The spurious correlations among the predictors is an intrinsic difficulty of high

dimensional model selection. There are two sources of collinearity: the popula-

tion level and the sample level. There can be high spurious correlation even for

independent and identically distributed (i.i.d.) predictors when p is large com-

pared with n (see, e.g., Fan & Lv (2008), Fan & Lv (2010), Fan et al. (2010)).

In fact, conventional intuition might no longer be accurate in high dimensions.

Another example is the data piling problems in high dimensional space shown

by Hall et al. (2005). There are issues of overfitting and model identifiability in

presence of high collinearity.

Noise accumulation is a common phenomenon in high dimensional prediction.

Although it is well known in regression problems, explicit theoretical quantifica-

tion of the impact of dimensionality on classification was not well understood until

the recent work of Fan & Fan (2008). Fan & Fan (2008) showed that for the inde-

pendence classification rule, classification using all features has misclassification

rate determined by a quantity Cp/
√

p, which trades off between the dimensional-

ity p and overall signal strength Cp. Although the signal contained in the features

increases with dimensionality, the accompanying penalty on dimensionality
√

p

can significantly deteriorate the performance. They showed indeed that classifi-

cation using all features can be as bad as random guessing because of the noise

accumulation in estimating the population centroids in high dimensions. Hall et
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al. (2008) considered a similar problem for distance-based classifiers and showed

that the misclassification rate converges to zero when Cp/
√

p → ∞, which is a

specific result of Fan & Fan (2008). See, e.g., Donoho (2000), Fan & Li (2006),

and Fan & Lv (2010) for more accounts of challenges of high dimensionality.

As clearly demonstrated above, variable selection is fundamentally important

in high dimensional modeling. Bickel (2008) pointed out that the main goals of

high dimensional modeling are

• to construct as effective a method as possible to predict future observations;

• to gain insight into the relationship between features and response for sci-

entific purposes, as well as, hopefully, to construct an improved prediction

method.

Examples of the former goal include portfolio optimization and text and docu-

ment classification, and the latter is important in many scientific endeavors such

as genomic studies. In addition to the noise accumulation, the inclusion of spu-

rious predictors can prevent the appearance of some important predictors due to

the spurious correlation between the predictors and response (see, e.g., Fan & Lv

(2008) and Fan & Lv (2010)). In such cases, those predictors help predict the

noise, which can be a rather serious issue when we need to accurately characterize

the contribution from each identified predictor to the response variable.

Sparse modeling has been widely used to deal with high dimensionality. The

main assumption is that the p-dimensional parameter vector is sparse with many

components being exactly zero or negligibly small, and each nonzero component

stands for the contribution of an important predictor. Such assumption is cru-

cial in ensuring the identifiability of the true underlying sparse model especially

given relatively small sample size. Although the notion of sparsity gives rise to

biased estimation in general, it has been proved to be very effective in many

applications. In particular, variable selection can increase the estimation accu-

racy by effectively identifying the important predictors and improve the model

interpretability. There has been a huge literature contributed to statistical the-

ory, methods, and implementation for high dimensional sparse models. Sparsity
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should be understood in a wider sense as a reduced complexity. For example, we

may want to apply some grouping or transformation of the input variables guided

by some prior knowledge and to add interactions and higher order terms for re-

ducing the model bias. These lead to transformed or enlarged feature spaces.

The notion of sparsity carries over naturally. Another example of dimensionality

reduction is to introduce a sparse representation to reduce the number of effective

parameters. For instance, Fan et al. (2008) used the factor model to reduce the

dimensionality for high dimensional covariance matrix estimation.

The rest of the article is organized as follows. In Section 2, we survey some

developments of the penalized least squares estimation and its applications to

econometrics. Section 3 presents some further applications of sparse models in

finance. We provide a review of more general likelihood based sparse models in

Section 4. In Section 5, we review some recent developments of sure screening

methods for ultra-high dimensional sparse inference. Conclusions are given in

Section 6.

2 PENALIZED LEAST SQUARES

Assume that the collected data are of the form (xT
i , yi)n

i=1, in which yi is the

i-th observation of the response variable and xi is the associated p-dimensional

predictors vector. The data are often assumed to be a random sample from the

population (xT , y), where conditional on the predictor vector x, the response

variable y has mean depending on a linear combination of predictors βTx with

β = (β1, · · · , βp)T . In high dimensional sparse modeling, we assume ideally that

most parameters βj are exactly zero, meaning that only a few of the predictors

contribute to the response. The objective of variable selection is identifying all

important predictors having nonzero regression coefficients and giving accurate

estimates of those parameters.
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2.1 Univariate PLS

We start with the linear regression model

y = Xβ + ε, (2.1)

where y = (y1, · · · , yn)T is an n-dimensional response vector, X = (x1, · · · ,xn)T

is an n × p design matrix, and ε is an n-dimensional noise vector. Consider the

specific case of canonical linear model with rescaled orthonormal design matrix,

i.e., XTX = nIp. The penalized least squares (PLS) problem is

min
β∈Rp





1
2n
‖y−Xβ‖2

2 +
p∑

j=1

pλ(|βj |)


 , (2.2)

where ‖ · ‖2 denotes the L2 norm and pλ(·) is a penalty function indexed by the

regularization parameter λ ≥ 0. By regularizing the conventional least squares

estimation, we hope to simultaneously select important variables and estimate

their regression coefficients with sparse estimates.

In the above canonical case of XTX = nIp, the PLS problem (2.2) can be

transformed into the following componentwise minimization problem

min
β∈Rp





1
2n
‖y−Xβ̂‖2

2 +
1
2
‖β̂ − β‖2

2 +
p∑

j=1

pλ(|βj |)


 , (2.3)

where β̂ = n−1XTy is the ordinary least squares estimator or more generally the

marginal regression estimator. Thus we consider the univariate PLS problem

θ̂(z) = arg min
θ∈R

{
1
2
(z − θ)2 + pλ(|θ|)

}
. (2.4)

For any increasing penalty function pλ(·), we have a corresponding shrinkage rule

in the sense that |θ̂(z)| ≤ |z| and θ̂(z) = sgn(z)|θ̂(z)| (Antoniadis & Fan (2001)).

It was further shown in Antoniadis & Fan (2001) that the PLS estimator θ̂(z)

has the following properties:

1) sparsity if mint≥0{t + p′λ(t)} > 0, in which case the resulting estimator au-
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tomatically sets small estimated coefficients to zero to accomplish variable

selection and reduce model complexity;

2) approximate unbiasedness if p′λ(t) = 0 for large t, in which case the resulting

estimator is nearly unbiased, especially when the true coefficient βj is large,

to reduce model bias;

3) continuity if and only if arg mint≥0{t + p′λ(t)} = 0, in which case the re-

sulting estimator is continuous in the data to reduce instability in model

prediction (see, e.g., the discussion in Breiman (1996)).

Here pλ(t) is nondecreasing and continuously differentiable on [0,∞), the function

−t−p′λ(t) is strictly unimodal on (0,∞), and p′λ(0) represents p′λ(0+). Generally

speaking, the singularity of the penalty function at the origin, i.e., p′λ(0+) > 0,

is necessary to generate sparsity for the purpose of variable selection and its

concavity is needed to reduce the estimation bias when the true parameter is

nonzero. In addition, the continuity is to ensure the stability of the selected

models.

There are many commonly used penalty functions such as the Lq penalties

pλ(|θ|) = λ|θ|q for q > 0 and I(|θ| 6= 0) for q = 0. The uses of L0 penalty

pλ(t) = λ2

2 I(t 6= 0) and L1 penalty in (2.4) give the hard-thresholding estimator

θ̂H(z) = zI(|z| > λ) and the soft-thresholding estimator θ̂S(z) = sgn(z)(|z|−λ)+,

respectively. It is easy to see that the convex Lq penalty with q > 1 does not

satisfy the sparsity condition, the convex L1 penalty does not satisfy the unbi-

asedness condition, and the concave Lq penalty with 0 ≤ q < 1 does not satisfy

the continuity condition. Thus none of the Lq penalties simultaneously satisfies

all the above three conditions. As such, Fan (1997) and Fan & Li (2001) intro-

duced the smoothly clipped absolute deviation (SCAD) penalty, whose derivative

is given by

p′λ(t) = λ

{
I (t ≤ λ) +

(aλ− t)+
(a− 1) λ

I (t > λ)
}

for some a > 2, (2.5)

where pλ(0) = 0 and a = 3.7 is often used. It satisfies the aforementioned three
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properties and in particular, ameliorates the bias problems of convex penalty

functions. A closely related minimax concave penalty (MCP) was proposed in

Zhang (2010), whose derivative is given by

p′λ(t) = (aλ− t)+ /a. (2.6)

It is easy to see that the SCAD meets the L1 penalty around the origin and then

gradually levels off, and MCP translates the flat part of the derivative of SCAD

to the origin. In particular, when a = 1,

pλ(t) =
1
2
[λ2 − (λ− t)2+] (2.7)

is called the hard-thresholding penalty by Fan & Li (2001) and Antoniadis (1996),

who showed that the solution of (2.4) is the hard-thresholding estimator θ̂H(z).

Therefore, the MCP produces discontinuous solutions with potential of model

instability.

2.2 Multivariate PLS

Consider the multivariate PLS problem (2.2) with general design matrix X.

The goal is to estimate the true unknown sparse regression coefficients vector

β0 = (β0,1, · · · , β0,p)T in linear model (2.1), where the dimensionality p can be

comparable with or even greatly exceed the sample size n. The L0 regularization

naturally arises in many classical model selection methods, e.g., the AIC (Akaike

(1973, 1974)) and BIC (Schwartz (1978)). It amounts to the best subset selec-

tion and has been shown to have nice sampling properties (see, e.g., Barron et al.

(1999)). However, it is unrealistic to implement exhaustive search over the space

of all submodels in even moderate dimensions, not to mention in high dimen-

sional econometric endeavors. Such computational difficulty motivated various

continuous relaxations of the discontinuous L0 penalty. For example, the bridge

regression (Frank & Friedman (1993)) uses the Lq penalty, 0 < q ≤ 2. In partic-

ular, the use of the L2 penalty is called the ridge regression. The non-negative
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garrote was introduced in Breiman (1995) for variable selection and shrinkage

estimation. The L1 penalized least squares method was termed as Lasso in

Tibshirani (1996), which is also collectively referred to as the L1 penalization

methods in other contexts. Other commonly used penalty functions include the

SCAD (Fan & Li (2001)) and MCP (Zhang (2010)) (see Section 2.1). A family

of concave penalties that bridge the L0 and L1 penalties was introduced in Lv &

Fan (2009) for model selection and sparse recovery. A linear combination of L1

and L2 penalties was called an elastic net in Zou & Hastie (2005), with the L2

component encouraging grouping of variables.

What kind of penalty functions are desirable for variable selection in sparse

modeling? Some appealing properties of the regularized estimator were first

outlined in Fan & Li (2001). They advocate penalty functions that give estimators

with three properties mentioned in Section 2.1. In particular, they considered

penalty functions pλ(|θ|) that are nondecreasing in |θ|, and provided insights into

these properties. As mentioned before, the SCAD penalty satisfies the above

three properties, whereas the Lasso (the L1 penalty) suffers from the bias issue.

Much effort has been devoted to developing algorithms for solving the PLS

problem (2.2) when the penalty function pλ is folded-concave, although it is

generally challenging to obtain a global optimizer. Fan & Li (2001) proposed a

unified and effective local quadratic approximation (LQA) algorithm by locally

approximating the objective function by a quadratic function. This translates

the nonconvex minimization problem into a sequence of convex minimization

problems. Specifically, for a given initial value β∗ = (β∗1 , · · · , β∗p)T , the penalty

function pλ can be locally approximated by a quadratic function as

pλ(|βj |) ≈ pλ(|β∗j |) +
1
2

p′λ(|β∗j |)
|β∗j |

[β2
j − (β∗j )2] for βj ≈ β∗j . (2.8)

With quadratic approximation (2.8), the PLS problem (2.2) becomes a convex

PLS problem with weighted L2 penalty and (2.8) admits a closed-form solution.

To avoid numerical instability, it sets the estimated coefficient β̂j = 0 if β∗j is very

close to 0, that is, deleting the j-th covariate from the final model. One potential
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issue of LQA is that the value 0 is an absorbing state in the sense that once a

coefficient is set to zero, it remains zero in subsequent iterations. Recently, the

local linear approximation (LLA)

pλ(|βj |) ≈ pλ(|β∗j |) + p′λ(|β∗j |)(|βj | − |β∗j |) for βj ≈ β∗j . (2.9)

was introduced in Zou & Li (2008), after the LARS algorithm (Efron et al. (2004))

was proposed to efficiently compute LASSO. Both LLA and LQA are convex ma-

jorants of concave penalty function pλ(·) on [0,∞), but LLA is a better approx-

imation since it is the minimum (tightest) convex majorant of concave function

on [0,∞). For both approximations, the resulting sequence of target values is

always nonincreasing, which is a specific feature of minorization-maximization

(MM) algorithms (Hunter & Lange (2000)) and Hunter & Li (2005).. This can

easily be seen by the following argument. If at the kth iteration Lk(β) is a con-

vex majorant of the target function Q(β) such that Lk(βk) = Q(βk) and βk+1

minimizes Lk(β), then

Q(βk+1) ≤ Lk(βk+1) ≤ Lk(βk) = Q(βk).

For Lasso (L1 PLS), there are powerful algorithms for convex optimization. For

example, Osborne et al (2000) cast the L1 PLS problem as a quadratic program.

Efron et al. (2004) proposed a fast and efficient least angle regression (LARS)

algorithm for variable selection, which, with a simple modification, produces the

entire LASSO solution path {β̂(λ) : λ > 0}. It uses the fact that the LASSO

solution path is piecewise linear in λ (see also Rosset & Zhu (2007) for more

discussions on piecewise linearity of solution paths). The LARS algorithm starts

with a sufficiently large λ which picks only one predictor that has the largest

correlation with the response and decreases the λ value until the second variable

is selected, at which the selected variables have the same absolute correlation with

the current working residual as the first one, and so on. By the Karush-Kuhn-

Tucker (KKT) conditions, a sign constraint is needed for obtaining the Lasso
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solution path. See Efron et al. (2004) for more details. Zhang (2010) extended

the idea of LARS algorithm and introduced the PLUS algorithm for computing

the PLS solution path when the penalty function pλ(·) is a quadratic spline such

as the SCAD and MCP.

With linear approximation (2.9), the PLS problem (2.2) becomes a PLS prob-

lem with weighted L1 penalty, say, the weighted Lasso

min
β∈Rp





1
2n
‖y−Xβ‖2

2 +
p∑

j=1

wj |βj |


 , (2.10)

where the weights are wj = p′λ(|β∗j |). Thus algorithms for Lasso can easily be

adapted to solve such problems. Different penalty functions give different weight-

ing schemes, and in particular, Lasso gives a constant weighting scheme. In this

sense, the nonconvex PLS can be regarded as an iteratively reweighted Lasso. The

weight function is chosen adaptively to reduce the biases due to penalization. The

adaptive Lasso proposed in Zou (2006) uses the weighting scheme wj = |β∗j |−γ for

some γ > 0. However, zero is an absorbing state. In contrast, penalty functions

such as SCAD and MCP do not have such an undesirable property. In fact, if

the initial estimate is zero, then wj = λ and the resulting estimate is the Lasso

estimate. Fan & Li (2001), Zou (2006), and Zou & Li (2008) suggested to use a

consistent estimate such as the un-penalized estimator as the initial value, which

implicitly assumes that p ¿ n. When dimensionality p exceeds n, it is not appli-

cable. Fan & Lv (2008) recommended using β∗j = 0, which is equivalent to using

the LASSO estimate as the initial estimate. The SCAD does not stop here. It

further reduces the bias problem of LASSO by assigning an adaptive weighting

scheme. Other possible initial values include estimators given by the stepwise

addition fit or componentwise regression. They put forward the recommendation

that only a few iterations are needed.

Coordinate optimization has also been widely used for solving regularization

problems. For example, for the PLS problem (2.2), Fu (1998), Daubechies et

al. (2004), and Wu & Lang (2008) proposed a coordinate descent algorithm that
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iteratively optimizes (2.2) one component at a time. Such algorithm can also

be applied to solve other problems such as in Meier et al. (2008) for the group

LASSO (Yuan & Lin (2006)), Friedman et al. (2008) for penalized precision

matrix estimation, and Fan & Lv (2009) for penalized likelihood(see Section 4.1

for more details).

There have been many studies of the theoretical properties of PLS methods in

the literature. We give here only a very brief sketch of the developments due to

the space limitation. A more detailed account can be found in, e.g., Fan & Lv

(2010). In a seminal paper, Fan & Li (2001) laid down the theoretical framework

of nonconcave penalized likelihood and introduced the oracle property which

means that the estimator enjoys the same sparsity as the oracle estimator with

asymptotic probability one and attains an information bound mimicking that of

the oracle estimator. Here the oracle estimator β̂
O

means the infeasible estimator

knowing the true subset S ahead of time, namely, the component β̂
O

Sc = 0 and

β̂
O

S is the least-squares estimate using only the variables in S. They showed that

for certain penalties, the resulting estimator possesses the oracle property in the

classical framework of fixed dimensionality p. In particular, they showed that

such conditions can be satisfied by SCAD, but not the Lasso, which suggests

that the Lasso estimator generally does not have the oracle property. This has

indeed been shown in Zou (2006) in the finite parameter setting. Fan & Peng

(2004) later extended the results of Fan & Li (2001) to the diverging dimensional

setting of p = o(n1/5) or o(n1/3). Recently, extensive efforts have been made to

study the properties with NP-dimensionality.

Another L1 regularization method that is related to Lasso is the Dantzig se-

lector recently proposed by Candes & Tao (2007). It is defined as the solution

to

min ‖β‖1 subject to ‖n−1XT (y−Xβ)‖∞ ≤ λ, (2.11)

where λ ≥ 0 is a regularization parameter. Under the uniform uncertainty princi-

ple (UUP) on the design matrix X, which is a condition on the bounded condition

number for all submatrices of X, they showed that, with large probability, the
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Dantzig selector β̂ mimics the risk of the oracle estimator up to a logarithmic

factor log p, specifically

‖β̂ − β0‖2 ≤ C
√

(2 log p)/n(σ2 +
∑

j∈supp(β0)
β2

0,j ∧ σ2)1/2, (2.12)

where β0 = (β0,1, · · · , β0,p)T is the true regression coefficients vector, C > 0 is

some constant, and λ ∼
√

(2 log p)/n. The UUP condition can be stringent in

high dimensions (see, e.g., Fan & Lv (2008) and Cai & Lv (2007) for more dis-

cussions). The oracle inequality (2.12) does not tell the sparsity of the estimate.

In a seminal paper, Bickel et al. (2009) presented a simultaneous theoretical

comparison of the LASSO and the Dantzig selector in a general high dimensional

nonparametric regression model

y = f + ε, (2.13)

where f = (f(x1), · · · , f(xn))T with f an unknown function of p-variates, and y,

X = (x1, · · · ,xn)T , and ε are the same as in (2.1). Under a sparsity scenario,

Bickel et al. (2009) derived parallel oracle inequalities for the prediction risk

for both methods, and established the asymptotic equivalence of the LASSO

estimator and the Dantzig selector. They also considered the specific case of

linear model (2.1), i.e., (2.13) with true regression function f = Xβ0, and gave

bounds under the Lq estimation loss for 1 ≤ q ≤ 2.

For variable selection, we are concerned with the model selection consistency

of regularization methods in addition to the estimation consistency under some

loss. Zhao & Yu (2006) gave a characterization of the model selection consistency

of the LASSO by studying a stronger but technically more convenient property

of sign consistency: P (sgn(β̂) = sgn(β0)) → 1 as n →∞. They showed that the

weak irrepresentable condition

‖XT
2 X1(XT

1 X1)−1sgn(β1)‖∞ < 1 (2.14)

(assume covariates have been standardized) is a necessary condition for sign con-
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sistency of the LASSO, and the strong irrepresentable condition stating that the

left-hand side of (2.14) is uniformly bounded by a constant 0 < C < 1, is a

sufficient condition for sign consistency of the LASSO, where β1 is the subvec-

tor of β0 on its support supp(β0), and X1 and X2 denote the submatrices of

the n× p design matrix X formed by columns in supp(β0) and its complement,

respectively. However, the irrepresentable condition is very restrictive in high

dimensions. It requires the L1-norm of all regression coefficients of all variables

in X2 regressed on X1 bounded by 1. See, e.g., Lv & Fan (2009) and Fan &

Song (2010) for a simple illustrative example. This demonstrates that in high

dimensions, the LASSO estimator can easily select an inconsistent model, which

explains why the LASSO tends to include many false positive variables in the

selected model. The latter is also related to the bias problem in Lasso, which

requires a small penalization λ whereas the sparsity requires choosing a large λ.

Three questions of interest naturally arise for regularization methods. What

limits of the dimensionality can PLS methods handle? What is the role of penalty

functions? What are the statistical properties of PLS methods when the penalty

function pλ is no longer convex? As mentioned before, Fan & Li (2001) and Fan

& Peng (2004) provided answers via the framework of oracle property for fixed or

relatively slowly growing dimensionality p. Recently, Lv & Fan (2009) introduced

the weak oracle property, which means that the estimator enjoys the same spar-

sity as the oracle estimator with asymptotic probability one and has consistency,

and established regularity conditions under which the PLS estimator given by

folded-concave penalties has nonasymptotic weak oracle property when the di-

mensionality p can grow non-polynomially with sample size n. They considered

a wide class of concave penalties including SCAD and MCP, and the L1 penalty

at its boundary. In particular, their results show that concave penalties can be

more advantageous than convex penalties in high dimensional variable selection.

Later, Fan & Lv (2009) extended the results of Lv & Fan (2009) to folded-concave

penalized likelihood in generalized linear models with ultra-high dimensionality.

Fan & Lv (2009) also characterized the global optimality of the regularized es-
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timator. See, e.g., Kim et al. (2008) and Kim & Kwon (2009), who showed

that the SCAD estimator equals the oracle estimator with probability tending to

1. Other work on PLS methods includes Donoho et al. (2006), Meinshausen &

Bühlmann (2006), Wainwright (2006), Huang et al. (2008), Koltchinskii (2008),

and Zhang (2010), among many others.

2.3 Multivariate Time Series

High-dimensionality arises easily from vector AR models. A p-dimensional time

series with d lags gives dp2 autoregressive parameters. As an illustration, we

focus on an application of PLS to home price estimation and forecasting.

The study of housing market and its relation to broader macroeconomic en-

vironment has received considerable interest, especially during the past decade.

The empirical relationship between property price and income, interest rate, un-

employment, size of labor force, and other variables are widely examined. Ia-

coviello & Neri (2010) report strong effect of monetary policy on house prices in

the more recent periods using a DSGE model. Leamer (2007) noted the impor-

tance of housing sector in U.S. business cycles. Bernanke (2010) argues direct

linkage between accommodative fed policy rate and home price appreciation is

weak, though they coexisted during 2001-2006. Instead, exotic mortgages and

deteriorating lending standards contributed much more to the housing bubble.

Forecasting housing prices locally is important, because price dynamics over

regions, states, counties, ZIPs behave quite differently, especially for the past

two decades. First, prices in the “bubble” states, such as California, Florida

and Arizona, experience more appreciation during the booming period of 2001-

2006 than other states, and subsequently much more decline during 2007-2009.

For some non-bubble states, e.g. northeast states like Massachusetts and New

Jersey experience solid price increase during boom, but only moderate decline

afterwards, whereas Texas and Ohio have calm markets throughout the period.

Second, the seasonality variation across states are different. In all northeast and

west coast states, seasonality is pronounced, whereas in most southern states
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and southwestern inland states, such as NV and AZ, the seasonality amplitude is

weak. Most econometric analysis on housing market is based on state-level panel

data. Calomiris et al. (2008) performs panel VAR regression to reveal the strong

effect of foreclosure on home prices. Stock & Watson (2008) use a dynamic factor

model with stochastic volatility to examine the link between housing construction

and the decline in macro volatility since mid-1980s. Rapach & Strass (2007)

consider combination of individual VAR forecasts, with each equation consisting

of only one macroeconomic variable, in forecasting home price growth in several

states. Ng & Moench (2010) perform a hierarchical factor model consisting of

regions and states to draw a linkage between housing and consumption.

An issue of factor models in forecasting local housing prices is that it cannot ex-

plicitly model cross-sectional correlation. For example, to predict the home price

appreciation (HPA) in Nevada, the 2-factor equation contains only a national fac-

tor component and a state-specific component. It does not include house prices

in California and Arizona, both of which can also provide predicting power. In

finer scales such as county and ZIP level, local effect can be more pronounced

and heterogeneous. For instance, suburbs are sensitive to price changes in city

centers, but not vise versa. In a sense, lags variables of other equations may con-

tribute additional predicting power even conditioning on national or aggregated

state factors.

Adding neighborhoods variables into regression equation results the problem

of high-dimensionality, and standard regression techniques often fail to estimate.

Let yi
t be the HPA in county i, an s-period ahead county-level forecast model

writes

yi
t+s =

p∑

j=1

bijy
j
t + Xtβi + εi

t+s, i = 1, . . . , p,

where Xt are observable factors, yj
t are the HPA of other counties, and bij and

βi are regression coefficients. Since p is large (around 1000 counties in US), such

model cannot be estimated by OLS simply because of not long enough time series.
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On the other hand, we expect that conditional on national factors, only a small

number of counties are useful for prediction, which gives rises to the notion of

sparsity. Penalized least-squares can be used to estimate bij and obtain sparse

solutions (and hence neighborhood selection) at the same time. A simple solution

is to minimize for each given target region i the following object:

min{bij ,j=1,...,N,βi}

T−s∑

t=1

(
yi

t+s −Xi
tβi −

N∑

j=1

bijy
j
t

)2
+ λ

N∑

j=1

wijpλ(|bij |),

where the weights wij are chosen according to the geographical distances between

counties i and j. Counties far away from the target county receive larger penalty,

and the lag variable of target county gets zero penalization and will be included

in the estimated equation. This choice of penalty reflects the intuition that if two

counties are far away, their correlation is more naturally explained by national

factors, which are already included in X.

We use monthly HPA data in 352 largest counties of US in terms of monthly

repeated sales from January 2000 to December 2009 to fit the model. The mea-

surements of HPAs are more reliable for those counties. As an illustration, the

market factor is chosen to be national HPA. Therefore it is a reduced-form fore-

casting model of county level HPA, taking national HPA forecast as an input.

Figure 1 shows how cross-county correlation is captured by a sparse VAR. The

top-left panel is the sample correlation of 352 HPA data series, showing heavy

spatial-correlation. Top-right panel depicts the residual correlation of an OLS

using only the national factor, without using neighboring HPAs. While spatial-

correlation is reduced significantly in the residuals, the national factor can not

fully capture the local dependence. The bottom left panel shows correlations

of residuals using penalized least-squares after considering neighborhood effects.

The residual correlations look essentially white noise, indicating that the national

HPA along with the neighborhood selection captures the cross-dependence of re-

gional HPAs. Bottom-right panel highlights the selected neighborhood variables.

For each county, only 3-4 neighboring counties are chosen on average. The model
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achieves both parsimony and in-sample estimation accuracy.
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Figure 1: Top left: Spatial-correlation of HPAs. Top right: Spatial-correlation of resid-
uals using only national HPA as the predictor. Bottom left: Spatial-correlation of resid-
uals with national HPA and neighborhood selection. Bottom right: Neighborhoods with
non-zero regression coefficients.

The sparse cross-sectional modeling translates into more forecasting power.

This is illustrated by an out-of-sample test. Periods 2000.1-2005.12 are now

used as training sample, and 2006.1-2009.12 are testing periods. We propose the

following scheme to carry out prediction throughout next 3 years. For the short-

term prediction horizons s from 1 to 6 months, each month is predicted separately

using a sparse VAR with only lag s variables. For moderate time horizon of 7-36

months, we forecast only the average HPA over 6 months, instead of individual

months, due to stability concerns. We use discounted aggregated squared error
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as a measure of overall performance for each county:

Forecast Errori =
τ∑

s=1

ρs(ŷi
T+s − yi

T+s)
2, ρ = 0.95.

The results shows that over 352 counties, the sparse VAR with neighborhood

information performs on average 30% better in terms of prediction error than

the model without using the neighborhood information. Details of improvements

are seen from the top panel of Figure 2. The bottom panel compares backtest

forecasts using OLS with only the national HPA (blue) and PLS with additional

neighborhood information (red) for the largest counties with the historical HPAs

(black).

2.4 Benchmark of Prediction Errors and Spurious Correlation

How good is a prediction method? The ideal prediction is to use the true model

and the residual variance σ2 provides a benchmark measure of prediction errors.

However, in high dimensional econometrics problems, as mentioned in Section

1.3, the spurious correlations among realized random variables are high and some

predictors can easily be selected to predict the realized noise vector. Therefore,

the residual variance can substantially underestimate σ2, since the realized noises

can be predicted well by these predictors. Specifically, let Ŝ and S0 be the sets

of selected and true variables, respectively. Fan et al. (2010) argued that the

variables in Ŝ ∩ Sc
0 are used to predict the realized noise. As a result, in the

linear model (2.1), the residual sum of squares substantially underestimates the

error variance. Thus it is important and necessary to screen variables that are

not truly related to the response and reduce their influences.

One effective way of handling spurious correlations and their influence is to use

the refitted cross-validation (RCV) proposed by Fan et al. (2010). The sample

is randomly split into two equal halves, and a variable selection procedure is

applied to both subsamples. For each subsample, a variance estimate is obtained

by regressing the response on the set of predictors selected based on the other
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Figure 2: Top: Forecast error comparison over 352 counties. For each dot, the x-axis
represents error by OLS with only national factor, y-axis error by PLS with additional
neighborhood information. If the dot lies below the 45 degree line, PLS outperforms
OLS. Bottom: Forecast comparison for the largest counties during test period. Blue:
OLS. Red: PLS. Black: Acutal. Thickness: Proportion to repeated sales.

subsample. The average of those two estimates gives a new variance estimate.

Specifically, let Ŝ1 be the selected variables using the first half of the data, then

refit the regression coefficients of variables in Ŝ1 using the second half data and
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compute the residual variance σ̂2
1. A similar estimate σ̂2

2 can be obtained and the

final estimate is simply σ̂2 = (σ̂2
1 + σ̂2

2)/2 or its weighted version using the degrees

of freedom in the computation of two residual variances. Fan et al. (2010) showed

that when the variable selection procedure has the sure screening property: S0 ⊂
Ŝ1∩ Ŝ2 (see Section 5.1 for more discussion), the resulting estimator can perform

as well as the oracle variance estimator, which knows S0 in advance. This is

because that the probability that a spurious predictor has high correlation with

the response in two independent samples is very small, and hence the spurious

predictors in the first stage have little influence on the second stage of refitting.

This idea of RCV can be applicable to the variance estimation and variable

selection in more general high dimensional sparse models.

As an illustration, we consider the benchmark one-step forecasting errors σ2

in San Francisco and Los Angeles, using the HPA data from January 1998 to

December 2005 (96 months). Figure 3 shows the estimates as a function of the

selected model size s. Clearly, the naive estimates of directly computing residual

variances decrease steadily with the selected model size s due to spurious corre-

lation, whereas the RCV gives reasonably stable estimates for a range of selected

models. The benchmark for both regions are about .53%, whereas the standard

deviations of month over month variations of HPAs are respectively 1.08% and

1.69% in San Francisco and Los Angeles areas. To see how penalized least-squares

method works in comparison with the benchmark, we compute rolling one-step

prediction errors over 12 months in 2006. The prediction errors are respectively

.67% and .86% for San Francisco and Los Angeles areas, respectively. They are

clearly larger than the benchmark as expected, but considerably smaller than the

standard deviations, which use no variables to forecast.

The penalized least-squares with SCAD penalty selects 7 predictors for both

areas. National HPA and 1-month lag HPA for each area are selected in both

equations. All other predictors are based in California, though the pool of regres-

sors contains all county-level areas in United States. In Los Angeles equation, for

example, other selected areas are: Ventura, Riverside-San Bernardino, Tuolumne,



24

5 10 15 20 25

0.
30

0.
40

0.
50

0.
60

(a) SF:naive method

model size, s = 2 to 25

es
tim

at
ed

 s
ta

nd
ar

d 
de

vi
at

io
n 

in
 %

5 10 15 20 25

0.
30

0.
40

0.
50

0.
60

(b) SF:RCV method

model size, s = 2 to 25

es
tim

at
ed

 s
ta

nd
ar

d 
de

vi
at

io
n 

in
 %

5 10 15 20 25

0.
30

0.
40

0.
50

0.
60

(c) LA:naive method

model size, s = 2 to 25

es
tim

at
ed

 s
ta

nd
ar

d 
de

vi
at

io
n 

in
 %

5 10 15 20 25

0.
30

0.
40

0.
50

0.
60

(d) LA:RCV method

model size, s = 2 to 25

es
tim

at
ed

 s
ta

nd
ar

d 
de

vi
at

io
n 

in
 %

Figure 3: Estimated standard deviation as a function of selected model size s in both
San Francisco (top panel) and Los Angeles (bottom panel) using both naive (left panel)
and RCV (right panel) methods.

Napa, and San Diego. Among them Ventura, Riverside-San Bernardino and San

Diego are southern California areas which are geographically adjacent/close to

Los Angeles. Other two areas lie in Bay area/inner northern CA and are likely

to be spurious predictors.

3 SPARSE MODELS IN FINANCE

In this section, we consider some further applications of PLS methods with focus

on sparse models in finance.
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3.1 Estimation of High-dimensional Volatility Matrix

Covariance matrix estimation is a fundamental problem in many areas of mul-

tivariate analysis. For example, an estimate of covariance matrix Σ is required

in financial risk assessment and longitudinal studies, whereas an inverse of the

covariance matrix, called the precision matrix Ω = Σ−1, is needed in optimal

portfolio selection, linear discriminant analysis, and graphical models. In partic-

ular, estimating a p × p covariance or precision matrix is very challenging when

the number of variables p is large compared with the number of observations

n as there are p(p + 1)/2 parameters in the covariance matrix that need to be

estimated. The traditional covariance matrix estimator, the sample covariance

matrix, is known to be unbiased and is invertible when p is no larger than n.

The sample covariance matrix is a natural candidate when p is small, but it no

longer performs well for moderate or large dimensionality (see, e.g., Lin & Perl-

man (1985) and Johnstone (2001)). Additional challenges arise when estimating

the precision matrix when n < p.

To deal with high dimensionality, two main directions have been taken in the

literature. One is to remedy the sample covariance matrix estimator using ap-

proaches such as eigen-method and shrinkage (see, e.g., Stein (1975) and Ledoit

& Wolf (2004)). The other one is to impose some structure such as the sparsity,

factor model, and autoregressive model on the data to reduce the dimensionality.

See, for example, Wong et al. (2003), Huang et al. (2006), Yuan & Lin (2007),

Bickel & Levina (2008a), Bickel & Levina (2008b), Fan et al. (2008), Bai & Ng

(2008), Levina et al. (2008), Rothman et al. (2008), Lam & Fan (2009), and Cai

et al. (2010). Various approaches have been taken to seek a balance between the

bias and variance of covariance matrix estimators (see, e.g., Dempster (1972),

Leonard & Hsu (1992), Chiu et al. (1996), Diggle & Verbyla (1998), Pourahmadi

(2000), Boik (2002), Smith & Kohn (2002), and Wu & Pourahmadi (2003)).

The PLS and penalized likelihood (see Section 4.1) can also be used to estimate

large scale covariances effectively and parsimoniously (see, e.g., Huang et al.

(2006), Li & Gui (2006), Yuan & Lin (2007), Levina et al. (2008), and Lam &
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Fan (2009)). Assuming the covariance matrix has some sparse parametrization,

the idea of variable selection can be used to select nonzero matrix parameters.

Lam & Fan (2009) gave a comprehensive treatment on the sparse covariance

matrix, sparse precision matrix, and sparse Cholesky decomposition.

The negative Gaussian pseudo-likelihood is

tr(SΩ)− log |Ω|, (3.1)

where S is the sample covariance matrix. Therefore, the sparsity of the precision

matrix can be explored by the penalized pseudo-likelihood

tr(SΩ)− log |Ω|+
∑

i6=j

pλ(|ωi,j |), (3.2)

penalizing only the off-diagonal elements ωi,j of the precision matrix Ω, since the

diagonal elements are non-sparse. This allows us to estimate the precision matrix

even when p > n. Similarly, the sparsity of the covariance matrix can be explored

by minimizing

tr(SΣ−1) + log |Σ|+
∑

i6=j

pλ(|σi,j |), (3.3)

again penalizing only the off-diagonal elements σi,j of the covariance matrix Σ.

Various algorithms have been developed for optimizing (3.2) and (3.3). See,

for example, Friedman et al. (2008) and Fan et al. (2009). A comprehensive

theoretical study of properties of these approaches has been given in Lam & Fan

(2009). They showed that the rates of convergence for these problems under the

Frobenius norm are of order (s log p/n)1/2, where s is the number of nonzero

elements. This demonstrates that the impact of dimensionality p is through a

logarithmic factor. Their also studied the sparsistency of the estimates, which

is a property that all zero parameters are estimated as zero with asymptotic

probability one, and showed that the L1 penalty is restrictive in that the number

of nonzero off-diagonal elements s′ = O(p), whereas for fold-concave penalties

such as SCAD and hard-thresholding penalty, there is no such a restriction.
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Sparse Cholesky decomposition can be explored similarly. Let w = (W1, · · · ,Wp)T

be a p-dimensional random vector with mean zero and covariance matrix Σ. Us-

ing the modified Cholesky decomposition, we have LΣLT = D, where L is a lower

triangular matrix having diagonal elements 1 and off-diagonal elements −φt,j in

the (t, j) entry for 1 ≤ j < t ≤ p, and D = diag{σ2
1, · · · , σ2

p} is a diagonal ma-

trix. Denote by e = Lw = (e1, · · · , ep)T . Since D is diagonal, e1, · · · , ep are

uncorrelated. Thus, for each 2 ≤ t ≤ p,

Wt =
t−1∑

j=1

φtjWj + et. (3.4)

This shows that the Wt is an autoregressive (AR) series, which gives an inter-

pretation for elements of matrices L and D and enables us to use the PLS for

covariance selection. Suppose that wi = (Wi1, · · · ,Wip)T , i = 1, · · · , n, is a ran-

dom sample from w. For t = 2, · · · , p, covariance selection can be accomplished

by solving the following PLS problems:

min
φtj





1
2n

n∑

i=1

(Wit −
t−1∑

j=1

φtjWij)2 +
t−1∑

j=1

pλt(|φtj |)


 . (3.5)

With estimated sparse L, the diagonal elements can be estimated by the sample

variance of the components of L̂wi. Hence, the sparsity of loadings in (3.4) is

explored.

When the covariance matrix Σ admits sparsity structure, other simple methods

can be exploited. Bickel & Levina (2008b) and El Karoui (2008) considered

the approach of directly applying entrywise hard thresholding on the sample

covariance matrix. The thresholded estimator has been shown to be consistent

under the operator norm, where the former considered the case of (log p)/n → 0

and the latter considered the case of p ∼ cn. The optimal rates of convergence

of such covariance matrix estimation were derived in Cai et al. (2010). Bickel

& Levina (2008a) studied the methods of banding the sample covariance matrix

and banding the inverse of the covariance via the Cholesky decomposition of
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the inverse for the estimation of Σ and Σ−1, respectively. These estimates have

been shown to be consistent under the operator norm for (log p)2/n → 0, and

explicit rates of convergence were obtained. Meinshausen & Bühlmann (2006)

proved that Lasso is consistent in neighborhood selection in high dimensional

Gaussian graphical models, where the sparsity in the inverse covariance matrix

Σ−1 amounts to the conditional independency between the variables.

3.2 Portfolio Selection

Markowitz (1952, 1959) laid down the seminal framework of mean-variance anal-

ysis. In practice, a simple implementation is to construct the mean-variance

efficient portfolio using sample means and sample covariances matrix. However,

due to accumulation of estimation errors, the theoretical optimal allocation vec-

tor can be very different from the estimated one, especially when the number

of assets under consideration is large. As a result, such portfolios often suffer

poor out-of-sample performance, although they are optimal in-sample. Recently

a number of works focus on improving the performance of Markowitz portfolio

using various regularization and stabilization techniques. Jagannathan & Ma

(2003) consider the minimum variance portfolio with no short sale constraints:

They show that such a constrained minimum variance portfolio outperforms the

global minimum variance portfolio in practice when unknown quantities are es-

timated. They try to explain the puzzle why no short-sale constraints help. To

bridge the no-short constraints on one extreme and no constraints on short sales

on the other extreme, Fan et al. (2008) introduce a gross-exposure parameter c

and examine the impact of c on the performance of the minimum portfolio. They

show that with gross-exposure constraint the empirically selected optimal port-

folios based on estimated covariance matrices have similar performance to the

theoretical optimal portfolios, and there is little error accumulation effect from

estimation of vast covariance matrices when c is modest.
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The portfolio optimization problem is

maxw wTΣw

s.t. wT1 = 1, ‖w‖1 ≤ c, Aw = a,

where Σ is the true covariance matrix. The side constraints Aw = a can be on the

expected returns of the portfolio, as in the Markowitz (1952, 1959) formulation.

They can also be the constraints on the allocations on sectors or industries, or

the constraints on the risk exposures to certain known risk factors. They make

the portfolio even more stable. Therefore, they can be removed from theoretical

studies. Let

R(w) = wTΣw and Rn(w) = wT Σ̂w

be the theoretical and empirical portfolio risk with allocation w, where Σ̂ is an

estimator of covariance matrix with sample size n. Let

wopt = argminwT1=1,‖w‖1≤cR(w) and ŵopt = argminwT1=1,‖w‖1≤cRn(w).

The following theorem shows the theoretical minimum risk R(wopt) (also called

the oracle risk), the actual risk R(ŵopt) and empirical risk Rn(ŵopt) are approxi-

mately the same for a moderate c and a reasonable covariance matrix estimator.

Theorem 1 Let an = ‖Σ̂−Σ‖∞. Then, we have

|R(ŵopt)−R(wopt)| ≤ 2anc2,

|R(ŵopt)−Rn(ŵopt)| ≤ anc2,

|R(wopt)−Rn(ŵopt)| ≤ anc2.

Theorem 1, due to Fan et al. (2008), gives the upper bounds on the approximation

errors of risks. The following result further controls an.

Theorem 2 Let σij and σ̂ij be the (i, j)th element of the matrices Σ and Σ̂,
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respectively. If for a sufficiently large x,

max
i,j

P{√n|σij − σ̂ij | > x} < exp(−Cx1/a)

for two positive constants a and C, then

‖Σ− Σ̂‖∞ = OP

(
(log p)a

√
n

)
. (3.6)

Fan et al. (2008) give further elementary conditions under which Theorem 2

holds. The connection between portfolio minimization with gross exposure con-

straint and L1 constrained regression problem enables fast statistical algorithms.

The paper uses least-angle regression, or LARS-LASSO algorithm to solve for op-

timal portfolio under various gross exposure limits c. When c = 1, it is equivalent

to no short sale constraint; as c increases the constraint becomes less stringent

and becomes the global minimum variance problem when c = ∞. Empirical stud-

ies find when c is around 2 the portfolio achieves best out of sample performance

in terms of variance and Sharpe ratio, when low-frequency daily data are used.

Another important feature of gross exposure constraint is that it yields sparse

portfolio selection, meaning that there are only a fraction of active positions, while

most other assets receive exactly zero position. This greatly reduces transaction

cost, research and tracking cost. This feature is also noted in Brodie et al.

(2009). DeMiguel et al. (2009) consider other norms to constrain portfolio;

Carrasco & Noumon (2010) propose generalized cross-validation to optimize the

regularization parameters.

3.3 Factor Models

In Section 3.1, we discussed large covariance matrix estimation via penalization

methods. In this section, we focus on a different approach of using a factor model,

which provides an effective way of sparse modeling. Consider the multi-factor

model

Yi = bi1f1 + · · ·+ biKfK + ε, i = 1, · · · , p, (3.7)
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where Yi is the excess return of the i-th asset over the risk-free asset, f1, · · · , fK

are the excess returns of K factors that influence the returns of the market, bij ’s

are unknown factor loadings, and ε1, · · · , εp are idiosyncratic noises that are un-

correlated with the factors. The factor models have been widely applied and

studied in economics and finance. See, e.g., Engle & Watson (1981), Chamber-

lain (1983), Chamberlain & Rothschild (1983), Bai (2003), and Stock & Watson

(2005). Famous examples include the Fama-French three-factor model and five-

factor model (Fama & French (1992, 1993)). Yet, the use of factor models on

volatility matrix estimation for portfolio allocation was poorly understood until

the work of Fan et al. (2008).

Thanks to the multi-factor model (3.7), if a few factors can completely cap-

ture the cross-sectional risks, the number of parameters in covariance matrix

estimation can be significantly reduced. For example, using the Fama-French

three-factor model, there are 4p instead of p(p + 1)/2 parameters. Despite the

popularity of factor models in the literature, the impact of dimensionality on the

estimation errors of covariance matrices and its applications to optimal portfolio

allocation and portfolio risk assessment were not well studied until recently. As is

now common in many applications, the number of variables p can be large com-

pared to the size n of available sample. It is also necessary to study the situation

where the number of factors K diverges, which makes the K-factor model (3.7)

better approximate the true underlying model as K grows. Thus, it is impor-

tant to study the factor model (3.7) in the asymptotic framework of p →∞ and

K →∞.

Rewrite the factor model (3.7) in matrix form

y = Bf + ε, (3.8)

where y = (Y1, · · · , Yp)T , B = (b1, · · · ,bp)T with bi = (bi1, · · · , biK)T , f =

(f1, · · · , fK)T , and ε = (ε1, · · · , εp)T . Denote by Σ = cov(y), X = (f1, · · · , fn),

and Y = (y1, · · · ,yn), where (f1,y1), · · · , (fn,yn) are n i.i.d. samples of (f,y).
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Fan et al. (2008) proposed a substitution estimator for Σ,

Σ̂ = B̂ĉov(f)B̂
T

+ Σ̂0, (3.9)

where B̂ = YXT (XXT )−1 is the matrix of estimated regression coefficients,

ĉov(f) is the sample covariance matrix of the factors f, and Σ̂0 = diag(n−1ÊÊ
T
)

is the diagonal matrix of n−1ÊÊ
T

with Ê = Y−B̂X the matrix of residuals. With

true factor structure, the substitution estimator Σ̂ is expected to perform better

than the sample covariance matrix estimator Σ̂sam. They derived the rates of

convergence of the factor-model based covariance matrix estimator Σ̂ and the

sample covariance matrix estimator Σ̂sam simultaneously under the Frobenius

norm ‖ · ‖ and a new norm ‖ · ‖Σ, where ‖A‖Σ = p−1/2
∥∥Σ−1/2AΣ−1/2

∥∥ for any

p× p matrix A. This new norm was introduced to better understand the factor

structure. In particular, they showed that Σ̂ has a faster convergence rate than

Σ̂sam under the new norm. The inverses of covariance matrices play an important

role in many applications such as optimal portfolio allocation. Fan et al. (2008)

also compared the convergence rates of Σ̂−1 and Σ̂−1
sam, which illustrates the

advantage of using the factor model. Furthermore, they investigated the impacts

of covariance matrix estimation on some applications such as optimal portfolio

allocation and portfolio risk assessment. They identified how large p and K can be

such that the error in the estimated covariance is negligible in those applications.

Explicit convergence rates of various portfolio variances were established.

In many applications, the factors are usually unknown to us. So it is important

to study the factor models with unknown factors for the purpose of covariance

matrix estimation. Constructing factors that influence the market itself is a high

dimensional variable selection problem with massive amount of trading data. One

can apply, e.g., the sparse principal component analysis (PCA) (see Johnstone &

Lu (2004) and Zou et al. (2006)) to construct the unobservable factors. It is also

practically important to consider dynamic factor models where the factor loadings

as well as the distributions of the factors evolve over time. The heterogeneity of

the observations is another important aspect that needs to be addressed.
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4 LIKELIHOOD BASED SPARSE MODELS

Sparse models arise frequently in the likelihood based models. Penalization meth-

ods provide an effective approach to explore the sparsity. This section gives a

brief overview on the recent development.

4.1 Penalized Likelihood

The ideas of the AIC (Akaike (1973, 1974)) and BIC (Schwartz (1978)) suggest

a common framework for model selection: choose a parameter vector β that

maximizes the penalized likelihood

`n(β)− λ‖β‖0, (4.1)

where `n(β) is the log-likelihood function and λ ≥ 0 is a regularization param-

eter. The computational difficulty of the combinatorial optimization in (4.1)

stimulated many continuous relaxations of the discontinuous L0 penalty, leading

to a generalized form of penalized likelihood

n−1`n(β)−
p∑

j=1

pλ(|βj |), (4.2)

where `n(β) is the log-likelihood function and pλ(·) is a penalty function indexed

by the regularization parameter λ ≥ 0 as in PLS (2.2). It produces sparse solution

when λ is sufficiently large.

It is nontrivial to maximize the penalized likelihood (4.2) when the penalty

function pλ is folded concave. In such case, it is also generally difficult to study the

global maximizer without the concavity of the objective function. As is common

in the literature, the main attention of theory and implementations has been on

local optimizers that have nice statistical properties. Many efficient algorithms

have been proposed for optimizing nonconcave penalized likelihood when pλ is a

folded concave function. Fan & Li (2001) introduce the LQA algorithm by using

the Newton-Raphson method and a quadratic approximation in (2.8) and Zou &
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Li (2008) propose the LLA algorithm by replacing the quadratic approximation

with a linear approximation in (2.9). See Section 2.2 for more detailed discussions

on those and other algorithms. Consider the SCAD as an example. The use of

the trivial zero initial value for LLA gives exactly the Lasso estimate. In this

sense, the folded-concave regularization methods such as SCAD and MCP can

be regarded as iteratively reweighted Lasso.

Coordinate optimization has gained much interest recently for implementing

regularization methods for high dimensional variable selection. It is fast to imple-

ment when the univariate optimization problem has an analytic solution, which

is the case for many commonly used penalty functions such as Lasso, SCAD,

and MCP. For example, Fan & Lv (2009) introduced the iterative coordinate

ascent (ICA) algorithm, a path-following coordinate optimization algorithm, for

maximizing the folded concave penalized likelihood (4.2) including PLS (2.2). It

maximizes one coordinate at a time with successive displacements for the penal-

ized likelihood (4.2) with regularization parameters λ in decreasing order. More

specifically, for each coordinate within each iteration, it uses the second order ap-

proximation of `n(β) at the current p-vector along that coordinate and maximizes

the univariate penalized quadratic approximation

max
θ∈R

{
−1

2
(z − θ)2 − Λpλ(|θ|)

}
, (4.3)

where Λ > 0. It updates each coordinate if the maximizer of the above univariate

penalized quadratic approximation makes the penalized likelihood (4.2) strictly

increasing. Thus the ICA algorithm enjoys the ascent property that the resulting

sequence of values of the penalized likelihood is increasing for a fixed λ. Fan &

Lv (2009) demonstrated that the coordinate optimization works equally well and

efficiently for producing the entire solution paths for concave penalties.

A natural question is what the sampling properties of penalized likelihood

estimation (4.2) are when the penalty function pλ is not necessarily convex. Fan

& Li (2001) studied the oracle properties of folded concave penalized likelihood

estimators in the finite-dimensional setting, and Fan & Peng (2004) generalized
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their results to the relatively high dimensional setting of p = o(n1/5) or o(n1/3).

Let β0 = (βT
1 ,βT

2 )T be the true regression coefficients vector with β1 and β2

the subvectors of nonsparse and sparse elements, respectively, and s = ‖β0‖0.

Denote by Σ = diag{p′′λ(|β1|)} and pλ(β1) = sgn(β1) ◦ p′λ(|β1|), where ◦ denotes

the the Hadamard (componentwise) product. Under some regularity conditions,

they showed that with probability tending to 1 as n →∞, there exists a (n/p)
1
2

consistent local maximizer β̂ = (β̂
T

1 , β̂
T

2 )T of (4.2) satisfying the following

a) (Sparsity) β̂2 = 0;

b) (Asymptotic normality)

√
nAnI

−1/2
1 (I1 + Σ)[β̂1 − β1 + (I1 + Σ)−1pλ(β1)]

D−→ N(0,G), (4.4)

where An is a q× s matrix with AnAT
n → G, a q× q symmetric positive definite

matrix, I1 = I(β1) is the Fisher information matrix knowing the true model

supp(β0), and β̂1 is a subvector of β̂ formed by components in supp(β0). In

particular, the SCAD estimator performs as well as the oracle estimator knowing

the true mode in advance, whereas the Lasso estimator generally does not since

the technical conditions are incompatible.

A long-lasting question in the literature is whether the penalized likelihood

methods possess the oracle property (Fan & Li (2001)) in ultra-high dimensions.

Fan & Lv (2009) recently addressed this problem in the context of generalized

linear models (GLMs) with NP-dimensionality: log p = O(na) for some a > 0.

With a canonical link, the conditional distribution of y given X belongs to the

canonical exponential family with the following density function

fn(y;X,β) ≡
n∏

i=1

f0(yi; θi) =
n∏

i=1

{
c(yi) exp

[
yiθi − b(θi)

φ

]}
, (4.5)

where β = (β1, · · · , βp)T is an unknown p-dimensional vector of regression coef-

ficients, {f0(y; θ) : θ ∈ R} is a family of distributions in the regular exponential

family with dispersion parameter φ ∈ (0,∞), and (θ1, · · · , θn)T = Xβ. Well-

known examples of GLMs include the linear, logistic, and Poisson regression
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models. They proved that under some regularity conditions, there exists a local

maximizer β̂ = (β̂
T

1 , β̂
T

2 )T of the penalized likelihood (4.2) such that β̂2 = 0 with

probability tending to 1 and ‖β̂−β0‖2 = OP (
√

sn−1/2), where β̂1 is a subvector

of β̂ formed by components in supp(β0) and s = ‖β0‖0. They also established

asymptotic normality and thus the oracle property. Their studies demonstrate

that the technical conditions are less restrictive for folded concave penalties such

as SCAD. A natural and important question is when the folded concave penalized

likelihood estimator is a global maximizer of the penalized likelihood (4.2). Fan

& Lv (2009) gave characterizations of such a property from two perspectives:

global optimality (for p ≤ n) and restricted global optimality (for p > n). In

addition, they showed that the SCAD penalized likelihood estimator can meet

the oracle estimator under some regularity conditions. Other work on penalized

likelihood methods includes Meier et al. (2008) and van de Geer (2008), among

many others.

4.2 Penalized Partial Likelihood

Credit risk is a topic that has been extensively studied in finance and economics

literature. Various models have been proposed for pricing and hedging credit

risky securities. See Jarrow (2009) for a review of credit risk models. Cox (1972,

1975) introduced the famous Cox’s proportional hazards model

h(t|x) = h0(t)ex
T β (4.6)

to accommodate the effect of covariates in which h(t|x)is the conditional hazard

rate at time t, h0(t) is the baseline hazard function, and β = (β1, · · · , βp) is a

p-dimensional regression coefficients vector. This model has been widely used in

survival analysis for modeling the time-to-event data, in which censoring occurs

because of the termination of the study. Such a model can naturally be applied

to model credit default. Lando (1998) first addressed the issue of default correla-

tion for pricing credit derivatives on baskets, e.g., collateralized debt obligation

(CDO), by using the Cox processes. The default correlations are induced via
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common state variables that drive the default intensities. See Section 4 of Jarrow

(2009) for more detailed discussions of the Cox model for credit default analysis.

Identifying important risk factors and quantifying their risk contributions are

crucial aims of survival analysis. Thus variable selection in the Cox model is an

important problem, particularly when the dimensionality of the feature space p

is large compared to sample size n. It is natural to extend the regularization

methods to the Cox model. Tibshirani (1997) introduced the Lasso method

(L1 penalization method) to this model. To overcome the bias issue of convex

penalties, Fan & Li (2002) extended the nonconcave penalized likelihood in Fan

& Li (2001) to the Cox model for variable selection. The idea is to use the

partial likelihood introduced by Cox (1975). Let t01 < t02 < · · · < t0N be N

ordered observed failure times (assuming no common failure times for simplicity).

Denote by x(k) the covariates vector of the subject with failure time t0k and

Rk = {i : yi ≥ t0k} the risk set right before time t0k. Fan & Li (2002) considered

the penalized partial likelihood

n−1
N∑

k=1

[
xT

(k)β − log
{ ∑

i∈Rk

exp(xT
i β)

}]
−

p∑

j=1

pλ(|βj |). (4.7)

They proved the oracle properties for folded concave penalized partial likelihood

estimator. Later, Zhang & Lu (2007) introduced the adaptive Lasso for Cox’s

proportional hazards model, and Zou (2008) proposed a path-based variable se-

lection method by using penalization with adaptive shrinkage (Zou (2006)) for

the same model, both of which papers have shown the asymptotic efficiency of

the methods.

5 SURE SCREENING METHODS

Ultra-high dimensional modeling is a more common task than before due to the

emergence of ultra-high dimensional data sets in many fields such as economics,

finance, genomics and health studies. Existing variable selection methods can be

computationally intensive and may not perform well — the conditions required
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for those methods are very stringent when the dimensionality is ultrahigh. How

to develop effective procedures and what are their statistical properties?

5.1 Sure Independence Screening

A natural idea for ultra-high dimensional modeling is applying a fast, reliable,

and efficient method to reduce the dimensionality p from a large or huge scale

(say, log p = O(na) for some a > 0) to a relatively large scale d (e.g., O(nb) for

some b > 0) so that well-developed variable selection techniques can be applied

to the reduced feature space. This powerful tool enables us to approach the

problem of variable selection in ultrahigh dimensional sparse modeling. The

issues of computational cost, statistical accuracy, and model interpretability will

be addressed when the variable screening procedures retain all the important

variables with asymptotic probability one, the so-called sure screening property

introduced in Fan & Lv (2008).

Fan & Lv (2008) recently proposed the sure independence screening (SIS)

methodology for reducing the computation in ultra-high dimensional sparse mod-

eling, which has been shown to possess the sure screening property. It also re-

duces the correlation requirements among predictors. The SIS uses independence

learning with the correlation ranking that ranks features by the magnitude of its

sample correlation with the response variable. More generally, the independence

screening means ranking features with marginal utility, i.e., each feature is treated

as an independent predictor for measuring its effectiveness for prediction. Inde-

pendence learning has been widely used in dealing with large-scale data sets. For

example, Dudoit et al. (2003), Storey & Tibshirani (2003), Fan & Ren (2006),

and Efron (2007) apply two-sample tests to select significant genes between the

treatment and control groups in microarray data analysis.

Assume that the n × p design matrix X has been standardized to have mean

zero and variance one for each column and let ω = (ω1, · · · , ωp)T = XTy be a

p-dimensional vector of componentwise regression estimator. For each dn, Fan &
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Lv (2008) defined the submodel consisting of selected predictors as

M̂d = {1 ≤ j ≤ p : |ωj | is among the first dn largest of all}. (5.1)

This reduces the dimensionality of the feature space from p À n to a (much)

smaller scale dn, which can be below n. This correlation learning screens vari-

ables that have weak marginal correlations with the response and retains variables

having stronger correlations with response. The correlation ranking amounts to

selecting features by two-sample t-test statistics in classification problems with

class labels Y = ±1 (see Fan & Fan (2008)). It is easy to see that SIS has compu-

tational complexity O(np) and thus is fast to implement. To better understand

the rationale of SIS (correlation learning), Fan & Lv (2008) also introduced an it-

eratively thresholded ridge regression screener (ITRRS), which is an extension of

the dimensionality reduction method SIS. ITRRS provides a very nice technical

tool for understanding the sure screening property of SIS and other methods.

To demonstrate the sure screening property of SIS, Fan & Lv (2008) provided

a set of regularity conditions. Denote by M∗ = {1 ≤ j ≤ p : βj 6= 0} the true

underlying sparse model and s = |M∗| the nonsparsity size. The other p−s noise

variables are allowed be correlated with the response through links to the true

predictors. Fan & Lv (2008) studied the ultra-high dimensional setting of p À n

with log p = O(na) for some a ∈ (0, 1 − 2κ) (see below for the definition of κ)

and Gaussian noise ε ∼ N(0, σ2). They assumed that var(Y ) = O(1), and that

λmax(Σ) = O(nτ ),

min
j∈M∗

|βj | ≥ cn−κ and min
j∈M∗

|cov(β−1
j Y, Xj)| ≥ c, (5.2)

in which Σ = cov(x), κ, τ ≥ 0, and c > 0 is a constant. One technical condition

is that the p-dimensional covariates vector x has an elliptical distribution and the

random matrix XΣ−1/2 has a concentration property, which they proved to hold

for Gaussian distributions. Under those regularity conditions, Fan & Lv (2008)

showed that as long as 2κ + τ < 1, there exists constant θ ∈ (2κ + τ, 1) such that
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when dn ∼ nθ, we have for some C > 0,

P (M∗ ⊂ M̂d) = 1−O(e−Cn1−2κ/ log n). (5.3)

This shows that SIS has the sure screening property even in ultra-high dimensions.

Such a property also entails the sparsity of the model: s ≤ dn. With SIS, we can

reduce exponentially growing dimensionality to a relatively large scale dn ¿ n,

while all the important variables are contained in the reduced model M̂d with a

significant probability.

The above results have been extended by Fan & Song (2010) to cover non-

Guassian covariates and/or non-Gaussian response. In the context of generalized

linear models, they showed that independence screening by using marginal likeli-

hood ratio or marginal regression coefficients possesses a sure screening property

with the selected model size explicitly controlled. In particular, they do not im-

pose elliptical symmetry of the distribution of covariates nor conditions on the

covariance Σ of covariates. The latter is a huge advantage over the penalized

likelihood method, which requires restrictive conditions on the covariates.

There are other related methods of marginal screening. Huang et al. (2008) in-

troduced marginal bridge regression, Hall & Miller (2009) proposed a generalized

correlation for feature ranking, and Fan et al. (2010) developed nonparametric

screening using B-spline basis. All of these need to choose a thresholding param-

eter. Zhao & Li (2010) proposed using an upper quantile of marginal utilities

for decoupled (via random permutation) responses and covariates, called PSIS,

to select the thresholding parameter in the context of the Cox proportional haz-

ards model. The idea is to randomly permute the covariates and response so

that they have no relation and then to compute the marginal utilities based on

the permuted data and to select the upper α quantile of the marginal utilities

as the thresholding parameter. The choice of α is related to the false selection

rate. A stringent screening procedure would take α = 0, namely, the maximum

of the marginal utilities for the randomly decoupled data. Hall et al. (2009) pre-

sented independence learning rules by tilting methods and empirical likelihood,
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and proposed a bootstrap method for assessing the accuracy of feature ranking

in classification.

5.2 A Two Scale Framework

When the dimensionality of the feature space is reduced to a moderate scale d

with a sure screening method such as SIS, the well-developed variable selection

techniques, e.g., the PLS and penalized likelihood methods, can be applied to

the reduced feature space. This provides a powerful tool of SIS based variable

selection methods for ultra-high dimensional variable selection. The sampling

properties of such methods can easily be derived by combining the theory of SIS

and those penalization methods. This suggests a two scale learning framework,

that is, large scale screening followed by moderate scale selection.

By its nature, the SIS only uses the marginal information of predictors without

looking at their joint behavior. Fan & Lv (2008) noticed three potential issues of

the simple SIS that can make the sure screening property fail to hold when the

technical assumptions are not satisfied. First, it may miss an important predictor

that is marginally uncorrelated or very weakly correlated but jointly correlated

with the response. Second, it may select some unimportant predictors that are

highly correlated with the important predictors and exclude important predictors

that are relatively weakly related to the response. Third, the issue of collinearity

among predictors is an intrinsic difficulty of the variable selection problem. To

address these issues, Fan & Lv (2008) proposed an iterative SIS (ISIS) which

iteratively applies the idea of large-scale screening and moderate-scale selection.

This idea was extended and improved by Fan et al. (2009) as follows.

Suppose that we wish to find a sparse β to minimize the objective

Qn(β) = n−1
n∑

i=1

L(Yi, β0 + XT
i β), (5.4)

where L is the loss function which can be the quadratic loss, robust loss, log-

likelihood, or quasi-likelihood. It is usually convex in β. The first step is to
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apply the marginal screening, using the marginal utilities

Lj = min
β0,βj

n−1
n∑

i=1

L(Yi, β0 + Xi,jβj) (5.5)

or the magnitude |β̂j | of the minimizer of (5.5) itself (assuming covariates are

standardized in this case) to rank the covariates. This results in the active set

A1. The thresholding parameter can be selected by using the permutation method

of Zhao & Li (2010) mentioned in Section 5.1. Now, apply a penalized likelihood

method

n−1
n∑

i=1

L(Yi, β0 + XT
i,A1

βA1
) +

∑

j∈A1

pλ(|βj |) (5.6)

to further select a subset of active variables, resulting in M1. The next step is

the conditional screening. Given the active set of covariates M1, what are the

conditional contributions of those variables that were not selected in the first

step? This leads to define the conditional marginal utilities:

Lj|M1
= min

β0,βM1
,βj

n−1
n∑

i=1

L(Yi, β0 + XT
i,M1

βM1
+ Xijβj). (5.7)

Note that for the quadratic loss, when βM1
is fixed at the minimizer from (5.6),

such method reduces to the residual based approach in Fan & Lv (2008). The

current approach avoids the generalization of the concept of residuals to other

complicated models and uses fully the conditional inference, but it involves more

intensive computation in the conditional screening. Recruit additional variables

by using the marginal utilities Lj|M1
or the magnitude of the minimizer (5.7).

This is again a large-scale screening step giving an active set A2 and the thresh-

olding parameter can be chosen by the permutation method. The next step is

then the moderate-scale selection. The potentially useful variables are now in the

set M1
⋃A2. Apply the penalized likelihood technique to the problem:

n∑

i=1

n−1L(Yi, β0 + XT
i,M1

βM1
+ XT

i,A2
βA2

) +
∑

j∈M1∪A2

pλ(|βj |). (5.8)

This results in the selected variables M2. Note that some variables selected in
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the previous step M1 can be deleted in this step. This is another improvement

of the original idea of Fan & Lv (2008). Iterate the conditional large-scale screen-

ing followed by the moderate-scale selection until M`−1 = M` or the maximum

number of iterations is reached. This takes account of the joint information of

predictors in the selection and avoids solving large scale optimization problems.

The success of such a two-scale method and its theoretial properties are docu-

mented in Fan & Lv (2008), Fan et al. (2009), Fan & Song (2010), Zhao & Li

(2010) and Fan et al. (2010)

6 CONCLUSIONS

We have briefly surveyed some recent developments of sparse high dimensional

modeling and discussed some applications in economics and finance. In particu-

lar, the recent developments in ultra-high dimensional variable selection can be

widely applicable to statistical analysis of large-scale economic and financial prob-

lems. Those sparse modeling problems deserve further studies both theoretically

and empirically. We have focused on regularization methods including penalized

least squares and penalized likelihood. The role of penalty functions and the im-

pact of dimensionality on high dimensional sparse modeling have been revealed

and discussed. Sure independent screening has been introduced to reduce the di-

mensionality and the problems of collinearity. It is a fundamental element of the

promising two-scale framework in ultrahigh dimensional econometrics modeling.

Sparse models are ideal and generally biased. Yet, they have been proved to

be very effective in many large-scale applications. The biases are typically small

since variables are selected from a large pool to best approximate the true model.

High dimensional statistical learning facilitates undoubtedly the understanding

and derivation of the often complex nature of statistical relationship among the

explanatory variables and the response. In particular, the key notion of sparsity

which helps reduce the intrinsic complexity at little cost of statistical efficiency

and computation provides powerful tools to explore relatively low-dimensional

structures among huge amount of candidate models. It expects to have huge
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impact on econometric theory and practice, from econometric modeling to fun-

damental understanding of economic problems. New novel modeling techniques

are needed to address the challenges in the frontiers of economics and finance,

and other social science problems.
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. Meinshausen N, Bühlmann P. 2006. High dimensional graphs and variable

selection with the LASSO. Ann. Statist. 34:1436–1462

. Ng S, Moench E. 2010. A factor analysis of housing market dynamics in the

U.S. and the regions. Econometric Journal. Forthcoming

. Osborne MR, Presnell B, Turlach BA. 2000. On the LASSO and its dual.

Journal of Computational and Graphical Statistics 9:319–337

. Pourahmadi M. 2000. Maximum likelihood estimation of generalized linear

models for multivariate normal covariance matrix. Biometrika 87:425–435

. Rapach DE, Strass JK. 2007. Forecasting real housing price growth in the

eighth district states. Regional Economic Development 3(2):33–42

. Ravikumar P, Lafferty J, Liu H, Wasserman L. 2009. Sparse additive models.

Jour. Roy. Statist. Soc. B 71(5):1009–1030

. Rosset S, Zhu J. 2007. Piecewise linear regularized solution paths. Ann.

Statist. 35:1012–1030

. Rothman AJ, Bickel PJ, Levina E, Zhu J. 2008. Sparse permutation invari-

ant covariance estimation. Electron. J. Stat. 2:494–515

. Schwartz G. 1978. Estimating the dimension of a model. Ann. Statist. 6:461–

464



52

. Sims CA. 1980. Macroeconomics and reality. Econometrica 48(1):1–48

. Smith M, Kohn R. 2002. Parsimonious covariance matrix estimation for

longitudinal data. J. Amer. Statist. Assoc. 97:1141–1153

. Stein C. 1975. Estimation of a covariance matrix. Rietz Lecture, 39th IMS

Annual Meeting, Atlanta, Georgia

. Stock JH, Watson MW. 2001. Vector autoregressions. The Journal of Eco-

nomic Perspectives 15(4):101–115

. Stock JH, Watson MW. 2005. Implications of dynamic factor models for

VAR analysis. NBER Working Paper No. W11467

. Stock JH, Watson MW. 2006. Forecasting with many predictors. In Hand-

book of Economic Forecasting (G. Elliott, C. Granger and A. Timmermann,

eds.), Chapter 10, 1:515–554

. Stock JH, Watson MW. 2008. The evolution of national and regional factors

in U.S. housing construction. Working Paper

. Storey JD, Tibshirani R. 2003. Statistical significance for genome-wide stud-

ies. Proc. Natl. Aca. Sci. 100:9440–9445

. Tibshirani R. 1996. Regression shrinkage and selection via the LASSO. J.

Roy. Statist. Soc. B 58:267–288

. Tibshirani R. 1997. The lasso method for variable selection in the Cox model.

Statistics in Medicine16:385–395

. van de Geer S. 2008. High-dimensional generalized linear models and the

LASSO. Ann. Statist. 36:614–645

. Wainwright MJ. 2006. Sharp thresholds for high-dimensional and noisy re-

covery of sparsity. Technical Report, Department of Statistics, UC Berkeley

. Wong F, Carter CK, Kohn R. 2003. Efficient estimation of covariance selec-

tion models. Biometrika 90:809–830

. Wu TT, Lange K. 2008. Coordinate descent algorithms for LASSO penalized

regression. Ann. Appl. Stat. 2:224–244

. Wu WB, Pourahmadi M. 2003. Nonparametric estimation of large covari-

ance matrices of longitudinal data. Biometrika 90:831–844



53

. Yuan M, Lin Y. 2006. Model selection and estimation in regression with

grouped variables. Jour. Roy. Statist. Soc. B 68:49–67

. Yuan M, Lin Y. 2007. Model selection and estimation in the Gaussian graph-

ical model. Biometrika 94:19–35

. Zhang CH. 2010. Nearly unbiased variable selection under minimax concave

penalty. Ann. Statist., 38(2):894-942

. Zhang HH, Lu W. 2007. Adaptive Lasso for Cox’s proportional hazards

model. Biometrika 94:691–703

. Zhao P, Yu B. 2006. On model selection consistency of LASSO. Journal of

Machine Learning Research 7:2541–2563

. Zhao SD, Li Y. 2010. Principled sure independence screening for Cox models

with ultra-high-dimensional covariates. Manuscript

. Zou H. 2006. The adaptive LASSO and its oracle properties. J. Amer.

Statist. Assoc. 101:1418–1429

. Zou H. 2008. A note on path-based variable selection in the penalized pro-

portional hazards model. Biometrika 95:241–247

. Zou H, Hastie T. 2005. Regularization and variable selection via the elastic

net. Jour. Roy. Statist. Soc. B 67:301–320

. Zou H, Hastie T, Tibshirani R. 2006. Sparse principal component analysis.

Journal of Computational and Graphical Statistics 15:265–286

. Zou H, Li R. 2008. One-step sparse estimates in nonconcave penalized like-

lihood models (with discussion). Ann. Statist. 36:1509–1566


