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Abstract: In an effort to capture the time variation on the instantaneous return and
volatility functions, a family of time-dependent diffusion processes is introduced to
model the term structure dynamics. This allows one to examine how the instanta-
neous return and price volatility change over time and price level. Nonparametric
techniques, based on kernel regression, are used to estimate the time-varying co-
efficient functions in the drift and diffusion. The newly proposed semiparametric
model includes most of the well-known short-term interest rate models, such as
those proposed by Cox, Ingersoll and Ross (1985) and Chan, Karolyi, Longstaff
and Sanders (1992). It can be used to test the goodness-of-fit of these famous
time-homogeneous short rate models. The newly proposed method complements
the time-homogeneous nonparametric estimation techniques of Stanton (1997) and
Fan and Yao (1998), and is shown through simulations to truly capture the het-
eroscedasticity and time-inhomogeneous structure in volatility. A family of new
statistics is introduced to test whether the time-homogeneous models adequately
fit interest rates for certain periods of the economy. We illustrate the new methods
by using weekly three-month treasury bill data.
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1. Introduction

The theory of pricing contingent claims is one of the most celebrated math-
ematical results in finance. It offers valuable practical guidance for asset valu-
ation and risk managements. An excellent introductory treatment of this is in
Hull (1997), and more rigorous accounts can be found in Merton (1992), Duffie
(1996), among others. The short-term riskless interest rates are fundamental and
important in financial markets. They are directly related to consumer spending,
corporate earnings, asset pricing, inflation and the overall economy. See Mishkin
(1997) for further discussions. Many useful short-rate models have been pro-
posed to explain term-structure dynamics and other issues in finance. See for
example Merton (1973), Vasicek (1977), Dothan (1978), Brennan and Schwartz
(1979, 1980), Cox, Ingersoll and Ross (1980, 1985), Constantinides and Ingersoll
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(1984), Schaefer and Schwartz (1984), Feldman (1989), Longstaff (1989), Hull
and White (1990), Black and Karasinski (1991), Longstaff and Schwartz (1992),
Chan, Karolyi, Longstaff and Sanders (1992), Hansen and Scheinkman (1995),
Andersen and Lund (1996), Gallant and Tauchen (1997, 1998), Gallant, Rossi
and Tauchen (1997), Aı̈t-Sahalia (1996a, 1996b), Stutzer (1996), Stanton (1997),
Aı̈t-Sahalia and Lo (1998), among others. These models provide useful insights
into the term structure dynamics.

Modern asset pricing theory allows one to value and hedge contingent claims,
once a model for the dynamics of an underlying state variable is given. Many such
models have been developed, such as the geometric Brownian motion (Black and
Scholes (1973)) and the interest-rate models mentioned in the last paragraph.
Most of these are simple and convenient time-homogeneous parametric models,
attempting to capture certain salient features of observed dynamic movements.
However, they are not fully derived from any economic theory and cannot be
expected to fit all financial data well. Thus, while the pricing theory gives us
spectacularly beautiful formulas when an underlying dynamic is correctly mod-
eled, it offers little guidance in choosing a correct model or validating a specific
parametric model. Hence there is a possibility that misspecification of a model
leads to erroneous valuation and hedging. This motivates us to consider a large
class of nonparametric and semiparametric models. An advantage of such mod-
els is that they reduce possible modeling biases and can be used to build and
validate a parametric model. This allows us to better explore the explanatory
power of parametric approaches by means of nonparametric validation methods.

Economic conditions change from time to time. Thus, it is reasonable to ex-
pect that the instantaneous expected return and volatility depend on both time
and price level for a given state variable, such as stock prices and bond yields. It
is difficult, however, to precisely describe how the bivariate functions for the ex-
pected return and volatility vary over time and price level. Restrictive functional
forms of expected return and volatility can create large biases for different assets
within certain period. The most flexible model is not to assume any specific
forms of the bivariate functions, but to let the data themselves determine appro-
priate forms that describe the dynamics. Such a data-analytic approach is called
nonparametric regression in the statistical literature. For an overview of non-
parametric methods, see recent books by Hastie and Tibshirani (1990), Härdle
(1990), Scott (1992), Green and Silverman (1995), Simonoff (1995) and Fan and
Gijbels (1996). However, as we explain in Section 2, there is not sufficient in-
formation to determine nonparametrically the bivariate functions. Hence, some
form of the instantaneous return and volatility functions should be imposed.

In an attempt to capture time variation on the instantaneous return and
price volatility, we expand the interest rate model of Chan et al. (1992) in two
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important aspects: we allow coefficients to change smoothly over time and we
permit a transform of the state variable to enter into the equation. This semipara-
metric model enables one to simultaneously capture the time effect and reduce
modeling bias. These functions in the semiparametric model can be estimated
with reasonable accuracy, because of the availability of data, such as the yields
of treasury bills and stock price indices over a long period. In other words, by
using semiparametric and nonparametric models, we reduce model bias without
excessively inflating the variance of the estimated functions.

The nonparametric techniques that we employ here are based on local con-
stant fit (which is for simplicity, one can also use the popular local linear fit or
local polynomial fit) with left-sided kernels. While the local linear fit has some
theoretical advantages (Fan and Gijbels (1996)), our experience shows that it can
create some artificial, statistically insignificant time trend. Compared with the
traditional two-sided kernel methods, the one-sided kernel allows one to estimate
a function, at any point in its support, using only historical observations. This
modification makes prediction much easier.

As in all nonparametric approaches, our techniques require selection of the
bandwidth. Popular methods include cross-validation (Stone (1974)), general-
ized cross-validation (Wahba (1977)), the pre-asymptotic substitution method
(Fan and Gijbels (1995)) and the plug-in method (Ruppert, Sheather and Wand
(1995)). Our bandwidth selection method is to minimize overall prediction errors,
thanks to the one-sided kernel methods which facilitate the prediction.

Our time-dependent semiparametric model contains most of the well-known
parametric models for interest rate dynamics. This allows us to test whether a
particular parametric model fits a given dataset, regarding the semiparametric
model as an alternative. Our testing procedure is based on a generalized pseudo-
likelihood ratio test. It is shown in Fan, Zhang and Zhang (2001) that this test
possesses a number of good statistical properties. In our current applications, a
bootstrap method is used to estimate the null distribution of the test statistic. We
apply the techniques to test various parametric models. Similar to the conclusions
of Chan et al. (1992) and Gallant, Long and Tauchen (1997), all these parametric
models have very small P -values and strong evidence for lack of fit.

2. Method of Estimation

In valuing contingent claims, it is frequently assumed that an underlying
state variable, Xt, satisfies a time-dependent continuous-time stochastic differ-
ential equation:

dXt = µ(t,Xt) dt + σ(t,Xt) dWt. (1)
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Here Wt denotes the standard Brownian motion and the bivariate functions
µ(t,Xt) and σ(t,Xt) are called the drift and diffusion of the process {Xt}, re-
spectively (Wong (1970) and Duffie (1996)). Note that

µ(t,Xt) = lim
∆→0

1
∆

E(Xt+∆−Xt|Xt), and σ2(t,Xt) = lim
∆→0

1
∆

E{(Xt+∆−Xt)2|Xt}.
(2)

Examples of (1) include geometric Brownian motion (GBM) for stock prices, and
the interest rate models of Merton (1970), Vasicek (VAS) (1977), Cox, Ingersoll
and Ross (CIR VR) (1980), Cox, Ingersoll and Ross (CIR SR) (1985), Chan
Karolyi, Longstaff and Sanders (CKLS) (1992), among others. Different models
postulate different forms of µ and σ, for instance,

GBM: dXt = µXt dt + σXt dWt,

VAS: dXt = (α0 + α1Xt) dt + σ dWt,

CIR VR: dXt = σXt
3/2 dWt,

CIR SR: dXt = (α0 + α1Xt) dt + σ
√

Xt dWt,

CKLS: dXt = (α0 + α1Xt) dt + σXγ
t dWt.

These time-homogeneous models are a specific family of the nonparametric mod-
els,

dXt = µ(Xt) dt + σ(Xt) dWt, (3)

studied by Stanton (1997), Fan and Yao (1998) and Chapman and Pearson
(2000), where the functional forms of µ and σ are unspecified.

2.1. Time-dependent diffusion models

It is reasonable to expect that the instantaneous return and volatility slowly
evolve with time. Time-homogeneous models, while useful, are not capable of
capturing this kind of feature. In fact, it is common practice to apply parametric
models to a window of time series (e.g., in 1999, one uses only data between 1995
and 1999 to estimate parameters in the model), and this window of series moves
as time evolves (e.g., in 2002, one would now use the data between 1998 and
2002 to estimate parameters). The resulting estimates are time-dependent. This
in essence utilizes time-dependent parametric techniques with a prescribed time
window. Various efforts have been made to explicitly express the dependence
of parameters on time. These include the time-dependent models of Ho and
Lee (HL) (1986), Hull and White (HW) (1990), Black, Derman and Toy (BDT)
(1990) and Black and Karasinski (BK) (1991). They assume, respectively, the
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following forms:

HL: dXt = µ(t) dt + σ(t) dWt,

HW: dXt = {α0(t) + α1(t)Xt} dt + σ(t)Xt
i dWt, i = 0 or 0.5,

BDT: dXt = {α1(t)Xt + α2(t)Xt log(Xt)} dt + β0(t)Xt dWt,

BK: dXt = {α1(t)Xt + α2(t)Xt log(Xt)} dt + β0(t)Xt dWt,

where α2(t) =
d log{β0(t)}

dt
.

These forms are specific examples of the following time-dependent model:

dXt = {α0(t) + α1(t)g(Xt)} dt + β0(t)h(Xt)β1(t) dWt, (4)

for some functions α0, α1, g, β0, β1 and h whose forms are not specified. (The
BDT and BK models can be included in (4) if one uses the transformed variable
X∗

t = log(Xt).) Indeed, the time-inhomogeneous nonparametric model (4) in-
cludes all of the time-homogeneous and time-inhomogeneous models mentioned
above. For example, the nonparametric model of Stanton (1997) corresponds
to (4) with α0(t) = 0, α1(t) = 1, β0(t) = 1 and β1(t) = 1. Model (4) also
allows one to check whether a particular model is valid or not, via either formal
statistical tests or visual comparisons between parametric and nonparametric
fits. It reduces degrees of danger on model misspecification and permits one to
choose a parametric model from nonparametric analyses. This provides a useful
integration of parametric and nonparametric approaches.

One notable distinction between the models at (1) and (4) is the estimability
of the parameters in the expected return and volatility. The widest possible one-
factor model is the one with the forms of the drift and diffusion in (1) completely
unspecified. However, the drift and diffusion functions are then inestimable,
since only a trajectory in the time and state domains is observed. In contrast,
the expected return and the volatility functions in the nonparametric model (4)
are estimable.

A useful class of (4) specifies the functions g and h. An example of this is

dXt = {α0(t) + α1(t)Xt} dt + β0(t)X
β1(t)
t dWt. (5)

This submodel is an extension of the CKLS model that allows the coefficients
to depend arbitrarily on time. It includes all of the aforementioned parametric
models, in both time-homogeneous and time-dependent settings. One can also
specify other forms of g and h, and our techniques continue to apply. Thus,
this paper concentrates mainly on model (5). An interesting probabilistic ques-
tion is the conditions under which model (5) is arbitrage-free. Sandmann and
Sondermann (1997) have studied some aspect of this issue.
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A further restriction of (5) is to assume that β1(t) = β1 is time-independent.
While this imposes certain restrictions, it avoids some collinearity problems in
estimating β0(t) and β1(t). The parameter β1 and the coefficient function β0(t)
in this parsimonious model can be estimated more reliably. We discuss this issue
in Section 6 after we have introduced some necessary tools.

2.2. Estimation of instantaneous return

Assume that the coefficient functions in model (5) are twice continuously
differentiable and we are given the data {Xti , i = 1, . . . , n+1} sampled at discrete
time points, t1 < · · · < tn+1. In many applications, the time points are equally
spaced. For example, when the time unit is a year, weekly data are sampled
at ti = t0 + i/52, i = 1, . . . , n + 1, for a given initial time point t0. Let Yti =
Xti+1 −Xti , Zti = Wti+1 −Wti , and ∆i = ti+1− ti. According to the independent
increment property of Brownian motion, the Zti are independent and normally
distributed with mean zero and variance ∆i. Thus the discretized version of (5)
can be expressed as

Yti ≈ {α0(ti) + α1(ti)Xti}∆i + β0(ti)X
β1(ti)
ti

√
∆i εti , i = 1, . . . , n, (6)

where {εti}n
i=1 are independent and standard normal. As pointed out in Chan

et al. (1992) and demonstrated by Stanton (1997), the discretized approximation
error to the continuous-time model is of second order when the data are observed
over a short time period. See also the recent work of Aı̈t-Sahalia (1999, 2002).
Indeed, according to Stanton (1997), as long as data are sampled monthly or
more frequently, the errors introduced by using approximations rather than the
true drift and diffusion are extremely small when compared with the likely size of
estimation errors. Higher order differences, such as those elaborated by Stanton
(1997), are also possible. While higher order approximations lead to lower order
approximation errors, they significantly increase the variance of nonparametric
estimators (Fan and Zhang (2003)). An asymptotic analysis in Fan and Zhang
(2003) shows that, in the time-homogeneous nonparametric model studied by
Stanton (1997), the variance inflation factors for estimating the instantaneous
return (denoted by V1(k)) and squared volatility (denoted by V2(k)) using k-th
order differences are very substantial. Details are excerpted in Table 1. This
makes higher order approximations less attractive. Thus, for simplicity and for
variance reduction, we opt for the first order difference.

Recall that the forms of the functions α0(t) and α1(t) are not specified. We
can only use their qualitative features: the functions are smooth so that they can
be locally approximated by a constant. That is, at a given time point t0, we use
the approximation αi(t) ≈ αi(t0), i = 0, 1, for t in a small neighborhood of t0. Let
h denote the size of the neighborhood and K be a nonnegative weight function.
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These are called a bandwidth parameter and a kernel function, respectively.
Following the local regression technique (see Fan and Gijbels (1996)), we can
find estimates of αi(t0), i = 0, 1, via the following (locally) weighted least-squares
criterion: Minimize

n∑

i=1

[
Yti

∆i
− a − bXti

]2

Kh(ti − t0) (7)

with respect to parameters a and b, where Kh(·) = K(·/h)/h. Note that when K
has a one-sided support, such as [−1, 0), for example the one-sided Epanechnikov
kernel 3/4(1 − t2)I(t < 0) (see Epanechnikov (1969)), the above local constant
regression only uses the data observed in the time interval [t0 − h, t0). This
amounts to using only historical data and is useful for forecasting. It also facil-
itates data-driven bandwidth selection. Our experience shows that there is not
significant difference between nonparametric fitting with one-sided and two-sided
kernels.

Table 1. Variance inflation factors in using higher order differences (from
Fan and Zhang (2003)).

Order k 1 2 3 4 5 6 7 8 9 10

V1(k) 1.00 2.50 4.83 9.25 18.95 42.68 105.49 281.65 798.01 2364.63
V2(k) 1.00 3.00 8.00 21.66 61.50 183.40 570.66 1837.28 6076.25 20527.22

Let â and b̂ be the minimizers of the weighted least-squares regression (7).
Then, the local estimators of α0(t0) and α1(t0) are α̂0(t0) = â and α̂1(t0) = b̂. To
obtain the estimated functions, α̂0(·) and α̂1(·), we usually evaluate the estimates
at hundreds of grid points. Note that we have ignored the heteroscedasticity at
(7). In principle, we can incorporate heteroscedasticity via minimizing

n∑

i=1

[
Yti

∆i
− a − bXti

]2

β̂−2
0 (ti)X

−2β̂1(ti)
ti Kh(ti − t0), (8)

where β̂0 and β̂1 are obtained from the procedure described in the next section.
However, we do not experience any substantial gains, due to the large stochastic
noise contaminating the expected return function.

2.3. Estimation of volatility

Let µ̂(t,Xt) = α̂0(t) + α̂1(t)Xt stand for the estimated mean function and
set Êt = {Yt − µ̂(t,Xt)∆t}/

√
∆t. Then, by (6), we have

Êt ≈ β0(t)X
β1(t)
t εt. (9)
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Note that this approximation also holds when Êt is replaced by Yt/
√
∆t, as

pointed out by Stanton (1997). However, with Et = {Yt − µ(Xt, t)∆t}/
√
∆t,

the approximation error is of smaller order. The conditional log-likelihood of Êt

given Xt is, up to an additive constant, approximately expressed as

−1
2

log{β2
0(t)X2β1(t)

t }− Ê2
t

2β2
0(t)X2β1(t)

t

.

Summing it up with respect to t, we obtain the logarithm of the pseudo-likelihood.
By using the local constant approximation and introducing the kernel weight we
obtain, at a time point t0, the local pseudo-likelihood

%(β0,β1; t0) = −1
2

n∑

i=1

Kh(ti − t0)
(

log(β2
0X2β1

ti ) +
Ê2

ti

β2
0X2β1

ti

)

. (10)

Maximizing (10) with respect to the local parameters β0 and β1, we obtain the
estimates β̂0(t0) = β̂0, and β̂1(t0) = β̂1. The whole functions β0(·) and β1(·)
can be estimated by repeatedly maximizing (10) over a grid of time points. This
type of local pseudo-likelihood method is related to the generalized method of
moments of Hansen (1982), but is used now in a local neighborhood. See also
Florens-Zmirou (1993) and Genon-Catalot and Jacod (1993).

Note that for given β1, the maximization of %(β0,β1; t0) is obtained at

β̂2
0(t0;β1) =

n∑

i=1

Kh(ti − t0)Ê2
ti |Xti |−2β1

/ n∑

i=1

Kh(ti − t0). (11)

Thus, at a point t0, we only need to maximize the one-dimensional function
%(β̂0(t0;β1), β1; t0) with respect to β1. The whole function β1(t) can be obtained
by repeatedly optimizing this one-dimensional function at a grid of time points.
Using the estimate β̂1(tj) as the initial value for maximizing the target function at
the next grid point tj+1, the maximizer can be found within only a few iterations.
Thus the computational burden is not much heavier than that for estimating the
drift function. The estimated function β̂0(t) can be obtained by using (11) at
each grid point.

An alternative approach is to use the local least-squares method by noting
that (9) implies

log(Ê2
t ) ≈ log{β2

0(t)} + β1(t) log(X2
t ) + log(ε2t ). (12)

This is again a semi-parametric model and the method in Section 2.2 for estimat-
ing the drift function can be applied to estimate the parameters log{β2

0(t)} and
β1(t). We implemented this method but did not get satisfactory results. This
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is mainly due to the exponentiation operation used in the estimation of β2
0(t),

which inflates (deflates) the estimate substantially.
The time-dependent model (5) is also related to a GARCH(1,1) model. To

see this relation, take β1 ≡ 0, so that (5) becomes dXt = {α0(t) + α1(t)Xt} dt +
β0(t) dWt, and (11) reduces to β̂2

0 =
∑n

i=1 Kh(ti − t0)Ê2
ti/

∑n
i=1 Kh(ti − t0). As-

sume ti = ∆i and let ri = Êti , i = 1, . . . , n. To stress the dependency of β̂0 on
the time point t0, we write it as σ̂t0 . If we take K(x) = axI(x < 0) for some
parameter a > 1, then Kh(x) = bxI(x < 0)/h with b = a1/h, which is greater
than 1. Consequently, it follows that σ̂2

t =
∑

i>0 λ
ir2

t−i/
∑

i>0 λ
i, where λ = b−∆.

Note that σ̂2
t = λσ̂2

t−1 +(1−λ)r2
t . This is indeed the J. P. Morgan (1996) estima-

tor for volatility. This estimator can be regarded as the one from a GARCH(1,1)
model. In other words, our time-dependent model and the GARCH(1,1) model
have some intrinsic connections: both of them use the volatility in the recent
history.

2.4. Bandwidth selection

The bandwidth h in the kernel regression can be tuned to optimize the perfor-
mance of the estimated functions. It can be subjectively tuned by users to trade
off the bias and variance of the nonparametric estimates by visual inspection, or
chosen by data to minimize some criteria that are related to the prediction error.

The criteria that we proposed here take advantage of the fact that the one-
sided kernel is employed so that only historical data are used in the construc-
tion of estimators. The bandwidth for the expected instantaneous return can
be chosen to minimize the average prediction error (APE) as a function of the
bandwidth:

APE = m−1
m∑

i=1

(Yt∗i
− Ŷt∗i

)2

σ2
t∗i

,

with Ŷt∗i
= {α̂0(t∗i ) + α̂1(t∗i )Xt∗i

}∆t∗i
and σt∗i

= β̂0(t∗i )X
β̂1(t∗i )
t∗i

. In the above def-
inition, the prediction errors are computed at the prescribed time points t∗i ,
i = 1, . . . ,m. This kind of idea has also been used by Hart (1994, 1996).

For estimation of the volatility, since the local pseudo-likelihood is used to
construct nonparametric estimators, the bandwidth will be chosen to maximize
the pseudo-likelihood of Êt given Xt. More specifically, for a given bandwidth h,
the pseudo-likelihood function is defined as

−1
2

m∑

i=1



log{β̂2
0(t∗i )X

2β̂1(t∗i )
t∗i

} +
Ê2

t∗i

β̂2
0(t∗i )X

2β̂1(t∗i )
t∗i



 .



974 JIANQING FAN, JIANCHENG JIANG, CHUNMING ZHANG AND ZHENWEI ZHOU

2.5. Standard errors

Standard errors of statistical estimators are useful for assessing accuracy.
The kernel regression estimators in (7) and (8) are actually weighted least-
squares estimators. Thus, traditional linear regression techniques continue to
apply. When the data are independent, the formulas for standard errors of the
local linear estimators are given on page 115 of Fan and Gijbels (1996). For
dependent data, we can use the regression bootstrap (see Franke, Kreiss and
Mammen (2002)) to assess the sampling variability. The idea is to generate the
bootstrap responses {Y ∗

ti} from (6), using the estimated parameter functions and
{Xti}, but with the new random shocks {ε∗ti}. Based on the bootstrap sample
{(Xti , Y

∗
ti ), i = 1, . . . , n}, the coefficient functions are estimated and sampling

variability can be evaluated. In our simulations, the bootstrap confidence inter-
vals are calculated based on 1,000 bootstrap samples.

3. Applications and Simulations

In this section, we first apply our proposed techniques to the treasury bill
data. After that, we verify our techniques by using two simulated data sets,
which are similar to short-rate dynamics.

3.1. Treasury bill data

To understand interest rate dynamics, we use the yields of the three-month
treasury bill from the secondary market rates on Fridays. The secondary market
rates are annualized using a 360-day year of bank interest and are quoted on a
discount basis. The data consist of 1461 weekly observations, from January 2,
1970 to December 26, 1997.

The annualized three-month yields and their weekly rate changes are pre-
sented in Figure 1. Figure 2 shows the estimated coefficient functions α0(t),
α1(t), β0(t) and β1(t) along with the 95% pointwise confidence bands produced
by the bootstrap method. Figure 3 describes how the expected instantaneous
return and volatility change over time, and also displays their 95% pointwise
confidence bands. The bandwidths are selected by the methods described in
Section 2.4. The heteroscedasticity and time effect on volatility are evident. A
careful inspection of Figure 2 suggests a time effect after 1980, but not before.
This is probably due to the fact that the Federal Reserve changed its monetary
policy on October 6, 1979 when its newly appointed chairman, Paul Volcker,
initiated money supply targeting and abandoned interest rate targeting.
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Figure 1. Three month treasury Bill rate, from January 2, 1970 to December
26, 1997. Annualized yield on three-month treasury bills, January 2, 1970
to December 26, 1997. Top panel: Weekly yields. Bottom panel: Changes
of weekly yields.

Figure 2. Three month treasury Bill rate. (a) Estimated α0(t) with 95%
bootstrap confidence band. (b) Estimated α1(t) with 95% bootstrap confi-
dence band. (c) Estimated β0(t) with 95% bootstrap confidence band. (d)
Estimated β1(t) with 95% bootstrap confidence band. Solid – estimator,
dotted – confidence band.
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Figure 3. Three month treasury Bill rate. (a) Estimated drift with 95%
bootstrap confidence band. (b) Estimated volatility with 95% bootstrap
confidence band. Solid – estimator, dotted – confidence band.

3.2. Verification of the proposed techniques

We now test our techniques by simulating two data sets from specific models
of (5). The first one is the time-homogeneous model

dXt = (0.0408 − 0.5921Xt) dt +
√

1.6704 X1.4999
t dWt. (13)

The values of the parameters are given in Chan et al. (1992), based on one-month
treasury bill yields. We generate 1,735 weekly observationsn from January 5, 1962
to March 31, 1995. Based on 400 simulations, we get the estimators of α0(ti),
α1(ti), β0(ti) and β1(ti). Figure 4 reports the pointwise 2.5th, 12.5th, 87.5th
and 97.5th sample percentiles. Figure 5 gives the typical estimated drift and
volatility of the rate change, where the typical estimated curves presented have
median performance in terms of mean squared errors among 400 simulations.
We can see that even for the time-independent CKLS model, our techniques can
capture the true structure of the model without “false alarms”, namely, reporting
time-homogeneous models correctly to be time-homogeneous models.

Next, we test our methodology on a time-inhomogeneous model. For sim-
plicity we consider model (5) with drift zero, and assume that the coefficient
functions for volatility contain nonlinear trends as depicted in Figure 7 (see the
solid lines). In order to visually display characteristics of this artificial model,
we present in Figure 6 a simulated sample path consisting of 780 weekly obser-
vations from the model. Figure 7 displays the fitted coefficient functions for the
data set. In 400 simulations, each containing 780 observations from the model,
we compute the nonparametric estimators of the coefficient for each sample.
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Figure 4. Envelopes formed via pointwise 2.5th, 12.5th, 87.5th and 97.5th
sample percentiles among 400 simulations of model (13). Solid – true curve,
dash-dotted – 75% envelopes, dotted – 95% envelopes. (a) α0(t). (b) α1(t).
(c) β0(t). (d) β1(t).

Figure 5. Typical estimated drift and volatility of the rate change among
400 simulations for model (13). Solid – true, dashed – our estimators.
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Figure 6. A simulated data set from model (5) with drift zero and time-
inhomogeneous volatility with coefficient functions given in Figure 7.

Figure 7. Estimated coefficient functions for the simulated data set in Figure
6. Solid – true curves, dashed – our estimators.

Figure 8 summarizes the simulation results by plotting the pointwise 5th, 12.5th,
87.5th and 95th percentiles among 400 simulations. Clearly our time-inhomogeneous
model (5) does well at capturing the time effect in volatility.
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Figure 8. Envelopes for volatility formed via pointwise 5th, 12.5th, 87.5th,
and 95th sample percentiles among 400 simulations for model (5). Solid –
the true, dash-dotted – 75% envelopes, dotted – 90% envelopes.

3.3. Empirical comparisons

In order to gauge the relative performance among several models, we test
their forecasting power for the interest rate changes considered in Section 3.1. In
addition, we test their forecasting power for the squared interest rate changes and
for the logarithm of the squared interest rate changes (the logarithm transforms
the multiplicative model into the additive model as in (12)). This provides sim-
ple measures of how well each interest rate model captures the expected return
and volatility. The predictive powers are measured by the correlation coeffi-
cient between the rate changes and their conditional expected return, and the
correlation coefficient between the squared rate changes and their conditional
expected volatility. Denote by ρ1 and ρ2 the two correlations, respectively. They
are related to the coefficient of determination R2 used in Chan et al. (1992) via
the simple relation R2 = ρ2. We also denote by ρ∗2 the correlation coefficient be-
tween the logarithm of the squared interest rate changes and the logarithm of the
conditional expected volatility. These correlation coefficients provide alternative
measures for model comparisons.

Table 2. Correlation coefficients.
Models Stanton CKLS CIR SR CIR VR VAS GBM Model (5) Model (4)
ρ1 0.1005 0.0479 0.0479 0.0479 0.0479 0.0479 0.0726 0.1018
ρ2 0.3181 0.3801 0.3411 0.3840 0.0000 0.3656 0.4057 0.3229
ρ∗2 0.3012 0.2723 0.2321 0.2723 0.0000 0.2370 0.3215 0.3213
Model (4) with both g(·) and h(·) taken as the estimate from Stanton’s model.
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The results are presented in Table 2. It is evident that, from measures ρ2 and
ρ∗2, our time-dependent model (5) does a better job of capturing the short-rate
volatility than its time-homogeneous counterpart, the CKLS model. In light of
ρ1, the measure of predictive power for the drift, model (4) performs the best,
followed by Stanton’s model and our model (5). The overall performance of our
nonparametric model (5) is the best among all competing models.

4. Goodness-of-Fit Test

There are a number of stimulating interest rate models that capture different
aspects of the term structure dynamics. A question arises naturally: are these
models statistically different? That is, given the amount of information in the
data, are they distinguishable? Here, we take the advantage of the fact that
the time-dependent model (5) includes most of the popular parametric models
for interest rates, therefore it can be treated as the alternative hypothesis. For
example, we may wish to test whether the coefficient functions depend on time.
This amounts to testing H0 : α0(t) = α0, α1(t) = α1, β0(t) = β0, β1(t) = β1

under model (5). One can also test whether the interest rate data follows the
CIR model by checking H0 : α0(t) = α0, α1(t) = α1, β0(t) = β0, β1(t) = 0.5
in model (5). Assessing the adequacy of the geometric Brownian motion can be
formulated in a similar manner.

4.1. Generalized pseudo-likelihood ratio test

Due to large stochastic errors in the estimation of the instantaneous return
functions, most reasonable models for the drift function will be accepted. For this
reason, we focus on testing the functional forms of the volatility function, though
the technique applies to problems of testing the instantaneous return function.

For brevity, we outline a procedure for testing the CKLS model against the
time-dependent model (5). The technique applies equally to testing other forms
of parametric models. Consider testing H0 : β0(t) = β0, β1(t) = β1. Under model
(5), the logarithm of the pseudo-likelihood is represented by

%(H) = −1
2

n∑

i=1



log{β̂2
0(ti)X

2β̂1(ti)
ti } +

Ê2
ti

β̂2
0(ti)X

2β̂1(ti)
ti



 ,

where β̂0(ti) and β̂1(ti) are the kernel estimates outlined in Section 2.3. Similarly,
under the hypothesis, one can estimate the parameters β0 and β1 by maximizing
the corresponding pseudo-likelihood to obtain

%(H0) = −1
2

n∑

i=1



log(β̂2
0X2β̂1

ti ) +
Ê2

ti

β̂2
0X2β̂1
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The plausibility of the hypotheses can then be evaluated by

λ(X, h) = 2{%(H) − %(H0)}, (14)

where X denotes the observed data and h is the bandwidth used for the non-
parametric estimates. The null hypothesis is rejected when λ(X, h) is too large.

To compute the P -value of the test statistic, we need to find the distribution
of λ(X, h) under the hypothesis. The analytic form of the distribution is hard to
find, but the distribution can be estimated by the parametric bootstrap (simu-
lation) procedure. Under the hypothesis, the observed data are generated from
the model

dXt = {α0(t) + α1(t)Xt} dt + β0X
β1
t dWt. (15)

Set the parameters (β0,β1) at their estimated values (β̂0, β̂1), and set the func-
tions α0(t) and α1(t) at their estimated values or even at the global least-squares
estimates α̂0 and α̂1, because of their insignificant influence. Simulate a pseudo-
sample path {X∗

ti , i = 1, . . . , n + 1} from (15), and obtain the test statistic
λ(X∗, h). Repeating this procedure 1000 times (say), we obtain 1000 statis-
tics of λ(X∗, h). The estimated P -value of the test statistic λ(X, h) is simply the
percentage of the simulated statistics {λ(X∗, h)} exceeding the observed value of
λ(X, h).

The theoretical justification of the above parametric bootstrap method is
the so-called Wilks phenomenon (Fan, Zhang and Zhang (2001)). There it is
shown that, in somewhat different settings, the asymptotic null distribution of
the generalized likelihood ratio statistic often does not depend on, to first order,
the nuisance parameters under the null hypothesis. Translating this property
into our setting, the null distribution of λ(X, h) does not depend heavily on the
values of α0(t), α1(t), β0 or β1. Setting them at reasonable estimates, such as
those suggested above, the distribution of λ(X, h) is known and can be simulated.

The above technique applies readily to other hypothesis testing problems.
For example, to test the CIR model with β1 = 1/2, one can compute the pseudo-
likelihood under the null hypothesis using the known value β1 = 1/2. In the
bootstrap estimation of the null distribution, the value β1 = 1/2 should also be
used directly.

4.2. Power simulation

The purposes of the simulation are two-fold. One is to demonstrate that
our bootstrap method gives the right estimate of the null distribution, and the
other is to show the power of our proposed test. For simplicity, we only consider
the simulations for the volatility part. We use the models that are relevant to
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the term structure dynamics. The CKLS model is taken as the null hypothesis.
Power is evaluated at a sequence of alternatives, ranging from the CKLS model to
reasonably far away from it. Let αi(t) and βi(t), i = 0, 1, be the known functions
defined as in Figure 2 (see the solid lines). Let β̄i be the corresponding estimators
of the functions βi(t), i = 0, 1, under the null hypothesis, for the treasury bill
data studied in Section 3.1. We evaluate the power of the pseudo-likelihood ratio
test at a sequence of alternative models indexed by θ:

dXt = {α0(t) + α1(t)Xt} dt + [β̄0 + θ{β0(t) − β̄0}]X [β̄1+θ{β1(t)−β̄1}]
t dWt. (16)

For each given value of θ, we simulate weekly data from model (16) with
length 1461, the same as the treasury data used in Section 3.1. Based on 1000
simulations, we compute the rejection rate by using the test statistic (14). Note
that when θ = 0, model (16) becomes the CKLS model so that the power should
be roughly 5% (or 10%) at the nominal significance level 0.05 (or 0.10), if the
bootstrap estimate of the null distribution is reasonable. That is, the chance
of falsely rejecting the null hypothesis is approximately 5% (or 10%). This is
indeed the case as shown in Table 3. (The simulated powers are only nearly
monotonic, which may result from sampling variability.) As the index θ increases,
the alternative hypothesis deviates further away from the null and one would
hope that the rejection rates increase. In fact, our simulation confirms that the
test is very powerful. Even when θ = 0.40, we already reject approximately
98% of the time (correct decision). This means that we make few mistakes of
falsely accepting the null model. When θ = 1, model (16) is similar to the term
dynamics that we estimated for the three month treasury bill data. The power
of the test against this alternative is close to 1. This in turn suggests that we
have a high discriminating power for differentiating model (5) from the CKLS
model.

Table 3. Simulated powers of the proposed test at significance level 5%.
Similar results at level 10% are shown in brackets.

θ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.051 0.312 0.815 0.943 0.979 0.985 0.985 0.984 0.984 0.983 0.979
Power

(0.101) (0.401) (0.851) (0.958) (0.980) (0.987) (0.986) (0.987) (0.987) (0.985) (0.983)

4.3. Testing commonly-used short-rate models

After verifying our proposed procedure, we apply the test statistic (14) to see
whether the commonly-used short-rate models fit the treasury data. We tested
the volatility components and now report the observed levels of significance (P -
value, computed from 1000 bootstrap samples)-the smaller, the stronger evidence
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we have against a given parametric model. General statistics practice is to reject
the null hypothesis if the P -value is less than 5%. If the P -value is below 1%,
the results are interpreted as highly statistically significant, namely, we have very
strong evidence against the null hypothesis.

The P -values for testing various forms of the volatility function are shown
in Table 4. For Stanton’s model, we test it against model (4) with h(·) taken
as the estimate from Stanton’s model. (For Stanton’s model (3), let Êt = {Yt −
µ̂(Xt)}/

√
∆t. Then Êt ≈ σ(Xt)εt. Therefore, E(Ê2

t |Xt) ≈ σ2(Xt). Naturally,
σ2(x) can be estimated via local constant regression of Ê2

ti on Xti .)

Table 4. P -values for testing the forms of volatility function.

Form GBM VAS CIR SR CIR VR CKLS Stanton
λ-statistic 276.58 1201.76 613.98 205.74 211.58 40.27
P -value 0 0 0 0 0 0.145

5. Valuation of Interest-Rate Derivatives

Given the time-inhomogeneous interest rate model (5), the price Pt(T ) of a
zero coupon bond with a payoff of $1 at time T , given the current interest rate
rt, is of the form

Pt(T ) = Et

[

exp
(

−
∫ T

t
rudu

)]

, (17)

where rt = rt,

dru = {α0(u) + α1(u)ru − λ(ru, u)}du + β0(u)rβ1(u)
u dWu, (18)

and λ(ru, u) is the market price of interest rate risk. The stochastic differential
equation (18) involves parameter functions α0(u), α1(u), β0(u) and β1(u) at a
future time. They are not estimable. However, they are slowly evolving with
time. Thus, they can be reasonably replaced by their estimated values at time t.
This leads to an approximate time-homogeneous model

dru = {α̂0(t) + α̂1(t)ru − λ(ru, u)}du + β̂0(t)rβ̂1(t)
u dWu. (19)

The expectation in (17) can be computed via Monte Carlo simulation. Repeat-
edly simulate sample paths from the dynamics (19) with the initial value rt = rt,
calculate the realization of the quantity inside the expectation in equation (17)
for each sample path, and then average over the values obtained for each sample
path to obtain an estimate of Pt(T ). The standard deviation of the values ob-
tained for each sample path can be used to monitor the accuracy of convergence.
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In particular, the standard error of the sample average for M independent re-
alizations is the standard deviation divided by

√
M . The market risk function

λ(ru, u) can be estimated by using an approach similar to that of Stanton (1997).
To illustrate how to use our time-dependent model to value the price of bonds,
we take λ(ru, u) = 0. Moreover, we use the assumption of zero market price of
risk to illustrate the similarity and difference between the parametric and non-
parametric approaches. The results for different maturities are reported in Table
5, by using 1000 simulations (the true current interest rate is 0.0512).

Table 5. Bond valuation with zero price of risk for different maturities (stan-
dard errors in parentheses).

Maturity\Interest rate 0.02 0.0512 0.08

0.9769 0.9503 0.9260
One year

(0.0022) (0.0027) (0.0033)

0.9493 0.9031 0.8627
Two years

(0.0056) (0.0069) (0.0075)

0.9177 0.8585 0.8072
Three years

(0.0093) (0.0112) (0.0122)

For valuation of bond price, the nonparametric time-dependent model is
basically the same as the parametric time-independent model. In fact model
(19) is the same as that of the CKLS model. However, an important difference
is that the parameters α̂0(t), α̂1(t), β̂0(t) and β̂1(t) in model (19) are estimated
differently. In the nonparametric approach, the window (bandwidth) over which
the CKLS model should be fitted is determined automatically from historical
data and a suitable weight has been introduced to reduce the contribution of
historical data. Note that the bandwidth, ten years, selected by the data are
reasonably large (over five years). This means that the constant approximation
holds reasonably within a period of over five years. Hence, the extrapolation
used in (19) for a period of up to five years is reasonable.

6. Semiparametric Time-Dependent Diffusion Models

Our previous model (5) specifies the coefficients as time-varying functions.
One may question whether this can create an over-parameterization problem in
some situations, and whether it is reasonable to let β1(·) vary with the time.
Nevertheless, our previous fitting techniques can be adapted to other models, for
example, the semiparametric model

dXt = {α0(t) + α1(t)Xt} dt + β0(t)X
β1
t dWt. (20)
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This family of models is wide enough to cover the time-independent parametric
models in Section 2 and the time-dependent parametric models in Section 2.1.
Analogously, the discretized version of (20) can then be written as

Yti ≈ {α0(ti) + α1(ti)Xti}∆i + β0(ti)Xβ1
ti

√
∆i εti , i = 1, . . . , n, (21)

where {εti}n
i=1 are defined as before. This model can provide more stable esti-

mates of β0(t) and β1 than their counterparts in model (5), because it avoids the
local collinearity between the constant vector of ones and the vector {log(Xti)}
in a local time region.

Using (7) and (8), we get the estimators of the coefficients in the expected
return. For given β1, β0(t) can be estimated by the kernel estimator β̂0(t;β1)
given in (11). Then β1 can be estimated via maximizing the profile pseudo-
likelihood of β1:

%(β̂0(·;β1),β1) = −1
2

n∑

i=1

(

log{β̂2
0(ti;β1)X

2β1
ti } +

Ê2
ti

β̂2
0(ti;β1)X2β1

ti

)

, (22)

where the form of β̂2
0(ti;β1) is similar to that in (11).

Note that all of the time-homogeneous models mentioned before are specific
examples of model (20) above. Model (20) also enables one to check whether
a particular time-homogeneous model is valid or not as described before. Our
experience shows that the technique developed here is very helpful in some cases,
in which the previous model (5) suffers from severe collinearity problems caused
by over-parameterization.

For illustration, we consider the treasury bill data consisting of weekly ob-
servations, from January 8, 1954 to December 27, 1974. The total number of
observations is 1095. Our analysis based on model (5) tells us that the time-
inhomogeneity in volatility is significant, but the result is unreliable because we
encounter severe collinearity and numerically unstable results. By using model
(20), this problem disappears. Figure 9 depicts the data set. Figure 10 reports
the estimates of the coefficients in model (20) along with the 95% bootstrap con-
fidence bands using 1000 simulations, where the estimator for β1 is 0.50. The
estimates of the expected return and volatility are shown in Figure 11. Now
let us check the goodness of fit of the CKLS and CIR (SR) models. Based on
1000 simulations, we obtain P -values of 0.078 for the CKLS model and 0.311
for the CIR model. (The bandwidths used for calculating P -values are the same
as those for estimation.) Therefore, the generalized pseudo-likelihood ratio test
reveals that the CKLS model captures reasonably the interest rate dynamics in
this period, and the CIR model outperforms the CKLS model.
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Figure 9. Treasury bill data set, from January 8, 1954 to December 27, 1974.

Figure 10. Estimated coefficient functions for the semiparametric model
(20). Solid – our estimators, dotted – 95% confidence bands among 1000
simulations.
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Figure 11. Estimated drift and volatility for the semiparametric model (20).
Solid – our estimators, dotted – 95% confidence band among 1000 simula-
tions.

Figure 12. Diagnostic check: residual autocorrelation functions and Q-Q
plots. Left panel: CKLS model; middle panel: nonparametric model (5);
right panel: semiparametric model (20).

The generalized pseudo-likelihood ratio test checks one important aspect of
model fitting. Certainly one can check other aspects of model fitting. In prac-
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tice, one may also examine if the residuals behave like a Gaussian white noise.
To compare the performances of the CKLS model, model (5) and model (20),
we consider again the treasury bill data in Section 3.1. (For this set of data,
the P -value for testing homogeneity in volatility under model (20) is 0.03.) The
adequacy of the three models can also be assessed by their residual autocorre-
lation functions. Figure 12 gives the residual autocorrelation functions and the
Q-Q plots for the residuals from the three models. It is evident that, from the
Q-Q plots, our models (5) and (20) are more adequate than the CKLS model.
Figure 13 reports the estimates of the coefficients in model (20) along with the
95% bootstrap confidence bands using 1000 simulations. The estimates of the
expected return and volatility are shown in Figure 14. It seems that the time
variation in volatility occurs after 1980 (admittedly the confidence interval is
wide) and not before; this observation is similar to that made in Section 3.1.

Figure 13. Three month treasury Bill rate, from January 2, 1970 to Decem-
ber 26, 1997: Estimated coefficient functions for the semiparametric model
(20). Solid – our estimators, dash-dotted – 95% confidence band among 1000
simulations.

The sample skewness and kurtosis of the original series {Yti} and the residu-
als from the three models are reported in Table 6. The kurtoses of the residuals
from the three models are much smaller in magnitude than that of {Yti}, which
reflects that the three models successfully reveal the phenomena of time-varying
volatilities in the yields of the treasury bill. Note that the residuals from our
model (20) have the smallest kurtosis in this example.
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Figure 14. Three month treasury Bill rate, from January 2, 1970 to Decem-
ber 26, 1997: Estimated drift and volatility for the semiparametric model
(20). Solid – our estimators, dash-dotted – 95% confidence band.

Table 6. Skewness and kurtosis.

Model Skewness Kurtosis

Original series {Yti} -0.002 13.975
Residuals from CKLS model 0.021 4.620
Residuals from Model (5) 0.015 4.429
Residuals from Model (20) 0.009 3.973

7. Conclusion

The time-varying coefficient model (5) is introduced to better capture the
time variation of short-term dynamics. It has been demonstrated to be an ef-
fective tool for modelling volatility and validating existing models. It arises
naturally from various considerations and encompasses most of the commonly
used models as special cases. Yet, due to limited independent data information,
coefficients in model (5) may not be estimated very reliably. The semiparametric
model (20) provides a useful alternative.
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