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Abstract

Portfolio allocation with gross-exposure constraint is an effective method to increase the ef-
ficiency and stability of selected portfolios among a vast pool of assets, as demonstrated in Fan
et al. (2008b). The required high-dimensional volatility matrix can be estimated by using high
frequency financial data. This enables us to better adapt to the local volatilities and local corre-
lations among vast number of assets and to increase significantly the sample size for estimating
the volatility matrix. This paper studies the volatility matrix estimation using high-dimensional
high-frequency data from the perspective of portfolio selection. Specifically, we propose the use
of “pairwise-refresh time” and “all-refresh time” methods proposed by Barndorff-Nielsen et al.
(2008) for estimation of vast covariance matrix and compare their merits in the portfolio selec-
tion. We also establish the concentration inequalities of the estimates, which guarantee desirable
properties of the estimated volatility matrix in vast asset allocation with gross exposure con-
straints. Extensive numerical studies are made via carefully designed simulations. Comparing
with the methods based on low frequency daily data, our methods can capture the most recent
trend of the time varying volatility and correlation, hence provide more accurate guidance for
the portfolio allocation in the next time period. The advantage of using high-frequency data is
significant in our simulation and empirical studies, which consist of 50 simulated assets and 30
constituent stocks of Dow Jones Industrial Average index.
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1 Introduction

The mean-variance efficient portfolio theory by Markowitz (1952, 1959) has profound impact on
modern finance. Yet, its applications to practical portfolio selection face a number of challenges.
It is well known that the selected portfolios depend too sensitively on the expected future returns
and volatility matrix (Klein and Bawa, 1976; Best and Grauer, 1991; Chopra and Ziemba, 1993).
This leads to the puzzle postulated by Jagannathan and Ma (2003) why no short-sale portfolio
outperforms the efficient Markowicz portfolio. See also De Roon, et al. (2001) on the study of
optimal no-short sale portfolio on emerging market. The sensitivity on the dependence can be
effectively addressed by the introduction of the constraint on the gross exposure of portifolios
(Fan et al., 2008b). In particular, Fan et al. (2008b) shows, with non-asymptotic inequalities,
that for a range of gross exposure constraint parameters, the actual risk of an empirically selected
optimal portfolio, the actual risk of the theoretically optimal portfolio, and the estimated risk of
an empirically selected optimal portfolio are in fact close. The accuracy depends only on the gross
exposure parameter and the maximum componentwise estimation error of expected returns and
covariance matrix — there is little error accumulation effect. The results are demonstrated also
by both simulation and empirical studies. This gives not only a theoretical answer to the puzzle
postulated by Jagannathan and Ma (2003) but also paves a way for optimal portfolio selection in
practice.

The second challenge of the implementation of Markowitz’s portfolio selection theory is the
intrinsic difficulty of the estimation of the large volatility matrix. This is well documented in
the statistics and econometrics literature even for the static large covariance matrix (Johnstone,
2001; Bickel and Levina, 2008; Fan, et al., 2008a; Lam and Fan, 2009; Rothman et al., 2009). The
additional challenge comes from the time-varying nature of a large volatility matrix. For a short
and medium holding period (one day or one week, say), the expected volatility matrix in the near
future can be very different from the average of the expected volatility matrix over a long time
horizon (the past one year, say). As a result, even if we know exactly the realized volatility matrix
in the past, the bias can still be large. This calls for a stable and robust portfolio selection. The
portfolio allocation under the gross exposure constraint provides a needed solution. To reduce
the bias of the forecasted expected volatility matrix, we need to shorten the learning period to
better capture the dynamics of the time-varying volatility matrix, adapting better to the local
volatility and correlation. But this is at the expense of a reduced sample size. The wide availability
of high-frequency data provides sufficient amount of data for reliable estimation of the volatility
matrix.

Recent years have seen dramatic developments in the study of high frequency data in integrated
volatility. Statisticians and econometricians have been focusing on the interesting and challenging
problem of volatility estimation in the presence of market microstructure noise and asynchronous
tradings, which are the style features of high-frequency financial data. The progresses are very
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impressive with a large literature. Assuming the price processes follow Brownian semimartingales
to satisfy the no-arbitrage based characterizations (Delbaen and Schachermayer, 1994), if there
were no market microstructure noise, and if the processes are observed synchronously on grids that
become denser, classical results in stochastic calculus show that the realized variance and realized
covariance are consistent estimators of the quadratic variation and quadratic co-variation of two
price processes; see for example Karatzas and Shreve (2000) and Jacod and Shiryaev (2003). When
directly applied to high-frequency financial data, however, Andersen et al. (2000) show that the
realized variance exhibits a large positive bias when the sampling frequency gets higher, through
their famous signature plots; Epps (1979) documented that the correlation estimates based on
the realized covariances tend to be biased toward zero when sampled at high frequencies. The
recent developments have enabled us to understand much better the signature plots and Epps
effect. Analytical explanations of how the market microstructure noise and asynchronization may
affect the estimates and ways to correct for the biases have been given. In particular, in the one
dimensional case when the focus is on estimation of integrated volatility, Aı̈t-Sahalia, et al. (2005)
discussed a subsampling scheme; Zhang, et al. (2005) proposed a two-scale estimate which was
extended and improved by Zhang (2006) to multiple scales; Fan and Wang (2007) separated jumps
from diffusions in presence of market microstructural noise using a wavelet method; the robustness
issues are addressed by Li and Mykland (2007); the realized kernel methods are proposed and
thoroughly studied in Barndorff-Nielsen et al. (2009a,b); Jacod, et al. (2009) proposed a pre-
averaging approach to reduce the market microstructral noise; Xiu (2008) demonstrated that a
simple quasi-likelihood method achieves the optimal rate of convergence for estimating integrated
volatility. For estimation of integrated covariation, the non-synchronized trading issue was first
addressed by Hayashi and Yoshida (2005) in absence of the microstructural noise; the kernel method
with refresh time idea was first proposed by Barndorff-Nielsen et al. (2008); Zhang (2009) extend
the two-scale method to study the integrated covariation using a previous tick method; Wang, et
al. (2009) aggregate daily integrated volatility matrix via a factor model; Aı̈t-Sahalia, et al. (2010)
extend the quasi-maximum likelihood method; Kinnebrock et al. (2009) extend the pre-averaging
technique.

The aim of this paper is to study the volatility matrix estimation using high-dimensional high-
frequency data from the perspective of financial engineering. Specifically, our main topic is how
to extract the covariation information from high-frequency data for asset allocation and how effec-
tive they are. Two particular strategies are proposed for handling the non-synchronized trading:
“pairwise-refresh” and “all-refresh” schemes. The former retains much more data points and esti-
mates covariance matrix componentwise, which is usually not semi-positive definite, whereas the
latter retains far less data points and the resulting covariance matrix is usually semi-positive defi-
nite. As a result, the former has a better componentwise estimation error and is better in controlling
risk approximation mentioned in the first paragraph of the introduction. However, the merits be-
tween the two methods are not that simple. In implementation, quadratic programming algorithms
require the estimated covariance matrix to be semi-positive definite. Therefore, we need to project
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the estimate of covariance matrix based on the “pairwise-refresh” scheme onto the space of the
semi-positive definite matrices. However, the projections distort the accuracy of the elementwise
estimation. As a result, the pairwise-refresh scheme does not have much more advantage than
the all-refresh method, though the former is very easy to implement. However, both methods
significantly outperform the methods based on low frequency data, since they adapt better to the
time-varying volatilities and correlations. The comparative advantage is more dramatic when there
are rapid changes of the volatility matrix over time. This will be demonstrated in both simulation
and empirical studies.

As mentioned in the introduction and demonstrated in Section 2, the accuracy of portfolio risk
relative to the theoretically optimal portfolio is governed by the maximum elementwise estimation
error. How does this error grow with the number of assets? Thanks to the concentration inequalities
derived in this paper, it grows only at the logarithmic order of the number of assets. This gives a
theoretical endorsement why the portfolio selection problem is feasible for vast portfolios.

The paper is organized as follows. Section 2 gives an overview of portfolio allocation using
high-frequency data. Section 3 studies the volatility matrix estimation using high-frequency data
from the perspective of asset allocation, where the analytical results are also presented. How well
our idea works in simulation and empirical studies can be found in Sections 3 and 4, respectively.
Conclusions are given in Section 5. Technical conditions and proofs are relegated to the appendix.

2 Constrained Portfolio Optimization with High Frequency Data

2.1 Problem Setup

Consider a pool of p assets, with log-price processes X
(1)
t , X

(2)
t , · · · X

(p)
t . Denote by Xs =

(X(1)
s , · · · , X

(p)
s )T the vector of the log-price processes at time s. Suppose they follow an Itô

process, namely,
dXt = µtdt + S1/2

t dWt (1)

where Wt is the vector of p-dimensional standard Brownian motions. The drift vector µt and
the instantaneous variance St can be stochastic processes and are assumed to be bounded and
independent of Wt.

A given portfolio with the allocation vector w at time t and a holding period τ has the log-return
wT

∫ t+τ
t dXs with variance (risk)

Rt,τ (w) = wTΣt,τw, (2)

where wT1 = 1 and

Σt,τ =
∫ t+τ

t
EtSudu (3)
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with Et denoting the conditional expectation given the history up to time t. Let w+ be the propotion
of long positions and w− be the proposition of the short positions. Then, ‖w‖1 = w+ + w− is the
gross exposure of the portfolio. To simplify the problem, following Jagannathan and Ma (2003)
and Fan et al. (2008b) and other papers in the literature, we consider only the risk optimization
problem. In practice, the expected return constraint can be replaced by the constraints of sectors
or industries, to avoid unreliable estimates of the expected return vector. For a short-time horizon,
the expected return is usually negligible. Following Fan et al. (2008b), we consider the following
risk optimization under gross exposure constraints:

minwTΣt,τw, s.t.‖w‖1 ≤ c and wT1 = 1, (4)

where c is the total exposure allowed. Note that using w+ − w− = 1, the problem (4) puts
equivalently the constraint on the proportion of the short positions: w− ≤ (c− 1)/2.

Problem (4) involves the conditional expected volatility matrix (3) in the future. Unless we
know exactly the dynamic of the volatility process, this is usually unknown, even if we observed
the entire continuous paths up to the current time t. As a result, we rely on the approximation
even with ideal data that we were able to observe the processes continuously without error. The
typical approximation is

τ−1Σt,τ ≈ h−1

∫ t

t−h
Sudu, (5)

for an appropriate window width h and we estimate
∫ t
t−h Sudu based on the historical data at the

time interval [t− h, t].

The approximation (5) holds reasonably well when τ and h are both small. This relies on the
continuity assumptions: local time-varying volatility matrices are continuous in τ . The approxi-
mation is also reasonable when both τ and h are large. This relies on the stationarity assumption
so that both quantity will be approximately ESu, when the stochastic volatility matrix Su is sta-
tionary. The approximation is not good when τ is small whereas h is large as long as Su is time
varying, whether or not the stochastic volatility Su is stationary or not. In other words, when the
holding time horizon τ is short, as long as Su is time varying, we can only use a short time window
[t− h, t] to estimate Σt,τ . The recent arrivals of high-frequency data make this problem feasible.

The approximation error in (5) can not usually be evaluated unless we have a specific parametric
model on the stochastic volatility matrix Su. However, this is at the risk of model misspecifications
and nonparametric approach is usually preferred for high-frequency data. With p2 elements are
approximated, which can be in the order of hundred of thousands or millions, a natural question to
ask is whether these errors accumulate and whether the result (risk) is stable. The gross-exposure
constraint gives a stable solution to the problem as shown in Fan et al. (2008b).
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2.2 Risk approximations with gross exposure constraints

The utility of gross-exposure constraint can easily be seen through the following inequality. Let
Σ̂t,τ be an estimated covariance matrix and

R̂t,τ (w) = wT Σ̂t,τw (6)

be estimated risk of the portfolio. Then, for any portfolio with gross-exposure ‖w‖1 ≤ c, we have

|R̂t,τ (w)−Rt,τ (w)| ≤
p∑

i=1

p∑

j=1

|σ̂i,j − σi,j ||wi||wj |

≤ |Σt,τ − Σ̂t,τ |∞‖w‖2
1

≤ |Σt,τ − Σ̂t,τ |∞c2, (7)

where σ̂i,j and σi,j are respectively the (i, j) elements of Σ̂t,τ and Σt,τ , and

|Σt,τ − Σ̂t,τ |∞ = max
i,j

|σ̂i,j − σi,j |

is the maximum componentwise estimation error. The risk approximation (7) reveals that there is
no error accumulation effect when gross exposure c is moderate.

From now on, we drop the dependence of t and τ whenever there is no confusion. This facilitates
the notation.

Fan et al. (2008b) showed further that the risks of optimal portfolios are indeed close. Let

wopt = argminwT1=1, ||w||1≤cR(w), ŵopt = argminwT1=1, ||w||1≤cR̂(w) (8)

be respectively the theoretical (oracle) optimal allocation vector we want and the estimated optimal
allocation vector we get. Then, R(wopt) is the theoretical minimum risk and R(ŵopt) is the actual
risk of our selected portfolio, whereas R̂(ŵopt) is our perceived risk, which is the quantity known
to financial econometricians. They showed that

|R(ŵopt)−R(wopt)| ≤ 2apc
2, (9)

|R(ŵopt)− R̂(ŵopt)| ≤ apc
2, (10)

|R(wopt)− R̂(ŵopt)| ≤ apc
2. (11)

with ap = |Σ̂ − Σ|∞, which usually grows slowly with the number of assets p. These reveal that
the three relevant risks are in fact close as long as the gross-exposure parameter c is moderate and
the maximum componentwise estimation error ap is small.

The above risk approximations hold for any estimate of covariance matrix. It does not even
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require Σ̂ a semi-positive definite matrix. This facilitates significantly the method of covariance
matrix estimation. In particular, the elementwise estimation methods are allowed. In fact, since the
approximation errors in (9), (10) and (11) are all controlled by the maximum elementwise estimation
error, it can be advantageous to use elementwise estimation methods. This is particularly the case
for the high-frequency data where trading are non-synchronized. The synchronization can be done
pairwisely or for all assets. The former retains much more data than the latter, as shown in the
next section.

3 Estimation of Covariance Matrix Using High Frequency Data

3.1 All-refresh method and pairwise-refresh method

Estimating high-dimensional volatility matrix using high-frequency data is a challenging task. One
of the challenges is the non-synchronicity of trading. Several synchronization schemes have been
proposed. The refresh time method is proposed in Barndorff-Nielsen et al. (2008) and the previous
tick method is proposed in Zhang (2009). The former uses more efficiently the available data and
will be used in this paper.

The idea of refresh time is to wait until all assets are traded at least once at time v1 (say) and
then use the last price traded before or at v1 of each asset as its price at time v1. This obtains one
synchronized price vector at time v1. The clock now starts again. Wait until all assets are traded at
least once at time v2 (say) and again use the previous tick price of each asset as its price at time v2.
This yields the second synchronized price vector at time v2. Repeat the process until all available
trading data are synchronized. Clearly, the process discards a large portion of the available trades:
After each synchronization, we always wait until the slowest stock to trade once. But this is the
most efficient synchronization scheme. We will refer this synchorization scheme as the “all-refresh
time” (The method is called all-refresh method for short). Barndorff-Nielsen et al. (2008) advocate
the kernel method to estimate integrated volatility matrix after synchronization, but this can also
be done by using other methods. The advantage of the all-refresh method is that the estimated
covariance matrix can be made semi-positive definite.

A more efficient method to use the available sample is the pairwise refresh time scheme, which
synchronizes the trading for each pair of assets separately (The method is called pairwise-refresh
method for short). This retains far more data points, but we have to estimate the covariance matrix
elementwise. The resulting covariance matrix is not necessarily semi-positive definite. Thanks to
the gross exposure constraint, this is still applicable to the portfolio selection problems, as long as
the elementwise estimation error is small. See (7) – (11). The pairwise-refresh scheme makes far
more efficient use of the rich information in high-frequency data, and enables us to estimate each
element in the volatility matrix more precisely, which helps improve the efficiency of the selected

7



portfolio. We will study the merits of these two methods.

The pairwise estimation method allows us to use a wealth of univariate integrated volatility
estimators, such as the two-scale realized volatility (TSRV) (Zhang, et al., 2005), the multi-scale
realized volatility (MSRV) (Zhang, 2006), the wavelet method (Fan and Wang, 2007), the realized
kernel method (Barndorff-Nielsen et al., 2009a,b), the pre-averaging approach (Jacod, et al., 2009)
and the QMLE method (Xiu, 2008). For any given two assets with log-price processes X

(i)
t and X

(j)
t ,

with pairwise-refresh times, the synchronized prices of X
(i)
t +X

(j)
t and X

(i)
t −X

(j)
t can be computed.

With the univariate estimate of the integrated volatilities < X(i) + X(j) > and < X(i) −X(j) >,
the integrated covariantion can be estimated as

σ̂i,j = 〈X(i), Y (j)〉 = (〈X(i) + X(j)〉 − 〈X(i) −X(j)〉)/4. (12)

In particular, the diagonal elements are estimated by the method itself. When the TSRV is used,
this results in the two-scale realized covariance (TSCV) estimate (Zhang, 2009).

3.2 Pairwise refresh method and TSCV

We now focus on the pairwise estimation method. To facilitate the notation, we reintroduce it.

We consider two log price processes X and Y that satisfy

dXt = µ
(X)
t dt + σ

(X)
t dB(X) and dYt = µ

(Y )
t dt + σ

(Y )
t dB(Y ), (13)

where cor(B(X)
t , B

(Y )
t ) = ρ

(X,Y )
t . For the two processes X and Y , consider the problem of estimating

〈X, Y 〉T with T = 1. Denote by Tn the observation times of X and Sm the observation times of Y .
Denote the elements in Tn and Sm by {τn,i}n

i=0 and {θm,i}m
i=0 respectively, in an ascending order

(τn,0 and θm,0 are set to be 0). We assume that the actual log-prices are not observable, but are
observed with microstructure noises:

Xo
τn,i

= Xτn,i + εX
i , and Y o

θm,i
= Yθm,i

+ εY
i (14)

where Xo and Y o are the observed transaction prices in the logarithmic scale, and X and Y are
the latent log prices govern by the stochastic dynamics (13). We assume that the microstructure
noise εX

i and εY
i processes are independent of the X and Y processes and that

εX
i ∼i.i.d. N(0, η2

X) and εY
i ∼i.i.d. N(0, η2

Y ). (15)

Note that this assumption is mainly for the simplicity of presentation; as we can see from the proof,
one can for example easily replace the Gaussian assumption with the sub-Gaussian assumption
without affecting our results.
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The pairwise refresh time V = {v0, v1, · · · , vñ} can be obtained by setting v0 = 0, and

vi = max
{

min{τ ∈ Tn : τ > vi−1}, min{θ ∈ Sm : θ > vi−1}
}
,

where ñ is the total number of refresh times in the interval (0, 1]. The actual sample times for the
two individual processes X and Y that correspond to the refresh times are

ti = max{τ ∈ Tn : τ ≤ vi} and si = max{θ ∈ Sm : θ ≤ vi},

which is really the previous-tick measurement.

We study the property of the TSCV based on the asynchronous data:

〈̂X, Y 〉1 = [Xo, Y o](K)
1 − n̄K

n̄J
[Xo, Y o](J)

1 , (16)

where

[Xo, Y o](K)
1 =

1
K

ñ∑

i=K

(Xo
ti −Xo

ti−K
)(Y o

si
− Y o

si−K
)

and n̄K = (ñ − K + 1)/K. As discussed in Zhang (2009), the optimal choice of K has order
K = O(ñ2/3), J can be taken to be a constant such as 1. In the following analysis, we consider the
specific case when

J = 1 (or n̄J = ñ) and n̄K = O(ñ1/3).

When either the microstructure error or the asynchronicity exists, the realized covariance is
seriously biased. An asymptotic normality result in Zhang (2009) reveals that TSCV can simul-
taneously remove the bias due to the microstructure error and the bias due to the asynchronicity.
However, this result is not adequate for our application to the vast volatility matrix estimation. The
maximum componentwise estimation error ap depends on the number of assets p. To understand
its impact on ap, we need to establish the concentration inequality. In particular, for a sufficiently
large |x| = O((log p)a), if

max
i,j

P{√n|σij − σ̂ij | > x} < exp(−Cx1/a), (17)

for two positive constants a and C, then

ap = |Σ− Σ̂|∞ = OP

(
(log p)a

√
n

)
. (18)

We will show in the next section that the result indeed holds with a = 1/2 and n replaced by
the minimum subsample size. Hence the impact of the number of assets is limited, only of the
logarithmic order.
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3.3 Concentration Inequalities

Inequality (17) requires the conditions on both diagonal elements and off-diagonal elements. Techni-
cally, they are treated differently. For the diagonal cases, the problem corresponds to the estimation
of integrated volatility and there is no issue of asynchronicity. TSCV (16) reduces to TSRV (Zhang,
et al., 2005), which is explicitly given by

〈̂X, X〉1 = [Xo, Xo](K)
1 − n̄K

n̄J
[Xo, Xo](J)

1 , (19)

where

[Xo, Xo](K)
1 =

1
K

n∑

i=K

(Xo
ti −Xo

ti−K
)2

and n̄K = (n−K + 1)/K.

As shown in Zhang, et al. (2005), the optimal choice of K has order K = O(n2/3) and J can be
taken to be a constant such as 1. Again, for the TSRV, in the following analysis, we will consider
the specific case when J = 1 (or n̄J = n) and n̄K = O(n1/3).

To facilitate the reading, we relegate the technical conditions and proofs to the appendix.
The following two results establish the concentration inequalities for the integrated volatility and
integrated covariation.

Theorem 1. Let X process be as in (13), and n be the total number of observations for the X

process during the time interval (0,1]. Under Conditions 1-4 in section A.1, for x ∈ [0, cn1/6],

P
{

n1/6|〈̂X, X〉1 −
∫ 1

0
σ

(X)
t

2
dt| > x

}
≤ 4 exp{−Cx2}

for positive constants c and C. A set of candidate values for c and C are given in (49) for the case
when the TSRV parameters are chosen according to Condition 5.

Theorem 2. Let X and Y processes be as in (13), and ñ be the total number of refresh times
for the processes X and Y during time interval (0,1]. Under Conditions 1-5 in section A.1, for
x ∈ [0, cñ1/6],

P{ñ1/6|〈̂X, Y 〉1 −
∫ 1

0
σ

(X)
t σ

(Y )
t ρ

(X,Y )
t dt| > x} ≤ 8 exp{−Cx2}

for positive constants c and C. A set of candidate values for c and C are given in (52) for the case
when the TSCV parameters are chosen according to Condition 5.
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3.4 Error rates on risk approximations

Having had the above concentration inequalities, we can now readily give an upper bound of the
risk approximations. Consider the p log-price processes as in Section 2.1. Suppose the processes are
observed with the market microstructure noises. Let ñ(i,j) be the observation frequency obtained
by the pairwise-refresh method for two processes X(i) and X(j) and ñ∗ be the observation frequency
obtained by the all-refresh method. Clearly, ñ(i,j) is typically much larger than ñ∗. Hence, most
elements are estimated more accurately using the pairwise-refresh method than using the all-refresh
method. On the other hand, for less liquidly traded pairs, its observation frequency of pairwise-
refresh time can not be an order of magnitude larger than ñ∗.

Using (18), an application to Theorems 1 and 2 to each element in the estimated integrated
covariance matrix yields

apairwise-refresh
p = |Σ̂pairwise −Σ|∞ = OP

(√
log p

ñ
1/6
min

)
, (20)

where ñmin = mini,j ñ(i,j) be the minimum number of observations of the pairwise-refresh time.

Note that based on our proofs which don’t rely on particular properties of pairwise-refresh
times, our results of Theorem 1 and Theorem 2 are applicable to all-refresh method as well, with
the observation frequency of the pairwise-refresh times replaced by that of the all-refresh times.
Hence, using the all-refresh time scheme, we have

aall-refresh
p = |Σ̂all-refresh −Σ|∞ = OP

(√
log p

ñ
1/6
∗

)
. (21)

Clearly, ñmin is larger than ñ∗. See Figure 2. Hence, the pairwise refresh method gives a somewhat
more accurate estimate in terms of the maximum elementwise estimation error.

3.5 Projections of estimated volatility matrices

The risk approximations (9)-(11) hold for any solutions to (8) whether the matrix Σ̂ is positive
semi-definite or not. However, convex optimization algorithms typically require the positive semi-
definiteness of the matrix Σ̂. Yet, the estimates based on the elementwise estimation sometimes
can not satisfy this and even the one from all-refresh method can have the same problem if TSRV
is used. This leads to the issue of how to project a symmetric matrix onto the space of positive
semi-definite matrices.

There are two intuitive methods for projecting a p×p symmetric matrix A onto the space of pos-
itive semi-definite matrices. Consider the singular value decomposition: A = ΓT diag(λ1, · · · , λp)Γ,
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where Γ is an orthogonal matrix, consisting of p eigenvectors. The two intuitive appealing projec-
tion methods are

A+
1 = ΓT diag(λ+

1 , · · · , λ+
n )Γ, (22)

where λ+
j is the positive part of λj and

A+
2 = (A + λ−minIp)/(1 + λ−min), (23)

where λ−min is the negative part of the minimum eigenvalue. For both projection methods, the
eigenvectors remain the same as those of A. When A is positive semi-definite matrix, we have
obviously that A1 = A2 = A.

In applications, we apply the above transformations to the estimated correlation matrix A
rather than directly to the volatility matrix estimate Σ̂. The correlation matrix A has diagonal
elements of 1. The resulting matrix under the projection method (23) apparently still satisfies this
property, whereas the one under the projection method (22) does not. As a result, the projection
method (23) keeps the integrated volatility of each asset intact.

In the simulation and empirical studies, we applied both projections. It turns out that there
is no significant difference between the two projection methods in terms of result. We decided to
apply only the projection (23) in all numerical studies, as it keeps the individual volatility estimate
intact.

3.6 Comparisons between pairwise-refresh and all-refresh methods

The pairwise-refresh method keeps far richer information in the high-frequency data than the all-
refresh method. See Figure 2. Thus, it is expected to estimate each element more precisely. Yet,
the estimated correlation matrix is typically not positive semi-definite. As a result, projection (23)
can distort the accuracy of elementwise estimation. On the other hand, the all-refresh method
is typically positive semi-definite or nearly so. The property (12) typically entails the positive
semi-definiteness property, as long as the volatility estimator for 〈X, X〉 is always nonnegative. For
example, using the realized kernel method as the building block, the positive semi-definite version
can easily be obtained. Therefore, the projection (23) has less impact on the all-refresh method
than on the pairwise-refresh method.

Risk approximations (9)–(11) are only the upper bounds. The upper bounds are controlled
by ap, which has rates of convergence govern by (20) and (21). While the average number of
observations of pairwise-refresh time is far larger than the number of observations ñ∗ of the all-
refresh time, the minimum number of observations of pairwise-refresh time ñmin is not much larger
than ñ∗. Therefore, the upper bounds (20) and (21) are approximately of the same order. This
together with the distortion due to projection do not leave much advantage for the pairwise-refresh
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method.

4 Simulation Studies

In this section, we simulate the market trading data using a reasonable stochastic model. As the
latent prices and dynamics of simulations are known, our study on the risk profile is facilitated.
It is a good tool to verify our theoretical results and to quantify the finite sample behaviors. In
particular, we would like to demonstrate that high frequency data based approaches have a better
risk profile than those based on the low frequency data.

Throughout this paper, the risk is referring to the standard deviation of portfolio’s returns.
To avoid ambiguity, we call

√
R(wopt) the theoretical optimal risk or oracle risk,

√
Rn(ŵopt) the

perceived optimal risk, and
√

R(ŵopt) the actual risk of the perceived optimal allocation.

4.1 Design of Simulations

A slightly modified version of the simulation model in Barndorff-Nielsen et al. (2008) is used to
generate the latent price processes of p traded assets. It is a multivariate factor model with
stochastic volatilities. Specifically, the latent log-prices X

(i)
t follow

dX
(i)
t = µ(i)dt + ρ(i)σ

(i)
t dB

(i)
t +

√
1− (ρ(i))2σ(i)

t dWt + λ(i)dZt, i = 1, · · · , p, (24)

where the elements of B, W and Z are independent standard Brownian motions. The spot volatility
obeys the independent Ornstein-Uhlenbeck processes:

d%
(i)
t = α(i)(β(i)

0 − %
(i)
t )dt + β

(i)
1 dU

(i)
t , (25)

where %
(i)
t = log σ

(i)
t and U

(i)
t is an independent Brownian motion. The stationary distribution is

given by N
(
β

(i)
0 , [β(i)

1 ]2/(2α(i))
)
. The integrated quadratic variation and covariation are given by

〈X(i)〉t =
∫ t

0
(σ(i)

s )2ds + λ(i)t,

〈X(i), X(j)〉t =
∫ t

0

√
1− (ρ(i)

s )2
√

1− (ρ(j)
s )2σ(i)

s σ(j)
s ds.

The analytic formula for the conditional covariance matrix Σt,τ in (3) can be found for our model,
but we decide not to report it for brevity.

The number of assets p is taken to be 50. Slightly modified from Barndorff-Nielsen et al. (2008),
the parameters is set to be (µ(i), β

(i)
0 , β

(i)
1 , α(i), ρ(i)) = (0.03x

(i)
1 , −x

(i)
2 , 0.75x

(i)
3 , −1/40x

(i)
4 ,−0.7)
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Figure 1: The volatility and asset price processes of 10 simulated assets.

where x
(i)
j is an independent realization form the uniform distribution on [0.7, 1.3]. The parameters

are kept fixed during the simulations. In addition, λ(i) = exp(β(i)
0 ), which makes the volatility

matrix well conditioned.

The model (24) is used to generate the latent log-price values with initial values X
(i)
0 = 1 (log-

price) and %
(i)
0 from its stationary distribution. The Euler scheme is used to generate latent price

at the frequency of once per second. To account for the market microstructure noise, the Gaussian
noises ε

(i)
t ∼ N(0, ω2) with ω = 0.0005 are added. Therefore, like (14), the observed log-prices are

X
o(i)
t = X

(i)
t + ε

(i)
t . To gain a sense of the extent to which the asset volatilities σ

(i)
t and prices P

(i)
t

(= exp(Xo(i)
t )) vary through time, we plot demonstrative graphs of 10 assets’ volatility and price

processes over a year in Figure 1.

To model the non-synchronicity, p independent Poisson processes with intensitive parameters
λ1, λ2, · · · , λp are used to simulate the trading times of the assets. Motivated by the US equity
trading dataset (the total number of seconds in a common trading day of the US equity is 23400),
we set the trading intensity parameters λi’s to be 0.02i× 23400 for i = 1, 2, · · · , 50, meaning that
the average numbers of trading times for each asset are spread out in the arithmetic sequence of
the interval [468, 23400].

4.2 An oracle investment strategy and risk assessment

An oracle investment strategy is usually a decent benchmark for other portfolio strategies to be
compared with. There are several oracle strategies. The one we choose is to make portfolio
allocation based on the covariance matrix estimated using latent prices at the finest grid (one per
second). Latent prices are the noise-free prices of each asset at every time points (one per second),
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which are unobservable in practice and is available to us only in the simulation. Therefore, for
each asset, there are 23400 latent prices in a normal trading day. We will refer to the investment
strategy based on the latent prices as the oracle or latent strategy. This strategy is not available
for the empirical studies.

The assessment of risk is based on the high-frequency data. For a given portfolio strategy, its
risk is computed based on the latent prices at the finest grid (one per second) for the in-the-sample
simulation studies; its risk is computed based on the latent prices at every 15 minutes for the
out-of-sample simulation studies; whereas for the empirical studies, the observed prices at every 15
minutes are used to assess its risk. This mitigates the influence of the microstructure noises. For
the empirical study, we do not hold positions overnight therefore are immune to the overnight price
jumps (we will discuss the details in Section 5).

4.3 In-sample Risk Approximation and Optimal Allocation

Based on the past h = 1 day, the latent prices (at the finest grid) based estimated TSCV covari-
ance matrix (called latent covariance for short) is regarded as the true covariance matrix. There
are several methods for estimating covariance matrix based on observed non-synchronized high-
frequency data with microstructure noise. In particular, we employ all-refresh method based TSCV
covariance matrix (called all-refresh TSCV covariance), all-refresh method based realized kernel co-
variance matrix (called all-refresh RK covariance, for short), and pairwise-refresh method based
TSCV covariance matrix (called pairwise-refresh TSCV covariance). The all-refresh RK covariance
is included since it is positive semi-definite and there is no distortion effect due to projection. The
latent covariance serves as the oracle covariance matrix from which the actual portfolio risk of any
portfolio is computed. The conditioning number of the latent covariance of the p = 50 assets ranges
from 192.27 to 226.46, with median 210.34, across 100 simulations. The medians of the minimum
and maximum eigenvalues are respectively 0.0004 and 0.0838. For the all-refresh RK approach,
the bandwidth of the realized kernel H is chosen to be 1, which gives the best risk profile in our
numerical analysis.

The efficiencies of using the rich high-frequency data between pairwise-refresh and all-refresh
methods are contrasted. In particular, for each realization, we compute the median number of
pairwise-refresh times mediani,j(ñ(i,j)), the minimum number of pairwise-refresh times Mmin =
mini,j(ñ(i,j)) (see (20)), and the number of all-refresh times ñ∗ (see (21)). The distributions of
these three numbers are summarized in Figure 2. It is clear that the pairwise refresh scheme uses
far more data on average, yet minimum number of pairwise-refresh time is not appreciably larger
than that of refresh time.

To gain insights on the risk approximations, we consider 4 specific portfolios of the p = 50 assets
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Figure 2: The distributions (from left to right) of the median number of pairwise-refresh times, the
minimum number of pairwise-refresh times, and the number of all-refresh times per day across 100
simulations.

with the weight vectors

w1 = (1
p , 1

p , · · · , 1
p)T , w2 = (1, 0, · · · , 0)T ,

w3 = ( b
2 − 1

2 + 2
p , 1

2 − b
2 , 1

p , · · · , 1
p)T , w4 = (1

2 + b
2 , 1

2 − b
2 , 0, · · · , 0)T

with b = 3. Their daily risks are computed based on various covariance estimators and are com-
pared with the actual risk, which is computed based on the latent price. This is done across 100
simulations. The medians, robust standard deviation (defined as interquartile range divided by
1.35) and other characteristics are summarized in Table 1.

From the result, we can see that both the all-refresh TSRV and pairwise-refresh TSRV methods,
especially all-refresh TSRV method, have a tendency to underestimate the risk in comparison with
the latent risks, while all-refresh RK method has a tendency to overestimate the risk. In terms of
the absolute risk difference from the oracle, for 3 out of the 4 portfolios, pairwise-refresh TSRV
method outperforms the all-refresh TSRV method. The same relationship can be observed when we
turn to the L1 norm of the absolute covariance difference (ap) as well. The RK method outperforms
the TSRV method. These are in line with our expectation.

We now study the problem of the optimal portfolio allocation under gross exposure constraints.
The optimal allocation vectors are computed based on the latent covariance, all-refresh TSCV
covariance, all-refresh RK covariance and pairwise-refresh TSCV covariance and their actual risks
are computed based on the latent covariance matrix. The medians of these actual risks against the
gross exposure parameter c are depicted in Figure 3.

Firstly, the all-refresh RK method outperforms the two TSRV methods when the gross exposure
is below 3.7. The pairwise-refresh TSRV method outperforms the all-refresh TSRV method where
the gross exposure is smaller than 1.2. That agrees with what we expected since the smaller the
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Table 1: Risk approximation for p = 50 and n = 100
We used the high frequency data for 100 independent trading days. The covariance of the 50 stocks is
estimated according to various estimators. These estimated covariance matrices are used to compute the
perceived risks of 4 portfolios. Relevant statistics are recorded. (All the characteristics are annualized.)

Median and Robust Standard Deviation (RSD) of Risk
Latent All-refresh TSRV All-refresh RK Pairwise TSRV

Portfolio Median(RSD) Median(RSD) Median(RSD) Median(RSD)
w1 0.4408 (0.0032) 0.3875 (0.1075) 0.4343 (0.0241) 0.4192 (0.0690)
w2 0.5916 (0.0060) 0.5229 (0.1259) 0.6230 (0.0258) 0.5936 (0.1285)
w3 0.5399 (0.0044) 0.4694 (0.0907) 0.5833 (0.0255) 0.5202 (0.0736)
w4 0.8442 (0.0077) 0.7531 (0.1748) 0.9228 (0.0418) 0.8390 (0.1789)

Median and RSD of Absolute Risk Difference from the Oracle (Latent)
All-refresh TSRV All-refresh RK Pairwise TSRV

Portfolio Median(RSD) Median(RSD) Median(RSD)
w1 0.0889 (0.0769) 0.0183 (0.0153) 0.0547 (0.0439)
w2 0.1054 (0.0700) 0.0344 (0.0272) 0.0804 (0.0813)
w3 0.0936 (0.0665) 0.0437 (0.0300) 0.0599 (0.0593)
w4 0.1470 (0.1022) 0.0794 (0.0393) 0.1089 (0.0941)

Median and RSD of L1 Norm of Absolute Covariance Difference (ap)
All-refresh TSRV All-refresh RK Pairwise TSRV

Portfolio Median(RSD) Median(RSD) Median(RSD)
0.2476 (0.1460) 0.0603 (0.0270) 0.1730 (0.0746)

gross exposure is, the tighter the bound (9) on the risk difference. It is obvious that the pairwise-
refresh TSRV method gives an estimated covariance matrix with higher element-wise accuracy than
the all-refresh TSRV method, therefore the former outperforms the latter where the bound is the
tightest (gross exposure below 1.2) for this simulation design.

Secondly, all the methods produce an upward-sloping risk curve up to some point and an almost
flat curve beyond that (the curve is clipped). This is mainly due to the fact that we use only the
intra-day data for 1 trading day, which does not result in sufficient amount of data to yield a stable
estimate of the 50 × 50 covariance matrix. As the result, the estimated covariance matrix can
be ill-conditioned. As c increases, the selected portfolios become increasingly unstable. When c

reaches 5 or so, the selected portfolio becomes basically a randomly selected portfolio. Hence, their
actual risks become larger and flat afterwards.

4.4 Out-of-sample Optimal Allocation

One of the main purposes of this paper is to investigate the comparative advantage of the high
frequency based methods against the low frequency based method (especially in the context of
portfolio investment). Hence, it is essential for us to run the following out-of-sample investment
strategy test which includes both the high frequency and low frequency based approaches. More-
over, since in the empirical studies, we do not know the latent asset prices, the out-of-sample test
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Figure 3: The medians of the actual risks of the in-sample optimal allocations based on the high-
frequency estimated covariance matrices using 1 trading day’s intra-day data(p = 50, n = 100).

should be designed so that it can also be conducted in the empirical studies.

We simulate the prices of 50 traded assets using the model (24) and (25) with microstructure
noise for the duration of 200 trading days (numbered as day 1, day 2, ..., day 200) and record all the
tick-by-tick trading times and trading prices of the assets. We assume that there are no overnight
jumps for asset prices, meaning one trading day’s closing price of an asset is always the same as
the next trading day’s opening price of that asset.

We start investing 1 unit of capital into the pool of assets with low frequency and high frequency
based strategies from day 101 (the portfolios are bought at the opening of day 101). For the low
frequency strategy, we use the previous 100 trading days’ daily closing prices to compute the sample
covariance matrix and make the portfolio allocation accordingly with the gross exposure constraints.
For the all-refresh high frequency strategies, we use the previous h = 10 trading days’ tick-by-tick
trading data, use all-refresh time to synchronize the trades of the assets before applying realized
kernel and TSCV to estimate the integrated volatility matrix and make the portfolio allocation,
while for the pairwise-refresh high frequency strategy, we use pairwise-refresh times to synchronize
each pair of assets and apply TSCV to estimate the integrated covariance for the corresponding
pair. With the projection technique (23), the resulting TSCV integrated volatility matrix can
always be transformed to a positive semi-definite matrix which facilitates the optimization.

We run two investment strategies. In the first strategy, the portfolio is held for τ = 1 trading
day before we re-estimate the covariation structure and adjust the portfolio weights accordingly.
The second strategy is the same as the first one except for the fact that the portfolio is held for
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τ = 5 trading days before rebalance.

In the investment horizon (which is from day 101 to day 200 in this case), we record the 15-
minute portfolio returns based on the latent prices of the assets, the variation of the portfolio
weights across 50 assets, and other relevant characteristics. While it appears that 100 trading days
is short, calculating 15-minute returns increases the size of the relevant data for computing the risk
by a factor of 26.

We study those portfolio features for a whole range of gross exposure constraint c from c = 1,
which stands for the no-short-sale portfolio strategy, to c = 3. This is usually the relevant range of
gross exposure for investment purpose.

The standard deviations and other characteristics of the strategy for τ = 1 are presented in
Table 2 (the case τ = 5 is very similar, therefore omitted). The standard deviations represent the
actual risks of the strategy. As we only optimize the risk profile, we should not look significantly
on the returns of the optimal portfolios. They can not even be estimated accurately with such a
short investment horizon. Figures 4 and 5 provides graphical details to these characteristics for
both τ = 1 and τ = 5.

Table 2: The out-of-sample performance of daily-rebalanced optimal portfolios with
gross-exposure constraint
We simulate one trial of intra-day trading data for 50 assets, make portfolio allocations for 100 trading
days and rebalance daily. The standard deviations and other characteristics of these portfolios are recorded.
All the characteristics are annualized (Max Weight: Median of maximum weights; Min Weight: Median of
minimum weights; No. of Long: Median of numbers of long positions whose weights exceed 0.001; No. of
Short: Median of numbers of short positions whose absolute weights exceed 0.001)

Std Dev Max Min No. of No. of
Methods % Weight Weight Long Short

Low Frequency Sample Covariance Matrix Estimator
c = 1 (No short) 16.69 0.19 -0.00 13 0
c = 2 16.44 0.14 -0.05 28.5 20
c = 3 16.45 0.14 -0.05 28.5 20

High Frequency All-Refresh TSRV Covariance Matrix Estimator
c = 1 (No short) 16.08 0.20 -0.00 15 0
c = 2 14.44 0.14 -0.05 30 19
c = 3 14.44 0.14 -0.05 30 19

High Frequency All-Refresh RK Covariance Matrix Estimator
c = 1 (No short) 17.20 0.22 -0.00 12.5 0
c = 2 20.35 0.22 -0.09 22 18
c = 3 31.37 0.34 -0.19 23.5 23
High Frequency Pairwise-Refresh TSRV Covariance Matrix Estimator
c = 1 (No short) 15.34 0.18 -0.00 15 0
c = 2 12.72 0.13 -0.03 31 18
c = 3 12.72 0.13 -0.03 31 18

For both holding lengths τ = 1 and τ = 5, the all-refresh TSRV and pairwise-refresh TSRV
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Figure 4: Out-of-sample performance of daily-rebalanced optimal portfolios based on high-
frequency and low-frequency estimation of the integrated covariance matrix. (a) Annualized risk
of portfolios. (b) Maximum weight of allocations.
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Figure 5: Out-of-sample performance of optimal portfolios based on high-frequency and low-
frequency estimation of the integrated covariance matrix with holding period τ = 5.

approaches outperform significantly the low frequency one in terms of risk profile for the whole
range of the gross exposure constraint. This supports our theoretical results and intuitions. The
shorter estimation window allows these 2 high frequency approaches to deliver consistently better
results than the low frequency one. The low-frequency strategy outperforms significantly the equal-
weight portfolio (see Figure 4 and Figure 5). Slightly surprising is the fact that the low frequency
approach also outperforms the all-refresh RK approach. We believe it must be due to the instability
of the estimated realized kernel covariance matrix.

All the risk curves attain their minimum around c = 1.2 (see Figure 4 and Figure 5), which falls
into our expectation again, since that must be the point where the marginal increase in estimation
error outpaces the marginal decrease in specification error. This, coupled with the result we get in
the empirical studies section, will give us some guidelines about what gross exposure constraint to
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use in investment practice.

Firstly, the pairwise method outperforms the all-refresh method, as expected. Secondly, the
risk of the low frequency approach only increases at a mild speed as the gross exposure constraint
increases. A possible explanation is that only 50 assets is considered, therefore the estimation
error accumulation effect is not dominating as badly as we were afraid it would be, given the low
frequency covariance sampling window is the previous 100 trading days. Another possible reason
could be that as the data is generated by a stationary stochastic model, the low frequency approach
may be able to capture some of the stationarity within the model.

In terms of portfolio weights, neither the low frequency nor the high frequency optimal no-short-
sale portfolios are well diversified with all approaches assigning a concentrated weight of around
20% to one individual asset. Their portfolio risks can be improved by relaxing the gross-exposure
constraint (Figure 4 and Figure 5).

5 Empirical Studies

The risk minimization problem (6) has important applications in asset allocation. We demonstrate
its application in the stock portfolio investment in the 30 Dow Jones Industrial Average (DJIA)
constituent stocks (will be called the 30 DJIA stocks for short).

The Dow Jones Industrial Average is one of the several stock market indices created by Charles
Dow, the editor of Wall Street Journal and a co-founder of Dow Jones and Company. It is an index
that shows how 30 large, publicly-owned companies based in the United States have traded during
a standard trading session in the stock market. We make the portfolio allocation to the constituents
of the index as of Sep 30, 2008 (The individual components of the DJIA are occasionally changed
as market conditions warrant.)

To make asset allocation, we use the high frequency data of the 30 DJIA stocks from Jan 1,
2008 to September 30, 2008. These stocks are highly liquid. The intensity of trading for each given
trading day is summarized by the maximum, minimum and median number of trades among these
30 stocks. The distributions of these summary statistics across those 9 months (189 trading days)
are summarized in Figure 6. The period covers the birth of financial crisis in 2008.

At the end of each holding period of τ = 1 or τ = 5 trading days in the investment period (from
May 27, 2008 to Sep 30, 2008), the covariance of the 30 stocks is estimated according to various
estimators. They are the sample covariance of the last 100 trading days’ daily return data (low-
frequency), the all-refresh TSCV estimator of the last 10 trading days, the all-refresh RK estimator
of the last 10 trading days (the bandwidth of the realized kernel H is chosen to be 1 since the
risk profile for H = 1 outperforms other alternative choices of H), and the pairwise-refresh TSCV
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Figure 6: The distributions (from left to right) of the maximum, minimum and median number of
trades of the 30 DJIA stocks per day, from Jan 02, 2008 to Sep 30, 2008 (189 trading days).
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Figure 7: Out-of-sample performance of daily-rebalanced optimal portfolios for Dow Jones 30
constituent stocks with investment period from May 27, 2008 to Sep 30, 2008 (89 trading days).
(a) Annualized risk of portfolios. (b) Maximum weight of allocations.

estimator of the last 10 trading days. These estimated covariance matrices are used to construct
optimal portfolios with various exposure constraints. For τ = 5, we do not count the overnight risks
of the portifolio. The reason that the overnight price jumps are often due to the arrival of news and
are irrelevant of the topic of our studies. The standard deviations and other characteristics of these
portfolio returns for τ = 1 are presented in Table 3 together with the characteristics of an equally
weighted portfolio of the 30 DJIA stocks rebalanced daily. The standard deviations represent the
actual risks. The risk is computed based on the 15 minutes returns. Figure 7 and Figure 8 provide
the graphical details to these characteristics for both τ = 1 and τ = 5.

Table 3, Figures 7 and 8 reveal that in terms of the portfolio’s actual risk, the all-refresh TSRV
and pairwise-refresh TSRV strategies perform at least as well as the low frequency based strategy
when the gross exposure is small and outperform the latter significantly when the gross exposure
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Table 3: The out-of-sample performance of daily-rebalanced optimal portfolios of the
30 DJIA stocks

Std Dev Max Min No. of No. of
Methods % Weight Weight Long Short

Low Frequency Sample Covariance Matrix Estimator
c = 1 (No short) 12.73 0.50 -0.00 8 0
c = 2 14.27 0.44 -0.12 16 10
c = 3 15.12 0.45 -0.18 18 12

High Frequency All-Refresh TSCV Covariance Matrix Estimator
c = 1 (No short) 12.55 0.40 -0.00 8 0
c = 2 12.36 0.36 -0.10 17 12
c = 3 12.50 0.36 -0.10 17 12

High Frequency All-Refresh RK Covariance Matrix Estimator
c = 1 (No short) 13.69 0.22 -0.00 14 0
c = 2 14.54 0.25 -0.15 17 10
c = 3 16.55 0.30 -0.23 17 11

High Frequency Pairwise-Refresh TSCV Covariance Matrix Estimator
c = 1 (No short) 12.54 0.39 -0.00 9 0
c = 2 12.23 0.35 -0.08 17 12
c = 3 12.34 0.35 -0.08 17 12

Unmanaged Index
Dow Jones 30 equally weighted 22.12

is large. Both facts support our theoretical results and intuitions. Given 10 times the length of
covariance estimation window, the low frequency approach still cannot perform better than the high
frequency TSRV approaches, which affirms our belief that the high frequency TSRV approaches
can significantly shorten the necessary covariance estimation window and capture better the short-
term time-varying covariation structure (or the “local” covariance). These results, together with
the ones presented in the simulation section, lend strong support to the above statement.

Again the fact that the all-refresh RK strategy is outperformed by the low frequency strategy
could be due to the instability of the estimated realized kernel covariance matrix.

As the gross exposure constraint increases, the portfolio risk of the low frequency approach
increases drastically relative to the ones of the high frequency TSRV approaches. The reason could
be a combination of the fact that the low frequency approach does not produce a well-conditioned
estimated covariance due to the lack of data and the fact that the low frequency approach can
only attain the long run covariation but cannot capture well the “local” covariance dynamics.
The portfolio risk of the high frequency TSRV approaches increased only moderately as the gross
exposure constraint increases. From financial practitioner’s standpoint, that is also one of the
comparative advantages of high frequency TSRV approaches, which means that investors do not
need to be much concerned about the choice of the gross exposure constraint while using the high
frequency TSRV approaches.
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Figure 8: Out-of-sample performance of 5-day-rebalanced optimal portfolios for Dow Jones 30
constituent stocks with investment period from May 27, 2008 to Sep 30, 2008 (89 trading days).
(a) Annualized risk of portfolios. (b) Maximum weight of allocations.

It can be seen that both the low frequency and high frequency optimal no-short-sale portfolios
are not diversified enough. Their risk profiles can be improved by relaxing the gross-exposure
constraint to around c = 1.2, i.e. 10% short positions and 110% long positions are allowed. The
no-short-sale portfolios under all approaches have the maximum portfolio weight of 22% to 50%.
As the gross exposure constraint relaxes, the pairwise-refresh TSRV approach has its maximum
weight reaching the smallest value around 30% to 34% while the low frequency approach goes down
to only around 40%. That is another comparative advantage of the high frequency approach in
practice as a portfolio with less weight concentration is always considered more preferable by most
of the investors.

Another interesting fact is that the equally weighted daily-rebalanced portfolio of the 30 DJIA
stocks carries an annualized return of only −10% while DJIA went down 13.5% during the same
period (May 27, 2008 to Sep 30, 2008), giving an annualized return of -38.3%. The cause of the
difference is that we intentionally avoided holding portfolios overnight, hence not affected by the
overnight price jumps. In the turbulent financial market of May to September 2008, that means
our portfolio strategies are not affected by the numerous sizeable downward jumps. Those jumps
are mainly caused by the news of distressed economy and corporations. The moves could deviate
far from what the previously held covariation structure dictates.

6 Conclusion

We advocate the portfolio selection with gross-exposure constraint (Fan et al., 2008b). It is less
sensitive to the error of covariance estimation and is immune to the noise accumulation. The out-
of-sample portfolio performance depends on the expected volatility in the holding period. It is at
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best approximated and the gross-exposure constraints help reducing the error accumulation in the
approximations.

Two approaches are proposed for the use of high-frequency data to estimate the integrated
covariance: “all-refresh” and “pairwise-refresh” methods. The latter retains far more data on
average and hence estimates more precisely element by element. Yet, the pairwise-refresh estimates
are typically not positive semi-definite and projections are needed for the convex optimization
algorithms. The projection distorts somewhat the performance of the pairwise-refresh strategies.

The use of high frequency financial data increases significantly the available sample size for
volatility estimation, and hence shortens the time window for estimation, adapts better to local
covariations. Our theoretical observations are supported by the empirical studies and simulations,
in which we demonstrate convincingly that the high-frequency based strategies outperform the
low-frequency based one in general.

With the gross-exposure constraint, the impact of the size of the candidate pool for portfolio
allocation is limited. We derive the concentration inequalities to demonstrate this theoretically.
Simulation and empirical studies also lend further support to it.

A APPENDIX. Conditions and Proofs

A.1 Conditions

The following conditions are needed. For simplicity, we state the conditions for integrated covaria-
tion (Theorem 2). The conditions for integrated volatility (Theorem 1) are simply the ones with
Y = X.

Condition 1. µ
(X)
t = µ

(Y )
t = 0.

Condition 2. 0 < σ
(X)
t , σ

(Y )
t ≤ Cσ < ∞, ∀t ∈ [0, 1].

Condition 3. The observation times are independent with the X and Y processes. The synchro-
nized observation times for the X and Y processes satisfy sup1≤j≤ñ ñ ·(vj−vj−1) ≤ C∆ ≤ ∞, where
ñ is the observation frequency and V = {v0, v1, · · · , vñ} is the set of refresh times of the processes
X and Y .

Condition 4. For the TSCV parameters, we consider the case when J = 1 (n̄J = ñ) and n̄K =
O(ñ1/3) such that

1
2
· ñ1/3 ≤ n̄K ≤ 2 · ñ1/3

Condition 5. The processes εX and εY are independent.
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Conditions 1 and 4 are imposed for simplicity. They can be removed at the expenses of lengthier
proofs. For a short horizon and high-frequency, whether Condition 1 holds or not has little impact
on the investment. For estimating integrated volatility, the synchronized time becomes observation
time {τn,j} and Condition 3 and 5 becomes

sup
1≤j≤n

n · (τn,j − τn,j−1) ≤ C∆ < ∞ (26)

and
1
2
· n1/3 ≤ n̄K ≤ 2 · n1/3.

A.2 Lemmas

We need the following three lemmas for the proof of Theorems 1 and 2. In particular, Lemma 2
is exponential type of inequality for any dependent random variables that have a finite moment
generation function. It is useful for many statistical learning problems. Lemma 3 is a concentration
inequality for the realized volatility based on discretely observed latent process.

Lemma 1. When Z ∼ N(0, 1), for any |θ| ≤ 1
4 ,

E exp{θ(Z2 − 1)} ≤ exp(2θ2).

Proof. Using the moment generating function of Z2 ∼ χ2
1, we have

E exp{θ(Z2 − 1)} = exp{−1
2

log(1− 2θ)− θ}.

Let g(x) = log(1− x) + x + x2 with |x| ≤ 1/2. Then, g′(x) = x(1− 2x)/(1− x) is nonegative when
x ∈ [0, 1/2] and negative when x ∈ [−1/2, 0). In other words, g(x) has a minimum at point 0,
namely g(x) ≥ 0 for |x| ≤ 1/2. Consequently, for |θ| ≤ 1/4,

log(1− 2θ) ≥ −2θ − (2θ)2.

Hence,
E exp{θ(Z2 − 1)} ≤ exp(2θ2).

Lemma 2. For a set of random variables Xi, i = 1, · · · ,K, if when |θ| ≤ C1,

E exp(θXi) ≤ exp(C2θ
2), (27)
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for some two positive constants C1 and C2, then

P{|
K∑

i=1

wiXi| > x} ≤ 4 exp
(
− x2

16C2w2

)
, when 0 ≤ x ≤ 2C1C2,

where wi’s are weights satisfying
∑K

i=1 |wi| ≤ w ∈ [1,∞).

Proof. By the Markov inequality, for 0 ≤ θ ≤ C1, we have

P (|Xi| > x) ≤ exp(−θx)E exp(θ|Xi|) ≤ 2 exp(C2θ
2 − θx). (28)

Taking θ = x/(2C2), we have

P{|Xi| > x} ≤ 2 exp(− x2

4C2
), when 0 ≤ x ≤ x0, (29)

where x0 = 2C1C2.

For a small constant ξ > 0 to be specified later, let

gξ(x) =
{ exp(ξx2) when 0 ≤ x ≤ x0

exp(aξ + bξx) when x ≥ x0,

where aξ = −ξx2
0 and bξ = 2ξx0. Then gξ(x) is a continuously differentiable increasing convex

function on [0,∞). It follows from the Markov inequality and the convexity that, for w∗ =
∑K

i=1 |wi|

P (|
K∑

i=1

wiXi| > x) ≤ gξ(x)−1Egξ(|
K∑

i=1

wiXi|)

≤ gξ(x)−1w∗−1
K∑

i=1

|wi|Egξ(w|Xi|), (30)

which is further bounded by 4gξ(x)−1 if we can show that 4 is a common bound for {Egξ(w|Xi|)}.

Note that by (28) for wbξ ≤ θ ≤ C1,

lim
x→∞ gξ(x) · P{w|Xi| > x} = 0.

It follows from the integration by parts that

Egξ(w|Xi|) =1 +
∫ x0

0
2ξx exp(ξx2)P (w|Xi| > x)dx

+
∫ ∞

x0

bξ exp(aξ + bξx)P{w|Xi| > x}dx.

(31)
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By (29), the second term in (31) is bounded by

∫ x0

0
2ξx exp(ξx2)2 exp(−C3x

2)dx =
2ξ

C3 − ξ

(
1− exp{(ξ − C3)x2

0}
)
,

where C3 = (4C2w
2)−1. Using (28), the third term in (31) is bounded by

2bξ exp(aξ)
∫ ∞

x0

exp(bξx + C2θ
2 − θw−1x)dx

= 2bξ exp(aξ + C2θ
2 + bξx0 − θw−1x0)/(θw−1 − bξ),

provided that wbξ < θ ≤ C1.

Choosing further θ to satisfy aξ + C2θ
2 + bξx0 − θw−1x0 ≤ 0 and ξ ≤ C3, it follows from the

calculation in the previous paragraph that

E(gξ(w|Xi|)) ≤ 1 +
2ξ

C3 − ξ
+

2bξ

θw−1 − bξ
.

Taking θ = θ0 = C1
2w and ξ = ξ0 = 1

16C2w2 , which satisfy the above conditions, it follows from direct
calculation that

Egξ0(w|Xi|) ≤ 1 +
2ξ0

C3 − ξ0
+

2bξ0

θ0w−1 − bξ0

=
11
3

< 4.

To summarize, from the above, we know that

Egξ0(w|Xi|) ≤ 4 for all i = 1, · · · ,K.

Therefore, continued from (30), we have

P (|
K∑

i=1

wiXi| > x) ≤ 4gξ0(x)−1 = 4 exp{− x2

16C2w2
} when 0 ≤ x ≤ 2C1C2.

This completes the proof of the lemma.

Lemma 3. (A Concentration Inequality for Realized Volatility Based on Latent Pro-
cess) For a one dimensional process Xt following (1) that satisfies Conditions 1-2, when one ob-
serves Xt at times vi, i = 1, · · · , n, and the observation frequency satisfies Condition 3 (see (26)),
then, for x ∈ [0, c

√
n ],

P
{

n1/2| ˜[X, X]1 −
∫ 1

0
σ2

t dt| > x
}
≤ 4 exp{−Cx2},

where ˜[X, X]1 =
∑n

i=1(Xvi − Xvi−1)
2 is the realized volatility based on the discretely observed X

process; the constants c and C can be taken as in (34).
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Proof. Let X̃t = Xt − X0 =
∫ t
0 σsdWs. By time-change for martingales, (see, for example,

Theorem 4.6 of Karatzas and Shreve (2000)), if τt = inf{s : [X̃]s ≥ t} where [X̃]s is the quadratic
variation process, then Bt := X̃τt is a Brownian-motion w.r.t. {Fτt}0≤t≤∞. We then have that

E exp
(
θ(X̃2

t −
∫ t

0
σ2

sds)
)

= E exp
(
θ(B2

[X̃]t
− [X̃]t)

)
.

Note further that for any t, [X̃]t is a stopping time w.r.t. {Fτs}0≤s≤∞, and the process exp
(
θ(B2

s −
s)

)
is a sub-martingale for any θ. By the optional sampling theorem, using [X̃]u ≤ C2

σu (bounded
stopping time), we have

E exp
(
θ(B2

[X̃]u
− [X̃]u)

)
≤ E exp

(
θ(B2

C2
σu − C2

σu)
)
.

Therefore, we have that, under Conditions 2 and 3,

E
(
exp

{
θ
√

n((∆Xi)2 −
∫ vi

vi−1

σ2
t dt)

}
|Fvi−1

)

≤ E exp
{

θ
√

n(B2
C2

σC∆
n

− C2
σC∆

n
)
}

= E exp
{

θ
C2

σC∆√
n

(Z2 − 1)
}

, (32)

where Z ∼ N(0, 1) and ∆Xi = Xvi −Xvi−1 .

It follows from the law of iterated expectations and (32) that

E exp
{
θ
√

n( ˜[X, X]1 −
∫ 1

0
σ2

t dt)
}

= E(exp
{
θ
√

n(
n−1∑

i=1

(∆Xi)2 −
∫ vn−1

0
σ2

t dt)
}

×E
(
exp

{
θ
√

n(∆X2
n −

∫ vn

vn−1

σ2
t dt)

}|Fvn−1

)
)

≤ E exp
{
θ
√

n(
n−1∑

i=1

(∆Xi)2 −
∫ vn−1

0
σ2

t dt)
}
E exp

{
θ
C2

σC∆√
n

(Z2 − 1)
}

,

where Z ∼ N(0, 1). Repeating the process above, we obtain

E exp
{
θ
√

n( ˜[X, X]1 −
∫ 1

0
σ2

t dt)
} ≤

(
E exp

{
θ
C2

σC∆√
n

(Z2 − 1)
})n

.

By Lemma 1, we have for |θ| ≤
√

n
4C2

σC∆
,

E exp
{
θ
√

n( ˜[X, X]1 −
∫ 1

0
σ2

t dt)
} ≤ exp{2θ2C4

σC2
∆}. (33)
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By Lemma 2, we have,

P
{

n1/2| ˜[X, X]1 −
∫ 1

0
σ2

t dt| > x
}
≤ 4 exp{− x2

32C4
σC2

∆

}, (34)

when 0 ≤ x ≤ C2
σC∆

√
n.

A.3 Proof of Theorem 1

We first prove the results conditional on the set of observation times V. Recall notation introduced
in sections 3.2 and 3.3. Let n be the observation frequency. For simplicity of notation, without
ambiguity, we will write τn,i as τi and σ

(X)
t as σt. Denote the TSRV based on the unobserved latent

process by

〈̃X, X〉
(K)

1 = [̃X, X]
(K)

1 − n̄K

n̄J

˜[X, X]1
(J)

, (35)

where [̃X, X]
(K)

1 = K−1
∑n

i=K(Xτi −Xτi−K )2. Then, from the definition, we have,

〈̂X, X〉1 = [̃X, X]
(K)

1 + ˜[εX , εX ]
(K)

1 + 2 ˜[X, εX ]
(K)

1

− n̄K

n̄J

(
[̃X, X]

(J)

1 + ˜[εX , εX ]
(J)

1 + 2 ˜[X, εX ]
(J)

1

)

=
1
K

K−1∑

l=0

V
(l)
K − n̄K

n̄J
[̃X, X]

(J)

1 + R1 + R2, (36)

where R1 = ˜[εX , εX ]
(K)

1 − n̄K
n̄J

˜[εX , εX ]
(1)

1 , R2 = 2 ˜[X, εX ]
(K)

1 − 2 n̄K
n̄J

˜[X, εX ]
(1)

1 , and

V
(l)
K =

n̄K∑

j=1

(XτjK+l
−Xτ(j−1)K+l

)2, for l = 0, 1, · · · ,K − 1.

Note that we have assumed that n̄K = n−K+1
K is an integer above, to simplify the presentation.

Recall that we consider the case when J = 1, or n̄J = n. We are interested in

√
n̄K(〈̂X, X〉1 −

∫ 1

0
σt

2dt)

=
1
K

K−1∑

l=0

√
n̄K(V (l)

K −
∫ 1

0
σt

2dt) (37)

−
( n̄K

n

)3/2

· √n
(
[̃X, X]

(1)

1 −
∫ 1

0
σt

2dt
)

− n̄
3/2
K

n

∫ 1

0
σt

2dt +
√

n̄KR1 +
√

n̄KR2.
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The key idea is to compute the moment generating functions for each terms in (37) and then to
use Lemma 2 to conclude.

For the first term in (37), since V
(l)
k is a realized volatility based on discretely observed X

process, with observation frequency satisfying sup1≤i≤n̄K
n̄K · (τiK+l − τ(i−1)K+l) ≤ C∆, we have,

by (33) in Lemma 3, for |θ| ≤
√

n̄K

4C2
σC∆

,

E exp
{
θ
√

n̄K(V (l)
K −

∫ 1

0
σ2

t dt)
} ≤ exp{2θ2C4

σC2
∆}. (38)

For the second term in (37), we have obtained in (33) that

E exp
{
θ
√

n([̃X, X]
(1)

1 −
∫ 1

0
σt

2dt)} ≤ exp{2θ2C4
σC2

∆}, when |θ| ≤
√

n

4C2
σC∆

. (39)

The third term in (37) can be ignored because it has an upper bound that goes to zero sufficiently
fast as n grows:

n̄
3/2
K

n

∫ 1

0
σt

2dt ≤ 23/2C2
σ/
√

n, (40)

by Condition 5.

We introduce an auxiliary sequence an that grows with n in a moderate rate to facilitate our
presentation in the following. In particular, we can set an = n1/12.
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Let us now deal with R1, the fourth term in (37). Note that from the definition

√
n̄KR1

=
√

n̄K

K

{ n∑

i=K

(εi − εi−K)2 − n−K + 1
n

n∑

i=1

(εi − εi−1)2
}

=
√

n̄K
√

n

K
· 2√

n

n∑

i=1

εiεi−1 (41)

−
√

n̄K

√
n−K + 1
K

· 2√
n−K + 1

n∑

i=K

εiεi−K

−
√

n̄K

√
K − 1an

K
· 1
an

√
K − 1

K−1∑

i=1

(ε2i − η2
X)

−
√

n̄K

√
K − 1an

K
· 1
an

√
K − 1

n−1∑

n−K+1

(ε2i − η2
X)

+
√

n̄K(K − 1)an

K
√

n
· 1
an
√

n

n∑

i=1

(ε2i − η2
X)

+
√

n̄K(K − 1)an

K
√

n
· 1
an
√

n

n−1∑

i=0

(ε2i − η2
X).

The first two terms in (41) are not the sum of independent variables. But they can be decom-
posed into the sum of independent random variables and the moment generating functions can be
computed. To simplify the argument without losing the essential ingredient, let us focus on the
first term of (41). It can be decomposed as

n∑

i=1

εiεi−1 =
∑

odd i

εiεi−1 +
∑

even i

εiεi−1

and the summands in each terms of the right-hand side are now independent. Therefore, we need
only to calculate the moment generating function of εiεi−1.

For two independent normally distributed random variables X ∼ N(0, σ2
X) and Y ∼ N(0, σ2

Y ),
it can easily be computed that

E(exp{θn−1/2XY }) =
(

1
1− σ2

Xσ2
Y θ2/n

)1/2

≤ exp{σ2
Xσ2

Y θ2/n} when |θ| ≤
√

n√
2σXσY

,

where we have used the fact that log(1− x) ≥ −2x when 0 ≤ x ≤ 1
2 .

32



Hence, by the independence, it follows that (we assume n is even to simplify the presentation)

E exp
{

2θn−1/2
∑

odd i

εiεi−1

}
=

(
1

1− 4η4
Xθ2/n

)n/4

≤ exp{2η4
Xθ2}, when |θ| ≤

√
n

2
√

2η2
X

.

(42)

The second term in R1 works similarly and have the same bound. For example, when n̄K is
even, one can have the following decomposation

n∑

i=K

εiεi−K =
n̄K/2∑

j=1

2jK−1∑

i=2jK−K

εiεi−K +
n̄K/2∑

j=1

2jK+K−1∑

i=2jK

εiεi−K .

The last four terms are sums of independent χ2-distributed random variables and their moment
generating functions can easily be bounded by using Lemma 1. Taking the term 1

an
√

K−1

∑K−1
i=1 (ε2i−

η2
X) for example, we have

E
(

exp
{ θ

an

√
K − 1

K−1∑

i=1

(ε2i − η2
X)

})
≤ exp{2η4

Xθ2/a2
n} when |θ| ≤ an

√
K − 1

4η2
X

.

For the term R2, we have,

√
n̄KR2 =

2ann̄K

n

1
an

( n∑

i=1

∆Xiεi−1 −
n∑

i=1

∆Xiεi

)

+
2
an
· an

√
n̄K

K

( n∑

i=K

∆(K)Xiεi −
n∑

i=K

∆(K)Xiεi−K

)
,

(43)

where ∆Xi = Xτi −Xτi−1 , and ∆(K)Xi = Xτi −Xτi−K . The first term above satisfies

E
(

exp{ θ

an

n∑

i=1

∆Xiεi}
)

= E
(

exp{
n∑

i=1

(
θ

an
∆Xi)2η2

X/2}
)

≤
(
E

(
exp{θ2η2

XC2
σC∆Z2/2na2

n}
))n

=
(

1
1− η2

XC2
σC∆θ2/na2

n

)n/2

≤ exp{η2
XC2

σC∆θ2/a2
n}, when |θ| ≤

√
nan√

2C∆CσηX
,

(44)

where in the second line we have again used the optional sampling theorem and law of iterated
expectations as in the derivations of Lemma 3; Z denotes a standard normal random variable. The
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second term in R2 works similarly and has the same bound. For the third term, we have

E
[
exp

{anθ
√

n̄K

K

n∑

i=K

∆(K)Xiεi

}]

=E
[
E

(
exp

{anθ
√

n̄K

K

n∑

i=K

∆(K)Xiεi

}
|X process

)]

=E
[
exp

{a2
nθ2n̄K

2K2

K−1∑

l=0

n̄K∑

j=1

(∆(K)Xi)2η2
X

}]

≤ΠK−1
l=0

{
E

[
exp

{a2
nθ2n̄Kη2

X

2K

n̄K∑

j=1

(∆(K)Xi)2
}]} 1

K

≤ΠK−1
l=0

{(
1− a2

nθ2η2
X

K
C2

σC∆

)−n̄K/2
} 1

K

≤ exp
{a2

nθ2n̄Kη2
X

K
C2

σC∆

}
when |θ| ≤

√
K√

2C∆anηCσ
,

(45)

where we have used the Hölder’s inequality above. The forth term works similarly and has the
same bound.

Combining the results for all the terms (38) – (45) together, applying Lemma 2 to (37), we have,
for the following set of parameters, the conditions for Lemma 2 are satisfied with C1 = C1,x

√
n̄K .

C1,x = min
{ 1

4C2
σC∆

,

√
n/n̄K

2
√

2η2
X

,
an

√
(K − 1)/n̄K

4η2
X

,
an

√
n/n̄K√

2C∆ηXCσ
,

√
K/
√

n̄K√
2C∆anηCσ

}

=
1

4C2
σC∆

for big enough n,

(46)

C2 = max{2C4
σC2

∆, 2η4
X , 2η4

X/a2
n, η2

XC2
σC∆/a2

n,
a2

nn̄Kη2
X

K
C2

σC∆}
= max{2C4

σC2
∆, 2η4

X} for big enough n

= 2C4
σC2

∆ considering the values C∆ ≥ 1, Cσ ≥ ηX typically,

(47)

and
w =14 = d2 + 8

√
2e

>
1
K

K−1∑

l=0

1 + (
n̄K

n
)3/2

︸ ︷︷ ︸
coefficients in the first two terms of (37)

+
4
√

n̄K
√

n

K
+

2
√

n̄Kan√
K

+
2
√

n̄Kan√
n︸ ︷︷ ︸

controls coefficients in (41)

+
4ann̄K

n
+

4
an︸ ︷︷ ︸

coefficients in (43)

,

where the > is valid when n is big enough and Condition 5 is applied.
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By Lemma 2, when 0 ≤ x ≤ 2C1,xC2
√

n̄K ,

P{√n̄K |〈̂X, X〉1 −
∫ 1

0
σt

2dt| > x} ≤ 4 exp(−(16C2w
2)−1x2).

By the Condition 5 again, we have

P{n1/6|〈̂X, X〉1 −
∫ 1

0
σt

2dt| > x} ≤P (
√

n̄K |〈̂X, X〉1 −
∫ 1

0
σt

2dt| > x/
√

2)

≤4 exp(−Cx2), when 0 ≤ x ≤ cn1/6,

(48)

where
c = 2C1,xC2 and C = (32C2w

2)−1. (49)

This completes the proof of the result conditional on the observation times. Theorem 1 is proved
by noting that this conditional result depend only on the observation frequency n and not on the
locations of the observation times as long as the Condition 3 is satisfied.

Note also that in the above proof, we have demonstrated by using a sequence an that goes to
∞ at a moderate rate that, one can eliminate the impact of the small order terms on the choices
of the constants, as long as the terms have their moment generating functions satisfy inequalities
of form (27). We will use this technique again in the next subsection.

A.4 Proof of Theorem 2

We again conduct all the analysis assuming the observation times are given. Our final result holds
because the conditional result doesn’t depend on the locations of the observation times as long as
the Condition 3 is satisfied.

Recall notation for the observation times as introduced in section 3.2. Define

Z+ = X + Y and Z− = X − Y.

Z+ and Z− are diffusion processes with bounded volatility. To see this, let W+ and W− be
processes such that

dW+
t =

σ
(X)
t dB

(X)
t + σ

(Y )
t dB

(Y )
t√

(σ(X)
t )2 + (σ(Y )

t )2 + 2ρtσ
(X)
t σ

(Y )
t

and

dW−
t =

σ
(X)
t dB

(X)
t − σ

(Y )
t dB

(Y )
t√

(σ(X)
t )2 + (σ(Y )

t )2 − 2ρtσ
(X)
t σ

(Y )
t

.

W+ and W− are standard Brownian motions by Levy’s characterization of Brownian motion (see,
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for example, Theorem 3.16 of Karatzas and Shreve (2000)). Write

σZ+

t =
√

(σ(X)
t )2 + (σ(Y )

t )2 + 2ρtσ
(X)
t σ

(Y )
t

and
σZ−

t =
√

(σ(X)
t )2 + (σ(Y )

t )2 − 2ρtσ
(X)
t σ

(Y )
t ,

we have
dZ+ = σZ+

t dW+
t and dZ− = σZ−

t dW−
t

with 0 ≤ σZ+

t , σZ−
t ≤ 2Cσ.

For the observed Z+ and Z− processes, we have

Z+,o
vi

= Xo
ti + Y o

si
= Z+

vi
+ εi,+ and Z−,o

vi
= Xo

ti − Y o
si

= Z−vi
+ εi,−,

where ti and si are the last ticks at or before vi and

εi,+ = Xti −Xvi + Ysi − Yvi + εX
i + εY

i ,

εi,− = Xti −Xvi − Ysi + Yvi + εX
i − εY

i .

Note that
〈̂X, Y 〉1 =

1
4
( ̂〈Z+, Z+〉1 − ̂〈Z−, Z−〉1).

We can first prove analogues results as Theorem 1 for ̂〈Z+, Z+〉1 and ̂〈Z−, Z−〉1, then utilize the
results to obtain the final conclusion for TSCV.

For ̂〈Z+, Z+〉1, the derivation is different from that of Theorem 1 only for the terms that involve
the noise, namely

√
n̄KR1 and

√
n̄KR2. Write ∆̃Xi = Xti − Xvi and ∆̃Yi = Ysi − Yvi . Then, we

have, the first term in
√

n̄KR1 becomes

√
n̄K

√
ñ

K
· 2√

ñ

ñ∑

i=1

εi,+εi−1,+

=
√

n̄K

√
ñ

K
· 2√

ñ

ñ∑

i=1

(
∆̃Xi∆̃Xi−1 + ∆̃Xi∆̃Yi−1 + ∆̃Xi(εX

i−1 + εY
i−1)

+ ∆̃Yi∆̃Xi−1 + ∆̃Yi∆̃Yi−1 + ∆̃Yi(εX
i−1 + εY

i−1) + (εX
i + εY

i )∆̃Xi−1

+ (εX
i + εY

i )∆̃Yi−1 + (εX
i + εY

i )(εX
i−1 + εY

i−1)
)

The only OP (1) term is the last term, which involves only independent normals, and can be dealt
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with by the same way as before (again assume ñ is even for the simplicity of presentation below):

E exp
{

2θn−1/2
∑

odd i

(εX
i + εY

i )(εX
i−1 + εY

i−1)
}

=E exp
{

2θñ−1/2
∑

even i

(εX
i + εY

i )(εX
i−1 + εY

i−1)
}

=
(

1
1− 4(η2

X + η2
Y )2θ2/ñ

)ñ/4

≤ exp{2(η2
X + η2

Y )2θ2}, when |θ| ≤
√

ñ

2
√

2(η2
X + η2

Y )
.

The other terms are of a smaller order of magnitude. By applying an añ sequence which grows
moderately with ñ as in the proof of Theorem 1 (we can set añ = ñ1/12), we can see easily that
their exact bounds don’t have effect on our choice of C1, C2 or ω. All we need to show is that
the moment generating functions of these terms can indeed be suitably bounded as (27). To show
this, first note that, for any positive number a and real valued b, by the optional sampling theorem
(applied to sub-martingales exp(aB2

s ) and exp(b∆̃yBs) with stopping time [X]u ≤ C2
σu for real

number ∆̃y), we have,

E
(

exp{a(∆̃Xi)2}|Fi−1

)
≤

(
E

(
exp{aC2

σC∆Z2/ñ})
)

for Z ∼ N(0, 1)

=
(

1
1− 2aC2

σC∆/ñ

)1/2

,
(50)

where Fi is the information collected up to time vi. Inequality (50) holds when ∆̃Xi is replaced by
∆̃Yi. Similarly,

E
(

exp{b∆̃Xi∆̃Yi−1}|Fi−2

)
≤ E

(
E(exp{b∆̃Xi∆̃Yi−1}|Fi−1)|Fi−2

)

≤ E
(

exp{b2C∆C2
σ(∆̃Yi−1)2/2ñ}|Fi−2

)

≤
(

1
1− b2C4

σC2
∆/ñ2

)1/2

.

(51)

The inequalities (50) and (51) can be used to obtain the bounds we need. For example, by (51)
and the law of iterated expectations,

E
(

exp{θ
∑

odd i
∆̃Xi∆̃Yi−1}

)
≤

(
1

1− θ2C4
σC2

∆/ñ2

)ñ/4

≤ exp
{
θ2C4

σC2
∆/2ñ

}
when |θ| ≤ ñ√

2C2
σC∆

;

37



by independence, normality of the noise, the law of iterated expectations and (50), we have

E
(

exp{ θ

añ

ñ∑

i=1

∆̃Xi(εX
i−1 + εY

i−1)}
)

=E
(

exp{
ñ∑

i=1

(
θ

añ
∆̃Xi)2(η2

X + η2
Y )/2}

)

≤
(

1
1− (η2

X + η2
Y )θ2C2

σC∆/ña2
ñ

)ñ/2

≤ exp{(η2
X + η2

Y )C2
σC∆θ2/a2

ñ}, when |θ| ≤
√

ñañ

Cσ

√
2C∆(η2

X + η2
Y )

.

Similar results can be found for the other terms above, with the same techniques.

The second term in
√

n̄KR1 works similarly and have the same bound. The other terms in√
n̄KR1 and the whole term of

√
n̄KR2 are of order oP (1). Again, by using a sequence añ we can

conclude immediately that their exact bounds won’t matter in our choice of the constants and we
only need to show that their moment generating functions are appropriately bounded as (27). The
arguments needed to prove the inequalities of form (27) for each elements in these terms are similar
to those presented in the above proofs, and are omitted here.

Hence, by still letting w = 14 and redefining

C1,x =
1

4(2Cσ)2C∆
and

C2 = max{2(2Cσ)4C2
∆, 2(η2

X + η2
Y )2}

= 32C4
σC2

∆ for the typical case when Cσ ≥ ηX , ηY ,

we have, when 0 ≤ x ≤ c′ñ1/6,

P{ñ1/6| ̂〈Z+, Z+〉1 −
∫ 1

0
σZ+

t

2
dt| > x} ≤4 exp(−C ′x2),

and P{ñ1/6| ̂〈Z−, Z−〉1 −
∫ 1

0
σZ−

t

2
dt| > x} ≤4 exp(−C ′x2),

where
c′ = 2C1,xC2 and C ′ = (32C2w

2)−1.
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Finally, for the TSCV estimator, when 0 ≤ x ≤ cñ1/6,

P{ñ1/6|〈̂X, Y 〉1 −
∫ 1

0
σ

(X)
t σ

(Y )
t ρ

(X,Y )
t dt| > x}

≤P{ñ1/6| ̂〈Z+, Z+〉1 −
∫ 1

0
σZ+

t

2
dt| > 2x}

+ P{ñ1/6| ̂〈Z−, Z−〉1 −
∫ 1

0
σZ−

t

2
dt| > 2x}

≤8 exp(−Cx2),

where
c = c′/2 = C1,xC2 and C = 4C ′ = (8C2w

2)−1. (52)

This completes the proof.

Note that the argument is not restricted to TSCV based on the pairwise refresh times – it
works the same (only with ñ replaced by ñ∗, the observation frequency of the all-refresh method)
for the case when the synchronization scheme is chosen to be the all-refresh method, as long as the
sampling conditions Condition 3-4 are satisfied.
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