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Summary. Data subject to heavy-tailed errors are commonly encountered in various scientific
fields. To address this problem, procedures based on quantile regression and least absolute
deviation regression have been developed in recent years.These methods essentially estimate
the conditional median (or quantile) function. They can be very different from the conditional
mean functions, especially when distributions are asymmetric and heteroscedastic. How can
we efficiently estimate the mean regression functions in ultrahigh dimensional settings with
existence of only the second moment? To solve this problem, we propose a penalized Huber
loss with diverging parameter to reduce biases created by the traditional Huber loss. Such a
penalized robust approximate (RA) quadratic loss will be called the RA lasso. In the ultrahigh
dimensional setting, where the dimensionality can grow exponentially with the sample size, our
results reveal that the RA lasso estimator produces a consistent estimator at the same rate as
the optimal rate under the light tail situation. We further study the computational convergence
of the RA lasso and show that the composite gradient descent algorithm indeed produces a
solution that admits the same optimal rate after sufficient iterations. As a by-product, we also
establish the concentration inequality for estimating the population mean when there is only
the second moment. We compare the RA lasso with other regularized robust estimators based
on quantile regression and least absolute deviation regression. Extensive simulation studies
demonstrate the satisfactory finite sample performance of the RA lasso.
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1. Introduction

Our era has witnessed the massive explosion of data and a dramatic improvement of technology
in collecting and processing large data sets. We often encounter huge data sets in which the
number of features greatly surpasses the number of observations. It makes many traditional
statistical analysis tools infeasible and poses great challenge on developing new tools. Regular-
ization methods have been widely used for the analysis of high dimensional data. These methods
penalize the least squares or the likelihood function with the L1-penalty on the unknown par-
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ameters (the lasso; Tibshirani (1996)), or a folded concave penalty function such as smoothly
clipped absolute deviation (Fan and Li, 2001) and the minimum convex penalty (Zhang, 2010).
However, these penalized least squares methods are sensitive to the tails of the error distribu-
tions, particularly for ultrahigh dimensional covariates, as the maximum spurious correlation
between the covariates and the realized noise can be large in those cases. As a result, theoretical
properties are often obtained under light-tailed error distributions (Bickel et al., 2009; Fan and
Lv, 2011). Besides regularization methods, traditional stagewise selection methods (e.g. forward
selection) have also been extended to the high dimensional setting. For instance, Fan and Lv
(2008) proposed a sure independence screening method and Wang (2009) studied stagewise
selection methods in high dimension settings. These methods are usually built on marginal cor-
relations between the response and covariates; hence they also need light tail assumptions on
the errors.

To tackle the problem of heavy-tailed errors, robust regularization methods have been exten-
sively studied. Li and Zhu (2008), Wu and Liu (2009) and Zou and Yuan (2008) developed robust
regularized estimators based on quantile regression for the case of fixed dimensionality. Belloni
and Chernozhukov (2011) studied L1-penalized quantile regression in high dimensional sparse
models. Fan et al. (2014) further considered an adaptively weighted L1-penalty to alleviate the
bias problem and established the oracle property and asymptotic normality of the correspond-
ing estimator. Other robust estimators were developed based on least absolute deviation (LAD)
regression. Wang (2013) studied L1-penalized LAD regression and showed that the estimator
achieves near oracle risk performance under the high dimensional setting.

These methods essentially estimate the conditional median (or quantile) regression, instead of
the conditional mean regression, function. In applications where mean regression is of interest,
these methods are not feasible unless a strong assumption is made that the distribution of
errors is symmetric around zero. A simple example is the heteroscedastic linear model with
asymmetric noise distribution. Another example is to estimate the conditional variance function
such as the auto-regressive conditional heteroscedasticity model (Engle, 1982). In these cases,
the conditional mean and conditional median are very different. Another important example is
to estimate large covariance matrices without assuming light tails. We shall explain this more in
detail in Section 5. In addition, LAD-based methods tend to penalize strongly on small errors.
If only a small proportion of samples are outliers, they are expected to be less efficient than the
least-squares-based method.

A natural question is then how to conduct ultrahigh dimensional mean regression when the
tails of errors are not light and how to estimate the sample mean with very fast concentration
when the distribution has only bounded second moment. These simple questions have not been
carefully studied. LAD-based methods do not intend to answer these questions as they alter the
problems of the study. This leads us to consider Huber loss as another way of robustification.
The Huber loss (Huber, 1964) is a hybrid of squared loss for relatively small errors and absolute
loss for relatively large errors, where the degree of hybridization is controlled by one tuning
parameter. Lambert-Lacroix and Zwald (2011) proposed to use the Huber loss together with
the adaptive lasso penalty for robust estimation. However, they needed the strong assumption
that the distribution of errors is symmetric around zero. Unlike their method, we waive the
symmetry requirement by allowing the regularization parameter to diverge (or to converge if its
reciprocal is used) to reduce the bias that is induced by the Huber loss when the distribution is
asymmetric. In this paper, we consider the regularized approximate (RA) quadratic estimator
(the RA lasso) with an L1-penalty and show that it admits the same L2-error rate as the optimal
error rate in the light tail situation. In particular, if the distribution of errors is indeed symmetric
around zero (where the median and mean agree), this rate is the same as the regularized LAD
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estimator that was obtained in Wang (2013). Therefore, the RA lasso estimator does not lose
efficiency in this special case. In practice, since the distribution of errors is unknown, the RA
lasso is more flexible than the existing methods in terms of estimating the conditional mean
regression function.

A by-product of our method is that the RA lasso estimator of the population mean has the ex-
ponential type of concentration even in the presence of the finite second moment. Catoni (2012)
studied this type of problem and proposed a class of losses to result in a robust M-estimator
of mean with exponential type of concentration. We further extend his idea to the sparse linear
regression setting and show that Catoni loss is another choice to reach the optimal rate.

As in many other references, estimators with nice sampling properties are typically defined
through the optimization of a target function such as penalized least squares. The properties
that are established are not necessarily the same as those that are computed. Following the
framework of Agarwal et al. (2012), we propose the composite gradient descent algorithm for
solving the RA lasso estimator and develop the sampling properties by taking computational
error into consideration. We show that the algorithm indeed produces a solution that admits the
same optimal L2-error rate as the theoretical estimator after a sufficient number of iterations.

This paper is organized as follows. First, in Section 2, we introduce the RA lasso estimator
and give the non-asymptotic upper bound for its L2-error. We show that it has the same rate as
the optimal rate under light tails. In Section 3, we study the property of the composite gradient
descent algorithm for solving our problem and show that the algorithm produces a solution that
performs as well as the theoretical solution. In Section 4, we apply the idea to robust estimation
of the mean and large covariance matrix. In Section 5, we show similar results for Catoni loss
in robust sparse regression. Section 6 gives estimation of residual variance. Numerical studies
are given in Sections 7 and 8 to compare our method with two competitors. Proofs of theorems
1 and 2 are given in Appendix A, which together imply the main result (theorem 3). A proof of
theorem 5 regarding the concentration of the robust mean estimator is also given in Appendix
A. Proofs of supporting lemmas and remaining theorems are given in an on-line supplementary
file. The relevant MATLAB code is available from

http://wileyonlinelibrary.com/journal/rss-datasets

2. Robust approximate lasso estimator

We consider the linear regression model

yi =xT
i βÅ + εi, .2:1/

where {xi}n
i=1 are independent and identically distributed p-dimensional covariate vectors,

{εi}n
i=1 are independent and identically distributed errors and βÅ is a p-dimensional regres-

sion coefficient vector. The assumption of independent and identically distributed errors indeed
allows conditional heteroscedastic models, where εi can depend on xi. For example, it can be
εi =σ.xi/ε̃i, where σ.xi/ is a function of xi and ε̃i is independent of xi. We consider the high di-
mensional setting, where log.p/=O.nb/ for some constant 0<b<1. The distributions of x and
ε|x are both assumed to have mean 0. Under this assumption, βÅ is related to the mean effect
of y conditioning on x, which is assumed to be of interest. βÅ differs from the median effect
of y conditioning on x, especially under the heteroscedastic models or more general models.
Therefore, the LAD-based methods are not applicable.

To adapt for different magnitudes of errors and to robustify the estimation, we propose to
use the Huber loss (Huber, 1964):
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lα.x/=
{

2α−1|x|−α−2 if |x|>α−1;
x2 if |x|�α−1:

.2:2/

The Huber loss is quadratic for small values of x and linear for large values of x. The parameter
α controls the blending of quadratic and linear penalization. Least squares and LAD can be
regarded as two extremes of the Huber loss for α=0 and α=∞ respectively. Deviating from the
traditional Huber estimator, the parameter α converges to 0 to reduce the biases of estimating
the mean regression function when the conditional distribution of εi is not symmetric. However,
α cannot shrink too fast in order to maintain the robustness. In this paper, we regard α as a
tuning parameter, whose optimal value will be discussed later in this section. In practice,α needs
to be tuned by some data-driven method. By letting α vary, we call lα.x/ the RA quadratic loss.

To estimate βÅ, we propose to solve the following convex optimization problem:

β̂=argmin
β

1
n

n∑
i=1

lα.yi −xT
i β/+λn

p∑
j=1

|βj|: .2:3/

To assess the performance of β̂, we study the property of ‖β̂−βÅ‖2, where ‖·‖2 is the Euclidean
norm of a vector. When λn converges to 0 sufficiently fast, β̂ is a natural M-estimator of βÅ

α =
argminβE{lα.y − x′β/}, which is the population minimizer under the RA quadratic loss and
varies by α. In general, βÅ

α differs from βÅ. But, since the RA quadratic loss approximates the
quadratic loss as α → 0, βÅ

α is expected to converge to βÅ. This property will be established in
theorem 1. Therefore, we decompose the statistical error β̂ −βÅ into the approximation error
βÅ
α−βÅ and the estimation error β̂−βÅ

α. The statistical error ‖β̂−βÅ‖2 is then bounded by

‖β̂−βÅ‖2 � ‖βÅ
α−βÅ‖2︸ ︷︷ ︸

approximation error

+ ‖β̂−βÅ
α‖2︸ ︷︷ ︸

estimation error

:

In what follows, we give upper bounds of the approximation and estimation error. We show
that ‖β̂−βÅ‖2 is upper bounded by the same rate as the optimal rate under light tails, as long
as the two tuning parameters α and λn are properly chosen. We first give the upper bound
of the approximation error under some moment conditions on x and ε|x. We assume that
‖βÅ‖2 � ρ2, where the radius ρ2 is a sufficiently large constant. This is a mild assumption,
which is implied by condition 2 below and a reasonable assumption that var.y/ < ∞, since
var.y/�βÅTE.xxT/βÅ �κl‖βÅ‖2

2.

Theorem 1. First we state the following conditions.

Condition 1. E{E.|ε|k|x/}2 �Mk <∞, for some k �2.

Condition 2. 0 <κl �λmin{E.xxT/}�λmax{E.xxT/}�κu <∞.

Condition 3. For any ν ∈ Rp, xTν is sub-Gaussian with parameter at most κ2
0‖ν‖2

2, i.e.
E{exp.txTν/}� exp.t2κ2

0‖ν‖2
2=2/, for any t ∈R.

Under these conditions there is a universal positive constant C1, such that ‖βÅ
α−βÅ‖2 �

C1
√
κuκ

−1
l .κk

0 +√
Mk/αk−1.

Theorem 1 reveals that the approximation error vanishes faster if higher moments of ε|x
exist. We next give the non-asymptotic upper bound of the estimation error ‖β̂−βÅ

α‖2. This
part differs from the existing work regarding the estimation error of high dimensional regularized
M-estimators (Negahban et al., 2012; Agarwal et al., 2012) as the population minimizer βÅ

α now
varies with α. However, we shall show that the upper bound of the estimation error does not
depend on α, given a uniform sparsity condition.
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To be solvable in the high dimensional setting, βÅ is usually assumed to be sparse or weakly
sparse, i.e. many elements of βÅ are 0 or small. By theorem 1, βÅ

α converges to βÅ as α → 0.
In view of this fact, we assume that βÅ

α is uniformly weakly sparse when α is sufficiently small.
In particular, we assume that there is a small constant r> 0, such that βÅ

α belongs to an Lq-ball
with a uniform radius Rq, i.e.

p∑
j=1

|βÅ
α,j|q �Rq, .2:4/

for allα∈ .0, r] and some q∈ .0, 1]. When the conditional distribution of εi is symmetric,βÅ
α,j =βÅ

j

for allα and j. Therefore the condition reduces to that βÅ is in the Lq-ball. When the conditional
distribution of εi is asymmetric, we give a sufficient condition showing that, if βÅ belongs to an
Lq-ball with radius Rq=2, inequality (2.4) holds for all α� c{Rqp−.2−q/=2}1={q.k−1/}, where c is
a positive constant. In fact, for any q∈ .0, 1], |r1|q +|r2|q � .|r1|+ |r2|/q � |r1 + r2|q. Using this,

p∑
j=1

|βÅ
α,j|q �

p∑
j=1

|βÅ
α,j −βÅ

j |q +
p∑

j=1
|βÅ

j |q �p.2−q/=2
(

p∑
j=1

|βÅ
α,j −βÅ

j |2
)q=2

+
p∑

j=1
|βÅ

j |q:

By theorem 1, Σp
j=1|βÅ

α,j −βÅ
j |2 =O.α2.k−1//. Hence, if Σp

j=1|βÅ
j |q �Rq=2, we have Σp

j=1|βÅ
α,j|q �

Rq for all α� c{Rqp−.2−q/=2}1={q.k−1/}.
Since the RA quadratic loss is convex, we show that with high probability the estimation

error Δ̂= β̂−βÅ
α belongs to a star-shaped set, which depends on α and the threshold level η of

signals.

Lemma 1. Under conditions 1 and 3, with the choice of λn = κλ
√{log.p/=n} and α�

Lλn=.4v/, where v and L are positive constants depending on M2 andκ0, andκλ is a sufficiently
large constant such that κ2

λ> 32v, it holds with probability greater than 1−2 exp.−c0n/ that

Δ̂= β̂−βÅ
α ∈Cαη :={Δ∈Rp :‖ΔSc

αη
‖1 �3‖ΔSαη‖1 +4‖βÅ

α,Sc
αη

‖1},

where c0 =κ2
λ=.32v/−1, η is a positive constant, Sαη ={j : |βÅ

α,j|>η} and ΔSαη denotes the
subvector of Δ with indices in set Sαη.

We further verify a restricted strong convexity (RSC) condition, which has been shown to
be critical in the study of high dimensional regularized M-estimators (Negahban et al., 2012;
Agarwal et al., 2012). Let

δLn.Δ, β/=Ln.β+Δ/−Ln.β/−∇Ln.β/TΔ, .2:5/

where Ln.β/= .1=n/Σn
i=1 lα.yi −xT

i β/, Δ is a p-dimensional vector and ∇Ln.β/ is the gradient
of Ln at the point of β.

Definition 1. The loss function Ln satisfies the RSC condition on a set S with curvature
κL > 0 and tolerance τL if

δLn.Δ, β/�κL‖Δ‖2
2 − τ2

L, for all Δ∈S:

Next, we show that with high probability the RA quadratic loss (2.2) satisfies RSC for β=βÅ
α

and all Δ∈Cαη ∩{Δ :‖Δ‖2 �1} with uniform constants κL and τL that do not depend on α.
To prove RSC at βÅ

α and a stronger version in lemma 4, we first give a uniform lower bound
of δLn.Δ,β/ for all ‖β‖2 � 4ρ2, ‖Δ‖2 � 8ρ2 and α� cuρ

−1
2 , where cu is a positive constant,

depending on Mk, κl, κu and κ0.
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Lemma 2. Under conditions 1–3, for all ‖β‖2 �4ρ2, ‖Δ‖2 �8ρ2 andα�cuρ
−1
2 , there are uni-

form positive constants κ1, κ2, c′
1 and c′

2 such that, with probability at least 1−c′
1exp.−c′

2n/,

δLn.Δ,β/�κ1‖Δ‖2[‖Δ‖2 −κ2
√{log.p/=n}‖Δ‖1]: .2:6/

Lemma 3. Suppose that conditions 1–3 hold and assume that

8κ2κ
−q=2
λ

√
Rq

{
log.p/

n

}.1−q/=2

�1, .2:7/

by choosing η= λn, with probability at least 1 − c′
1 exp.−c′

2n/, the RSC condition holds
for δLn.Δ, βÅ

α/ for any Δ∈ Cαη ∩{Δ : ‖Δ‖2 � 1} with κL =κ1=2 and τ2
L = 4Rqκ1κ2κ

1−q
λ ×

{n−1log.p/}1−q=2.

Lemma 3 shows that, even though βÅ
α is unknown and the set Cαη depends on α, RSC holds

with uniform constants that do not depend on α. This further gives the following upper bound
of the estimation error ‖β̂−βÅ

α‖2, which also does not depend on α.

Theorem 2. Under the conditions of lemmas 1 and 3, there are positive constants c1, c2 and
C2 such that, with probability at least 1− c1 exp.−c2n/,

‖β̂−βÅ
α‖2 �C2k−2

l κ
2−q
λ Rq{n−1log.p/}1−q=2:

Finally, theorems 1 and 2 together lead to the following main result, which gives the non-
asymptotic upper bound of the statistical error ‖β̂−βÅ‖2.

Theorem 3. Under the conditions of lemmas 1 and 3, with probability at least 1−c1exp.−c2n/,

‖β̂−βÅ‖2 �d1α
k−1 +d2

√
Rq{log.p/=n}1=2−q=4, .2:8/

where the constants d1 =C1
√
κuκ

−1
l .κk

0 +√
Mk/ and d2 =C2k−2

l κ
2−q
λ .

Next, we compare our result with the existing results regarding the robust estimation of high
dimensional linear regression models.

(a) When the conditional distribution of ε is symmetric around 0, then βÅ
α =βÅ for any α,

which has no approximation error. If ε has heavy tails in addition to being symmetric, we
would like to chooseα sufficiently large to robustify the estimation. Theorem 2 implies that
‖β̂−βÅ‖2 has a convergence rate of

√
Rq{log.p/=n}1=2−q=4, where Rq =Σp

j=1|βÅ
j |q. The

rate is the same as the minimax rate (Raskutti et al., 2011) for weakly sparse models under
light tails. In a special case that q = 0, ‖β̂−βÅ‖2 converges at a rate of

√{s log.p/=n},
where s is the number of non-zero elements in βÅ. This is the same rate as the regularized
LAD estimator in Wang (2013) and the regularized quantile estimator in Belloni and
Chernozhukov (2011). It suggests that our method does not lose efficiency for symmetric
heavy-tailed errors.

(b) If the conditional distribution of ε is asymmetric around 0, the quantile and LAD-
based methods are inconsistent, since they estimate the median instead of the mean. Theo-
rem 3 shows that our estimator still achieves the optimal rate as long as α �
{d−1

1 d2Rq{log.p/=n}1−q=2}1={2.k−1/}. Recall from the conditions in lemmas 1 and 3 that
we also need to choose α, such that cl

√{log.p/=n} �α� cuρ
−1
2 for some constants cl

and cu. Given the sparsity condition (2.7), α can be chosen to meet the above three re-
quirements. In terms of estimating the conditional mean effect, errors with heavy but
asymmetric tails give the case where the RA lasso has the biggest advantage over existing
estimators.
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In practice, the distribution of errors is unknown. Our method is more flexible than existing
methods as it does not require symmetry and light tail assumptions. The tuning parameter α
plays a key role by adapting to errors with different shapes and tails. In reality, the optimal
values of tuning parameters α and λn can be chosen by a two-dimensional grid search using
cross-validation or an information-based criterion, e.g. the Akaike information criterion or
Bayesian information criterion. More specifically, the search grid is formed by partitioning a
rectangle in the scale of (log.α/, log.λn/). The optimal values are then found by the combination
that minimizes the Akaike information criterion, Bayesian information criterion or the cross-
validated measurement (such as mean-squared error).

3. Geometric convergence of computational error

The gradient descent algorithm (Nesterov, 2007; Agarwal et al., 2012) is usually applied to
solve the convex problem (2.3). For example, we can replace the RA quadratic loss with its local
isotropic quadratic approximation and iteratively solve the following optimization problem:

β̂
t+1 =argmin

‖β‖1�ρ
{Ln.β̂

t
/+∇Ln.β̂

t
/T.β− β̂

t
/+ γu

2
‖β− β̂

t‖2
2 +λn‖β‖1}, .3:1/

where γu is a sufficiently large fixed constant whose condition is specified in expression (3.3)
below and the side constraint ‘‖β‖1 � ρ’ is introduced to guarantee good performance in the
first few iterations and ρ is allowed to be sufficiently large such that βÅ is feasible. The isotropic
local quadratic approximation allows an expedient computation. To solve problem (3.1), the
update can be computed by a two-step procedure. We first solve problem (3.1) without the norm
constraint, which is the soft threshold of the vector β̂

t − .1=γu/∇Ln.β̂
t
/ at level λn, and call the

solution β̌. If ‖β̌‖1 �ρ, set β̂
t+1 = β̌. Otherwise, β̂

t+1
is obtained by further projecting β̌ onto

the L1-ball {β :‖β‖1 �ρ}. The projection can be done (Duchi et al., 2008) by soft thresholding
β̌ at level πn, where πn is given by the following procedure:

(a) sort {|β̌j|}p
j=1 into b1 �b2 �: : :�bp;

(b) find J =max{1� j �p : bj − .Σj
r=1 br −ρ/=j> 0} and let πn = .ΣJ

r=1 bj −ρ/=J .

Agarwal et al. (2012) considered the computational error of such a first-order gradient descent
method. They showed that, for a convex and differentiable loss functions l.x/ and decomposable
penalty function p.β/, the error ‖β̂t −βÅ‖2 has the same rate as ‖β̂−βÅ‖2 for all sufficiently
large t, where βÅ =arg minβE{l.x, y;β/}, and β̂=arg minβ.1=n/Σn

i=1l.xi, yi,β/+p.β/. Differ-
ently from their set-up, our population minimizer βÅ

α varies by α. Nevertheless, as βÅ
α converges

to the true effect βÅ, by a careful control of α, we can still show that ‖β̂t −βÅ‖2 has the same
rate as ‖β̂−βÅ‖2, where β̂ is the theoretical solution of expression (2.3) and β̂

t
is as defined in

problem (3.1).
The key is that the RA quadratic loss function Ln satisfies the RSC condition and the restricted

smoothness condition with some uniform constants, namely δLn.Δ, β/ as defined in expression
(2.5) satisfies the following conditions: RSC,

δLn.Δ, β/� γl

2
‖Δ‖2

2 − τl‖Δ‖2
1; .3:2/

restricted smoothness,

δLn.Δ, β/� γu

2
‖Δ‖2

2 + τu‖Δ‖2
1, .3:3/
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for all β and Δ in some set of interest, with parameters γl, τl, γu and τu that do not depend on
α. We show that such conditions hold with high probability.

Lemma 4. Under conditions 1–3, for all ‖β‖2 � 4ρ2, ‖Δ‖2 � 8ρ2 and α� cuρ
−1
2 , with

probability greater than 1 − c1exp.−c2n/, conditions (3.2) and (3.3) hold with γl =κ1, τl =
κ1κ

2
2 log.p/=.2n/, γu =3κu and τu =κulog.p/=n.

We further give an upper bound of computational error ‖β̂t − β̂‖2 in theorem 4. It shows that,
with high probability, ‖β̂t − β̂‖2 is dominated by ‖β̂−βÅ

α‖2 after sufficient iterations, as long as
Rq{log.p/=n}1−q=2 =o.1/, which is required for consistency of any method over the weak sparse
Lq-ball by the known minimax results (Raskutti et al., 2011). Denote r2

n =Rq{log.p/=n}1−q=2.
Theorem 3 and theorem 4 below imply that, with high probability,

‖β̂t −βÅ‖2 �‖β̂t − β̂‖2 +‖β̂−βÅ
α‖2 +‖βÅ

α−βÅ‖2

�√
d3rn.‖β̂−βÅ

α‖2
2 + r2

n/1=2 +d2rn +d1α
k−1

�{d3.d2
2 +1/}1=2r2

n +d2rn +d1α
k−1

�2d2rn +d1α
k−1,

when the sample size is sufficiently large to ensure that rn � d2{d3.d2
2 + 1/}−1=2. Therefore,

‖β̂t −βÅ‖2 has the same rate as ‖β̂−βÅ‖2. Hence, from a statistical point of view, there is no
need to iterate beyond t steps.

Theorem 4. Under the conditions of theorem 3, suppose that we choose λn as in lemma 1
and also satisfying

λn � 32ρ
1−κ

{
1− 64κu|Sαη|log.p/

nγ̄l

}−1 [
1+κ1κ

2
2

{
γ̄l

12κu
+ 128κu|Sαη| log.p/

nγ̄l

}
+8κu

]
log.p/

n
,

where |Sαη| denotes the cardinality of set Sαη and γ̄l =γl − 64τl|Sαη|; then, with probability
at least 1− c1exp.−c2n/, there is a generic positive constant d3 such that

‖β̂t − β̂‖2
2 �d3Rq

{
log.p/

n

}1−q=2[
‖β̂−βÅ

α‖2
2 +Rq

{
log.p/

n

}1−q=2]
, .3:4/

for all iterations

t � 2 log[{φn.β̂
0
/−φn.β̂/}=δ2]

log.1=κ/
+ log2

{
log2

(
ρλn

δ2

)}{
1+ log.2/

log.1=κ/

}
,

where φn.β/ = Ln.β/ + λn‖β‖1 and β̂
0

is the initial value satisfying ‖β̂0 −βÅ‖2 � ρ2, δ=
"2=.1−κ/ is the tolerance level andκ and " are some constants as will be defined in expressions
(19) and (20) in the on-line supplementary file respectively.

4. Robust estimation of mean and covariance matrix

Estimation of the mean can be regarded as a univariate linear regression where the covariate
equals 1. In that special case, we have a more explicit concentration result for the RA mean
estimator, which is the estimator that minimizes the RA quadratic loss. Let {yi}n

i=1 be an in-
dependent and identically distributed sample from some unknown distribution with E.yi/=μ
and var.yi/=σ2. The RA mean estimator μ̂α of μ is the solution of

n∑
i=1

ψ{α.yi −μ/}=0,
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for parameter α→ 0, where the influence function ψ.x/ = x if |x| � 1,ψ.x/ = 1 if x > 1 and
ψ.x/=−1 if x <−1. The following theorem gives the exponential type of concentration of μ̂α
around μ.

Theorem 5. Assume that log.1=δ/=n� 1
8 and let α=√{log.1=δ/=.nv2/} where v�σ. Then,

P

[
|μ̂α−μ|�4v

√{
log.1=δ/

n

}]
�2δ:

This result provides fast concentration of the mean estimation with only two moments assump-
tion. This is very useful for large-scale hypothesis testing (Efron, 2010; Fan et al., 2012) and
covariance matrix estimation (Bickel and Levina, 2008; Fan et al., 2013), where uniform con-
vergence is required. Taking the estimation of a large covariance matrix as an example, for
the elements of the sample covariance matrix to converge uniformly, Bickel and Levina (2008)
and Fan et al. (2013) required the underlying multivariate distribution to be sub-Gaussian.
This restrictive assumption can be removed if we apply the robust estimation with concentra-
tion bound. Regarding σij =E.XiXj/ as the expected value of the random variable XiXj (it is
typically not the same as the median of XiXj), it can be estimated with accuracy

P

[
|σ̂ij −σij|�4v

√{
log.1=δ/

n

}]
�2δ,

where v�maxi,j�p
√

var.XiXj/ and σ̂ij is the RA mean estimator using data {XikXjk}n
k=1. Since

there are only O.p2/ elements, by taking δ=p−a for some a> 2 and the union bound, we have

P

[
max
i,j�p

|σ̂ij −σij|�4v

√{
a log.p/

n

}]
�2p2−a,

when maxi�p E.X4
i / is bounded. This robustified covariance estimator requires a much weaker

condition than the sample covariance and has far wider applicability than the sample covariance.
It can be regularized further in the same way as the sample covariance matrix.

5. Connection with Catoni loss

Catoni (2012) considered estimation of the mean of heavy-tailed distributions with fast concen-
tration. He proposed an M-estimator by solving

n∑
i=1
ψc{α.yi −θ/}=0,

where the influence function ψc.x/ is chosen such that − log.1 − x + x2=2/ �ψc.x/ � log.1 +
x+x2=2/. He showed that this M-estimator has the exponential type of concentration by only
requiring the existence of the variance. It performed as well as the sample mean under the light
tail case.

Catoni’s idea can also be extended to the linear regression setting. Suppose that we replace
the RA quadratic loss lα.x/ in expression (2.3) with Catoni loss,

lcα.x/= 2
α

∫ x

0
ψc.αt/dt,

where the influence function ψc.t/ is given by

ψc.t/= sgn.t/{− log.1−|t|+ t2=2/I.|t|< 1/+ log.2/I.|t|�1/}:
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Let β̂
c

be the orresponding solution. Then, β̂
c

has the same non-asymptotic upper bound as
the RA lasso, which is stated as follows.

Theorem 6. Suppose that condition 1 holds for k =2 or k =3, and conditions 2, 3 and (2.7)
hold. Then there are generic positive constants c1, c2, d4 and d5, depending on Mk, κ0, κl, κu
and κλ, such that, with probability at least 1− c1exp.−c2n/,

‖β̂c −βÅ‖2 �d4α
k−1 +d5

√
Rq{log.p/=n}1=2−q=4:

Unlike the RA lasso, the order of bias of β̂
c

cannot be further improved, even when higher
conditional moments of errors exist beyond the third order. The reason is that the Catoni
loss is not exactly the quadratic loss over any finite intervals. Similar results regarding the
computational error of β̂

c
can also be established as in theorem 4, since the RSC and restricted

smoothness conditions also hold for Catoni loss with uniform constants.

6. Variance estimation

We estimate the unconditional variance σ2 =E.ε2/ based on the RA lasso estimator and a cross-
validation scheme. To ease the presentation, we assume that the data set can be evenly divided
into J folds with m observations in each fold. Then, we estimate σ2 by

σ̂2 = 1
J

J∑
j=1

1
m

∑
i∈foldj

.yi −xT
i β̂

.−j/
/2,

where β̂
.−j/

is the RA lasso estimator obtained by using data points outside the jth fold. We
show that σ̂2 is asymptotically efficiently. Differently from the existing cross-validation-based
method (Fan et al., 2012), a light tail assumption is not needed because of the utilization of the
RA lasso estimator.

Theorem 7. Under the conditions of theorem 3, if Rq log.p/1−q=2=n.1−q/=2 →0 for q∈ .0, 1/,
and α=O.[Rq{log.p/=n}1−q=2]1={2.k−1/}/, then

√
n.σ̂2 −σ2/

D→N{0, E.ε4/−σ4}:

7. Simulation studies

In this section, we assess the finite sample performance of the RA lasso and compare it with
other methods through various models. We simulated data from the high dimensional model

yi =xT
i βÅ + εi, xi ∼N.0, Ip/, .7:1/

where we generated n = 100 observations and the number of parameters was chosen to be
p=400. We chose the true regression coefficient vector as

βÅ = .3, : : : , 3, 0, : : : , 0/T,

where the first 20 elements are all equal to 3 and the rest are all equal to 0. To involve various
shapes of error distributions, we considered the following five scenarios:

(a) normal errors with mean 0 and variance 4 (N(0,4));
(b) two times the t-distribution with degrees of freedom 3 (2t3);
(c) a mixture of normal distributions, MixN, 0:5N.−1, 4/+0:5N.8, 1/;
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Table 1. Summary of the shapes and tails
of the five error distributions

Light tail Heavy tail

Symmetric N.0, 4/ 2t3
Asymmetric MixN LogNormal,

Weibull

(d) a log-normal distribution, LogNormal, ε=exp.1+1:2Z/, where Z is the standard normal
distribution;

(e) a Weibull distribution with shape parameter 0.3 and scale parameter 0.5.

To meet the model assumptions, the errors were standardized to have mean 0. Table 1 categorizes
the five scenarios according to the shapes and tails of the error distributions.

To obtain our estimator, we iteratively applied the gradient descent algorithm. We compared
the RA lasso with two other methods in a high dimensional setting:

(a) lasso, the penalized least squares estimator with L1-penalty as in Tibshirani (1996);
(b) R-Lasso, the R-Lasso estimator in Fan et al. (2014), which is the same as the regularized

LAD estimator with L1-penalty as in Wang (2013).

Their performance under the five scenarios was evaluated by the following four measurements:

(a) L2-error, which is defined as ‖β̂−βÅ‖2;
(b) L1-error, which is defined as ‖β̂−βÅ‖1;
(c) the number of false positive results, FP, which is the number of noise covariates that are

selected;
(d) the number of false negative results, FN, which is the number of signal covariates that are

not selected.

We also measured the relative gain of the RA lasso with respect to R-Lasso and the lasso, in
terms of the difference from the oracle estimator. The oracle estimator β̂oracle is defined to be
the least square estimator by using the first 20 covariates only. Then, the relative gains of the
RA lasso with respect to the lasso, RGA,L, in the L2- and L1-norm are defined as

‖β̂lasso −βÅ‖2 −‖β̂oracle −βÅ‖2

‖β̂RA lasso −βÅ‖2 −‖β̂oracle −βÅ‖2
,

‖β̂lasso −βÅ‖1 −‖β̂oracle −βÅ‖1

‖β̂RA lasso −βÅ‖1 −‖β̂oracle −βÅ‖1
:

The relative gain of the RA lasso with respect to R-Lasso, RGA,R, is defined similarly.
For the RA lasso, the tuning parameters λn and α were chosen optimally on the basis of 100

independent validation data sets. We ran a two-dimensional grid search to find the best .λn,α/

pair that minimizes the mean L2-loss of the 100 validation data sets. Such an optimal pair was
then used in the simulations. A similar method was applied in choosing the tuning parameters
in the lasso and R-Lasso.

The above simulation model is based on the additive model (7.1), in which the error distri-
bution is independent of covariates. However, this homoscedastic model makes the conditional
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Table 2. Simulation results for the lasso, R-lasso and RA lasso under homoscedastic
model (7.1)

Scenario Results for the following methods:

Lasso R-Lasso RA lasso RGA,L RGA,R

N.0, 4/ L2-loss 4.54 4.40 4.53 1.00 0.96
L1-loss 27.21 29.11 27.21 1.00 1.08
FP, FN 52.10, 0.09 66.36, 0.17 52.10, 0.09

2t3 L2-loss 6.04 5.10 5.47 1.14 0.91
L1-loss 35.22 33.07 30.42 1.19 1.10
FP, FN 47.13, 0.34 65.84, 0.22 41.34, 0.28

MixN L2-loss 6.14 6.44 6.13 1.00 1.06
L1-loss 40.46 46.18 38.48 1.06 1.23
FP, FN 65.99, 0.34 80.31, 0.33 58.05, 0.39

LogNormal L2-loss 11.08 12.16 10.10 1.14 1.30
L1-loss 53.17 57.18 51.58 1.04 1.14
FP, FN 26.5, 15.00 27.20, 6.90 37.20, 3.90

Weibull L2-loss 7.77 7.11 6.62 1.23 1.10
L1-loss 55.65 50.49 42.93 1.34 1.20
FP, FN 78.70, 0.71 77.13, 0.56 62.27, 0.52

Table 3. Simulation results of the lasso, R-lasso and RA lasso under heteroscedastic
model (7.2)

Scenario Results for the following methods:

Lasso R-Lasso RA lasso RGA,L RGA,R

N.0, 4/ L2-loss 4.60 4.34 4.60 1.00 0.93
L1-loss 27.16 27.14 27.15 1.00 1.00
FP, FN 48.78, 0.10 58.25, 0.27 48.78, 0.10

2t3 L2-loss 8.08 6.71 6.70 1.26 1.01
L1-loss 41.16 42.76 38.52 1.08 1.12
FP, FN 55.33, 0.67 71.67, 0.33 45.33, 0.33

MixN L2-loss 6.26 6.54 6.25 1.00 1.06
L1-loss 41.26 46.95 39.25 1.06 1.23
FP, FN 65.98, 0.34 80.30, 0.32 58.80, 0.34

LogNormal L2-loss 10.86 9.19 8.48 1.43 1.13
L1-loss 57.52 57.18 53.20 1.10 1.09
FP, FN 29.70, 5.70 54.10, 2.00 54.30, 1.50

Weibull L2-loss 7.40 8.81 5.53 1.53 1.92
L1-loss 40.95 47.82 34.65 1.23 1.48
FP, FN 38.87, 0.96 35.31, 2.90 58.15, 0.39

mean and the conditional median differ by only a constant. To examine the deviations be-
tween the mean regression and median regression further, we also simulated the data from the
heteroscedastic model

yi =xT
i βÅ + c−1.xT

i βÅ/2εi, xi ∼N.0, Ip/, .7:2/

where the constant c=√
3‖βÅ‖2 makes E{c−1.xT

i βÅ/2}2 =1. xT
i βÅ ∼N.0, ‖βÅ‖2/ and therefore

c is chosen so that the average noise level is the same as that of εi. For both the homoscedastic
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Table 4. Genes selected by the lasso, R-Lasso and RA lasso

Genes selected by the following methods:

Lasso R-Lasso RA Lasso

CRK CSF3 DAPK2 EPOR CSF3 IL10 IFI6 CR2 FYN
0.23 −2:46 0.7 −0:17 −2:95 1.52 0.86 0.57 −0:24

IL10 TOLLIP TJP1 CD3E MAP2K4 TLR1 IL2 EPOR
2.24 −0:68 −0:12 2.67 1.17 0.82 −0:47 0.24

AKT1 TLR1 GAB2 BTK PMAIP1 PSMB8 PSMC2 MASP1
1.68 0.52 −0:01 2.37 −1:14 0.79 0.38 −0:24

KPNB1 TLR3 CLSPN BCL2L11 KPNB1 HSPA8 PRKCZ
1.49 0.33 1.93 −1:13 0.77 −0:35 0.24

TLR2 SHC1 RELA AKT3 IFNG SHC1 TOLLIP
1.41 −0:28 1.88 −1:01 −0:74 −0:33 −0:19

GRB2 PSMD1 AKT1 DUSP10 FADD SPI1 BAK1
−1:06 0.27 1.61 0.97 0.65 −0:28 0.14
MAPK1 F12 IRS2 IRF4 TJP1 IFNA6

0.98 0.24 1.55 −0:95 −0:57 0.28

and the heteroscedastic models, we ran 100 simulations for each scenario. The mean of each
performance measurement is reported in Table 2 and Table 3 respectively.

Tables 2 and 3 indicate that our method had the biggest advantage when the errors were
asymmetric and heavy tailed (the LogNormal and Weibull methods). In this case, R-Lasso had
larger L1- and L2-errors owing to the bias for estimating the conditional median instead of
the mean. Even though the lasso did not have bias in the loss component (quadratic loss), it
did not perform well owing to its sensitivity to outliers. The advantage of our method is more
pronounced in the heteroscedastic model than in the homoscedastic model. Both of them clearly
indicate that, if the errors come from asymmetric and heavy-tailed distributions, our method
is better than both the lasso and R-Lasso. When the errors were symmetric and heavy tailed
(method 2t3), our estimator performed closely to the R-Lasso method, and both outperformed
the lasso. These two cases evidently showed that the RA lasso was robust to outliers and did
not lose efficiency when the errors were indeed symmetric. Under the light-tailed scenario, if
the errors were asymmetric (method MixN), our method performed similarly to the lasso. The
R-Lasso method performed worse, since it had bias. For the regular setting (N(0, 4)), where the
errors were light tailed and symmetric, the three methods were comparable with each other.

In conclusion, the RA lasso is more flexible than the lasso and R-Lasso. The tuning parameter
α automatically adapts to errors with different shapes and tails. It enables the RA lasso to render
consistently satisfactory results under all scenarios.

8. Real data example

In this section, we use a microarray data set to illustrate the performance of the lasso, R-
Lasso and RA lasso. Huang et al. (2011) studied the role of the innate immune system on the
development of atherosclerosis by examining gene profiles from peripheral blood of 119 patients.
The data were collected by using an Illumina HumanRef8 V2.0 Bead Chip and are available
from the gene expression omnibus. The original study showed that the toll-like receptor (TLR)
signalling pathway plays an important role in triggering the innate immune system in the face
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Fig. 3. Boxplots of (a) mean absolute errors of prediction and (b) mean-squared errors of prediction

of atherosclerosis. Under this pathway, the ‘TLR8’ gene was found to be a key atherosclerosis-
associated gene. To study further the relationship between this key gene and the other genes,
we regressed it on another 464 genes from 12 different pathways (TLR, CCC, CIR, IFNG,
MAPK, RAPO, EXAPO, INAPO, DRS, NOD, EPO and CTR) that are related to the TLR
pathway. We applied the lasso, R-Lasso and RA lasso to these data. The tuning parameters for
all the methods were chosen by using fivefold cross-validation. Fig. 1 shows our choice of the
penalization parameter based on the cross-validation results. For the RA lasso, the choice of
α was insensitive to the results and was fixed at 5. We then applied the three methods with the
above choice of tuning parameters to select significant genes. The QQ-plots of the residuals from
the three methods are shown in Fig. 2. The genes selected by the three methods are reported in
Table 4. After the selection, we regressed the expression of the TLR8 gene on the selected genes;
the t-values from the refittings are also reported in Table 4.

Table 4 shows that the lasso selected only one gene. The R-Lasso method selected 17 genes.
Our proposed RA lasso selected 34 genes. Eight genes (CSF3, IL10, AKT1, TOLLIP, TLR1,
SHC1, EPOR and TJP1) that were found by R-Lasso were also selected by the RA lasso.
Compared with the lasso and R-Lasso, our method selected more genes, which could be useful
for a second-stage confirmatory study. It is clearly seen from Fig. 2 that the residuals from the
fitted regressions had a heavy right-hand tail and a skewed distribution. We learn from the
simulation studies in Section 7 that the RA lasso tends to perform better than the lasso and R-
Lasso in this situation. For further investigation, we randomly chose 24 patients as the test set;
we applied three methods to the rest of the patients to obtain the estimated coefficients, which
in return were used to predict the responses of 24 patients. We repeated the random splitting
100 times; the boxplots of the mean absolute and mean-squared error of predictions are shown
in Fig. 3. The RA lasso made better predictions than the lasso and R-Lasso.
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Appendix A: Proofs of theorems 1, 2 and 5
A.1. Proof of theorem 1
Let l.x/=x2. Since βÅ minimizes E{l.y −xTβ/}, it follows from condition 2 that

E{l.y −xTβÅ
α /− l.y −xTβÅ/}= .βÅ

α −βÅ/TE.xxT/.βÅ
α −βÅ/�κl‖βÅ

α −βÅ‖2
2: .A:1/

Let gα.x/= l.x/− lα.x/= .|x|−α−1/2I.|x|>α−1/. Then, since βÅ
α is the minimizer of E{lα.y − xTβ/}, we

have

E{l.y −xTβÅ
α /− l.y −xTβÅ/}=E{l.y −xTβÅ

α /− lα.y −xTβÅ
α /}+E{lα.y −xTβÅ

α /− lα.y −xTβÅ/}
+E{lα.y −xTβÅ/− l.y −xTβÅ/}

�E{gα.y −xTβÅ
α /}−E{gα.y −xTβÅ/}:

By Taylor’s expansion, we have

E{l.y −xTβÅ
α /− lα.y −xTβÅ

α /}� 2E{.z−α−1/I.z>α−1/|xT.βÅ
α −βÅ/|}, .A:2/

where β̃ is a vector lying between βÅ and βÅ
α and z = |y − xTβ̃|. With Pε denoting the distribution of ε

conditioning on x and Eε the corresponding expectation, we have

Eε{.z−α−1/I.z>α−1/}=
∫ ∞

0
Pε{zI.z>α−1/> t}dt −α−1Pε.z>α−1/

=
∫ ∞

0
Pε.z> t and z>α−1/dt −α−1Pε.z>α−1/

=
∫ ∞

α−1
Pε.z> t/dt +

∫ α−1

0
Pε.z>α−1/dt −α−1Pε.z>α−1/

�
∫ ∞

α−1

Eε.z
k/

tk
dt �αk−1Eε.z

k/:

Therefore, E{l.y −xTβÅ
α /− l.y −xTβÅ/} is further bounded by

2αk−1E{|y −xTβ̃|k|xT.βÅ
α −βÅ/|}=2αk−1E{|ε+xT.βÅ − β̃/|k|xT.βÅ

α −βÅ/|}
=2.2α/k−1[E{|ε|k|xT.βÅ

α −βÅ/|}+E{|xT.βÅ − β̃/|k|xT.βÅ
α −βÅ/|}]:

(A.3)

Note that

E{|ε|k|xT.βÅ
α −βÅ/|}=E{E.|ε|k|x/|xT.βÅ

α −βÅ/|}� [E{E.|ε|k|x/}2]1=2[E|xT.βÅ
α −βÅ/|2]1=2

�√
.Mkκu/‖βÅ

α −βÅ‖2,

where the last inequality follows from conditions 1 and 2. However, by condition 3, xT.βÅ − β̃/ is sub-
Gaussian; hence its 2kth moment is bounded by c2κ2k

0 , for a universal positive constant c depending on k
only. Then,

E{|xT.βÅ − β̃/|k|xT.βÅ
α −βÅ/|}�{E|xT.βÅ − β̃/|2k}1=2{E|xT.βÅ

α −βÅ/|2}1=2

� cκk
0

√
κu‖βÅ

α −βÅ‖2:

These results together with equation (A.1) and (A.3) complete the proof.

A.2. Proof of theorem 2
Let A1 and A2 denote the events that lemma 1 and lemma 3 hold respectively. By theorem 1 of Negahban
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et al. (2012), within A1 ∩A2, it holds that

‖Δ‖2
2 �9

λ2
n

κ2
L

|Sαη|+ λn

κ2
L

.2τ 2
L +4‖βÅ

Sc
αη

‖1/

� 36λ2
nRq

κ2
1η

q
+ 4λn

κ2
1

[
8Rqκ1κ2κλ

1−q

{
log.p/

n

}1−q=2

+4Rqη
1−q

]

.i/= 36
κ2

1

Rqλ
2−q
n + 16

κ2
1

Rqλ
2−q
n

[
2κ1κ2

{
log.p/

n

}1=2

+1
]

.ii/
� C2k

−2
l κ

2−q
λ Rq{n−1log.p/}1−q=2,

where equation (i) follows from the choice of η=λn and in inequality (ii) we assume that the sample size n
is sufficiently large that 2κ1κ2{n−1log.p/}1=2 �1 and observe that κ1 =κl=4. In contrast, by lemmas 1 and
3, P.A1 ∩A2/�1− c1 exp.−c2n/, where c1 =max{2, c′

1} and c2 =min{c0, c′
2}.

A.3. Proof of theorem 5
The proof of theorem 5 follows the same spirit as the proof of proposition 2.4 in Catoni (2012). The
influence function ψ.x/ of RA quadratic loss satisfies

− log.1−x+x2/�ψ.x/� log.1+x+x2/:

Using this and independence, with r.θ/={1=.αn/}Σn
i=1ψ{α.Yi −θ/}, we have

E[exp{αnr.θ/}]�E.exp[ψ{α.Yi −θ/}]/n

� [1+α.μ−θ/+α2{σ2 + .μ−θ/2}]n

� exp[nα.μ−θ/+nα2{v2 + .μ−θ/2}]:

Similarly, E[exp{−αnr.θ/}]� exp[−nα.μ−θ/+nα2{v2 + .μ−θ/2}]. Define

B+.θ/=μ−θ+α{v2 + .μ−θ/2}+ log.1=δ/

nα
,

B−.θ/=μ−θ−α{v2 + .μ−θ/2}− log.1=δ/

nα
:

By the Chebyshev inequality,

P{r.θ/>B+.θ/}� E[exp{αnr.θ/}]
exp[αn.μ−θ/+nα2{v2 + .μ−θ/2}+ log.1=δ/]

� δ:

Similarly, P{r.θ/<B−.θ/}� δ.
Let θ+ be the smallest solution of the quadratic equation B+.θ+/=0 and θ− be the largest solution of the

equation B−.θ−/=0. Under the assumption that log.1=δ/=n� 1
8 and the choice of α=√{log.1=δ/=nv2},

we have α2v2 + log.1=δ/=n� 1
4 . Therefore,

θ+ =μ+2
{
αv2 + log.1=δ/

αn

}(
1+

√[
1−4

{
α2v2 + log.1=δ/

n

}])−1

�μ+2
{
αv2 + log.1=δ/

αn

}
:

Similarly,

θ− =μ−2
{
αv2 + log.1=δ/

αn

}(
1+

√[
1−4

{
α2v2 + log.1=δ/

n

}])−1



264 J. Fan, Q. Li and Y. Wang

�μ−2
{
αv2 + log.1=δ/

αn

}
:

With α=√{log.1=δ/=.nv2/}, θ+ �μ+ 4v
√{log.1=δ/=n}, and θ− �μ− 4v

√{log.1=δ/=n}. Since the map
θ �→ r.θ/ is non-increasing, under event {B−.θ/� r.θ/�B+.θ/}

μ−4v

√{ log.1=δ/

n

}
�θ− � μ̂α �θ+ �μ+4v

√{ log.1=δ/

n

}
,

i.e. |μ̂α −μ|�4v
√{log.1=δ/=n}. Meanwhile, P{B−.θ/� r.θ/�B+.θ/}> 1−2δ.
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