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Abstract

The kernel and ordinary spline methods are not effective for capturing the shapes of
unknown densities. To overcome this discrepancy, we study the problem of estimating
densities under shape restrictions. We propose several methods for estimating uni-
modal densities: plug-in MLE, pregrouping techniques, linear spline MLE, and spline
smoothing. Combining these techniques, an automatic spline procedure for estimating
a unimodal density is proposed, which is justified to have a good performance. The
asymptotic distributions of proposed estimators are also found. An important conse-
quence of our study is that having to estimate the location of a mode does not affect

the limiting behavior of our unimodal density estimate.
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1 Introduction

Nonparametric density estimation provides a useful technique of examining the overall
structure of a set of data. A commonly used technique is the kernel method (Parzen
(1962)). The behavior of a kernel density estimate relies strongly on the choice of smoothing
parameter (bandwidth). Data-driven bandwidth selection methods (Hé4rdle et al. (1988),
Rice (1984), among others) have been studied recently. One tries to minimize the Integrated
Square Error (ISE) or the Mean ISE (MISE) or other related ob jects, and uses one of them
as a measure of global effectiveness of a curve estimate. In practical density estimation,
however, features such as shapes and areas under modes may be more interesting. ISE
and MISE are not good criteria for these purposes. For example, the ISE of two curves
can be very small, while the shapes of two curves are quite different. Thus, the kernel
method can produce quite noisy a picture so that the overall structure of the data is hard
to examine. To overcome this discrepancy, we propose estimating a global density under
shape restrictions. As a start, we focus on the problem of estimating a unimodal density
with an unknown mode location. Our ultimate goal is to develop a method to produce
good pictures for estimating multimodal densities and to examine similarly other methods
of estimation under order restrictions.

An early work on estimating a density under shape restrictions is Grenander (1956),
who estimated a decreasing density by using a maximum likelihood approach. The resulting
estimate is the left slope of the least concave majorant of the empirical distribution function.
The asymptotic distribution of the MLE was found by Prakasa Rao (1969), and Groeneboom
(1985). Recent developments in estimating a monotone density can be found in Birgé
(1987a,b), which give the behavior of nonparametric minimax risks. Wegman (1972 a, b)
extends the problem to estimating a unimodal density by using an MLE method and proves
the consistency of the MLE. Kiefer (1981) gave an illuminating survey of developments in
the theory of estimating a monotonic function (e.g., density function, failure rate function).

Of course, there is a long history of isotonic regression and its related problems. See Barlow



et al. (1972) and Robertson et al. (1988), Barlow and van Zwet.(1970), Ramsay (1988),
Kelly and Rice (1990), among others.

To estimate a unimodal density, we first begin by introducing a plug-in maximum likeli-
hood method. We use this to understand how the location of the mode affects the estimate.
An important result of section 2 is that slight misspecification of the location of a mode
does not affect tremendously the behavior of our estimate; it misestimates the unknown
density only on a tiny interval near the true mode. Practically, it means that estimating an
unknown density with unknown location of mode is not appreciably more difficult than esti-
mating an unknown density with a known location of mode. This fact makes it possible to
estimate a multimodal density by using a plug-in method. The statement is further justified
by considering a related problem in the population context: minimize the Kullback-Leibler
discriminant information with the mode location misspecified.

Let’s denote by f,(z;m) the nonparametric maximum likelihood estimate under the
restriction that the unknown density is unimodal with the mode location parameterized by
m. Let 7 be a consistent estimate of the true location of mode mo. Then, the plug-in
version of the estimate is f,(z;7h). We show in section 2 that for all consistent estimate 17,
fa(z; ™) converges at the same rate n=1/3 with the same asymptotic distribution.

‘One can view the estimate f,(z;m) as a histogram estimate with distinct bin width
determined automatically by the data. We observe that the resulting picture of f,(z;m)
is quite spiky near the location 7. We introduce in section 3 a pregrouping technique to
solve this peaking problem which reduces the computing costs as well, without affecting the
behavior of the estimate f,(z;7). The idea is to group the data into a number of groups
first, and then to perform a form of minimum x2?-estimate. We prove that if the pregrouping
is not too crude, the pregrouping version of the MLE does as well as the plug-in MLE.

The discontinuity of the plug-in MLE is unsatisfactory. To deal with this problem, we
introduce in section 4 a maximum likelihood linear spline estimate. We give explicitly the

form of the estimate and its asymptotic distribution for the case where the mode location



is known. Since we demonstrate in section 2 that not knowing the location of mode is not
a serious matter in estimating a unimodal density, we expect but have not yet shown that
such an estimate should also work well when we don’t know the location of mode. A nice
feature of such an estimate is that the location of the mode as well as the number and
locations of knots are determined automatically by data. Again, the pregrouping technique
can be used to solve the peaking problem and to save the cost of computation.

Various procedures for practical applications are discussed in section 5. These include
using spline methods to produce smooth pictures of the plug-in MLE, and determining the
mode location automatically for the plug-in MLE.

Finally, in section 6, we further justify our theory and heuristics by statistical simulation.

All estimates we propose here are fast to compute. Technical proofs are given in section 7.

2 Plug-in maximum likelihood estimate

In this section, we study problems of estimating a unimodal density by using a plug-in
maximum likelihood estimate. We will derive the asymptotic distribution of the estimator,
and demonstrate that for any consistent estimate of the location of the mode, the plug-in
MLE behaves the same as when the location of mode is known. The result is explained
by considering a problem of minimizing the Kullback-Leibler discriminant information for

densities.

2.1 Plug-in MLE

Let f(z;m) be a unimodal density with mode location parameterized by m. Suppose
that X7{,---, X, are i.i.d. from f(z;m¢), where mg is the true location of the mode. If
mg is known, then an MLE of f(z;mo) is to find a density fn(z; mgo), which maximizes the

likelihood function among the class of unimodal densities with location of mode at mg:

n

max H (XD, (2.1)

1€Fmq =1



where

Fm = {f : f is a unimodal density with mode location m}. (2:2)

It has been proved (see Grander (1956), Robertson et al (1988)) that the solution to the
problem (2.1) is that when z > my, f,,(z;mo) is the left derivative of the least concave
majorant of the empirical distribution function, and when z < mg, f,(z;mo) is the right
derivative of the greatest convex minorant of the empirical distribution.

Let X3, -+, Xn be the order statistics of the sample. Suppose a is such that X, < mg <
Xat+1. Denote y; = X for j = 1,--,a, and ya41 = Mo, yj41 = X for j =a +1,---,n.

Then, the explicit formula for the MLE is

0, ifz<yorz > yny
fa(@imo) =9 f; y;Sz<ypr,i=1--a (2.3)
fi fyj<z<yip,j=a+1,--,n

where f; is defined by

MiNg41>es MaAX e —i=2 ifj<a
fJ _ . a+1>t>) 8<J niyg—g,i J ) (2‘4)

Ming41<,<; MaXes j F(ﬁ? ifj>a
Now, the true mode is typically unknown. Let i be a consistent estimator of mq (e.g. by
the kernel method (Parzen (1962), Eddy (1980)) or greatest “clustering” method (Chernoff

(1964), Venter (1967)). Then, we use the estimator f,(z;7) as an estimate of the unknown

density f(z,mg). We call such an estimate the plug-in MLE.

2.2 Asymptotic distribution of the plug-in MLE

Theorem 1. Let 7 be a consistent estimate of the mode mq of the true underlying
density, and f'(z;mo) > 0 be the derivative of the density f(z;mo) with respective to z.

Then, when z # my,

_i
nl/3 %f(z;mo)f'(:c;mo) (fa(z; ™) — f(z;m0)) £ 22, (2.5)



where the random variable Z is distributed as the location of the mazimum of the process
(W(u) —u?,u € R), and W(.) is standard two-sided Brownian motion on the real line R
originating from zero (i.e. W(0)=0).

Remark 1. A striking feature of Theorem 1 is that for any consistent estimate m, the
plug-in MLE f,(z;) behaves asymptotically the same as f,(z;mo). More precisely, in

addition to (2.5), one also has

n1A3|3 (25 mo) (23 mo)| 4 (fu(5mo) - (23 mo)) £» 22.

We conjecture that
fa(@imh) = falimo) = 0, (n7112)
uniformly for |z — mg| > e.
We need Lemma 1 and Lemma 2 to prove Theorem 1.

Lemma 1. If 2 > m; > m,, then

fa(zima) > fa(z;ma).

Proof. The intuition of the proof follows from the “ pool-adjacent-violator” algorithm
(see Robertson et al. (1988), page 8-10). Note that by (2.3) and (2.4), f.(z;m,) is computed
by minimizing over a smaller set than f,,(x;mg), and the spans y; — y, for computing
fa(z;my) are no larger than those for computing f,(z;m,) over the range t > @, , Where
am, satisfies Xam, <My < Xam, +1- Thus, the conclusion follows directly from (2.3) and

(2.4).

2.3 A result on minimum Kullback-Leibler discriminant information

At a conceptual level, if we misspecify the location of the mode to be m, the MLE

fa(z;m) estimates the maximizer of the following problem

max [ llogg(2)](a: mojde, (2:6)



where f(z;mo) is the true underlying density, and Fp, is defined By (2.2). The problem is
eqﬁivalent to finding the solution of minimum Kullback-Leibler discriminant information:
400
min [ loglf(zimo)/g(2)](zi mo)da. (27)

In this section, we find the explicit solution to the problem (2.6). From the solution
(2.11), we see that misspecification of the mode location does not affect the MLE dramati-
cally. It misestimates only the density near the location of the mode. This explains why the
result of Theorem 1 holds for any consistent estimate of mg.

To find the solution, let’s assume that m < mg. The other case can be treated similarly.
The following lemma is also a crucial lemma for the proof of Theorem 1.

Lemma 2. Suppose that f(z) is a continuous unimodal density on [m, ) with mode

location mq. Let M > mq be the smallest solution of the equation

M
[ f@yiz = £ - m) 25)
Define
fr(z) = fM) e < M . (2.9)
f(z) ifz>M
Then f*(z) achieves
gisa decreasirrlega}fiensity in [mioo) /m log g(z) f(z)dz. (2.10)

Theorem 2. Suppose that f(z;mg) is a continuous unimodal density with mode location

mo, and m < mg. Then the solution to the problem (2.7) is given by

oz m) = f(zymg) ifz<morz>M , (2.11)
f(Mimg) ifm<z<M

where M > mg is defined by
M
[ faimo)da = f(Mimo)(M — m). (212)
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Remark 2. From the solution (2.11), it is easy to show that
sup |g(z; m) — f(z;mo)| = O((m — mo)?), (2.13)

provided the function f(z;mo) has a bounded second derivative near the mode mo. More-
over, if f(z;mo) is strictly unimodal (strictly increasing on the one side of mg, and strictly
decreasing on the other side), then M — mg, as m — mq. Thus, if m is close to mg,
then g(z;m) = f(z;mo) except on the tiny interval [m, M]. Therefore, the MLE with the
location misspecified to be m estimates the right value of the density f(z;mg) except on

the small interval [m, M].

3 Pregrouping Techniques

It is known (see Figures 1.1, 2.3, 2.5, 3.1, 3.3) that the MLE for estimating a unimodal
density appears to be spiky near the mode. In this section, we introduce a pregrouping
technique, which is used to solve the peaking problem of the MLE and to reduce the
computing cost of the estimate.

The idea is to group the data first, and then apply the plug-in technique. To be more
spéciﬁc, let {IJ = (=tj,tj+1),J = 0,£1,£2,...} be a partition of the real line, where {t;} is
a sequence of increasing constants. Define a modified version of the empirical distribution
function by

1
F;(z)= ;(# of X{s < tjy1), when z € (tj,t_,'+1]. (3.1)

Let f2(z;m) be the left derivative of the least concave majorant of F;(z), when z > m,
and when r < m, the right derivative of the greatest convex minorant of F;(z). Let rh be
a consistent estimate of mo. We call f2(z;7m) a “pregrouping” version of the plug-in MLE
fa(z; ). Note that the estimator f*(z;m) is the plug-in MLE of the grouped data: taking

all data in the interval (¢;,t;41] to be ;4.



Note that f2(z;m) is a solution of a form of minimum x2-discrepancy described as
follows. Let m € (ta,ts41), and g be a unimodal density which is piecewise constant on
intervals [t;_1,t;), for j < a, [ta, m),(m, ta+1], and (¢j,t;41], for j > a + 1. Write g; as the
height of the density ¢ in these intervals. Let’s denote n; by the number of observations
falling in (¢;_1,t;]. Then, f2(z;m) minimizes the y2-discrepancy:

2
Xj: (gj - n"—;,}) wj, (3.2)

among all unimodal densities g just described, where w; is the length of the above interval:
w; =t —t_1;] < @, Wq =M — 4, Wa41 = lag1 —Mywy =t; —tj_1;7 > a+ 1.

Now, let’s prove that by choosing the maximum span of the partitions of order o(n ~%/2),
the estimate f(z;7) behaves the same as f,(z, ™).

We need the following two lemmas to prove Theorem 3. Lemma 3 tell us that the
modified empirical distribution defined by (3.1) behaves almost the same as the empirical
distribution, when the maximum span of the partitions is of order o(n=1/2).

Lemma 3. Let X1,---, X} be i.i.d with a density f(z). If f is bounded,

max [tj+1 — t;] = o(n~1/?), (3.3)
J
then
sup | Fn(z) — F3(2)| = 0p(n~1/%), (34)

where F, is the empirical cdf of X}, -, X..
Now, we prove for estimating a decreasing density that the pregrouping version of the
MLE behaves asymptotically the same as the MLE.
Lemma 4. Let X{,---,X] be independent observations generated by a decreasing den-
sity f on [0,00), which has a nonzero derivative f'(t) at a point t € (0,00). If f(z) is the

left derivative of the least concave majorant of Fi(z), then

nl/3 -1/

S| () - f) £ 22, (3.5)




where the random variable Z was defined in Theorem 1.

Theorem 3. Let 11 be a consistent estimate of the mode my. Suppose that the function
f(;mg) is bounded, and f'(z;mg) is nonzero at the point z. If the condition (3.3) holds,
then the conclusion of Theorem 1 follows with replacing f,(z; m) by fi(z;).

In practice, we can take the partition {t;} to be equally spaced grid points with span
I,. Theorem 3 shows that if I, = o(n=1/2) (i.e., the partition is not too crude to lose the
detail of the data), f2(z;7n) has the same performance as the plug-in MLE f,(z;m™).

In simulations below, we always use partitions {t; = m+ jl,} and group data away from
the estimated mode: n;,, repetitions at the grid point ¢; when j < —1 and n; repetitions at
point t;, when j > 1, where n; is the number of observations falling in the interval (¢,_1,¢;].
Grouping in this way is more effective for solving peaking problems (compare Figures of
odd numbers with those of even numbers).

Let’s emphasize that the choice of [, is driven to save computation and the spiking
phenomenon of the plug-in MLE near the estimated mode. Usually, data is highly clustered
near the mode so that the denominator of (2.4) is very small, which implies that the MLE
near mode is unusually large. By using the pregrouping technique, the denominator of
(2.4) would be more stable. Hence, the peaking problem can be solved. Note that the
computational complexity of f,(z;m) is O(nlogn). If we take I,, close to n~1/2, we would
expect to group n data into O(n!/?) groups. Thus, the computational complexity of the
pregrouping version f3(z;m) is only about O(n!/2logn).

The strength of the pregrouping technique will become more clear in the next section,
where we find a unimodal linear spline MLE estimate, which has computational complexity

O(n%logn). The pregrouping technique will reduce the complexity to O(nlogn).

4 Linear Spline MLE

The MLE does not produce nice pictures, because it produces discontinuous random

bin width histograms. A reasonable next step is to find the MLE among linear spline density
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estimates under the shape restrictions. An advantage over the usual spline method (see,
e.g. Kelly and Rice (1990)) is that the number and the locations of knots of our approach

are determined automatically by data.
In this section, we find the explicit form of the linear spline MLE, and its rate of
convergence.

4.1 Solution to the problem

Let X{,---,X}, be ii.d. with an unknown unimodal density f and denote X;,---, X,

for the order statistics of the sample. Let

FrL = {f:fisa continuous linear spline unimodal density

on [X;, Xy with knots at the data points}. (4.1)

We want to find a solution to the problem:
arg max X?). 4.2
e IL7X) (42)

The solution to problem (4.2) can be computed explicitly by isotonic regression tech-

niques (see Theorem 4). Let

(

: . 3 t—s :
MiNa11>e>5 MAXe<j orX T XA (X.TX. )72 Vhenj <a

: R X t—s ,
Milagsg; MAXe> j o TR ) 2= (X F X)) 73 when j > a

a-s+1
max {ma'x'sa nlixa+l+xa;72-ixc+xa-l )72]

t—a
\ maxt)d" t+AXt-1)/2=(Xa+Xaz1)/2

faj = $ , (4.3)

when j =a

Here and hereafter we set Xo = X;, and X,4; = X,. Let f,,L(z;a) be the function
connecting the points (X, faj) by using lines, and 0 when z is out of the data range
(X1, Xn]. Then, it will be shown in the proof of Theorem 4 that f,;(z,a) is a density in Fr,
with mode location X,. Let f,;(z;&) be the maximizer of the likelihood function among
the n possible choices of densities fnL(z,a), a = 1,---,n. Then, we have the following

result.

11



Theorem 4. The solution to problem (4.2) is given by f.;(z;a).
Let’s give a geometric interpretation of the result. Define a modified empirical distribu-
tion (strictly speaking, it is not a cdf)
1l
Fi(z)= Z Itzi<o) (4.4)
m =
where I is the indicator of a set A, and z; = (X;+X;-1)/2. Let f*(z) be the left derivative
of the least concave majorant of F;(z) when z > z,. Then by comparing (4.3) with (2.4),
we have for j > a
fai = fa(zix1)-
In other words, f,r.(z;a)is a continuous version of f2(z): f.r(z;a)is obtained by connecting
points (X, £2(X;)) by lines to remedy the discontinuity of fx(z). This identity gives a simple
way of computing faj by using the “pool-adjacent-violators” algorithm. Conseqﬁently,

sup |fus(2ia) - £3(2)] < 3 max

TD2q41

ax|fa(z;) = fa(zi+1)|- (4.5)

For the other case, we have a similar equation.

Remark 3. We could use the “pool-adjacent-violators” algorithm (see page 9 of Robert-
son et al. (1988)) to compute fa,- defined by (4.3), and then search for the best index a
among n possible values of a. The computational complexity is about O(n2logn). Note
that for such a MLE estimate, the location of the mode is automatically determined by the
data. If it is too expensive to search among all possible a, one could adopt the plug-in idea
given in section 2, or uses the pregrouping techniques. For estimating a decreasing density,

we can simply take a = 1.

4.2 Pregrouping version

Let’s mention briefly pregrouping version of the linear spline MLE. The problem is
exactly as in section 4, except using grouped data: casting observations in the interval

(tj,tj+1) to the point ¢;4+; (compare with section 3).
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For simplicity, let’s denote the grouped data by (n1,T}), ..., (npe, Tne), which means,
for example, n, repetitions of data at point Ty, where T} < .. < Tpe.

Let’s define (compare with (4.3))

( t—1
nj

. . . j=x 8 .
MiNg41>t>5 MaX,< 5 mm, when 1<a
t—1

. n,
1 . A =4 J .
Mming<s<; MaXe>; —RT—T—#—(T—T—V—I" T AT T when 7 > a
a
aj 2.. nj
max {max’sa M(Tar1+72)/2=Tet 1,00/ *

t—1

. ﬂj

=a L
maXe>a T+ Ti—1)/2—(Tat Ta_dhl} , when j =a

where Ty = Ty, and Tpeqq = Tne. Let f*;(z;a) be the function connecting points (T}, f;j)

) (4.6)

\

by using lines, and 0 when z is out of the range [T}, T,.]. Then, it is a continuous linear
spline density on [T, T,+], which is unimodal with mode location T,. Let f,:L(a:; @*) be-the
maximizer of the likelihood function among the n* possible choices of densities f2,(z,a),
a = 1,---,n*. The density function f* (z;a*) is the desired pregrouping version linear

spline MLE.

4.3 Asymptotic distributions

We only prove f,r(z,1) converges to the true density for estimating a decreasing
density. For the unimodal case, we would expect that a similar result holds.
Theorem 5. Suppose that X1,---,X], are independent observations from a decreasing

density f on [0,00), which has a nonzero derivative f'(z) at a point z € (0,00). Then

-1/3

nl/3

SH@F@)|  arla1) - f(2) £ 22, (4.7)

where the random variable Z was defined in Theorem 1.

Thus, the linear spline shares the nice properties of MLE estimate defined in section 2.

5 Discussion

We have proposed the plug-in method to estimate unimodal densities, the pregrouping

technique to solve peaking problems and to reduce computational cost, and the linear spline

13



approach to produce continuous pictures. Some important issues in applications include how
to use higher order spline method to produce smooth curves, and how to estimate mode
locations.

In the following discussion, we assume the pregrouping techniques have been applied so
that the resulting data have a structure (n1,T1), ..., (npe,The). (See section 4.2 for the
exact meaning of our notations). Obviously, the discussion is also applicable to the original

data with appropriate change of notations.

5.1 Higher order splines

To produce smooth pictures of the curve estimate, there are two possible approaches.
The first approach is to smooth the plug-in MLE by using spline. More precisely, lét’s
assume the plug-in MLE f2(z;h) is of form: constants fi ( f]- # fi+1) on interval (uj,u;41)

Jj=1,...,n'. Denote the midpoints of the intervals by

Uil + Uj

j=1,....n —1.
2 ) "

v; =
Then, use a spline (e.g. cubic spline) curve to interpolate the n’ — 1 points:

(vjs fi)si=1,...,n" = 1.

Use the resulting curve as an estimate of the underlying density. The drawback of this
approach is that the resulting curve is not necessary unimodal.

To overcome the drawback, we propose the following spline method. Let’s use quadratic
spline to interpolate a unimodal density to illustrate the idea. Let m = arg maxz f;- be the
index of the location of mode. First,for j = 1,--.,m—1, we use an increasing spline to inter-
polate the points (v;, fj): at the kth step, determine the quadratic spline which passes the
points (vk, fx), and (vk4+1, fes1), and which matches the first derivative at the point (vks fr);
if the quadratic spline is increasing at the interval [v}, vj41], use this quadratic spline; other-
wise, use a linear spline that passes the two endpoints. Then, determine a quadratic spline

to pass the three points near the mode: (vy,_1, fm_1), (vm, fm), and (vm41, fm+1). Finally,

14



use a similar criteria for j = m + 2,...,n’ — 1. In the simulations below, we always refer the
spline interpalation to this approach with an initial by a linear spline connecting the points
(v1, fl)v(”’h fZ)-

The second approach to smoothing the plugin MLE is using least square method to fit
a unimodal density, by locating knots at points vy,--+,v,_;. The discussion on this issue

is beyond the intent of this paper.

5.2 Estimating the location of mode

To use our plug-in method, one has to estimate mode location. Various approaches
have been proposed in the literature, which involve determining window size by users. Here,
we propose a way of determining the mode location automatically.

Let’s start with the grouped data: (ny,T}),...(npe, Tpe). Using the data set

{(nj’ TJ)7] # a} ,

one finds the MLE by with mode location T,. Let’s denote the resulting estimate by f,(z).

Choose @ to maximize the “likelihood”
n* .
II /o (T)).
Jj=1

Finally, use f;(z) to estimate the underlying density. Note that the mode location is
estimated by T;. We will refer this technique to the “automatic selection of mode” in the

next section.

6 Simulations

We generate data from 3 different distributions to demonstrate how our approaches work.
The distributions are exponential, normal, and an asymmetric unimodal distribution (see
(6.1)). The sample sizes are taken 200, 200 and 150, respectively, as we think they are

rather small for nonparametric curve estimation.
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Exponential Distribution

A random sample of size 200 is simulated from exponential distribution:

f(z) = exp(—2)I(z30}-

The simulated data is plotted at the bottom of Figure 1.1. The maximum likelihood estimate
and its spline interpolation (see the first approach in section 5.1) are plotted in Figure 1.1.
The peaking problem is visible. The problem is solved by using pregrouping technique
(see Figure 1.2). We group the data into 25 groups with breaking points ¢; = 0.2 x j.
The pregrouping version of MLE and its spline interpolation are plotted in Figure 1.2. It
appears that the pregrouping version of spline interpolation estimate is very close to the
truth. Figure 1.3 shows the linear spline MLE and its pregrouping version (see section 4).
Figure 1.4 plots the default histogram method and kernel density estimate method in a
statistical package SPLUS, for the purpose of comparison. It appears that our approach
(spline interpolation in Figure 1.2) is much better.

Normal Distribution

A random sample of size 200 is simulated from Normal(0,1):

f(z) = 71_2;exp<—z2/2).

The simulated data is plotted at the bottom of Figure 2.1. The plugin MLE and its pre-
grouping version (partition at grid points ¢t; = 0.255) with estimated mode 0 are plotted in
Figure 2.1, and Figure 2.2 respectively. If mode location is estimated by the average of the
data, which is 0.17, then the corresponding plugin MLE and its pregrouping version (with
partition t; = 0.17 + j x 0.25) are plotted in Figure 2.3 and 2.4, respectively. Finally, we
use the automatic procedure (see section 5.2) to determine the mode location. The mode
location is estimated by 0.23, and the density estimated is plotted in Figure 2.5. Grouping
data with partition at grid points ¢ ; = 0.2j first and then applying the automatic procedure
in section 5.2, we estimate the mode location by 0.2, and the corresponding density estimate
is plotted in Figure 2.6. Note that there are only about 100 observations used to estimate

the monotonic pieces of the curve.
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An Asymmetric Distribution

150 random samples are simulated from density

3exp(-z) 20
flz) = . (6.1)
®) 3exp(0.6z) z <0

The density and the simulated data are plotted in Figure 3.1. Roughly speaking, there are
only about 56 observations in estimating the right piece of decreasing density and about 94
observations in estimating the left piece of increasing density. The estimated mode location
—0.04 is used in the plugin MLE. To group the data, we use grid points ¢t; = —0.04 + 0.15j.
The plugin MLE and its pregrouping version are plotted in Figure 3.1 and Figure 3.2. The
estimates by using the automatic procedure suggested in section 5.2 are plotted in Figyre
3.3 and Figure 3.4. The mode location estimated by the automatic procedure witl;out
pregrouping is 0.21, and with pregrouping is 0.11.
Conclusions

The above simulation suggests that pregrouping is a powerful technique for solving the
peaking problem and reducing computational cost. Automatic procedures for selecting the
location of the mode appear very good. For the normal model, they are almost as good as
parametric estimation. Our simulation also suggests that if the partition is not too crude,

the estimates are not very sensitive to the partitions.

7 Proofs

7.1 Proof of Theorem 1

We give the proof for z > my; the other case can be treated similarly.
Let I(z) = I%f(z;mo)f'(z;mg)l'*. For any ¢ > 0, and mg + ¢ < z, by the consistency
of m,
P{n¥i(z)(falzi ) - f(z;m0)) < t}
= P{nHl(@)(fulzi ) - f(z;m0)) < t,[m — mo| < e} +o(1). (7.1)
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Let f;,(z) be the MLE for a sample of size N from the monotone decreasing density

f(l',mo-l-f)

> .
T_ F(mote) T2mo+e

Then, we can represent
falzsmo+ &) = (1= Fa(mo +¢)) fir(2),Yz > mo +¢,

where N = n[1 — F},(mg +¢)], F,, is the empirical distribution. By Prakasa Rao (1969), and
Groeneboom (1985),

1 | £(=; mo)f'(2; mo)
P {Na 2[1 = F(mg + ¢€))?

P{n%

X (fn(l'; mo + €) — f(z;mo)

S f(z;mo)
(fN(z) - 1_—1;,(-7%0—_*_6)) < t} — P{2Z < t}.

Equivalently,
£z mo) (i mo){1 = Fu(mo + )2}
2(1 - F(mo +¢))?

1-Fy(z +¢)

It follows from (7.2) that

P {n’f %f(x; mo) f'(z;mo)| (fa(zsmo + €) = f(z3mo)) < t}

—. P{2Z<t}), Vi€ (—o0,+0). (7.3)

Thus, it follows from Lemma 1, (7.1) and (7.3) that

liminf P {n¥1(z)(fa(z; ) - f(zm0)) < t}

> liminf P {n’a‘l(z)(fn(a:; mo+¢€)— f(z;mp)) < t}

P{2Z <t}. (7.4)
Similarly, by (7.1) and Lemma 1, we have

lim sup P {n}1(z)(fa(z: ) — f(zim0)) < t}

< limsup P {n¥1(z)(fu(zimo - €) - f(zimo)) < 1} (7.5)

18



The proof is completed, if we show that (7.5) has a limit (7.4). Let f7(-) be the solution to

the problem:

* f(y; mo)

[log g(y)] = Flmo — e)dy-

— [
g(-) is a decreasing density on [mo—¢,00) /mo—e
Then, the solution is given explicitly by (2.9) with an appropriate change of notations. Note

that by (2.9) for each fixed z, there exists an ¢, (independent of n) such that

f(z;mop)

fo(z)= 1= F(mo—¢)

Now, by the argument of Groeneboom (1985), one can show that
1 R
P{NPIZ @)@ frie) - f2e) St} — PRZ <),

where f,‘\',"l' () is the MLE over the class of decreasing densities on [mg —¢€,00) based on data

X; >mg—e¢,and Ny =n[l - F.(mgo — ¢€)]. Using the fact that
fn(l';mo —-¢€)= Enl A}‘(;':(:c),‘v’z > mg—¢
we have for ¢ = ¢,
P{nl/sl(z)[fn(a:;mo —¢)— f(z;mo)] < t} — P{2Z < t}.
The conclusion follows from (7.5).

7.2 Proof of Theorem 2

Proof of Lemma 2. The idea of the proof is first to establish

[ tosg(@i@)dz < [ ogg(a)lf"(2)da, (76)

where g(z) is a decreasing density function on [m,00). If (7.6) holds, then by (2.8)

IN

[ 1o £ (@)f (2)de
= [Tl @)f(@)da,

/m ” log g(z) f(z)dz
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and consequently f*(-) is a solution to the problem (2.10). Now, let’s turn to prove (7.6).

The proof uses an idea of Fan (1986). Let
a =inf{z : f(z) = f(M)} < mo.
Then, for any decreasing function g(z),

log g(z)(f(z) - f*(z)] 2 logg(a)[f(z) - f*(=)]. (7.7)

To see this, note that when z > a, f(z)— f*(z) > 0. Thus, by the monotonicity of g(z), (7.7)
holds. Similarly, when z < a, f(z) — f*(z) < 0, and (7.7) follows from the monotonicity of
log g again. Integrating over the both sides of (7.7) from m to oo, we obtain (7.6).

Proof of Theorem 2. For a unimodal density g(z) with the location of mode m, write

9(z) = aggi(z) + (1 — ag)g2(z). (7.8)
where

ay= [ g@)dz, 91(2) = 9@ -anm(@)/

and g;(z) is defined similarly. Note that g;(z) is a non-decreasing density and go(z) is a

non-increasing density. Let 3 = [T f(z;mo)dz. It follows that

[1089(@)f(zimo)de
= Blogay+ (1 - B)log(l—ay) + 8 / " log 91(2)f(z: mo)/Bdz

+(1-8) [ 1og ga(a)f(zi mo)/ (1 - B)d. (7.9)
Then the maximizers of (7.9) are give by
ag = Bagl(z) = f(x;mo)//@-[(—oo,m)(x)a (7°10)

and g(z) is defined by (2.9) replacing f(z) by f(z; m0)/(1 = B)Im,00)(z). This completes

the proof.
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7.3 Proof of Theorem 3
Proof of Lemma 8. Let n; be the number of observations in (t;,¢;+1]. Then,
0 < F*(z) — Fo(z) < maxnj/n.
Thus, for any € > 0,
P{\/ﬁsuplF (z) - Fi(z) |>e} ZP {n; > V/ne}. (7.11)

Note that the random variable n; is distributed as Binomial(n, pn;) With pnj = F(tj41) —

F(tj), where F is the cdf of the random variable X;. Denote p, = max; pnj. Then,

Pa < [sup f(z)] max(tj1 - 1) = o(n™"/%). (7.12)

Now, we are going to prove that when n is large enough,

P{n; > v/ne} < Bpi;. (7.13)

If (7.13) holds, then the conclusion follows from (7.11), by the fact that

P{Vasup|Fu(z) - Fi(e)| > e} < BY 02, < Bpo — 0.
’ 3
Note that for any ¢ > 0,

P{n; > Vne} = P{e"fc > eﬁ“}
exp(—v/nec)E exp(njc)

exp(—v/nec)(1 = pn;j + €pn;)"

IA

< exp(—vnec + np,je°). (7.14)
Since v/np, — 0, when n is large enough, we have
¢log (nl/zpn) /2< -1. (7.15)
By taking ¢ = — log(n!/?p,;) in (7.14), we conclude from (7.15) that

P{n; > vne} < exp(vnelog(n'/?pn;) + Vi)
(nl/?pnj)s\/;{/2 . (7.16)

IN
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Consequently, when p,; < 1/n,
P{n; > vme} < pi™*,
and when p,; > 1/n, by (7.15) and (7.16),
P{n; > ne} < exP(ﬁ% log(n'/?p,;)) < exp(—v/n) < P2

Thus, the condition (7.13) holds, as had to be shown.
Proof of Lemma 4. By Lemma 3, and the Hungarian embedding of Komlés et al.

(1973), the process F;(t) has the following decomposition:

n2(Fr(t) - F(t) = nlf (Fa(t) - F(t)) +n'/2 (F3(2) - F(2))

Bn(F(t)) + 0p(1),

where {B,,n > 1} is a sequence of Brownian bridges, constructed on the same space as
the F,(t), the empirical process. The conclusion follows from the proof of Theorem 2.1 of
Groeneboom (1985).

Proof of Theorem 3. The conclusion follows from Lemma 4 and the proof of Theorem

7.4 Proof of Theorem 4

We need only to prove that f,(z;a) is the solution to the problem (4.2) with an
additional constraint that the location of the mode is X,. Let f; = f(Xj;), for f € Fp.

Then, the problem is equivalent to

ma.leog f;
J
subject to : (unimodality) fi < fo< - < fa2 fapro 2 far  (T.17)
n-1 ¢ .
(Area one) Z @(Xjﬂ -X)=1. (7.18)
=1
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Write ¢; = (Xj+1 — Xj-1)/2 with Xo = Xj, and Xnyy = X,. Then the equality

constraint (7.18) can be rewritten as
n
J=1

Denote g; = 1/(nc;) and w; = nc;j. Then, the problem is equivalent to maximize 37 log f;

subject to (7.17) and Y T(g; — fj)w; = 0. Consider the problem of isotonic regression
n
min 3 (f; - 9;)"w; (7.20)
1

with a partial order 1 <2 <X ... <a>a+1>a+2 > ... > n. Then, the solution to
the problem (7.20) is given by (4.3) (see page 23 of Robertson et al. (1988)). The solution
satisfies also (Theorem 1.3.6 of Robertson et al. (1988))

Y (faj — gj)w; =0,
1
i.e. (7.18). Now, let’s apply Lemma 4. Take a convex function ®(u) = ulogu. Then, f,
minimizes also
n n n
Y (g5logg; — g;log f; + gj — fi)wj = c =D log fi + n ) _¢;fj,
1 1 1

under the isotonic constraints, where ¢ = }_logg; + n. Since we are interested only in the

class of isotonic regression satisfying (7.19), f, maximizes

Cc
Z ]'Og f] ’
1
under the constraint (7.17) and (7.18). The desired conclusion follows.

Here, we quote Theorem 1.5.1 of Robertson et al. (1988):

Lemma 4. Suppose that ®(-) is differentiable, and convex on an interval I. Let
Ag(u,v) = ®(u) — (v) — (u — v)®(v). If f; is a solution of problem (7.20), then f*
minimizes

Z Ae(g5, fi)w;
J

in the class of isotonic functions f.
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7.5 Proof of Theorem 5

Let I(z) = |f(z)f'(z)/2|~1/3. Note that with probability tending to 1, the points
T —€p, T, T+ €p are in different intervals of (2}, z;+1), where ¢, = n-2/5 and zj was defined
after (4.4). Thus, according to our geometric interpretation in section 4.1, with probability

tending to one, we have
fi(@+en) < far(z;1) < fi(z = €n), (7.21)

where f(z) was defined after (4.4).

Note that the modified empirical distribution defined by (4.4) satisfies

0 < Fi(z) - Fa() <

S|~

b

where Fy(-) is the usual empirical cdf. Thus, by the same argument as Lemma 4, we have
P{nPi(z)(f(z + en) - f(2)) < t} — P{2Z < 1},Vt € (~0,00).
Consequently, by (7.21),

limsup P {n'l(z)(far(:1) - £(2)) < t}
< limsup P {n!l(z)(fi(z + x) - f(2)) < t}

= P{2Z < t},Vt € (—00,00).
The conclusion follows from a similar inequality:
liminf P {n"l(2)(far(z:1) - £(2)) < t}
> P{2Z < t},Vt € (-00,0)
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