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Abstract

The kernel and ordinary spline methods are not effective for capturing the shapes of

unknown densities. To overcome this discrepancy, we study the problem of estimating

densities under shape restrictions. We propose several methods for estimating uni-

modal densities: plug-in MLE, pregrouping techniques, linear spline MLE, and spline

smoothing. Combining these techniques, an automatic spline procedure for estimating

a unimodal density is proposed, which is justified to have a good performance. The

asymptotic distributions of proposed estimators are also found. An important conse-

quence of our study is that having to estimate the location of a mode does not affect

the limiting behavior of our unimodal density estimate.
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1 Introduction

Nonparametric density estimation provides a useful technique of examining the overall

structure of a set of data. A commonly used technique is the kernel method (Parzen

(1962)). The behavior of a kernel density estimate relies strongly on the choice of smoothing

parameter (bandwidth). Data-driven bandwidth selection methods (Ha"rdle et al. (1988),

Rice (1984), among others) have been studied recently. One tries to minimize the Integrated

Square Error (ISE) or the Mean ISE (MISE) or other related objects, and uses one of them

as a measure of global effectiveness of a curve estimate. In practical density estimation,

however, features such as shapes and areas under modes may be more interesting. ISE

and MISE are not good criteria for these purposes. For example, the ISE of two curves

can be very small, while the shapes of two curves are quite different. Thus, the kernel

method can produce quite noisy a picture so that the overall structure of the data is hard

to examine. To overcome this discrepancy, we propose estimating a global density under

shape restrictions. As a start, we focus on the problem of estimating a unimodal density

with an unknown mode location. Our ultimate goal is to develop a method to produce

good pictures for estimating multimodal densities and to examine similarly other methods

of estimation under order restrictions.

An early work on estimating a density under shape restrictions is Grenander (1956),

who estimated a decreasing density by using a maximum likelihood approach. The resulting

estimate is the left slope of the least concave majorant of the empirical distribution function.

The asymptotic distribution of the MLE was found by Prakasa Rao (1969), and Groeneboom

(1985). Recent developments in estimating a monotone density can be found in Birge

(1987a,b), which give the behavior of nonparametric minimax risks. Wegman (1972 a, b)

extends the problem to estimating a unimodal density by using an MLE method and proves

the consistency of the MLE. Kiefer (1981) gave an illuminating survey of developments in

the theory of estimating a monotonic function (e.g., density function, failure rate function).

Of course, there is a long history of isotonic regression and its related problems. See Barlow
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et al. (1972) and Robertson et al. (1988), Barlow and van Zwet (1970), Ramsay (1988),

Kelly and Rice (1990), among others.

To estimate a unimodal density, we first begin by introducing a plug-in maximum likeli-

hood method. We use this to understand how the location of the mode affects the estimate.

An important result of section 2 is that slight misspecification of the location of a mode

does not affect tremendously the behavior of our estimate; it misestimates the unknown

density only on a tiny interval near the true mode. Practically, it means that estimating an

unknown density with unknown location of mode is not appreciably more difficult than esti-

mating an unknown density with a known location of mode. This fact makes it possible to

estimate a multimodal density by using a plug-in method. The statement is further justified

by considering a related problem in the population context: minimize the Kullback-Leibler

discriminant information with the mode location misspecified.

Let's denote by fn(x; m) the nonparametric maximum likelihood estimate under the

restriction that the unknown density is unimodal with the mode location parameterized by

m. Let mh be a consistent estimate of the true location of mode mo. Then, the plug-in

version of the estimate is fn(x; 7h). We show in section 2 that for all consistent estimate m,

fn(x; m-) converges at the same rate n~/3 with the same asymptotic distribution.

One can view the estimate fn(x; m) as a histogram estimate with distinct bin width

determined automatically by the data. We observe that the resulting picture of fn(x; im)

is quite spiky near the location 'm. We introduce in section 3 a pregrouping technique to

solve this peaking problem which reduces the computing costs as well, without affecting the

behavior of the estimate fn(x; mn). The idea is to group the data into a number of groups

first, and then to perform a form of minimum X2-estimate. We prove that if the pregrouping

is not too crude, the pregrouping version of the MLE does as well as the plug-in MLE.

The discontinuity of the plug-in MLE is unsatisfactory. To deal with this problem, we

introduce in section 4 a maximum likelihood linear spline estimate. We give explicitly the

form of the estimate and its asymptotic distribution for the case where the mode location
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is known. Since we demonstrate in section 2 that not knowing the location of mode is not

a serious matter in estimating a unimodal density, we expect but have not yet shown that

such an estimate should also work well when we don't know the location of mode. A nice

feature of such an estimate is that the location of the mode as well as the number and

locations of knots axe determined automatically by data. Again, the pregrouping technique

can be used to solve the peaking problem and to save the cost of computation.

Various procedures for practical applications are discussed in section 5. These include

using spline methods to produce smooth pictures of the plug-in MLE, and determining the

mode location automatically for the plug-in MLE.

Finally, in section 6, we further justify our theory and heuristics by statistical simulation.

All estimates we propose here are fast to compute. Technical proofs are given in section 7.

2 Plug-in maximum likelihood estimate

In this section, we study problems of estimating a unimodal density by using a plug-in

maximum likelihood estimate. We will derive the asymptotic distribution of the estimator,

and demonstrate that for any consistent estimate of the location of the mode, the plug-in

MLE behaves the same as when the location of mode is known. The result is explained

by considering a problem of minimizing the Kullback-Leibler discriminant information for

densities.

2.1 Plug-in MLE

Let f(x; m) be a unimodal density with mode location parameterized by m. Suppose

that X', .,X' are i.i.d. from f(x;mo), where mo is the true location of the mode. If

mo is known, then an MLE of f(x; mo) is to find a density fn(x; mo), which maximizes the

likelihood function among the class of unimodal densities with location of mode at mi0:
n

max ff(X') (2.1)
f i=l
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where

.Fm = {f f is a unimodal density with mode location m}. (2.2)

It has been proved (see Grander (1956), Robertson et al (1988)) that the solution to the

problem (2.1) is that when x > mO, f!n(x; mo) is the left derivative of the least concave

majorant of the empirical distribution function, and when x < MO, fn(x; mo) is the right

derivative of the greatest convex minorant of the empirical distribution.

Let X1, -*, X, be the order statistics of the sample. Suppose a is such that X. < mo <

Xa+1. Denote yj = Xj for j = 1,.**,a, and Ya+1 = moi Yj+l = Xi for j = a + 1,.*,n.

Then, the explicit formula for the MLE is

0, if x <y1 or x > Yn+1

fn(x;mo)= fj if yj<x<yj+,,

fj if yj < x < y.j+,,sj =a + 1, * ,n

where fj is defined by

mina+l>t>jmaxs<j n(yt-y) if j < a

mina+l<.s<j maxt>3 t_y, if j > a

Now, the true mode is typically unknown. Let mh be a consistent estimator of mo (e.g. by

the kernel method (Parzen (1962), Eddy (1980)) or greatest "clustering" method (Chernoff

(1964), Venter (1967)). Then, we use the estimator fn(x; mf) as an estimate of the unknown

density f(x, mo). We call such an estimate the plug-in MLE.

2.2 Asymptotic distribution of the plug-in MLE

Theorem 1. Let fn be a consistent estimate of the mode mO of the true underlying

density, and f'(x; mo) > 0 be the derivative of the density f(x; mo) with respective to x.

Then, when x $ mo,

nil/3|2 mO)fn(x;in) (fn(z;) - f(x; mo)) 2Z, (2.5)
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where the random variable Z is distributed as the location of the mazimum of the proces

(W(u) - u2, u E R), and W(.) is standard two-sided Brownian motion on the real line R

originating from zero (i.e. W(O) = 0).

Remark 1. A striking feature of Theorem 1 is that for any consistent estimate mh, the

plug-in MLE fn(x; mn) behaves asymptotically the same as fn(x; mo). More precisely, in

addition to (2.5), one also has

n"I2f(X; mO)f'(x; mO)I-4(In(X; MO) - f(X; MO)) - - 2Z.

We conjecture that

fn(x; m) - fn(x; mo) = 0p (n~l/3)

uniformly for Ix - mo > E.

We need Lemma 1 and Lemma 2 to prove Theorem 1.

Lemma 1. If x > Ml > M2, then

fn(X;M0 > fn(X;M2).

Proof. The intuition of the proof follows from the " pool-adjacent-violator" algorithm

(see Robertson et al. (1988), page 8-10). Note that by (2.3) and (2.4), fn(x; ml) is computed

by minimizing over a smaller set than fn(x; Mi2), and the spans Yt - y, for computing

fn(x; ml) are no larger than those for computing fn(x; Mi2) over the range t > am,, where

amj satisfies Xami < In< Xaml+i. Thus, the conclusion follows directly from (2.3) and

(2.4).

2.3 A result on minimum Kullback-Leibler discriminant information

At a conceptual level, if we misspecify the location of the mode to be m, the MLE

fn(x; m) estimates the maximizer of the following problem

+00
max [log g(x)]f(x; mo)dx, (2.6)
gE Fm -<0
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where f(x; mo) is the true underlying density, and Fm is defined by (2.2). The problem is

equivalent to finding the solution of minimum Kullback-Leibler discriminant information:

(+00
min log[f(x; mo)/g(x)]f(x; mo)dx. (2.7)
9EYm -oO

In this section, we find the explicit solution to the problem (2.6). From the solution

(2.11), we see that misspecification of the mode location does not affect the MLE dramati-

cally. It misestimates only the density near the location of the mode. This explains why the

result of Theorem 1 holds for any consistent estimate of mo.

To find the solution, let's assume that m < mo. The other case can be treated similarly.

The following lemma is also a crucial lemma for the proof of Theorem 1.

Lemma 2. Suppose that f(x) is a continuous unimodal density on [m, oo) with mode

location mO. Let M > mO be the smallest solution of the equation

m
1m f(x)dx = f(M)(M - in). (2.8)

Define

f*(X) ={fM) if
_i M (2.9)

f(x) ifx>M

Then fI (x) achieves

max logg(x)f(x)dx (2.10)
g is a decreasing density in [m,oo) m

Theorem 2. Suppose that f(x; mo) is a continuous unimodal density with mode location

moi, and m < mo. Then the solution to the problem (2.7) is given by

g(X;im)= f(X;iMO) if x< m or x> M (2.11)
f(M;imO) ifm<.x<M

where MA > mO is defined by

J f(x;mo)dx = f(M;mo)(M - m). (2.12)
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Remark 2. From the solution (2.11), it is easy to show that

sup 1g(x; m) - f(x; mO)I = O((m - mO)2), (2.13)
x

provided the function f(x; mo) has a bounded second derivative near the mode mo. More-

over, if f(x; mO) is strictly unimodal (strictly increasing on the one side of mo, and strictly

decreasing on the other side), then M --imo, as m --imo. Thus, if m is close to mo,

then g(x; m) = f(x; mo) except on the tiny interval [m, M]. Therefore, the MLE with the

location misspecified to be m estimates the right value of the density f(x; mo) except on

the small interval [m, M].

3 Pregrouping Techniques

It is known (see Figures 1.1, 2.3, 2.5, 3.1, 3.3) that the MLE for estimating a unimodal

density appears to be spiky near the mode. In this section, we introduce a pregrouping

technique, which is used to solve the peaking problem of the MLE and to reduce the

computing cost of the estimate.

The idea is to group the data first, and then apply the plug-in technique. To be more

specific, let {Ij = (-tj, t3+1],j = 0, ±1, ±2,.*} be a partition of the real line, where {t j} is

a sequence of increasing constants. Define a modified version of the empirical distribution

function by
1

F,(x) = -(# of X's < t31), when x E (t ,t3+1]. (3.1)
n

Let fn,(x; m) be the left derivative of the least concave majorant of F* (x), when x > m,

and when x < m, the right derivative of the greatest convex minorant of Fn(x). Let mh be

a consistent estimate of mo. We call fn,(x; mh) a "pregrouping" version of the plug-in MLE

fn(x; im). Note that the estimator fn*(x; m) is the plug-in MLE of the grouped data: taking

all data in the interval (tj, t3+1] to be t .1
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Note that f,(x; m) is a solution of a form of minimum x2-discrepancy described as

follows. Let m E (ta ta+l), and g be a unimodal density which is piecewise constant on

intervals [ti_.,ti),for j < a, [ta,m),(m,ta+1], and (ti,tj+1],for j > a+ 1. Writeg, as the

height of the density g in these intervals. Let's denote n3 by the number of observations

falling in (tj_1, tj]. Then, fn (x; m) minimizes the x2-discrepancy:

gI(gj-
nj

j (3.2)

among all unimodal densities g just described, where w3 is the length of the above interval:

w =ti -tj,;j < a,w0 = m - ta,Wa+l = ta+1 -m,w = t - -;i> a +1.

Now, let's prove that by choosing the maximum span of the partitions of order o(n -Vi2),
the estimate fn*(x;mr) behaves the same as fn(x, m).

We need the following two lemmas to prove Theorem 3. Lemma 3 tell us that the

modified empirical distribution defined by (3.1) behaves almost the same as the empirical

distribution, when the maximum span of the partitions is of order o(n 1/2).

Lemma 3. Let X',*,X' be i.i.d with a density f(x). Iff is bounded,

max Itj+1 - tjI = o(n-1/2), (3.3)

then

sup IFn(x) - Fn*(x)l = op(n 1/2), (3.4)
x

where Fn is the empirical cdf of X1, * * *, X'.
Now, we prove for estimating a decreasing density that the pregrouping version of the

MLE behaves asymptotically the same as the MLE.

Lemma 4. Let X', ',X' be independent observations generated by a decreasing den-

sity f on [O, oo), which has a nonzero derivative f'(t) at a point t E (O, oo). If fin(x) is the

left derivative of the least concave majorant of Fn*(x), then

1/3 1 -1/3 (t IC

2
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where the random variable Z was defined in Theorem 1.

Theorem 3. Let vm be a consistent estimate of the mode mo. Suppose that the function

f(.; mo) is bounded, and f'(x;mo) is nonzero at the point x. If the condition (3.3) holds,

then the conclusion of Theorem 1 follows with replacing fn(x; m) by fn,(x; m).

In practice, we can take the partition {tj} to be equally spaced grid points with span

in. Theorem 3 shows that if In = o(n'1/2) (i.e., the partition is not too crude to lose the

detail of the data), fn,(x; im) has the same performance as the plug-in MLE fn(x; mi).

In simulations below,we always use partitions {t =n +jIn} and group data away from

the estimated mode: nj+l repetitions at the grid point tj when j < -1 and nj repetitions at

poinL t3, when j > 1, where nj is the number of observations falling in the interval (t._1, tj].
Grouping in this way is more effective for solving peaking problems (compare Figures of

odd numbers with those of even numbers).

Let's emphasize that the choice of In is driven to save computation and the spiking

phenomenon of the plug-in MLE near the estimated mode. Usually, data is highly dustered

near the mode so that the denominator of (2.4) is very small, which implies that the MLE

near mode is unusually large. By using the pregrouping technique, the denominator of

(2.4) would be more stable. Hence, the peaking problem can be solved. Note that the

computational complexity of fn(x; m) is O(n log n). If we take In close to n-1/2, we would

expect to group n data into O(nl/2) groups. Thus, the computational complexity of the

pregrouping version f,n(x; ii) is only about O(n1/21og n).

The strength of the pregrouping technique will become more clear in the next section,

where we find a unimodal linear spline MLE estimate, which has computational complexity

O(n2 log n). The pregrouping technique will reduce the complexity to O(n log n).

4 Linear Spline MLE

The MLE does not produce nice pictures, because it produces discontinuous random

bin width histograms. A reasonable next step is to find the MLE among linear spline density
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estimates under the shape restrictions. An advantage over the usual spline method (see,

e.g. Kelly and Rice (1990)) is that the number and the locations of knots of our approach

are determined automatically by data.

In this section, we find the explicit form of the linear spline MLE, and its rate of

convergence.

4.1 Solution to the problem

Let X1, * * *,X be i.i.d. with an unknown unimodal density f and denote Xl, X.
for the order statistics of the sample. Let

-FL = {f : f is a continuous linear spline unimodal density
on [X1, Xn] with knots at the data points}. (4.1)

We want to find a solution to the problem:

n

arg max II f(x;). (4.2)
j=E1

The solution to problem (4.2) can be computed explicitly by isotonic regression tech-

niques (see Theorem 4). Let

mina+l>t>j max<j n(Xt+Xt-i)/2-(X+X-l)/2J whenj < a

mina<a<jmaxt>j n[(Xt+Xt._)/2-(X.+X., )12J' when j > a
faj = _ (4.3)

max{max.<z~a-8+1|max maxs<a n[(Xa+i+Xa)/2-(Xe+X.-.)/2'
maxt>a n[(Xt+X.1)f2-(xa+X -.)/2J } when j = a

Here and hereafter we set Xo = Xi, and Xn+1 = Xn. Let fnL(x;a) be the function

connecting the points (Xj, faj) by using lines, and 0 when x is out of the data range

[X1, Xn]. Then, it will be shown in the proof of Theorem 4 that f L(X, a) is a density in FL
with mode location Xa. Let f 'L(X;a) be the maximizer of the likelihood function among

the n possible choices of densities fnL(x, a), a = 1,.,n. Then, we have the following
result.
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Theorem 4. The solution to problem (4.2) is given by fnL(x; &) .

Let's give a geometric interpretation of the result. Define a modified empirical distribu-

tion (strictly speaking, it is not a cdf)

1n+1
Fn(x) = I{zj1< ) (4.4)

j=1

where IA is the indicator of a set A, and zj = (Xj + Xi-,)/2. Let fa (x) be the left derivative

of the least concave majorant of Fn(x) when x > Za. Then by comparing (4.3) with (2.4),

we have for j > a

faj =fa(Zj+l)

In other words, fnL(X; a) is a continuous version of fa*(x): fnL(x; a) is obtained by connecting

points (Xi, fa*(Xi)) by lines to remedy the discontinuity of fa*(x). This identity gives a simple

way of computing faj by using the "pool-adjacent-violators" algorithm. Consequently,

sup !fnL(x;a) - fa(x) < - micf(z) - fa(z-+1) (4.5)
X>za+l' >

For the other case, we have a similar equation.

Remark 3. We could use the "pool-adjacent-violators" algorithm (see page 9 of Robert-

son et al. (1988)) to compute f,j defined by (4.3), and then search for the best index a

among n possible values of a. The computational complexity is about O(n2 log n). Note

that for such a MLE estimate, the location of the mode is automatically determined by the

data. If it is too expensive to search among all possible a, one coutld adopt the plug-in idea

given in section 2, or uses the pregrouping techniques. For estimating a decreasing density,

we can simply take a' = 1.

4.2 Pregrouping version

Let's mention briefly pregrouping version of the linear spline MLE. The problem is

exactly as in section 4, except using grouped data: casting observations in the interval

(tj, tj+1] to the point t,1 (compare with section 3).
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For simplicity, let's denote the grouped data by (n1, T1), ..., (nn., Tna), which means,

for example, n, repetitions of data at point T1, where T1 < ... < Tn,.

Let's define (compare with (4.3))

rmina+1>t>, max<i n[(nt+Tt.i)i2-(T+T..)12] when j < a

mina<s<, maXt>, Ln(Tt+T,ti(Ta+Ta_i)/2] when j > a

=a* fEan, (4.6)max (maxs<a ln[(Ta+l+Ta)2(Ta+T-I )/2]
MaXt>a Ej., ni ~~when j = amatan[(Tt+Tt__ )i2 -(Ta+T,_j )/2] }1we

where To = T1, and Tn.+, = Tn.. Let fnL(X; a) be the function connecting points (Tj, fa*j)
by using lines, and 0 when x is out of the range [T1, Tn*]. Then, it is a continuous linear

spline density on [T1, Tn.], which is unimodal with mode location Ta. Let fnL(X; a*) be-the

maximizer of the likelihood function among the n* possible choices of densities fnL(x, a),
a = 1, .,n*. The density function fnL(X; &*) is the desired pregrouping version linear

spline MLE.

4.3 Asymptotic distributions

We only prove fnL(x, 1) converges to the true density for estimating a decreasing

density. For the unimodal case, we would expect that a similar result holds.

Theorem 5. Suppose that XM,**,X' are independent observations from a decreasing

density f on [O, oo), which has a nonzero derivative f'(x) at a point x E (0, oo). Then

13 1 -1/3 .In1/3 -f X)f'(X) (fnL(x, 1) - f()) -X 2Z, (4.7)2

where the random variable Z was defined in Theorem 1.

Thus, the linear spline shares the nice properties of MLE estimate defined in section 2.

5 Discussion

We have proposed the plug-in method to estimate unimodal densities, the pregrouping

technique to solve peaking problems and to reduce computational cost, and the linear spline

13



approach to produce continuous pictures. Some important issues in applications include how

to use higher order spline method to produce smooth curves, and how to estimate mode

locations.

In the following discussion, we assume the pregrouping techniques have been applied so

that the resulting data have a structure (n1, T1), ..., (nn., Tn.). (See section 4.2 for the

exact meaning of our notations). Obviously, the discussion is also applicable to the original

data with appropriate change of notations.

5.1 Higher order splines

To produce smooth pictures of the curve estimate, there are two possible approaches.

The first approach is to smooth the plug-in MLE by using spline. More precisely, let's

assume the plug-in MLE fn(x; fm) is of form: constants fj (fj # fj+4) on interval (uj, uj+1)
j = 1,..., n'. Denote the midpoints of the intervals by

Uj+j + uj j = 1, ..., n'-1.
2

Then, use a spline (e.g. cubic spline) curve to interpolate the n' - 1 points:

(vj,fj),j= 1,...,n'-1.

Use the resulting curve as an estimate of the underlying density. The drawback of this

approach is that the resulting curve is not necessary unimodal.

To overcome the drawback, we propose the following spline method. Let's use quadratic

spline to interpolate a unimodal density to illustrate the idea. Let m = arg max jf; be the

index of the location of mode. First, for j = 1,..*, m- 1, we use an increasing spline to inter-

polate the points (Vj, fj): at the kth step, determine the quadratic spline which passes the

points (vk, fk), and (Vk+1, fk+i), and which matches the first derivative at the point (Vk, fk);

if the quadratic spline is increasing at the interval [vj, vj+1], use this quadratic spline; other-

wise, use a linear spline that passes the two endpoints. Then, determine a quadratic spline

to pass the three points near the mode: (Vm1,fim_l), (Vm,fm), and (vm+l,fm+i). Finally,

14



use a similar criteria for j = m + 2, ..., n - 1. In the simulations below, we always refer the

spline interpolation to this approach with an initial by a linear spline connecting the points

(Vi,If), (V2, f2).

The second approach to smoothing the plugin MLE is using least square method to fit

a unimodal density, by locating knots at points v1,. ,vn,_1. The discussion on this issue

is beyond the intent of this paper.

5.2 Estimating the location of mode

To use our plug-in method, one has to estimate mode location. Various approaches

have been proposed in the literature, which involve determining window size by users. Here,

we propose a way of determining the mode location automatically.

Let's start with the grouped data: (ni,Ti),. . (nn,T*). Using the data set

{(n,, Tj),j $ a},

one finds the MLE by with mode location Ta. Let's denote the resulting estimate by fa(X).

Choose a to maximize the "likelihood"

n*

IgnIf"(T3).
j=l

Finally, use fa(x) to estimate the underlying density. Note that the mode location is

estimated by Ta. We will refer this technique to the "automatic selection of mode" in the

next section.

6 Simulations

We generate data from 3 different distributions to demonstrate how our approaches work.

The distributions are exponential, normal, and an asymmetric unimodal distribution (see

(6.1)). The sample sizes are taken 200, 200 and 150, respectively, as we think they are

rather small for nonparametric curve estimation.
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Exponential Distribution

A random sample of size 200 is simulated from exponential distribution:

f(x) = exp(-x)I{j>O}.

The simulated data is plotted at the bottom of Figure 1.1. The maximum likelihood estimate

and its spline interpolation (see the first approach in section 5.1) are plotted in Figure 1.1.

The peaking problem is visible. The problem is solved by using pregrouping technique

(see Figure 1.2). We group the data into 25 groups with breaking points t, = 0.2 x j.

The pregrouping version of MLE and its spline interpolation are plotted in Figure 1.2. It

appears that the pregrouping version of spline interpolation estimate is very dose to the

truth. Figure 1.3 shows the linear spline MLE and its pregrouping version (see section 4).

Figure 1.4 plots the default histogram method and kernel density estimate method in a

statistical package SPLUS, for the purpose of comparison. It appears that our approach

(spline interpolation in Figure 1.2) is much better.

Normal Distribution

A random sample of size 200 is simulated from Normal(0,1):

f(x) - - exp(-x2/2).

The simulated data is plotted at the bottom of Figure 2.1. The plugin MLE and its pre-

grouping version (partition at grid points t, = 0.25j) with estimated mode 0 are plotted in

Figure 2.1, and Figure 2.2 respectively. If mode location is estimated by the average of the

data, which is 0.17, then the corresponding plugin MLE and its pregrouping version (with

partition tj = 0.17 + j x 0.25) are plotted in Figure 2.3 and 2.4, respectively. Finally, we

use the automatic procedure (see section 5.2) to determine the mode location. The mode

location is estimated by 0.23, and the density estimated is plotted in Figure 2.5. Grouping

data with partition at grid points tj = 0.2j first and then applying the automatic procedure

in section 5.2, we estimate the mode location by 0.2, and the corresponding density estimate

is plotted in Figure 2.6. Note that there are only about 100 observations used to estimate

the monotonic pieces of the curve.
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An Asymmetric Distribution

150 random samples are simulated from density

J exp(-x) x > 0
f(x) J~~~~~~~~~~~~~~6.1)

3exp(0.6x) x < 0

The density and the simulated data are plotted in Figure 3.1. Roughly speaking, there are

only about 56 observations in estimating the right piece of decreasing density and about 94

observations in estimating the left piece of increasing density. The estimated mode location

-0.04 is used in the plugin MLE. To group the data, we use grid points tj = -0.04 + 0.15j.

The plugin MLE and its pregrouping version are plotted in Figure 3.1 and Figure 3.2. The

estimates by using the automatic procedure suggested in section 5.2 are plotted in Figure

3.3 and Figure 3.4. The mode location estimated by the automatic procedure without

pregrouping is 0.21, and with pregrouping is 0.11.

Conclusions

The above simulation suggests that pregrouping is a powerful technique for solving the

peaking problem and reducing computational cost. Automatic procedures for selecting the

location of the mode appear very good. For the normal model, they are almost as good as

parametric estimation. Our simulation also suggests that if the partition is not too crude,

the estimates are not very sensitive to the partitions.

7 Proofs

7.1 Proof of Theorem 1

We give the proof for x > mo; the other case can be treated similarly.

Let 1(x) = IIf(x; mo)f'(x; mo)I~. For any E > 0, and mo + E < x, by the consistency

of fl

P {n3Il(X)(fn(x; m) - f(X; MO)) < t}

= P {nl3(x)(fn(x; mn) - f(x; mo)) Mt, Im- nol <. + o(l). (7.1)
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Let fN(x) be the MLE for a sample of size N from the monotone decreasing density

f(XI,MO+ ) x>MO+ E.

1-F(mo + e)'

Then, we can represent

fn(x. mO + E) =(- n(MO + 6) N(X),VX > MO + 6,

where N = n[ -Fn(mo+e)], Fn is the empirical distribution. By Prakasa Rao (1969), and

Groeneboom (1985),

f(X;mO)f'(x;mo) T _ f(x;mo)MO < P
P N32[-F(mo+I)]2 AJNX ) 1-F(mo+e)) <t {P{2Z < t}.

Equivalently,

pJi| |f(x; mo)f'(x; mo)[l - tn(rn + e)]2
2[1 - F(mo+ 6)]2

xf((x mO+ e) - fX;MO) F(z +E)))) < t} P{2Z < t}. (7.2)

It follows from (7.2) that

P {n4 -f(x; mo)f'(x;mo) (fn(x; mO+ E)- f(X; mO))<t.

P{2Z < t}, Vt E (-oo, +oo). (7.3)

Thus, it follows from Lemma 1, (7.1) and (7.3) that

liminf P {nl(x)(fn(x; mh) - f(x; mo)) < t}

> liminfP {nil(x)(fn(x;mO + E) - f(x;mO)) < t}

P{2Z < t}. (7.4)

Similarly, by (7.1) and Lemma 1, we have

lim sup P {nil(x)(fn(x;fn) - f(x;mO)) < t}

< limsupP{nil(x)(fn(x;mo- 6) - f(x;mO)) < t} (7.5)
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The proof is completed, if we show that (7.5) has a limit (7.4). Let fC (.) be the solution to

the problem:

g(.)is a decreasing density on [mo-c,oo) 1C F(mo) dy.

Then, the solution is given explicitly by (2.9) with an appropriate change of notations. Note

that by (2.9) for each fixed x, there exists an ez (independent of n) such that

x f(X;MO)
1F(mo - E)

Now, by the argument of Groeneboom (1985), one can show that

P{N31 I f (X)f*(X)l "13(fj(x) _ f*(X)) < t}-+P Z.t,P { 311y yy - 3N (Xz)-f P {2Z < t}

where fN1 (.) is the MLE over the class of decreasing densities on [mO - E, 00) based on data

Xj > mo - e, and N1 = n[l - FP(mo - i)]. Using the fact that

N,
f"(X; mO - ) = f7f(X), Vx > mO - E

n

we have for e-=e,

P {n/3l(x)[(x; mO - E) -f(X; MO)] < t} ) P {2Z < t}.

The conclusion follows from (7.5).

7.2 Proof of Theorem 2

Proof of Lemma 2. The idea of the proof is first to establish

J[logg(x)]f(x)dx < J[logg(x)]f*(x)dx, (7.6)

where g(x) is a decreasing density function on [im,o). If (7.6) holds, then by (2.8)

I log g(x)f(x)dx < J log f*(x)f*(x)dx

= J log f*(x)f(x)dx,
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and consequently f*(.) is a solution to the problem (2.10). Now, let's turn to prove (7.6).

The proof uses an idea of Fan (1986). Let

a = inf{x: f(x) = f(M)} < mo.

Then, for any decreasing function g(x),

log g(x)[f(x) - f*(x)] > log g(a)[f(x) - f*(x)]. (7.7)

To see this, note that when x > a, f(x)- f*(x) > 0. Thus, by the monotonicity of g(x), (7.7)

holds. Similarly, when x < a, f(x) - f*(x) < 0, and (7.7) follows from the monotonicity of

logg again. Integrating over the both sides of (7.7) from m to oo, we obtain (7.6).

Proof of Theorem 2. For a unimodal density g(x) with the location of mode m, write

g(x) = aggl(X) + (1 - ag)92(X). (7.8)

where
rm

= J g(x)dx, g1(x) = g(x)I(_oo m)(x)1ag,

and g2(x) is defined similarly. Note that gl(x) is a non-decreasing density and g2(x) is a

non-increasing density. Let d = f2'. f(x; mo)dx. It follows that

J log g(x)f(x; mio)dx
m

= /logag+(1 - )log(1-ag)+3j logg1(x)f(x; mo)/Idx
_00

+ - Im logg2(x)f(x; MO)/(1 - /3)dx. (7.9)

Then the maximizers of (7.9) axe give by

ag = sg3,gi(x) = f(x;mO)/II(-..m)(x) (7.10)

and g2(x) is defined by (2.9) replacing f(x) by f(x; mo)/(1 - /3)I[m,c)(x). This completes

the proof.
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7.3 Proof of Theorem 3

Proof of Lemma 3. Let nj be the number of observations in (tj, tj+.]. Then,

0 < Fn*(x) - Fn(x) < maxnj/n.

Thus, for any E > 0,

p n{;SuPI in(x) - Fn* (x) > E}< P I nj > Vn- I (7.11)

Note that the random variable nj is distributed as Binomial(n,pnj) with Pnj = F(tj+1) -

F(tj), where F is the cdf of the random variable X1. Denote Pn = max1 Pnj. Then,

Pn < [sup f(x)] max(tj+1 - t ) -o(n/2) (7.12)

Now, we are going to prove that when n is large enough,

P{n > V/-e} < Bp2j. (7.13)

If (7.13) holds, then the conclusion follows from (7.11), by the fact that

Pn{sUp Fn(x) - Fn(x) > E < B p2j < Bpn 0.

Note that for any c > 0,

P{rn > el= P{enic > ev-ec}
< exp(-V'7ec)Eexp(njc)

= exp(-Vr Ec)(1 - Pnj + ecPn3)n

< exp(-Vec + npnjeC). (7.14)

Since -Pn - 0, when n is large enough, we have

elog (n1/2P) /2 < -1. (7.15)

By taking c = log(n1/2pnj) in (7.14), we conclude from (7.15) that

P{nj>V7e} < exp(VTelog(n1/2pn1)++ /)
< (n1/ Pnj ) *2 (7.16)
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Consequently, when p.i < 1/n,

P {ni > V/-e} < Pni/

and when pnj > 1/n, by (7.15) and (7.16),

P { nj > x/ne} < eXp(V/2 1og(nh/2p,i)) < exp(-VWI) <p.2ni

Thus, the condition (7.13) holds, as had to be shown.

Proof of Lemma 4. By Lemma 3, and the Hungaxian embedding of Komlos et al.

(1973), the process Fn*(t) has the following decomposition:

1l/2(F* t(t)t) =n/2 (F()Ft)+n/2 (F*(t)-()

=Bn(F(t)) + op(1),

where {Bn, n > 1} is a sequence of Brownian bridges, constructed on the same space as

the Fn(t), the empirical process. The conclusion follows from the proof of Theorem 2.1 of

Groeneboom (1985).

Proof of Theorem 3. The conclusion follows from Lemma 4 and the proof of Theorem

1.

7.4 Proof of Theorem 4

We need only to prove that fn(x;a) is the solution to the problem (4.2) with an

additional constraint that the location of the mode is Xa. Let fj = f(Xj), for f E FL.

Then, the problem is equivalent to

max log f

subject to: (unimodality) fi < f2 < ... < fa > fa+i ... > fn, (7.17)

(Area one) Z +i + fj(X3j1 - Xi) = (7.18)
2
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Write cj = (Xi+, - Xi-1)/2 with Xo = X1, and Xn+1 = Xn. Then the equality

constraint (7.18) can be rewritten as

n

E cfjf = 1. (7.19)
j=1

Denote gj = 1/(ncj) and w3 = ncj. Then, the problem is equivalent to maximize 1 log f

subject to (7.17) and En(g - fj) = 0. Consider the problem of isotonic regression

n

min Z(f g-gi)2w (7.20)

with a partial order 1 < 2 - *-. a > a + 1 > a + 2 >*- n. Then, the solution to

the problem (7.20) is given by (4.3) (see page 23 of Robertson et al. (1988)). The solution

satisfies also (Theorem 1.3.6 of Robertson et al. (1988))

n
EU

(faj-)j = 0,
1

i.e. (7.18). Now, let's apply Lemma 4. Take a convex function 1(u) = ulogu. Then, fa

minimizes also

n n n

1(gjloggj - g log fj + gj - fj)wj = c - log fj + n cjfj,
1 1 1

under the isotonic constraints, where c = log gj + n. Since we are interested only in the

class of isotonic regression satisfying (7.19), fa maximizes

Zlog fj,
1

under the constraint (7.17) and (7.18). The desired conclusion follows.

Here, we quote Theorem 1.5.1 of Robertson et al. (1988):

Lemma 4. Suppose that P(.) is differentiable, and convex on an interval I. Let

A,(u,v) = 4k(u) - 4P(v) - (u - v)4P'(v). If fj is a solution of problem (7.20), then f*

mimizes

in telso o(jt ffj)ftj

in the class of isotonic functions f.
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7.5 Proof of Theorem 5

Let 1(z) = If(x)f'(x)/21-1/3. Note that with probability tending to 1, the points

x - ena X, X + en are in different intervals of (zj, zj+1), where e6n -n2/5 and zj was defined

after (4.4). Thus, according to our geometric interpretation in section 4.1, with probability

tending to one, we have

f;I(x + En) < fnL(X; 1) < f!(x - En), (7.21)

where fir(x) was defined after (4.4).

Note that the modified empirical distribution defined by (4.4) satisfies

1

where Fn(.) is the usual empirical cdf. Thus, by the same argument as Lemma 4, we have

P {nl/31(x)(1'(x + en) - f(x)) < t} - P{2Z < t}, Vt E (-o, o).

Consequently, by (7.21),

lim sup P {n /31(x)(jnL(x; 1) - f(x)) < t}

< limsupP {n1/31(x)(!l(x + En)-f(x)) < t}

- P{2Z < t},Vt E (-x,x).

The conclusion follows from a similar inequality:

limrinf P {n1131(x)(fnL(x; 1) - f(x)) < t}

> P{2Z < t},Vt E (-oo,x)
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