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Abstract

Motivated by recent work on studying massive imaging data in various neuroimag-

ing studies, we propose a novel spatially varying coefficient model (SVCM) to

capture the varying association between imaging measures in a three-dimensional

(3D) volume (or 2D surface) with a set of covariates. Two stylized features of

neuorimaging data are the presence of multiple piecewise smooth regions with

unknown edges and jumps and substantial spatial correlations. To specifically ac-

count for these two features, SVCM includes a measurement model with multiple

varying coefficient functions, a jumping surface model for each varying coefficient

function, and a functional principal component model. We develop a three-stage

estimation procedure to simultaneously estimate the varying coefficient functions

and the spatial correlations. The estimation procedure includes a fast multiscale

adaptive estimation and testing procedure to independently estimate each varying

coefficient function, while preserving its edges among different piecewise-smooth

regions. We systematically investigate the asymptotic properties (e.g., consis-

tency and asymptotic normality) of the multiscale adaptive parameter estimates.



We also establish the uniform convergence rate of the estimated spatial covariance

function and its associated eigenvalues and eigenfunctions. Our Monte Carlo sim-

ulation and real data analysis have confirmed the excellent performance of SVCM.

Key Words: Asymptotic normality; Functional principal component analysis; Jumping

surface model; Kernel; Spatial varying coefficient model; Wald test.
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1 Introduction

The aims of this paper are to develop a spatially varying coefficient model (SVCM) to

delineate association between massive imaging data and a set of covariates of interest,

such as age, and to characterize the spatial variability of the imaging data. Examples of

such imaging data include T1 weighted magnetic resonance imaging (MRI), functional

MRI, and diffusion tensor imaging, among many others (Friston, 2007; Thompson and

Toga, 2002; Mori, 2002; Lazar, 2008). In neuroimaging studies, following spatial normal-

ization, imaging data usually consists of data points from different subjects (or scans)

at a large number of locations (called voxels) in a common 3D volume (without loss

of generality), which is called a template. We assume that all imaging data have been

registered to a template throughout the paper.

To analyze such massive imaging data, researchers face at least two main challenges.

The first one is to characterize varying association between imaging data and covariates,

while preserving important features, such as edges and jumps, and the shape and spatial

extent of effect images. Due to the physical and biological reasons, imaging data are

usually expected to contain spatially contiguous regions or effect regions with relatively

sharp edges (Chumbley et al., 2009; Chan and Shen, 2005; Tabelow et al., 2008a,b). For

instance, normal brain tissue can generally be classified into three broad tissue types

including white matter, gray matter, and cerebrospinal fluid. These three tissues can be

roughly separated by using MRI due to their imaging intensity differences and relatively

intensity homogeneity within each tissue. The second challenge is to characterize spatial

correlations among a large number of voxels, usually in the tens thousands to millions,

for imaging data. Such spatial correlation structure and variability are important for

achieving better prediction accuracy, for increasing the sensitivity of signal detection,

and for characterizing the random variability of imaging data across subjects (Cressie

and Wikle, 2011; Spence et al., 2007).

There are two major statistical methods including voxel-wise methods and multiscale

adaptive methods for addressing the first challenge. Conventional voxel-wise approaches
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involve in Gaussian smoothing imaging data, independently fitting a statistical model

to imaging data at each voxel, and generating statistical maps of test statistics and p-

values (Lazar, 2008; Worsley et al., 2004). As shown in Chumbley et al. (2009) and Li

et al. (2011), voxel-wise methods are generally not optimal in power since it ignores the

spatial information of imaging data. Moreover, the use of Gaussian smoothing can blur

the image data near the edges of the spatially contiguous regions and thus introduce

substantial bias in statistical results (Yue et al., 2010).

There is a great interest in the development of multiscale adaptive methods to adap-

tively smooth neuroimaging data, which is often characterized by a high noise level and

a low signal-to-noise ratio (Tabelow et al., 2008a,b; Polzehl et al., 2010; Li et al., 2011;

Qiu, 2005, 2007). Such multiscale adaptive methods not only increase signal-to-noise

ratio, but also preserve important features (e.g., edge) of imaging data. For instance,

in Polzehl and Spokoiny (2000, 2006), a novel propagation-separation approach was de-

veloped to adaptively and spatially smooth a single image without explicitly detecting

edges. Recently, there are a few attempts to extend those adaptive smoothing methods

to smoothing multiple images from a single subject (Tabelow et al., 2008a,b; Polzehl

et al., 2010). In Li et al. (2011), a multiscale adaptive regression model, which inte-

grates the propagation-separation approach and voxel-wise approach, was developed for

a large class of parametric models.

There are two major statistical models, including Markov random fields and low rank

models, for addressing the second challenge. The Markov random field models explic-

itly use the Markov property of an undirected graph to characterize spatial dependence

among spatially connected voxels (Besag, 1986; Li, 2009). However, it can be restrictive

to assume a specific type of spatial correlation structure, such as Markov random fields,

for very large spatial data sets besides its computational complexity (Cressie and Wikle,

2011). In spatial statistics, low rank models, also called spatial random effects mod-

els, use a linear combination of ‘known’ spatial basis functions to approximate spatial

dependence structure in a single spatial map (Cressie and Wikle, 2011). The low rank
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models have a close connection with the functional principal component analysis model

for characterizing spatial correlation structure in multiple images, in which spatial basis

functions are directly estimated (Zipunnikov et al., 2011; Ramsay and Silverman, 2005;

Hall et al., 2006).

The goal of this article is to develop SVCM and its estimation procedure to simulta-

neously address the two challenges discussed above. SVCM has three features: piecewise

smooth, spatially correlated, and spatially adaptive, while its estimation procedure is

fast, accurate and individually updated. Major contributions of the paper are as follows.

• Compared with the existing multiscale adaptive methods, SVCM first integrates a

jumping surface model to delineate the piecewise smooth feature of raw and effect

images and the functional principal component model to explicitly incorporate the

spatial correlation structure of raw imaging data.

• A comprehensive three-stage estimation procedure is developed to adaptively and

spatially improve estimation accuracy and capture spatial correlations.

• Compared with the existing methods, we use a fast and accurate estimation method

to independently smooth each of effect images, while consistently estimating their

standard deviation images.

• We systematically establish consistency and asymptotic distribution of the adap-

tive parameter estimators under two different scenarios including piecewise-smooth

and piecewise-constant varying coefficient functions. In particular, we introduce

several adaptive boundary conditions to delineate the relationship between the

amount of jumps and the sample size. Our conditions and theoretical results differ

substantially from those for the propagation-separation type methods (Polzehl and

Spokoiny, 2000, 2006; Li et al., 2011).

The rest of this paper is organized as follows. In Section 2, we describe SVCM and

its three-stage estimation procedure and establish the theoretical properties. In Section
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3, we present a set of simulation studies with the known ground truth to examine the

finite sample performance of the three-stage estimation procedure for SVCM. In Section

4, we apply the proposed methods in a real imaging dataset on attention deficit hyper-

activity disorder (ADHD). In Section 5, we conclude the paper with some discussions.

Technical conditions are given in Section 6. Proofs and additional results are given in a

supplementary document.

2 Spatial Varying Coefficient Model with Jumping

Discontinuities

2.1 Model Setup

We consider imaging measurements in a template and clinical variables (e.g., age, gender,

and height) from n subjects. Let D represent a 3D volume and d and d0, respectively,

denote a point and the center of a voxel in D. Let D0 be the union of all centers d0 in

D and ND equal the number of voxels in D0. Without loss of generality, D is assumed

to be a compact set in R3. For the i-th subject, we observe an m× 1 vector of imaging

measures yi(d0) at d0 ∈ D0, which leads to an mND × 1 vector of measurements across

D0, denoted by Yi,D0 = {yi(d0) : d0 ∈ D0}. For notational simplicity, we set m = 1 and

consider a 3D volume throughout the paper.

The proposed spatial varying coefficient model (SVCM) consists of three components:

a measurement model, a jumping surface model, and a functional component analysis

model. The measurement model characterizes the association between imaging measures

and covariates and is given by

yi(d) = xTi β(d) + ηi(d) + εi(d) for all i = 1, . . . , n and d ∈ D, (1)

where xi = (xi1, . . . , xip)
T is a p × 1 vector of covariates, β(d) = (β1(d), . . . , βp(d))T

is a p × 1 vector of coefficient functions of d, ηi(d) characterizes individual image vari-

ations from xTi β(d), and εi(d) are measurement errors. Moreover, {ηi(d) : d ∈ D}
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is a stochastic process indexed by d ∈ D that captures the within-image dependence.

We assume that they are mutually independent and ηi(d) and εi(d) are independent

and identical copies of SP(0,Ση) and SP(0,Σε), respectively, where SP(µ,Σ) denotes

a stochastic process vector with mean function µ(d) and covariance function Σ(d,d′).

Moreover, εi(d) and εi(d
′) are independent for d 6= d′ and thus Σε(d,d

′) = 0 for d 6= d′.

Therefore, the covariance function of {yi(d) : d ∈ D}, conditioned on xi, is given by

Σy(d,d
′) = Cov(yi(d),yi(d

′)) = Ση(d,d
′) + Σε(d,d)1(d = d′). (2)

The second component of the SVCM is a jumping surface model for each of {βj(d) :

d ∈ D}j≤p. Imaging data {yi(d0) : d0 ∈ D0} can usually be regarded as a noisy version

of a piecewise-smooth function of d ∈ D with jumps or edges. In many neuroimaging

data, those jumps or edges often reflect the functional and/or structural changes, such

as white matter and gray matter, across the brain. Therefore, the varying function

{βj(d) : d ∈ D} in model (1) may inherit the piecewise-smooth feature from imaging

data for j = 1, . . . , p, but allows to have different jumps and edges. Specially, we make

the following assumptions.

• (i) (Disjoint Partition) There is a finite and disjoint partition {Dj,l : l = 1, · · · , Lj}

of D such that each Dj,l is a connected region of D and its interior, denoted by

Doj,l, is nonempty, where Lj is a fixed, but unknown integer. See Figure 1 (a), (b),

and (d) for an illustration.

• (ii) (Piecewise Smoothness) βj(d) is a smooth function of d within each Doj,l for

l = 1, . . . , Lj, but βj(d) is discontinuous on ∂D(j) = D \ [∪Lj

l=1Doj,l], which is the

union of the boundaries of all Dj,l. See Figure 1 (b) for an illustration.

• (iii) (Local Patch) For any d0 ∈ D0 and h > 0, let B(d0, h) be an open ball of d0

with radius h and Pj(d0, h) a maximal path-connected set in B(d0, h), in which

βj(d) is a smooth function of d. Assume that Pj(d0, h), which will be called a

local patch, contains an open set. See Figure 1 for a graphical illustration.
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The jumping surface model can be regarded as a generalization of various models for

delineating changes at unknown location (or time). See, for example, Khodadadi and

Asgharian (2008) for an annotated bibliography of change point problem and regression.

The disjoint partition and piecewise smoothness assumptions characterize the shape and

smoothness of βj(d) in D, whereas the local patch assumption primarily characterizes

the local shape of βj(d) at each voxel d0 ∈ D0 across different scales (or radii). For

d0 ∈ [∪Lj

l=1Doj,l] ∩ D0, there exists a radius h(d0) such that B(d0, h(d0)) ⊂ ∪
Lj

l=1Doj,l. In

this case, for h ≤ h(d0), we have Pj(d0, h) = B(d0, h) and Pj(d0, h)c = ∅, whereas

Pj(d0, h)c may not equal the empty set for large h since B(d0, h) may cross different

Doj,ls. For d0 ∈ ∂D(j)∩D0, Pj(d0, h)c 6= ∅ for all h > 0. Since Pj(d0, h) contains an open

set for any h > 0, it eliminates the case of d0 being an isolated point. See Figure 1 (a)

and (d) for an illustration.

The last component of the SVCM is a functional principal component analysis model

for ηi(d). Let λ1 ≥ λ2 ≥ . . . ≥ 0 be ordered values of the eigenvalues of the linear

operator determined by Ση with
∑∞

l=1 λl < ∞ and the ψl(d)s’ be the corresponding

orthonormal eigenfunctions (or principal components) (Li and Hsing, 2010; Hall et al.,

2006). Then, Ση admits the spectral decomposition:

Ση(d,d
′) =

∞∑
l=1

λlψl(d)ψl(d
′). (3)

The eigenfunctions ψl(d) form an orthonormal basis on the space of square-integrable

functions on D, and ηi(d) admits the Karhunen-Loeve expansion as follows:

ηi(d) =
∞∑
l=1

ξi,lψl(d), (4)

where ξi,l =
∫
s∈D ηi(s)ψl(s)dV(s) is referred to as the l-th functional principal component

score of the ith subject, in which dV(s) denotes the Lebesgue measure. The ξi,l are

uncorrelated random variables with E(ξi,l) = 0 and E(ξi,lξi,k) = λl1(l = k). If λl ≈ 0

for l ≥ LS + 1, then model (1) can be approximated by

yi(d) ≈ xTi β(d) +

LS∑
l=1

ξi,lψl(d) + εi(d). (5)
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In (5), since ξi,l are random variables and ψl(d) are ‘unknown’ but fixed basis functions,

it can be regarded as a varying coefficient spatial mixed effects model. Therefore, model

(5) is a mixed effects representation of model (1).

Model (5) differs significantly from other models in the existing literature. Most

varying coefficient models assume some degrees of smoothness on varying coefficient

functions, while they do not model the within-curve dependence (Wu et al., 1998). See

Fan and Zhang (2008) for a comprehensive review of varying coefficient models. Most

spatial mixed effects models in spatial statistics assume that spatial basis functions

are known and regression coefficients do not vary across d (Cressie and Wikle, 2011).

Most functional principal component analysis models focus on characterizing spatial

correlation among multiple observed functions when D ∈ R1 (Zipunnikov et al., 2011;

Ramsay and Silverman, 2005; Hall et al., 2006).

2.2 Three-stage Estimation Procedure

We develop a three-stage estimation procedure as follows. See Figure 2 for a schematic

overview of SVCM.

• Stage (I): Calculate the least squares estimate of β(d0), denoted by β̂(d0), across

all voxels in D0, and estimate {Σε(d0,d0) : d0 ∈ D0}, {Ση(d,d
′) : (d,d′) ∈ D2}

and its eigenvalues and eigenfunctions.

• Stage (II): Use the propagation-seperation method to adaptively and spatially

smooth each component of β̂(d0) across all d0 ∈ D0.

• Stage (III): Approximate the asymptotic covariance matrix of the final estimate of

β(d0) and calculate test statistics across all voxels d0 ∈ D0.

This is more refined idea than the two-stage procedure proposed in Fan and Zhang (1999,

2002).
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2.2.1 Stage (I)

Stage (I) consists of four steps.

Step (I.1) is to calculate the least squares estimate of β(d0), which equals β̂(d0) =

Ω−1X,n
∑n

i=1 xiyi(d0) across all voxels d0 ∈ D0, where ΩX,n =
∑n

i=1 x⊗2i , in which a⊗2 =

aaT for any vector a. See Figure 1 (c) for a graphical illustration of {β̂(d0) : d0 ∈ D0}.

Step (I.2) is to estimate ηi(d) for all d ∈ D. We employ the local linear regression

technique to estimate all individual functions ηi(d). Let ∂dηi(d) = ∂ηi(d)/∂d, Ci(d) =

(ηi(d), h∂dηi(d)T )T , and zh(dm − d) = (1, (dm,1 − d1)/h, (dm,2 − d2)/h, (dm,3 − d3)/h)T ,

where d = (d1, d2, d3)
T and dm = (dm,1, dm,2, dm,3)

T ∈ D0. We use Taylor series expan-

sion to expand ηi(dm) at d leading to

ηi(dm) = Ci(d)Tzh(dm − d).

We develop an algorithm to estimate Ci(d) as follows. Let Kloc(·) be a univariate kernel

function and Kh(dm−d) = h−3
∏3

k=1Kloc((dm,k−dk)/h) be the rescaled kernel function

with a bandwidth h. For each i, we estimate Ci(d) by minimizing the weighted least

squares function given by

Ĉi(d) = argminCi(d)

∑
dm∈D0

{ri(dm)− Ci(d)Tzh(dm − d)}2Kh(dm − d).

where ri(dm) = yi(dm)− xTi β̂(dm). It can be shown that

Ĉi(d) = {
∑

dm∈D0

Kh(dm − d)zh(dm − d)⊗2}−1
∑

dm∈D0

Kh(dm − d)zh(dm − d)ri(dm), (6)

Let R̂i = (ri(d0) : d0 ∈ D0) be an ND × 1 vector of estimated residuals and notice that

η̂i(d) is the first component of Ci(d). Then, we have

η̂i = (η̂i(d0) : d0 ∈ D0) = SiR̂i and η̂i(d) = (1, 0, 0, 0)Ĉi(d), (7)

where Si is an ND ×ND smoothing matrix (Fan and Gijbels, 1996). We pool the data

from all n subjects and select the optimal bandwidth h, denoted by h̃, by minimizing

8



the generalized cross-validation (GCV) score given by

GCV(h) =
n∑
i=1

R̂T
i (ID − Si)T (ID − Si)R̂i

[1−N−1D tr(Si)]2
, (8)

where ID is an ND ×ND identity matrix. Based on h̃, we can use (7) to estimate ηi(d)

for all i.

Step (I.3) is to estimate Ση(d,d
′) and Σε(d0,d0). Let ε̂i(d0) = yi(d0) − xTi β̂(d0) −

η̂i(d0) be estimated residuals for i = 1, . . . , n and d0 ∈ D0. We estimate Σε(d0,d0) by

Σ̂ε(d0,d0) = n−1
n∑
i=1

ε̂i(d0)
2 (9)

and Ση(d,d
′) by the sample covariance matrix:

Σ̂η(d,d
′) = (n− p)−1

n∑
i=1

η̂i(d)η̂i(d
′). (10)

Step (I.4) is to estimate the eigenvalue-eigenfunction pairs of Ση by using the singular

value decomposition. Let V = [η̂1, · · · , η̂n] be an ND × n matrix. Since n is much

smaller than ND, we can easily calculate the eigenvalue-eigenvector pairs of the n × n

matrix VTV, denoted by {(λ̂i, ξ̂i) : i = 1, · · · , n}. It can be shown that {(λ̂i,Vξ̂i) :

i = 1, · · · , n} are the eigenvalue-eigenvector pairs of the ND × ND matrix VVT . In

applications, one usually considers large λ̂l values, while dropping small λ̂ls. It is common

to choose a value of LS so that the cumulative eigenvalue
∑LS

l=1 λ̂l/
∑n

l=1 λ̂l is above a

prefixed threshold, say 80% (Zipunnikov et al., 2011; Li and Hsing, 2010; Hall et al.,

2006). Furthermore, the lth SPCA scores can be computed using

ξ̂i,l =

ND∑
m=1

η̂i(dm)ψ̂l(dm)V(dm) (11)

for l = 1, . . . , LS, where V(dm) is the volume of voxel dm.

2.2.2 Stage (II)

Stage (II) is a multiscale adaptive and sequential smoothing (MASS) method. The key

idea of MASS is to use the propagation-separation method (Polzehl and Spokoiny, 2000,
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2006) to individually smooth each least squares estimate image {β̂j(d0) : d0 ∈ D0} for

j = 1, . . . , p. MASS starts with building a sequence of nested spheres with increasing

bandwidths 0 = h0 < h1 < · · · < hS = r0 ranging from the smallest bandwidth h1

to the largest bandwidth hS = r0 for each d0 ∈ D0. At bandwidth h1, based on

the information contained in {β̂(d0) : d0 ∈ D0}, we sequentially calculate adaptive

weights ωj(d0,d
′
0;h1) between voxels d0 and d′0, which depends on the distance ‖d0−d0‖

and spacial similarity |β̂j(d0) − β̂j(d0)|, and update β̂j(d0;h1) for all d0 ∈ D0 for j =

1, · · · , p. At bandwidth h2, we repeat the same process using {β̂(d0;h1) : d0 ∈ D0} to

compute spatial similarities. In this way, we can sequentially determine ωj(d0,d
′
0;hs)

and β̂j(d0;hs) for each component of β(d0) as the bandwidth ranges from h1 to hS = r0.

Moreover, as shown below, we have found a simple way of calculating the standard

deviation of β̂j(d0;hs).

MASS consists of three steps including (II.1) an initialization step, (II.2) a sequen-

tially adaptive estimation step, and (II.3) a stop checking step, each of which involves

in the specification of several parameters. Since propagation-separation and the choice

of their associated parameters have been discussed in details in Polzehl et al. (2010) and

Li et al. (2011), we briefly mention them here for the completeness. In the initialization

step (II.1), we take a geometric series {hs = csh : s = 1, . . . , S} of radii with h0 = 0,

where ch > 1, say ch = 1.10. We suggest relatively small ch to prevent incorporating too

many neighboring voxels.

In the sequentially adaptive estimation step (II.2), starting from s = 1 and h1 = ch,

at step s, we compute spatial adaptive locally weighted average estimate β̂j(d0;hs)

based on {β̂j(d0) : d0 ∈ D0} and {β̂j(d0;hs−1) : d ∈ D0}, where β̂j(d0;h0) = β̂j(d0).

Specifically, for each j, we construct a weighted quadratic function

`n(βj(d0);hs) =
∑

dm∈B(d0,hs)∩D0

{β̂j(dm)− βj(d0)}2ωj(d0,dm;hs), (12)

where ωj(d0,dm;hs), which will be defined below, characterizes the similarity between
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β̂j(dm;hs−1) and β̂j(d0;hs−1). We then calculate

β̂j(d0;hs) = argminβj(d0)`n(βj(d0);hs) =
∑

dm∈B(d0,hs)∩D0

ω̃j(d0,dm;hs)β̂j(dm), (13)

where ω̃j(d0,dm;hs) = ωj(d0,dm;hs)/
∑

dm′∈B(d0,hs)∩D0
ωj(d0,dm′ ;hs).

Let Σn(β̂j(d0;hs)) be the asymptotic variance of β̂j(d0;hs). For βj(d0), we compute

the similarity between voxels d0 and d′0, denoted by Dβj(d0,d
′
0;hs−1), and the adaptive

weight ωj(d0,d
′
0;hs), which are, respectively, defined as

Dβj(d0,d
′
0;hs−1) = {β̂j(d0;hs−1)− β̂j(d′0;hs−1)}2/Σn(β̂j(d0;hs−1)), (14)

ωj(d0,d
′
0;hs) = Kloc(||d0 − d′0||2/hs)Kst(Dβj(d0,d

′
0;hs−1)/Cn),

where Kst(u) is a nonnegative kernel function with compact support, Cn is a tuning

parameter depending on n, and || · ||2 denotes the Euclidean norm of a vector.

The weights Kloc(||d0 − d′0||2/hs) give less weight to the voxel d′0 that is far from

the voxel d0. The weights Kst(u) downweight the voxels d′0 with large Dβj(d0,d
′
0;hs−1),

which indicates a large difference between β̂j(d
′
0;hs−1) and β̂j(d0;hs−1). In practice, we

set Kloc(u) = (1− u)+. Although different choices of Kst(·) have been suggested in the

propagation-separation method (Polzehl and Spokoiny, 2000, 2006; Polzehl et al., 2010;

Li et al., 2011), we have tested these kernel functions and found that Kst(u) = exp(−u)

performs reasonably well. Another good choice of Kst(u) is min(1, 2(1−u))+. Moreover,

theoretically, as shown in Scott (1992) and Fan (1993), they have examined the efficiency

of different kernels for weighted least squares estimators, but extending their results to

the propagation-separation method needs some further investigation.

The scale Cn is used to penalize the similarity between any two voxels d0 and d′0 in a

similar manner to bandwidth, and an appropriate choice of Cn is crucial for the behav-

ior of the propagation-separation method. As discussed in (Polzehl and Spokoiny, 2000,

2006), a propagation condition independent of the observations at hand can be used to

specify Cn. The basic idea of the propagation condition is that the impact of the sta-

tistical penalty in Kst(Dβj(d0,d
′
0;hs−1)/Cn) should be negligible under a homogeneous

11



model βj(d) ≡ constant yielding almost free smoothing within homogeneous regions.

However, we take an alternative approach to choose Cn here. Specifically, a good choice

of Cn should balance between the sensitivity and specificity of MASS. Theoretically, as

shown in Section 2.3, Cn should satisfy Cn/n = o(1) and C−1n log(ND) = o(1). We choose

Cn = n0.4χ2
1(0.8) based on our experiments, where χ2

1(a) is the upper a-percentile of the

χ2
1-distribution.

We now calculate Σn(β̂j(d0;hs)). By treating the weights ω̃j(d0,dm;hs) as ‘fixed’

constants, we can approximate Σn(β̂j(d0;hs)) by∑
dm,dm′∈B(d0,hs)∩D0

ω̃j(d0,dm;hs)ω̃j(d0,dm′ ;hs)Cov(β̂j(dm), β̂j(dm′)), (15)

where Cov(β̂j(dm), β̂j(dm′)) can be estimated by

eTj,pΩ
−1
X,nej,p{Σ̂η(dm,dm′) + Σ̂ε(dm,dm)1(dm = dm′)}, (16)

in which ej,p is a p × 1 vector with the j-th element 1 and others 0. We will examine

the consistency of approximation (15) later.

In the stop checking step (II.3), after the first iteration, we start to calculate a

stopping criterion based on a normalized distance between β̂j(d0) and β̂j(d0;hs) given

by

D(β̂j(d0), β̂j(d0;hs)) = {β̂j(d0)− β̂j(d0;hs)}2/Σn(β̂j(d0)). (17)

Then, we check whether β̂j(d0;hs) is in a confidence ellipsoid of β̂j(d0) given by {βj(d0) :

D(β̂j(d0), βj(d0)) ≤ Cs}, where Cs is taken as Cs = χ2
1(0.80/s) in our implementation.

If D(β̂j(d0), β̂j(d0;hs)) is greater than Cs, then we set β̂j(d0, hS) = β̂j(d0, hs−1) and

s = S for the j-th component and voxel d0. If s = S for all components in all voxels,

we stop. If D(β̂j(d0), β̂j(d0;hs)) ≤ Cs, then we set hs+1 = chhs, increase s by 1 and

continue with the step (II.1). It should be noted that different components of β̂(d0;h)

may stop at different bandwidths.

We usually set the maximal step S to be relatively small, say between 10 and 20, and

thus each B(d0, hS) only contains a relatively small number of voxels. As S increases,
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the number of neighboring voxels in B(d0, hS) increases exponentially. It increases the

chance of oversmoothing βj(d0) when d0 is near the edge of distinct regions. Moreover,

in order to prevent oversmoothing βj(d0), we compare β̂j(d0;hs) with the least squares

estimate β̂j(d0) and gradually decrease Cs with the number of iteration.

2.2.3 Stage (III)

Based on β̂(d0;hS), we can further construct test statistics to examine scientific ques-

tions associated with β(d0). For instance, such questions may compare brain structure

across different groups (normal controls versus patients) or detect change in brain struc-

ture across time. These questions can be formulated as the linear hypotheses about

β(d0) given by

H0(d0) : R1β(d0) = b0 vs. H1(d0) : R1β(d0) 6= b0, (18)

where R1 is an r× k matrix of full row rank and b0 is an r× 1 specified vector. We use

the Wald test statistic

Wβ(d0;h) = {R1β̂(d0;hS)− b0}T{R1Σn(β̂(d0;hS))RT
1 }−1{R1β̂(d0;hS)− b0} (19)

for problem (18), where Σn(β̂(d0;hS)) is the covariance matrix of β̂(d0;hS).

We propose an approximation of Σn(β̂(d0;hS)). According to (13), we know that

β̂(d0;hS) =
∑

dm∈B(d0,hS)

ω̃(d0,dm;hS) ◦ β̂(dm)

where a ◦ b denotes the Hadamard product of matrices a and b and ω̃(d0,dm;h) is a

p × 1 vector determined by the weights ω̃j(d0,dm;h) in Stage II. Let Jp be the p2 × p

selection matrix (Liu, 1999). Therefore, Σn(β̂(d0;hS)) can be approximated by∑
dm,d′

m∈B(d0,hS)

Cov(ω̃(d0,dm;hS) ◦ β̂(dm), ω̃(d0,d
′
m;hS) ◦ β̂(d′m))

≈
∑

dm,d′
m∈B(d0,hS)

Σ̂y(dm,d
′
m)JTp {[ω̃(d0,dm;hS)ω̃(d0,d

′
m;hS)T ]⊗ Ω−1X,n}Jp.
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2.3 Theoretical Results

We systematically investigate the asymptotic properties of all estimators obtained from

the three-stage estimation procedure. Throughout the paper, we only consider a finite

number of iterations and bounded r0 for MASS, since a brain volume is always bounded.

Without otherwise stated, we assume that op(1) and Op(1) hold uniformly across all d

in either D or D0 throughout the paper. Moreover, the sample size n and the num-

ber of voxels ND are allowed to diverge to infinity. We state the following theorems,

whose detailed assumptions and proofs can be found in Section 6 and a supplementary

document.

Let β∗(d0) = (β1∗(d0), . . . , βp∗(d0))
T be the true value of β(d0) at voxel d0. We first

establish the uniform convergence rate of {β̂(d0) : d0 ∈ D0}.
Theorem 1. Under assumptions (C1)-(C4) in Section 6, as n→∞, we have

• (i)
√
n[β̂(d0) − β∗(d0)] →L N(0,Ω−1X Σy(d0,d0)) for any d0 ∈ D0, where →L

denotes convergence in distribution;

• (ii) supd0∈D0
||β̂(d0)− β∗(d0)||2 = Op(

√
n−1 log(1 +ND))

Remark 1. Theorem 1 (i) just restates a standard asymptotic normality of the least

squares estimate of β(d0) at any given voxel d0 ∈ D0. Theorem 1 (ii) states that the

maximum of ||β̂(d0)−β∗(d0)||2 across all d0 ∈ D0 is at the order of
√
n−1 log(1 +ND).

If log(1 +ND) is relatively small compared with n, then the estimation errors converge

uniformly to zero in probability. In practice, ND is determined by imaging resolution and

its value can be much larger than the sample size. For instance, in most applications, ND

can be as large as 1003 and log(1 +ND) is around 15. In a study with several hundreds

subjects, n−1 log(1 +ND) can be relatively small.

We next study the uniform convergence rate of Σ̂η and its associated eigenvalues and

eigenfunctions. We also establish the uniform convergence of Σ̂ε(d0,d0).
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Theorem 2. Under assumptions (C1)-(C8) in Section 6, we have the following results:

(i) sup
(d,d′)∈D2

|Σ̂η(d,d
′)− Ση(d,d

′)| = op(1);

(ii)

∫
D

[ψ̂l(d)− ψl(d)]2dV(d) = op(1) and |λ̂l − λl| = op(1) for l = 1, . . . , E;

(iii) sup
d0∈D0

|Σ̂ε(d0,d0)− Σε(d0,d0)| = op(1);

where E will be described in assumption (C8) and ψ̂l(d) is the estimated eigenvector,

computed from ψ̂l = Vξl.

Remark 2. Theorem 2 (i) and (ii) characterize the uniform weak convergence

of Σ̂η(·, ·) and the convergence of ψ̂l(·) and λ̂l. These results can be regarded as an

extension of Theorems 3.3-3.6 in Li and Hsing (2010), which established the uniform

strong convergence rates of these estimates under a simple model. Specifically, in Li

and Hsing (2010), they considered yi(d) = µ(d) + ηi(d) + εi(d) and assumed that µ(d)

is twice differentiable. Another key difference is that in Li and Hsing (2010), they

employed all cross products yi(d)yi(d
′) for d 6= d′ and then used the local polynomial

kernel to estimate Ση(d,d
′). In contrast, our approach is computationally simple and

Σ̂η(d,d
′) is positive definite. Theorem 2 (iii) characterizes the uniform weak convergence

of Σ̂ε(d0,d0) across all voxels d0 ∈ D0.

To investigate the asymptotic properties of β̂j(d0;hs), we need to characterize points

close to and far from the boundary set ∂D(j). For a given bandwidth hs, we first define

hs-boundary sets:

∂D(j)(hs) = {d ∈ D : B(d, hs) ∩ ∂D(j) 6= ∅} and ∂D(j)
0 (hs) = ∂D(j)(hs) ∩ D0. (20)

Thus, ∂D(j)(hs) can be regarded as a band with radius hs covering the boundary set

∂D(j), while ∂D(j)
0 (hs) contains all grid points within such band. It is easy to show that

for a sequence of bandwidths h0 = 0 < h1 < · · · < hS, we have

∂D(j)(h0) = ∂D(j) ⊂ · · · ⊂ ∂D(j)(hS) and ∂D(j)
0 (h0) ⊂ · · · ⊂ ∂D(j)

0 (hS). (21)

Therefore, for a fixed bandwidth hs, any point d0 ∈ D0 belongs to either D \ ∂D(j)(hs)
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or ∂D(j)(hs). For each d0 ∈ D \ ∂D(j)(hs), there exists one and only one Dj,l such that

B(d0, h0) ⊂ · · · ⊂ B(d0, hs) ⊂ Doj,l. (22)

See Figure 1 (d) for an illustration.

We first investigate the asymptotic behavior of β̂j(d0;hs) when βj∗(d) is piecewise

constant. That is, βj∗(d) is a constant in Doj,l and for any d′ ∈ ∂D(j), there exists a d ∈

∪Lj

l=1Doj,l such that βj∗(d) = βj∗(d
′). Let β̃j∗(d0;hs) =

∑
dm∈B(d0,hs)∩D0

ω̃j(d0,dm;hs)βj∗(dm)

be the pseudo-true value of βj(d0) at scale hs in voxel d0. For all d0 ∈ D \ ∂D(j)(hS),

we have β̃j∗(d0;hs) = βj∗(d0) for all s ≤ S due to (22). In contrast, for d0 ∈ ∂D(j)(hS),

β̃j∗(d0;hs) may vary from h0 to hS. In this case, we are able to establish several impor-

tant theoretical results to characterize the asymptotic behavior of β̂(d0;hs) even when

hS does not converge to zero. We need additional notation as follows:

∆̂j(d0) = β̂j(d0)− βj∗(d0) and ∆j∗(d0,d
′
0) = βj∗(d0)− βj∗(d′0),

ω
(0)
j (d0,d

′
0;hs) = Kloc(||d0 − d′0||2/hs)Kst(0)1(βj∗(d0) = βj∗(d

′
0)), (23)

ω̃
(0)
j (d0,d

′
0;hs) = ω

(0)
j (d0,d

′
0;hs)/

∑
dm∈B(d0,hs)∩D0

ω
(0)
j (d0,dm;hs),

Σ
(0)
j (d0;hs) = eTj,pΩ

−1
X ej,p

∑
dm,d′

m∈B(d0,hs)∩D0

ω̃
(0)
j (d0,dm;hs)ω̃

(0)
j (d0,d

′
m;hs)Σy(dm,d

′
m).

Theorem 3. Under assumptions (C1)-(C10) in Section 6 for piecewise constant {βj∗(d) :

d ∈ D}, we have the following results for all 0 ≤ s ≤ S:

(i) supd0∈D0
|β̃j∗(d0;hs)− βj∗(d0)| = op(

√
log(1 +ND)/n);

(ii) β̂j(d0;hs)− βj∗(d0) =
∑

dm∈B(d0,hs)∩D0
ω̃
(0)
j (d0,dm;hs)∆̂j(dm)[1 + op(1)];

(iii) supd0∈D0
|Σ̂(
√
nβ̃j∗(d0;hs))− Σ

(0)
j (d0;hs)| = op(1);

(iv)
√
n[β̂j(d0;hs)− βj∗(d0)] converges in distribution to a normal distribution with

mean zero and variance Σ
(0)
j (d0;hs) as n→∞.

Remark 3. Theorem 3 shows that MASS has several important features for a

piecewise constant function βj∗(d). For instance, Theorem 3 (i) quantifies the maxi-

mum absolute difference (or bias) between the true value βj∗(d0) and the pseudo true

value β̃j∗(d0;hs) across all d0 ∈ D0 for any s. Since β̃j∗(d0;hs) − βj∗(d0) = 0 for

d0 ∈ D \ ∂D(j)(hs), this result delineates the potential bias for voxels d0 in ∂D(j)(hs).
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Theorem 3 (iv) ensures that
√
n[β̂j(d0;hs) − βj∗(d0)] is asymptotically normally dis-

tributed. Moreover, as shown in the supplementary document, Σ
(0)
j (d0;hs) is smaller

than the asymptotic variance of the raw estimate β̂j(d0). As a result, MASS increases

statistical power of testing H0(d0).

We now consider a much complex scenario when βj∗(d) is piecewise smooth. In this

case, β̃j∗(d0;hs) may vary from h0 to hS for all voxels d0 ∈ D0 regardless whether d0

belongs to ∂D(j)(hs) or not. We can establish important theoretical results to charac-

terize the asymptotic behavior of β̂(d0;hs) only when hs = O(
√

log(1 +ND)/n) = o(1)

holds. We need some additional notation as follows:

ω
(1)
j (d0,d

′
0;hs) = Kloc(||d0 − d′0||2/hs)Kst(0)1(|βj∗(d0)− βj∗(d′0)| ≤ O(hs)), (24)

ω̃
(1)
j (d0,d

′
0;hs) = ω

(1)
j (d0,d

′
0;hs)/

∑
dm∈B(d0,hs)∩D0

ω
(1)
j (d0,dm;hs),

Σ
(1)
j (d0;hs) = eTj,pΩ

−1
X ej,p

∑
dm,d′

m∈B(d0,hs)∩D0

ω̃
(1)
j (d0,dm;hs)ω̃

(1)
j (d0,d

′
m;hs)Σy(dm,d

′
m).

Theorem 4. Suppose assumptions (C1)-(C9) and (C11) in Section 6 hold for piecewise

continuous {βj∗(d) : d ∈ D}. For all 0 ≤ s ≤ S, we have the following results:

(i) supd0∈D0
|β̃j∗(d0;hs)− βj∗(d0)| = Op(hs);

(ii) β̂j(d0;hs)− β̃j∗(d0;hs) =
∑

dm∈B(d0,hs)∩D0
ω̃
(1)
j (d0,dm;hs)∆̂j(dm)[1 + op(1)];

(iii) supd0∈D0
|Σ̂(
√
nβ̃j∗(d0;hs))− Σ

(1)
j (d0;hs)| = op(1).

(iv)
√
n[β̂j(d0;hs) − β̃j∗(d0;hs)] converges in distribution to a normal distribution

with mean zero and variance Σ
(1)
j (d0;hs) as n→∞.

Remark 4. Theorem 4 characterizes several key features of MASS for a piece-

wise continuous function βj∗(d). These results differ significantly from those for the

piecewise constant case, but under weaker assumptions. For instance, Theorem 4 (i)

quantifies the bias of the pseudo true value β̃j∗(d0;hs) relative to the true value βj∗(d0)

across all d0 ∈ D0 for a fixed s. Even for voxels inside the smooth areas of βj∗(d),

the bias Op(hs) is still much higher than the standard bias at the rate of h2s due to the

presence of Kst(Dβj(d0,d
′
0;hs−1)/Cn) (Fan and Gijbels, 1996; Wand and Jones, 1995).

If we set Kst(u) = 1(u ∈ [0, 1]) and βj∗(d) is twice differentiable, then the bias of

β̃j∗(d0;hs) relative to βj∗(d0) may be reduced to Op(h
2
s). Theorem 4 (iv) ensures that
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√
n[β̂j(d0;hs)− β̃j∗(d0;hs)] is asymptotically normally distributed. Moreover, as shown

in the supplementary document, Σ
(1)
j (d0;hs) is smaller than the asymptotic variance of

the raw estimate β̂j(d0), and thus MASS can increase statistical power in testing H0(d0)

even for the piecewise continuous case.

3 Simulation Studies

In this section, we conducted a set of Monte Carlo simulations to compare MASS with

voxel-wise methods from three different aspects. Firstly, we examine the finite sample

performance of β̂(d0;hs) at different signal-to-noise ratios. Secondly, we examine the

accuracy of the estimated eigenfunctions of Ση(d,d
′). Thirdly, we assess both Type I

and II error rates of the Wald test statistic. For the sake of space, we only present

some selected results below and put additional simulation results in the supplementary

document.

We simulated data at all 32,768 voxels on the 64× 64× 8 phantom image for n = 60

(or 80) subjects. At each d0 = (d0,1, d0,2, d0,3)
T in D0, Yi(d0) was simulated according to

yi(d0) = xTi β(d0) + ηi(d0) + εi(d0) for i = 1, . . . , n, (25)

where xi = (xi1, xi2, xi3)
T , β(d0) = (β1(d0), β2(d0), β3(d0))

T , and ε(d0) ∼ N(0, 1) or

χ(3)2−3, in which χ2(3)−3 is a very skewed distribution. Furthermore, we set ηi(d0) =∑3
l=1 ξilψl(d0), where ξil are independently generated according to ξi1 ∼ N(0, 0.6), ξi2 ∼

N(0, 0.3), and ξi3 ∼ N(0, 0.1), ψ1(d0) = 0.5 sin(2πd0,1/64), ψ2(d0) = 0.5 cos(2πd0,2/64),

and ψ3(d0) =
√

1/2.625(9/8−d0,3/4). The first eigenfunction ψ1(d0) changes only along

d0,1 direction, while it keeps constant in the other two directions. The other two eigen-

functions, ψ2(d0) and ψ3(d0), were chosen in a similar way (Figure 3). We set xi1 = 1

and generated xi2 independently from a Bernoulli distribution with success rate 0.5 and

xi3 independently from the uniform distribution on [1, 2]. The covariates xi2 and xi3

were chosen to represent group identity and scaled age, respectively.

We chose different pattens for different βj(d) images in order to examine the finite
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sample performance of our estimation method under different scenarios. We set all the 8

slices along the coronal axis to be identical for each of βj(d) images. As shown in Figure

4, each slice of the three different βj(d) images has four different blocks and 5 different

regions of interest (ROIs) with varying patterns and shape. The true values of βj(d)

were varied from 0 to 0.8, respectively, and were displayed for all ROIs with navy blue,

blue, green, orange and brown colors representing 0, 0.2, 0.4, 0.6, and 0.8, respectively.

We fitted the SVCM model (1) with the same set of covariates to a simulated data

set, and then applied the three-stage estimation procedure described in Section 2.2 to

calculate adaptive parameter estimates across all pixels at 11 different scales. In MASS,

we set hs = 1.1s for s = 0, . . . , S = 10. Figure 4 shows some selected slices of β̂(d0;hs)

at s = 0 (middle panels) and s = 10 (lower panels). Inspecting Figure 4 reveals that all

β̂j(d0;h10) outperform their corresponding β̂j(d0) in terms of variance and detected ROI

patterns. Following the method described in Section 2.2, we estimated ηi(d) based on the

residuals yi(d0)−xTi β̂(d0) by using the local linear smoothing method and then calculate

η̂i(d). Figure 3 shows some selected slices of the first three estimated eigenfunctions.

Inspecting Figure 3 reveals that η̂i(d) are relatively close to the true eigenfunctions

and can capture the main feature in the true eigenfunctions, which vary in one direction

and are constant in the other two directions. However, we do observe some minor block

effects, which may be caused by using the block smoothing method to estimate ηi(d).

Furthermore, for β̂(d0;hs), we calculated the bias, the empirical standard error

(RMS), the mean of the estimated standard errors (SD), and the ratio of RMS over

SD (RE) at each voxel of the five ROIs based on the results obtained from the 200 sim-

ulated data sets. For the sake of space, we only presented some selected results based

on β̂3(d0) and β̂3(d0;h10) obtained from N(0, 1) distributed data with n = 60 in Table

1. The biases are slightly increased from h0 to h10 (Table 1), whereas RMS and SD

at h5 and h10 are much smaller than those at h0 (Table 1). In addition, the RMS and

its corresponding SD are relatively close to each other at all scales for both the normal

and Chi-square distributed data (Table 1). Moreover, SDs in these voxels of ROIs with
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β3(d0) > 0 are larger than SDs in those voxels of ROI with β3(d0) = 0, since the interior

of ROI with β3(d0) = 0 contains more pixels (Figure 4 (c)). Moreover, the SDs at

steps h0 and h10 show clear spatial patterns caused by spatial correlations. The RMSs

also show some evidence of spatial patterns. The biases, SDs, and RMSs of β3(d0) are

smaller in the normal distributed data than in the chi-square distributed data (Table 1),

because the signal-to-noise ratios (SNRs) in the normal distributed data are bigger than

those SNRs in the chi-square distributed data. Increasing sample size and signal-to-noise

ratio decreases the bias, RMS and SD of parameter estimates (Table 1).

To assess both Type I and II error rates at the voxel level, we tested the hypotheses

H0(d0) : βj(d0) = 0 versus H1(d0) : βj(d0) 6= 0 for j = 1, 2, 3 across all d0 ∈ D0. We

applied the same MASS procedure at scales h0 and h10. The − log10(p) values on some

selected slices are shown in the supplementary document. The 200 replications were used

to calculate the estimates (ES) and standard errors (SE) of rejection rates at α = 5%

significance level. Due to space limit, we only report the results of testing β2(d0) = 0.

The other two tests have similar results and are omitted here. For Wβ(d0;h), the Type I

rejection rates in ROI with β2(d0) = 0 are relatively accurate for all scenarios, while the

statistical power for rejecting the null hypothesis in ROIs with β2(d0) 6= 0 significantly

increases with radius hs and signal-to-noise ratio (Table 2). As expected, increasing n

improves the statistical power for detecting β2(d0) 6= 0.

4 Real Data Analysis

We applied SVCM to the Attention Deficit Hyperactivity Disorder (ADHD) data from

the New York University (NYU) site as a part of the ADHD-200 Sample Initiative

(http://fcon 1000.projects.nitrc.org/indi/adhd200/). ADHD-200 Global Competition is a

grassroots initiative event to accelerate the scientific community’s understanding of the

neural basis of ADHD through the implementation of open data-sharing and discovery-

based science. Attention deficit hyperactivity disorder (ADHD) is one of the most com-

mon childhood disorders and can continue through adolescence and adulthood (Polanczyk
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et al., 2007). Symptoms include difficulty staying focused and paying attention, diffi-

culty controlling behavior, and hyperactivity (over-activity). It affects about 3 to 5

percent of children globally and diagnosed in about 2 to 16 percent of school aged

children (Polanczyk et al., 2007). ADHD has three subtypes, namely, predominantly

hyperactive-impulsive type, predominantly inattentive type, and combined type.

The NYU data set consists of 174 subjects (99 Normal Controls (NC) and 75 ADHD

subjects with combined hyperactive-impulsive). Among them, there are 112 males whose

mean age is 11.4 years with standard deviation 7.4 years and 62 females whose mean

age is 11.9 years with standard deviation 10 years. Resting-state functional MRIs and

T1-weighted MRIs were acquired for each subject. We only use the T1-weighted MRIs

here. We processed the T1-weighted MRIs by using a standard image processing pipeline

detailed in the supplementary document. Such pipeline consists of AC (anterior commis-

sure) and -PC (posterior commissure) correction, bias field correction, skull-stripping,

intensity inhomogeneity correction, cerebellum removal, segmentation, and nonlinear

registration. We segmented each brain into three different tissues including grey matter

(GM), white matter (WM), and cerebrospinal fluid (CSF). We used the RAVENS maps

to quantify the local volumetric group differences for the whole brain and each of the

segmented tissue type (GM, WM, and CSF) respectively, using the deformation field

that we obtained during registration (Davatzikos et al., 2001). RAVENS methodology is

based on a volume-preserving spatial transformation, which ensures that no volumetric

information is lost during the process of spatial normalization, since this process changes

an individuals brain morphology to conform it to the morphology of the Jacob template

(Kabani et al., 1998).

We fitted model (1) to the RAVEN images calculated from the NYU data set.

Specifically, we set β(d0) = (β1(d0), . . . , β8(d0))
T and xi = (1,Gi,Ai,Di,WBVi,Ai ×

Di,Gi×Di,Ai×Gi)
T , where Gi, Ai, Di, and WBVi, respectively, represent gender, age,

diagnosis (1 for NC and 0 for ADHD), and whole brain volume. We applied the three-

stage estimation procedure described in Section 2.2. In MASS, we set hs = 1.1s for s =
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1, . . . , 10. We are interested in assessing the age and diagnosis interaction and the gender

and diagnosis interaction. Specifically, we tested H0(d0) : β6(d0) = 0 against H1(d0) :

β6(d0) 6= 0 for the age×diagnosis interaction across all voxels. Moreover, we also tested

H0(d0) : β7(d0) = 0 against H1(d0) : β7(d0) 6= 0 for the gender×diagnosis interaction,

but we present the associated results in the supplementary document. Furthermore, as

shown in the supplementary document, the largest estimated eigenvalue is much larger

than all other estimated eigenvalues, which decrease very slowly to zero, and explains

22% of variation in data after accounting for xi. Inspecting Figure 5 reveals that the

estimated eigenfunction corresponding to the largest estimated eigenvalue captures the

dominant morphometric variation.

As s increases from 0 to 10, MASS shows an advantage in smoothing effective signals

within relatively homogeneous ROIs, while preserving the edges of these ROIs (Fig. 6

(a)-(d)). Inspecting Figure 6 (c) and (d) reveals that it is much easier to identify signif-

icant ROIs in the − log10(p) images at scale h10, which are much smoother than those at

scale h0. To formally detect significant ROIs, we used a cluster-form of threshold of 5%

with a minimum voxel clustering value of 50 voxels. We were able to detect 26 significant

clusters across the brain. Then, we overlapped these clusters with the 96 predefined ROIs

in the Jacob template and were able to detect several predefined ROIs for each cluster.

As shown in the supplementary document, we were able to detect several major ROIs,

such as the frontal lobes and the right parietal lobe. The anatomical disturbance in the

frontal lobes and the right parietal lobe has been consistently revealed in the literature

and may produce difficulties with inhibiting prepotent responses and decreased brain

activity during inhibitory tasks in children with ADHD (Bush, 2011). These ROIs com-

prise the main components of the cingulo-frontal-parietal cognitive-attention network.

These areas, along with striatum, premotor areas, thalamus and cerebellum have been

identified as nodes within parallel networks of attention and cognition (Bush, 2011).

To evaluate the prediction accuracy of SVCM, we randomly selected one subject

with ADHD from the NYU data set and predicted his/her RAVENS image by using
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both model (1) and a standard linear model with normal noise. In both models,

we used the same set of covariates, but different covariance structures. Specifically,

in the standard linear model, an independent correlation structure was used and the

least squares estimates of β(d0) were calculated. For SVCM, the functional principal

component analysis model was used and β̂(d0;h10) were calculated. After fitting both

models to all subjects except the selected one, we used the fitted models to predict the

RAVEN image of the selected subject and then calculated the prediction error based

on the difference between the true and predicted RAVEN images. We repeated the

prediction procedure 50 times and calculated the mean and standard deviation images

of these prediction error images (Figure 7). Inspecting Figure 7 reveals the advantage

and accuracy of model (1) over the standard linear model for the ADHD data.

5 Discussion

This article studies the idea of using SVCM for the spatial and adaptive analysis of

neuroimaging data with jump discontinuities, while explicitly modeling spatial depen-

dence in neuroimaging data. We have developed a three-stage estimation procedure to

carry out statistical inference under SVCM. MASS integrates three methods including

propagation-separation, functional principal component analysis, and jumping surface

model for neuroimaging data from multiple subjects. We have developed a fast and

accurate estimation method for independently updating each of effect images, while

consistently estimating their standard deviation images. Moreover, we have derived the

asymptotic properties of the estimated eigenvalues and eigenfunctions and the parameter

estimates.

Many issues still merit further research. The basic setup of SVCM can be extended

to more complex data structures (e.g., longitudinal, twin and family) and other para-

metric and semiparametric models. For instance, we may develop a spatial varying

coefficient mixed effects model for longitudinal neuroimaging data. It is also feasible

to include nonparametric components in SVCM. More research is needed for weakening
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regularity assumptions and for developing adaptive-neighborhood methods to determine

multiscale neighborhoods that adapt to the pattern of imaging data at each voxel. It

is also interesting to examine the efficiency of our adaptive estimators obtained from

MASS for different kernel functions and coefficient functions. An important issue is

that SVCM and other voxel-wise methods do not account for the errors caused by reg-

istration method. We may need to explicitly model the measurement errors caused by

the registration method, and integrate them with smoothing method and SVCM into a

unified framework.

6 Technical Conditions

6.1 Assumptions

Throughout the paper, the following assumptions are needed to facilitate the technical

details, although they may not be the weakest conditions. We do not distinguish the

differentiation and continuation at the boundary points from those in the interior of D.

Assumption C1. The number of parameters p is finite. Both ND and n increase to

infinity such that limn→∞Cn/n = limn→∞C
−1
n log(ND) = limn→∞C

−1
n = 0.

Assumption C2. εi(d) are identical and independent copies of SP(0,Σε) and εi(d)

and εi(d
′) are independent for d 6= d′ ∈ D. Moreover, εi(d) are, uniformly in d,

sub-Gaussian such that K2
ε [E exp(|εi(d)|2/Kε) − 1] ≤ Cε for all d ∈ D and some

positive constants Kε and Cε.

Assumption C3. The covariate vectors xis are independently and identically distributed

with Exi = µx and ||xi||∞ < ∞. Moreover, E(x⊗2i ) = ΩX is invertible. The xi,

εi(d), and ηi(d) are mutually independent of each other.

Assumption C4. Each component of {η(d) : d ∈ D}, {η(d)η(d′)T : (d,d′) ∈ D2}

and {xηT (d) : d ∈ D} are Donsker classes. Moreover, mind∈D Ση(d,d) > 0 and

E[supd∈D ||η(d)||2r12 ] <∞ for some r1 ∈ (2,∞), where || · ||2 is the Euclidean norm.
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All components of Ση(d,d
′) have continuous second-order partial derivatives with

respect to (d,d′) ∈ D2.

Assumption C5. The grid points D0 = {dm,m = 1, . . . , ND} are independently and

identically distributed with density function π(d), which has the bounded support

D. Moreover, π(d) > 0 for all d ∈ D and π(d) has continuous second-order

derivative.

Assumption C6. The kernel functions Kloc(t) and Kst(t) are Lipschitz continuous and

symmetric density functions, while Kloc(t) has a compact support [−1, 1]. More-

over, they are continuously decreasing functions of t ≥ 0 such that Kst(0) =

Kloc(0) > 0 and limt→∞Kst(t) = 0.

Assumption C7. h converges to zero such that

h ≥ c(logND/ND)1−2/q1 and h−12(log n/n)1−1/q2 = o(1),

where c > 0 is a fixed constant and min(q1, q2) > 2.

Assumption C8. There is a positive integer E <∞ such that λ1 > . . . > λE ≥ 0.

Assumption C9. For each j, the three assumptions of the jumping surface model hold,

each Do
j,l is path-connected, and βj∗(d) is a Lipschitz function of d with a common

Lipschitz constant Kj > 0 in each Doj,l such that |βj∗(d)− βj∗(d′)| ≤ Kj||d− d′||2
for any d,d′ ∈ Doj,l. Moreover, supd∈D |βj∗(d)| <∞, and max(Kj, Lj) <∞.

Assumption C10. For piecewise constant βj∗(d), o(u(j)(hs)) =
√

log(1 +ND)/n and

NDh
3
sKst(C

−1
n nu(j)(hs)

2/(3Sy)) = o(
√

log(1 +ND)/n) holds uniformly for h0 =

0 < · · · < hS, where Sy = maxd0∈D0 Σy(d0,d0) and u(j)(hs) is the smallest absolute

value of all possible jumps at scale hs and given by

u(j)(hs) = min{|βj∗(d0)−βj∗(d′0)| : (d0,d
′
0) ∈ D2

0, βj∗(d0) 6= βj∗(d
′
0),d

′
0 ∈ B(d0, hs)}.
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Assumption C11. For piecewise continuous βj∗(d), ∪d∈D0 [Pj(d0, hS)c∩ Ij(d0, δL, δU)] is

an empty set and h0 = 0 < h1 < · · · < hS is a sequence of bandwidths such that

δL = O(
√

log(1 +ND)/n) = o(1), δU =
√
Cn/nMn = o(1), in which limn→∞Mn =

∞, hS = O(
√

log(1 +ND)/n) and NDh
3
SKst(M

2
n/(3Sy)) = o(

√
log(1 +ND)/n).

Remark 5. Assumption (C2) is needed to invoke Hoeffding inequality (Buhlmann

and van de Geer, 2011; van der Vaar and Wellner, 1996) in order to establish the uniform

bound for β̂(d0;hs). In practice, since most neuroimaging data are often bounded, the

sub-Gaussian assumption is reasonable. The bound assumption on ||x||∞ in Assumption

(C3) is not essential and can be removed if we put a restriction on the tail of the

distribution x. Moreover, with some additional efforts, all results are valid even for the

case with fixed design predictors. Assumption (C4) avoids smoothness conditions on

the sample path η(d), which are commonly assumed in the literature (Hall et al., 2006).

The assumption on the moment of supd∈D ||η(d)||2r22 is similar to the conditions used

in (Li and Hsing, 2010). Assumption (C5) on the stochastic grid points is not essential

and can be modified to accommodate the case for fixed grid points with some additional

complexities.

Remark 6. The bounded support restriction on Kloc(·) in Assumption (C6) can be

weaken to a restriction on the tails of Kloc(·). Assumption (C9) requires smoothness and

shape conditions on the image of βj∗(d) for each j. For piecewise constant βj∗(d), as-

sumption (C10) requires conditions on the amount of changes at jumping points relative

to n, ND, and hS. If Kst(t) has a compact support, then Kst(u
(j)2/C) = 0 for relatively

large u(j)2. In this case, hS can be very large. However, for piecewise continuous βj∗(d),

assumption (C11) requires the convergence rate of hS and the amount of changes at

jumping points.
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Figure 1: Illustration of a jumping surface model for β1(d) and boundary sets over a two-

dimensional region D: (a) D, D0, a disjoint partition of D as the union of four disjoint

regions with white, yellow, blue green, and red representing D1,1, D1,2, D1,3, and D1,4, a

representative voxel d0 ∈ D0, an open ball of d0, B(d0, h), a maximal path-connected set

P1(d0, h), and P1(d0, h)c; (b) three-dimensional shaded surface of true {β1(d) : d ∈ D}
map; (c) three-dimensional shaded surface of estimated {β̂1(d0) : d0 ∈ D0}map; and ( d)

D, D0, a disjoint partition of D = D1,1∪D1,2, ∂D
(1)(h0) ⊂ ∂D(1)(hs), two representative

voxels d0 and d′0 in D0, two open balls of d′0 ∈ D1,1, an open ball of d0 ∈ ∂D(1)(hs)∩D0,

B(d0, hs), and P1(d0, hs)
c.
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Figure 2: A schematic overview of the three stages of SVCM: Stage (I) is the initialization

step, Stage (II) is the Multiscale Adaptive and Sequential Smoothing (MASS) method,

and Stage (III) is the hypothesis test.
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Figure 3: Simulation results: a selected slice of (a) true ψ1(d); (b) true ψ2(d); (c) true

ψ3(d); (d) ψ̂1(d); (e) ψ̂2(d); and (f) ψ̂3(d).
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Figure 4: Simulation results: a selected slice of (a) true β1(d); (b) true β2(d); (c)

true β3(d); (d) β̂1(d0); (e) β̂2(d0); (f) β̂3(d0); (g) β̂1(d0;h10); (h) β̂2(d0;h10); and (i)

β̂3(d0;h10).
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Figure 5: Results from the ADHD 200 data: five selected slices of the four estimated

eigenfunctions corresponding to the first four largest eigenvalues of Σ̂η(·, ·): (a) ψ̂1(d);

(b) ψ̂2(d); (c) ψ̂3(d); and (d) ψ̂4(d).
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Figure 6: Results from the ADHD 200 data: five selected slices of (a) β̂6(d0), (b)

β̂6(d0;h10), the − log10(p) images for testing H0 : β6(d0) = 0 (c) at scale h0 and (d) at

scale h10, where β6(d0) is the regression coefficient associated with the age×diagnostic

interaction.
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Figure 7: Results from the ADHD 200 data: The raw RAVENS image for a selected

subject with ADHD (a), mean ((b) GLM and (d) SVCM) and standard error ((c) GLM

and ( e) SVCM) of the errors to predict the RAVENS image in (a), where GLM denotes

general linear model.
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Table 1: Simulation results: Average Bias (×10−2), RMS, SD, and RE of β2(d0) param-

eters in the five ROIs at 3 different scales (h0, h5, h10), N(0, 1) and χ(3)2− 3 distributed

noisy data, and 2 different sample sizes (n = 60, 80). BIAS denotes the bias of the

mean of estimates; RMS denotes the root-mean-square error; SD denotes the mean of

the standard deviation estimates; RE denotes the ratio of RMS over SD. For each case,

200 simulated data sets were used.

χ2(3)− 3 N(0, 1)

n = 60 n = 80 n = 60 n = 80

β2(d0) h0 h5 h10 h0 h5 h10 h0 h5 h10 h0 h5 h10

0.0 BIAS -0.03 0.36 0.61 0.00 0.34 0.56 -0.01 0.17 0.22 0.01 0.16 0.20

RMS 0.18 0.13 0.13 0.15 0.10 0.10 0.14 0.07 0.07 0.12 0.06 0.06

SD 0.18 0.13 0.12 0.15 0.11 0.11 0.14 0.07 0.07 0.12 0.06 0.06

RE 1.03 1.00 1.04 1.00 0.94 0.98 0.99 0.94 1.03 1.00 0.95 1.04

0.2 BIAS 0.72 0.37 0.38 0.15 -0.35 -0.39 -0.04 -0.55 -0.66 0.10 -0.48 -0.61

RMS 0.19 0.14 0.13 0.16 0.11 0.11 0.14 0.07 0.07 0.12 0.06 0.06

SD 0.18 0.14 0.13 0.16 0.12 0.11 0.14 0.08 0.07 0.12 0.07 0.06

RE 1.02 0.99 1.03 1.00 0.96 0.99 0.99 0.96 1.04 1.00 0.97 1.06

0.4 BIAS -0.40 -0.55 -0.68 -0.10 -0.15 -0.24 0.04 0.12 0.13 -0.10 0.05 0.08

RMS 0.19 0.14 0.14 0.16 0.12 0.12 0.14 0.07 0.07 0.12 0.07 0.07

SD 0.18 0.14 0.13 0.16 0.12 0.12 0.14 0.08 0.07 0.12 0.07 0.06

RE 1.02 1.00 1.03 1.00 0.96 1.00 0.99 0.96 1.04 1.00 0.97 1.06

0.6 BIAS 0.42 -1.14 -1.93 0.05 -1.20 -1.89 0.03 -0.55 -0.69 -0.01 -0.43 -0.54

RMS 0.18 0.13 0.13 0.15 0.11 0.11 0.14 0.07 0.07 0.12 0.06 0.06

SD 0.18 0.13 0.13 0.15 0.11 0.11 0.14 0.08 0.07 0.12 0.07 0.06

RE 1.02 1.00 1.04 1.00 0.95 0.99 0.99 0.97 1.05 1.00 0.97 1.05

0.8 BIAS -1.04 -2.95 -4.09 -0.13 -1.71 -2.70 -0.11 -0.82 -1.03 -0.03 -0.59 -0.77

RMS 0.19 0.15 0.15 0.16 0.12 0.12 0.14 0.08 0.07 0.12 0.07 0.07

SD 0.19 0.15 0.14 0.16 0.13 0.12 0.14 0.08 0.07 0.12 0.07 0.06

RE 1.02 1.00 1.03 1.00 0.96 0.99 0.99 0.94 1.01 1.00 0.95 1.02
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Table 2: Simulation Study for Wβ(d0;h): estimates (ES) and standard errors (SE) of

rejection rates for pixels inside the five ROIs were reported at 2 different scales (h0, h10),

N(0, 1) and χ2(3) − 3 distributed data, and 2 different sample sizes (n = 60, 80) at

α = 5%. For each case, 200 simulated data sets were used.

χ2(3)− 3 N(0, 1)

n = 60 n = 80 n = 60 n = 80

β2(d0) s ES SE ES SE ES SE ES SE

0.0 h0 0.056 0.016 0.049 0.015 0.048 0.015 0.050 0.016

h10 0.055 0.016 0.042 0.015 0.036 0.016 0.040 0.019

0.2 h0 0.210 0.043 0.245 0.039 0.282 0.033 0.370 0.035

h10 0.358 0.126 0.413 0.139 0.777 0.107 0.870 0.081

0.4 h0 0.556 0.072 0.692 0.054 0.794 0.030 0.895 0.024

h10 0.792 0.129 0.894 0.078 0.994 0.006 0.998 0.003

0.6 h0 0.907 0.040 0.966 0.022 0.988 0.008 0.998 0.003

h10 0.986 0.023 0.997 0.009 1.000 0.001 1.000 0.000

0.8 h0 0.978 0.016 0.997 0.004 1.000 0.001 1.000 0.000

h10 0.997 0.006 1.000 0.001 1.000 0.000 1.000 0.000
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