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Abstract: This paper studies a weighted local linear regression smoother for longitudi-

nal/clustered data, which takes a similar form as the classical weighted least squares estimate.

As a hybrid of the methods of Chen and Jin (2005) and Wang (2003), the proposed local

linear smoother maintains the advantages of both methods in computational and theoretical

simplicity, variance minimization and bias reduction. Moreover, the proposed smoother is

optimal in the sense that it attains the linear minimax efficiency when the within-cluster

correlation is correctly specified. In the special case that the joint density of covariates in

a cluster exists and is continuous, any working within-cluster correlation would lead to the

linear minimax efficiency for the proposed method.
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1. Introduction

Recently, nonparametric curve estimation with clustered data has attracted considerable

attention. Because of within-clustered correlation, the extension of nonparametric techniques

is not straightforward. Searching for simple and reliable nonparametric estimators becomes

an important task.

The efforts begin with an important work of Lin and Carroll (2000). They have shown an

interesting result that correctly accounting for within-cluster correlation does not necessarily

yield a better estimator when a specific kernel method is used. Welsh, Lin and Carroll

(2002) demonstrate further that the spline estimator whose weight is more global can have
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a smaller variance than a kernel method, and that the asymptotic variance is smaller when

the within-cluster correlation is correctly specified. Wang (2003) proposes a kernel method

which has the same variance as that of Welsh, Lin and Carroll (2002). Hence, it enjoys

the same merits as that of the spline method when the within-cluster variance is known.

Wang (2003) contains an innovative idea of using the seemingly unrelated observations, even

though it might induce bias and sometimes, as pointed out in Wang (2003), may not be

more accurate than the estimator of Lin and Carroll (2000). Generally, the performance of

the aforementioned estimators is difficult to compare theoretically. In particular, the bias

term of the estimator of Wang (2003) can only be expressed as the solution of a Fredholm

type equation, which cannot be easily evaluated; see equation (5) of Lin, Wang, Welsh and

Carroll (2004). As a result, the mean squared error is hard to quantify. Furthermore, the

comparisons become moot as different estimators have slightly different assumptions. For

example, if the regression function is assumed to have a continuous second derivative at a

point, the bias can be made of order o(h2) with h being the bandwidth. As a result, one can

transfer it into the variance improvement even without inflating biases. Hence, the uniform

results such as the minimax risk play a crucial role in comparing various methods.

In addition to the aforementioned proposals, Yao, Müller and Wang (2005ab) adapt the

functional data analysis techniques to the analysis of longitudinal data. Welsh, Lin and Car-

roll (2002) provide insightful discussions between the splines and kernel methods, including

locality and efficiency. All these estimators are linear in the response variables. While dif-

ferent approaches have their own merits and deal with different aspects of longitudinal data,

the question arises naturally on the benchmark performance of the linear estimators. While

variance minimization has been the central subject in the related literature, the accuracy of

curve estimation is generally measured by the mean squared error (MSE) at a point or mean

integrated squared error (MISE). An important and widely adopted criterion for studying

the optimality of smoothing methodologies is linear minimax efficiency. It arises naturally

if the linear minimax result of Fan (1992) and Chen (2003) can be extended to the analysis
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of longitudinal data. The question is important from both theoretical and methodologi-

cal points of view, as its answer provides also useful insights to semiparametric models for

longitudinal data (Lin and Carroll, 2001, 2006, Lin and Ying, 2001, and Fan and Li, 2004).

Our approach to the aforementioned question is to combine the ideas of Chen and Jin

(2005) and Wang (2003) so that it adapts to various designs and achieves minimax efficiency

among a proper linear class. In the special case that the joint density of covariates in a cluster

exists and is continuous, any working within-cluster correlation would lead to the linear

minimax efficiency for the proposed method. The approach results in an effective utilization

of the rich theory and practical experience of the classical local polynomial smoothers. For

example, thanks to the theoretical developments in the past decades, major issues about

local polynomial smoothing such as bandwidth selection, kernel function or weighting scheme

selection, model complexity and minimax efficiencies are thoroughly understood (see Fan,

1992; Fan and Gijbels, 1992, 1995, 1996; Ruppert and Wand 1994; Fan, Heckman and

Wand, 1995, and Ruppert, 1997; among many others). Whether these existing results can

be carried over to clustered data analysis critically depends on how the extension is. In

this regard, the proposed method is a natural extension of the classical local polynomial

regression smoothing. It has a closed form weighted least squares type expression, and has

both computational and theoretical simplicity.

The next section introduces the nonparametric regression model for clustered data and

the proposed local linear estimator. Section 3 presents an asymptotic expansion and proves

the linear minimax efficiency. Section 4 describes analogous results for generalized linear

models. Section 5 presents simulation studies and Section 6 contains some closing remarks.

2. Nonparametric regression model and local linear smoothers

Suppose (Xij, Yij), j = 1, ..., Ji, are the Ji covariate-response pairs of subject i for i =

1, ..., n. The marginal nonparametric regression model assumes that

Yij = m(Xij) + εij, j = 1, ..., Ji, i = 1, ..., n, (2.1)
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where m(·) is the unknown function to be estimated, εij is the error term which has condi-

tional mean 0, and finite marginal variances. Let yi = (Yi1, ..., YiJi)
T , xi = (Xi1, ...,XiJi)

T ,

εεεi = (εi1, ..., εiJi)
T and a Ji × Ji matrix Σi = var{εεεi|xi}. The cluster sizes Jis are assumed

to be bounded. To facilitate presentation, we assume that Ji ≡ J throughout the paper.

We also assume that {(εεεi,xi), i ≥ 1}, are independent and identically distributed and the

marginal densities of covariates exist.

The proposed estimate below is a delicate combination of the ideas of Chen and Jin (2005)

and Wang (2003). Heuristically, this estimate uses global observations and global variances.

The main idea might be illustrated as follows. Suppose J = 3 and, for cluster i, (Xi1, Yi1) is

a local observation to a given point x0 (i.e., Xi1 is near x0) while (Xi2, Yi2) and (Xi3, Yi3) are

not. If the latter two observations are of partial cluster level, i.e., Xi2 = Xi3, then Yi2 − Yi3

has conditional mean 0. Therefore, one can view Yi1+λ(Yi2−Yi3)I(Xi2 = Xi3) as a candidate

to estimate m(x0), where λ can be chosen by minimizing the variance of the estimator. This

idea is basically the same as “the use of control variables” in the simulation literature (Ross,

1997), which will be reflected in the local weights (2.3) below.

Let us introduce some notation. The Moore-Penrose generalized inverse of a matrix will

be adopted throughout paper. The generalized inverse of any symmetric J × J matrix

A is defined to be a symmetric matrix, denoted still by A−1, such that AA−1A = A and

A−1AA−1 = A−1. Specifically, if we let A = Γ diag(λ1, ..., λJ)Γ
T with Γ being an orthonormal

matrix, i.e., ΓT = Γ−1, then, A−1 = Γ diag(1/λ1, ..., 1/λJ)ΓT , where 1/0 denotes 0.

Throughout the paper, x0 is an arbitrary but fixed interior point of the domain of Xij .

Let K(·) be a symmetric density function with bounded support which is assumed, without

loss of generality, to be [−1, 1]. Define Kh(t) = K(t/h)/h where h is a bandwidth. Typical

choices of K(·) are, for example, the Epanechnikov kernel K0(t) = 0.75(1 − t2)I(|t| ≤ 1)

and the uniform kernel K1(t) = 0.5I(|t| ≤ 1), where I(·) is the indicator function. Let

Ki = diag{Kh(Xi1 − x0), ...,Kh(XiJ − x0)}, I be the J × J identity matrix and 1 be the

J -vector with all elements being 1. Let Ai(j) = {l : Xil = Xij} and |Ai(j)| denote the size
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of the set Ai(j). Define a J × J matrix

1̄i =




e11 · · · e1J
...

...
...

eJ1 · · · eJJ


 where el,j =

{
1/|Ai(j)| if l ∈ Ai(j) and |Xij − x0| > h,
0 otherwise.

Observe that 1̄i is a symmetric J × J matrix such that, for any function g(·) with g(t) = 0

for all t ∈ [x0 − h, x0 + h],

(I − 1̄i)g(xi) = 0, 1̄i1̄i = 1̄i and (I − 1̄i)(I − 1̄i) = I − 1̄i. (2.2)

Here and throughout the paper, for any function g(·) defined on real line, we use g(xi) to

denote {g(Xi1), ..., g(XiJ)}T . Set

Wi = Ki{(I − 1̄i)Vi(I − 1̄i)}−1, (2.3)

where Vi is the modeled/estimated Σi, the conditional covariance matrix of the response

yi given covariates xi. We assume that Vi is measurable to the σ-algebra generated by xi.

When marginal variances are known, the modeling/estimating variance matrix is the same

as modeling/estimating the correlation matrix. In other words, Vi is a working matrix.

The weighted least squares type estimator of {m(x0),m
′(x0)}T is defined as

(
m̂(x0)
m̂′(x0)

)
= (

n∑

i=1

PT
i WiPi)

−1
n∑

i=1

PT
i Wiyi, (2.4)

where

Pi =




1 (Xi1 − x0)
...

...
1 (XiJ − x0)




J×2

.

In theory, the analysis of the proposed estimator becomes relatively simple since the rich

theoretical results established for local polynomial smoothing can be largely carried over; as

evidently seen in the propositions and corollaries in Section 3. More importantly, it is easy

to compute.

Remark 1. Chen and Jin (2005) uses only local observations (i.e., only Yi1 in the illustration

at the second paragraph of this section) and weights them by their variances {IiViIi}−1
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where Ii = diag{I(|Xi1 − x0| ≤ h), ..., |XiJ − x0| ≤ h)}, and Lin and Carroll (2000) also

uses local observations but weights them by the global variances V−1
i . The estimator of

Chen and Jin (2005) is more accurate than that of Lin and Carroll (2000), but less so than

the estimator proposed here. On the other hand, Wang (2003) uses global observation and

weights them by global variances. With the illustration at the beginning of Section 2, Wang

(2003) essentially uses Yi1 + λ1{Yi2 − â(Xi2)} + λ2{Yi3 − â(Xi3)} as a datum to estimate

m(x0), where â(·) is a preliminary estimator of m(·) and λ1 and λ2 are chosen for variance

minimization. Such a method can indeed lead to smaller variance. However, as the “control

variables” are synthetically created here, the preliminary estimator â(·) might induce large

bias. In contrast, the proposed estimator not only takes care of variance minimization but

also avoids possible bias inflation.

3. Asymptotic properties and optimality

Let {Ωk, 1 ≤ k ≤ 2J − 1} be the collections of all the distinct subsets of {1, ..., J}, except

for the empty set. Notice that there are totally 2J − 1 of them. Let B(x, h) denote the

interval [x − h, x + h]. We assume that there exists a δ0 > 0 such that for all x ∈ B(x0, δ0)

and all k = 1, ..., 2J − 1,

P [ X1j ∈ B(x, h), {X1j, j ∈ Ωk} are all equal, and X1l 6= X1j for any l /∈ Ωk and j ∈ Ωk]

=
∫ h

−h
fk(x + t)dt

= P [ X1j ∈ B(x, h) for all j ∈ Ωk, and X1j /∈ B(x, h) for all j /∈ Ωk] + o(h),

for all h ∈ (0, δ0), where fk(·), 1 ≤ k ≤ 2J − 1, are nonnegative continuous functions on

B(x0, 2δ0) such that
∑2J−1

k=1 fk(t) > 0 for all t ∈ B(x0, 2δ0).

Remark 2. The above condition is referred to as “the existence of (local) partial density”

of the covariates xi at x0, which is introduced in Chen and Jin (2005). Heuristically, for every

k = 1, ..., 2J − 1, fk(·) can be viewed as a partial density of the covariates {X1j, j ∈ Ωk} at

partial cluster level, i.e., X1j are equal for all j ∈ Ωk. Essentially, the condition ensures that,

two covariates take values in a small neighborhood of x0 with a negligible chance unless they
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are of partial cluster level. This condition features various types of covariates of interest:

cluster level covariates, partial cluster level covariates and covariates with joint density. The

marginal density of X1l is the sum of fk(·) summing over all Ωk which contains l, see Chen

and Jin (2005) for some special cases.

For every fixed k = 1, ..., 2J − 1, let Sk(h) = {X1j ∈ B(x0, h) for all j ∈ Ωk, and X1j /∈

B(x0, h) for all j /∈ Ωk} and Sk(0) = {X1j = x0 for all j ∈ Ωk, and X1j 6= x0 for all j /∈ Ωk}.

Define

ξk = E
[
1T{(I − 1̄10)V1(I − 1̄10)}−11|Sk(0)

]

and ξ̄k = E
[
1T{(I − 1̄10)V1(I − 1̄10)}−1Σ1{(I − 1̄10)V1(I − 1̄10)}−11|Sk(0)

]
,

where 1̄10 is the limit of 1̄1 as h → 0. Moreover, let ξk0 be defined the same way as ξk, except

with V1 replaced by Σ1. Notice that ξ̄k with V1 replaced by Σ1 equals to ξk0 by (2.2) and

the properties of the generalized inverse. Throughout the paper, we assume that elements

of V1 and Σ1 are continuous functions of x1 and the eigenvalues of V1 and Σ1 are uniformly

bounded, and bounded away from 0.

Proposition 1. Let FX
n denote the σ-algebra generated by {xi, i = 1, ..., n}. If the

condition of the existence of partial density holds, and h → 0, nh → ∞ as n → ∞, then the

following results hold.

(i). The conditional variance of m̂(x0) is

var{m̂(x0)|FX
n } =

γ(K)
∑2J−1

k=1 fk(x0)ξ̄k

nh[
∑2J−1

k=1 fk(x0)ξk]2
{1 + oP (1)}, (3.1)

where γ(K) =
∫

K2(t)dt.

(ii). Assume m(·) is twice continuously differentiable. The conditional bias of m̂(x0) is

Bias{m̂(x0)|FX
n } =

h2

2
γ∗(K)m′′(x0) + oP (h2), (3.2)

where γ∗(K) =
∫

t2K(t)dt.

The following Corollary presents the answers to the problem of minimization of asymptotic

variances or MSE. It shows that the best working covariance matrices are the true ones.
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Corollary 1. If the conditions of Proposition 1 hold, then the following results hold.

(1). Given a bandwidth and a kernel, the conditional variance of m̂(x0) is minimized when

the working covariance matrices equal to the true ones, i.e., Vi = Σi for i ≥ 1, and

the minimized asymptotic variance is

γ(K)/{nh
2J−1∑

k=1

fk(x0)ξk0}{1 + oP (1)}. (3.3)

(2). Given a bandwidth, the uniform kernel with the true covariance matrix minimizes the

asymptotic conditional variance.

(3). Suppose m′′(x0) 6= 0. The conditional asymptotic mean squared error is minimized

when the working covariance matrices equal to the true ones, the smooth symmetric

nonnegative kernel is the Epanechnikov kernel K0(t) = 3/4(1 − t2)I(|t| ≤ 1) and the

bandwidth is

h =
[ 15

n{m′′(x0)}2
∑2J−1

k=1 fk(x0)ξk0

]1/5
. (3.4)

The minimum asymptotic mean squared error is

3

4
15−1/5{m′′(x0)}2/5

[ 1

n
∑2J−1

k=1 fk(x0)ξk0

]4/5
. (3.5)

Remark 3. One can compare the asymptotic variances of the proposed estimator with those

of Chen and Jin (2005) and Lin and Carroll (2000) when the working covariance matrices

equal to the true ones. In this case, the leading term of the asymptotic variance of the

estimator of Chen and Jin (2005) is the same as that given in (3.3) except with ξk0 replaced

by E[1T{I1Σ1I1}−11|Sk(0)] where I1 = diag{I(|X11 − x0| ≤ h), ..., I(|X1J − x0| ≤ h)}, and

that of Lin and Carroll (2000) is the same as that given in (3.1) except with ξ̄k replaced by

E[1TI1Σ
−1
1 I1Σ1I1Σ

−1
1 I11|Sk(0)] and ξk replaced by E[1TI1Σ

−1
1 I11|Sk(0)]. Because 1T{(I −

1̄1)Σ1(I − 1̄1)}−11 ≥ 1T{I1Σ1I1}−11, it can be shown that, when the working covariance

matrices equal to the true ones, the asymptotic variances of the present estimator are smaller

than or equal to those of Chen and Jin (2005). Moreover, both estimators have asymptotic
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variances smaller than or equal to those of Lin and Carroll (2000). The proof is similar to

that of (3.3) and the details are omitted. These three estimators have the same asymptotic

bias, while the estimator of Wang (2003) might induce a sizable bias although its asymptotic

variances could be smaller.

We next establish the linear minimax efficiency of the proposed local linear estimators,

which shows that our proposed estimator can not be improved further by using other linear

procedures. Define C2 = {m(·) : |m(x)−m(x0)−m′(x0)(x−x0)| ≤ C(x−x0)
2/2 } where C

is a fixed positive constant. An estimate Ŝ of m(x0) is linear if Ŝ =
∑n

i=1 WT
i Yi where Wi is

of J dimension and is measurable to FX
n . Set

R0,L(n, C2) = min
Ŝ is linear

max
m(·)∈C2

E
[
{Ŝ − m(x0)}2|FX

n

]
,

which is the linear minimax risk, i.e., the minimax risk of all linear estimators. Let

R∗
0,1(n, C2) = min

m̂(x0) is defined in (2.4)
max

m(·)∈C2

E
[
{m̂(x0) − m(x0)}2|FX

n

]

be the minimax risk of all local linear smoothers defined in (2.4). Since the local linear

smoothers defined in (2.4) are linear estimators, it follows that R∗
0,1(n, C2) ≥ R0,L(n, C2).

Proposition 2. Assume that the conditions of Proposition 1 hold. Then,

(i). The estimator m̂(x0) defined in (2.4) with the Epanechnikov kernel K0(t) = 3/4(1 −

t2)I(|t| ≤ 1), Vi = Σi, and the bandwidth ho = {15/[nC2 ∑2J−1
k=1 fk(x0)ξk0]}1/5 is a linear

minimax efficient estimator, i.e.,

max
m(·)∈C2

E[{m̂(x0) − m(x0)}2|Fn
X] = R0,L(n, C2){1 + oP (1)}.

(ii). Moreover,

R∗
0,1(n, C2) = R0,L(n, C2){1 + oP (1)} =

3

4
15−1/5C2/5

{
n

2J−1∑

k=1

fk(x0)ξk0

}−4/5
{1 + oP (1)}. (3.6)

Remark 4. The proposed estimator is locally linear minimax efficient. Under the pointwise

linear minimax criterion, the estimator is better than all linear estimators, including those
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of Wang (2003) and Chen and Jin (2005). It is also noted that the linear form of Wang’s

(2003) kernel estimator in Lin et al. (2004) requires the use of a ‘global bandwidth’ rather

than ‘local bandwidth’.

As a remarkable classical result in the theoretical development of the local polynomial

smoothing methodology, Fan (1992) established the linear minimax efficiency for the local

linear estimates for nonclustered data; see also Chen (2003) for linear minimax efficiency for

local polynomial smoothers of all orders. Such a result demonstrates one of the most impor-

tant superiorities of the local polynomial smoothing over other smoothing methodologies,

as far as the pointwise estimation is concerned. It is thus quite appealing whether such a

superiority/optimality can be carried over to local polynomial smoothing methodology in the

analysis of clustered data. In this regard, Proposition 2 shows that the local linear smoothers

defined in (2.4) for clustered data are indeed a proper generalization of the classical local

linear smoothers to nonclustered data.

The following corollary illustrates the linear minimax efficiency in some special cases.

Corollary 2. Assume that the conditions of Proposition 1 hold and that the joint density

of (X11, ...,X1J)
T exists and is continuous. Let σ2

j (x0) = var(Y1j|X1j = x0) and let f∗
j (·) be

the marginal density of X1j, 1 ≤ j ≤ J .

(i). The local linear smoother m̂(x0) defined in (2.4) is linear minimax efficient when the

modelled marginal variances equal to the true ones, the kernel is the Epanechnikov kernel

and the bandwidth h = [15/{nC2 ∑J
j=1 f∗

j (x0)/σ
2
j (x0)}]1/5. Moreover,

R∗
0,1(n, C2) = R0,L(n, C2){1 + oP (1)} =

3

4
15−1/5C2/5

[
n

J∑

j=1

f∗
j (x0)/σ

2
j (x0)

]−4/5
{1 + oP (1)}.

(ii). (Fan, 1992) In particular, if J = 1, the local linear smoother m̂(x0) defined in (2.4)

is linear minimax efficient when the kernel is the Epanechnikov kernel and the bandwidth

h = [15σ2
1(x0)/{nC2f∗

1 (x0)}]1/5. Moreover,

R∗
0,1(n, C2) = R0,L(n, C2){1 + oP (1)} =

3

4
15−1/5C2/5

[ σ2
1(x0)

nf∗
1 (x0)

]4/5
{1 + oP (1)}.
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Corollary 2 addresses the minimax efficiency under the existence of the joint density.

In this case, part (i) shows that only the correct specification of the conditional marginal

variances is needed. Specification of the within-cluster correlation, correct or incorrect, is

irrelevant to the accuracy of curve estimation. In other words, any working correlation matrix

will lead to the same accuracy of curve estimation. Specifically, Suppose Vi = ΦiCiΦi where

Φi is the diagonal matrix containing the marginal variances of yi and Ci is the working

correlation matrix. As long as Φi is correctly specified, no matter what working correlation

matrix is used, the variance of the curve estimate is minimized. This is mainly due to the

minimax formulation and the assumption of existence of joint density that excludes the

possibility of any two covariates being equal with positive probability. This is different from

the method of Lin and Carroll (2000). In Lin and Carroll’s (2000) method, only working

independence correlation would lead to such asymptotic accuracy, and any other working

correlation, correct or incorrect, would have adverse effect on curve estimation. Part (ii)

addresses the issue for nonclustered data, which is a classical result of the linear minimax

efficiency of local linear smoothers, initially given in Fan (1992). Notice that, in the case of

nonclustered data (J = 1), modelling of the conditional variance of E(Y11|X11 = x) is not

necessary because of its continuity in x.

Corollary 3. If the conditions of Proposition 1 hold and that there exists a δ > 0 such

that, P (X11 = · · · = X1J | |X1j − x0| ≤ δ) = 1, 1 ≤ j ≤ J with f(x0) being the (common)

marginal density of X1j , 1 ≤ j ≤ J , at x0, then the local linear smoother m̂(x0) defined

in (2.4) is linear minimax efficient when the working covariance matrices equal to the true

ones, the kernel is the Epanechnikov kernel and the bandwidth h = [15/{nC2f(x0)ξ∗}]1/5.

Moreover,

R∗
0,1(n, C2) = R0,L(n, C2){1 + oP (1)} =

3

4
15−1/5C2/5

[
nf(x0)ξ∗

]−4/5
{1 + oP (1)},

where ξ∗ = E(1TΣ−1
1 1 |X11 = · · · = X1J = x0).

Many more classical results established for local linear smoothing for non-clustered data
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can be carried over here with only formal modifications.

Remark 5. The aforementioned linear minimax risk is defined for estimating m(x0), the

regression function at a point. It is also possible to define the linear minimax risk under the

mean integrated square loss:

RL(n, C) = min
Ŝ is linear

max
m(·)∈C

E
[
‖Ŝ − m‖2

w|FX
n

]
,

where ‖a(x)‖2
w =

∫
a(x)2w(x)dx is a weighted L2-norm for a given weight function w(·) on

the support of the marginal density of X and C is a function class such as C = {‖m′′‖w ≤ C}.

For such a global loss, it will be interesting to study whether the Wang’s estimator will have

minimax efficiency gain.

4. Generalized linear models

Suppose the responses Yik depend on covariates Xik via following generalized linear models,

E(Yik|Xik = x) = u{θ(x)}, for k = 1, ..., J,

where u(·) is a known smooth link function, and θ(·) is the unknown function to be estimated.

If θ(·) is assumed to belong to a parametric family, the parameters have clear interpretation

and can be estimated by the parametric GEE method. In the nonparametric setting, θ(·)

is arbitrary except with certain differentiability. Consequently, the above regression model

can be equivalently formulated as model (2.1) by letting m(·) = u{θ(·)}.

The estimation of m(·) by m̂(·) defined in (2.4) has been addressed in preceding sections.

If u(·) is the identity function, the estimation of θ(·) is the same as that of m(·). In general,

the estimator of θ(·) is naturally obtained by θ̂(·) = u−1{m̂(·)}, where m̂(·) is defined in

(2.4). Unlike in the parametric setting, in the nonparametric setting it might be u{θ(·)}

rather than θ(·) that is of virtual interest. However, the function θ(·) can have an advantage

of no constraints on its range as in the logistic regression problem.

Proposition 1 can be used to obtain asymptotic properties for θ̂(x0). By Taylor expansion,

θ̂(x0) − θ(x0) =
1

u′{θ(x0)}
{m̂(x0) − m(x0)} −

u′′{θ(x0)}
2[u′{θ(x0)}]3

{m̂(x0) − m(x0)}2{1 + oP (1)}.
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Under some regularity conditions, one can show that,

Abias{θ̂(x0)} =
[ 1

u′{θ(x0)}
bias{m̂(x0)|FX

n } − u′′{θ(x0)}
2[u′{θ(x0)}]3

var{m̂(x0)|FX
n }

]
{1 + oP (1)},

Avar{θ̂(x0)} = [u′{θ(x0)}]−2var{m̂(x0)|FX
n }{1 + oP (1)},

and AMSE{θ̂(x0)} = [u′{θ(x0)}]−2MSE{m̂(x0)|FX
n }{1 + oP (1)},

where Abias, Avar and AMSE stand for the asymptotic bias, asymptotic varaince and asymp-

totic MSE respectively. Applying Proposition 1, one can obtain a closed from expression of

the bias, variance and MSE of θ̂(x0). Corollary 1 can also be carried over. In particular, the

MSE of θ̂(x0) is minimized when the modeled variances equal to the true ones, the bandwidth

is the same as that given in (3.4), the kernel is the Epanechnikov kernel. The minimized MSE

is the same as that in (3.5) except with a multiplier [u′{θ(x0)}]−2. Optimalities analogous

to Proposition 2 can also be established for θ̂(x0) in a similar fashion.

An appealing alternative is to extend our idea along with the local quasi-likelihood method

in Fan, Heckman and Wand (1995). We will not pursue this issue further in the present paper.

5. Simulation study

Simulation studies are carried out to evaluate the performance of the proposed linear

smoother. The data are generated from the model

yij = m(xij) + εij, j = 1, 2, 3, 4, i = 1, ..., n

where m(x) = 1 − 60x exp{−20x2}, xi1 and xi3 are independently generated from U [−1, 1]

distribution and xi2 = xi1 and xi4 = xi3, and errors (εi1, εi2, εi3, εi4) are generated from

multivariate normal distribution with mean being 0, correlation being 0.6 and marginal

variances being 0.04, 0.09, 0.01 and 0.16, respectively.

The sample size n is 150 and the number of simulations is 1000. The curve estimate m̂0(·)

is computed on the grid points xj = −0.8 + 0.016j, j = 0, ..., 100, with various global fixed

bandwidths. Six different estimation methods are used: the proposed local linear smoother;

the local linear method of Chen and Jin (2005); the working independence method of Lin

13



& Carroll (2000); the one-step estimation method of Wang (2003); the estimation method

of Wang (2003) with iterations; and the closed-form estimation method of Lin and Carroll

(2006). The Epanechnikov kernel was used in all methods.

For each of the grid points, the bias and variance were computed based on the 1000 simu-

lation runs. Also, the integrated squared error Di was obtained for the ith simulation, where

Di =
∫ 0.8
−0.8{m(x) − m̂i(x)}2dx (i = 1, ..., 1000) with the integration replaced by summation

over xj = −0.08+0.016j (j = 0, ..., 100). Table 1 summarizes the results. In the table, ‘Bias’

stands for the average of the absolute values of biases over the 101 grid points, ‘SD’ stands

for the average of the sample standard deviations over the 101 grid points and ‘MISE’ stands

for the average of integrated squared errors. The table also reports the relative values of

MISE for the four other estimators to that for the proposed estimator: a ratio greater than

1 indicates that the new estimator performs better.

INSERT TABLE 1

All MISE ratios of the estimators of Chen and Jin (2005) and Lin and Carroll (2003) are

greater than 1, indicating that the proposed method outperforms the two methods. When

the bandwidth is 0.02 or 0.03, the MISE ratios show that Wang’s method outperforms the

proposed method. This is due to the fact that when the bandwidth is small, the biases

in the preliminary estimates in Wang’s method are small and her method utilizes more

correlated data than ours. However, the proposed method outperforms Wang’s method as

the bandwidth increases. This suggests when bandwidth is large, the effect of bias in Wang’s

method becomes more significant and contributes more to the MSE. It is interesting to notice

that there is no clear winner between the proposed method and the estimation method of

Lin and Carroll (2006).

6. Concluding remarks

This paper proposes a weighted least squares type of local linear smoother for clustered

data which improves that of Chen and Jin (2005) and Lin and Carroll (2000) and achieves

14



linear minimax efficiency. The key idea is the proper use of the working covariance matrices so

that the resulting estimator has minimal asymptotic variance without bringing in additional

bias. The estimator also has theoretical and computational simplicity as that of Chen and Jin

(2005). When a non-identity link function is used to relate the mean response to a function

of covariates, the method discussed in Section 4 retains the simplicity of estimation.

This paper only discusses local linear smoothers. The estimator can obviously be extended

to local polynomial smoothers of arbitrary orders. However, optimal properties such as linear

minimax efficiency seem to be technically nontrivial to establish.
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Appendix: proofs

A.1. Proof of Proposition 1

(i). Let An =
∑n

i=1 PT
i WiPi and Bn =

∑n
i=1 PT

i WiΣiW
T
i Pi, it is easy to see that

var{
(

m̂(x0)
m̂′(x0)

)
|FX

n } = A−1
n Bn{AT

n}−1.

For 0 ≤ m, l ≤ 1, let am+1,l+1 denote the (m + 1, l + 1)-th element of An. Let jk be an

element of Ωk. Recall that ξk = E[1T{(I − 1̄10)Vi(I − 1̄10)}−11|Sk(0)]. With the condition

of the existence of partial density at x0 and change of variables, one can show that

E(am+1,l+1) =
n∑

i=1

E
[
{(Xi1 − x0)

m, · · · , (XiJ − x0)
m}Wi{(Xi1 − x0)

l, · · · , (XiJ − x0)
l}T

]

= n
2J−1∑

k=1

E
[
(X1jk

− x0)
m+lKh(X1jk

− x0)I{Sk(h)}
]

×E
[
1T{(I− 1̄10)V1(I − 1̄10)}−11|Sk(0)

]
{1 + o(1)}

= n
2J−1∑

k=1

ξk

∫
(x − x0)

m+lfk(x)
1

h
K(

x − x0

h

)
dx{1 + o(1)}

15



= nhm+l
2J−1∑

k=1

fk(x0)ξk{
∫

tm+lK(t)dt + o(1)}.

It is analogous to show that {var(am+1,l+1)}1/2 = o(nhm+l). Then,

am+1,l+1 = nhm+l
2J−1∑

k=1

fk(x0)ξk{
∫

tm+lK(t)dt + oP (1)},

since am+1,l+1 = E(am+1,l+1) + OP [{var(am+1,l+1)}1/2]. Therefore,

An = n{
2J−1∑

k=1

fk(x0)ξk}
(

1 0
0 h2

∫
t2K(t)dt

)
{1 + oP (1)},

by the symmetry of K(·). With a similar calculation, it follows that

Bn = nh−1{
2J−1∑

k=1

fk(x0)ξ̄k}
( ∫

tK2(t)dt h
∫

tK2(t)dt
h

∫
tK2(t)dt h2

∫
t2K2(t)dt

)
{1 + oP (1)}.

Therefore,

var{m̂(x0)|FX
n } = (1 0)A−1

n Bn{AT
n}−1

(
1
0

)
=

γ(K)
∑2J−1

k=1 fk(x0)ξ̄k

nh[
∑2J−1

k=1 fk(x0)ξk]2
{1 + oP (1)}.

(ii). By the Taylor expansion, the conditional bias of β̂ββ is

E{
(

m̂(x0)
m̂′(x0)

)
|FX

n } −
(

m(x0)
m′(x0)

)
= A−1

n

n∑

i=1

PT
i Wi

{
m(xi) − Pi

(
m(x0)
m′(x0)

)}

= A−1
n

n∑

i=1

PT
i Wi{(Xi1 − x0)

2, · · · , (XiJ − x0)
2}T{m′′(x0)/2 + oP (1)}.

Similar to the asymptotic expansion of An, one can also show that

n∑

i=1

PT
i Wi{(Xi1 − x0)

2, · · · , (XiJ − x0)
2}T = nh2

2J−1∑

k=1

{fk(x0)ξk}{
( ∫

t2K(t)dt∫
t3K(t)dt

)
+ oP (1)}.

Then, after some algebra, it can be shown that the conditional bias is

E{m̂(x0)|FX
n } − m(x0) =

h2m′′(x0)

2
γ∗(K) + oP (h2).

A.2. Proof of Corollary 1

To show that, for any given bandwidth h and kernel K, the asymptotic variance is min-

imized when the modelled correlation equals to the true correlation, it suffices to show
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that
∑2J−1

k=1 fk(x0)ξ̄k/ {∑2J−1
k=1 fk(x0)ξk}2 is minimized when V1 = Σ1. Recall that 1 =

(1, ..., 1)T . Let b = {(I − 1̄10)Σ1(I − 1̄10)}1/2{(I − 1̄10)V1(I − 1̄10)}−11. Observe that

∑2J−1
k=1 fk(x0)ξ̄k =

∑2J−1
k=1 fk(x0)E{bTb|Sk(0)} and

∑2J−1
k=1 fk(x0)ξk =

∑2J−1
k=1 fk(x0)E{1T{(I −

1̄10)Σ1(I − 1̄10)}−1/2b|Sk(0)}. Then,
∑2J−1

k=1
fk(x0)ξ̄k

[
∑2J−1

k=1
fk(x0)ξk ]2

≥
{∑2J−1

k=1 fk(x0)ξk0

}−1
by the Cauchy-

Schwartz inequality, in which the equality holds when b = {(I − 1̄10)Σ1(I − 1̄10)}1/21. This

is certainly implied by V1 = Σ1. This proves that the true variance always leads to the

minimum asymptotic variance for any given bandwidth and kernel function.

For any given bandwidth, the variance minimizing kernel is the uniform kernel simply

because γ(K) is minimized when K is the uniform kernel. This is parallel to the same

classical result for local polynomial smoothers for nonclustered data; see Fan and Gijbels

(1996, p.75). The next claim about minimization of MSE also follows from the same classical

result; see e.g. Fan (1992). We omit the details.

A.3. Proof of Proposition 2.

Part (i) follows from part (ii) by applying Corollary 1. We only show the proof of part

(ii), which consists of four steps.

Step 1. Following Corollary 1, it can be shown via a calculation similar to (A.4) that

R∗
0,1(n, C2) ≤

3

4
15−1/5C2/5

[ 1

n
∑2J−1

k=1 ξk0fk(x0)

]4/5
{1 + oP (1)}. (A.1)

Since R∗
0,1(n,C2) ≥ R0,L(n, C2), we have

R0,L(n, C2) ≤
3

4
15−1/5C2/5

[ 1

n
∑2J−1

k=1 ξk0fk(x0)

]4/5
{1 + oP (1)}. (A.2)

Step 2. Consider linear estimates of form
∑n

i=1 W T
i yi, where Wi = (wi1, ..., wiJ)

T is FX
n -

measurable and

1̄iWi = 0. (A.3)

Throughout the proof, h is chosen so that it converges to 0 slowly enough, e.g., h = 1/ log(n).

Define a restricted linear minimax risk as

Rres(n, C2) = min
linear estimates
satisfying (A.3)

max
m(·)∈C2

E
[{ n∑

i=1

W T
i yi − m(x0)

}2
|FX

n

]
.
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Notice that (A.3) ensures W T
i ΣiWi = W T

i (I − 1̄i)Σi(I − 1̄i)Wi. Consequently,

E
[{ n∑

i=1

W T
i yi − m(x0)

}2
|FX

n

]
≥ m(x0)

2

1 +
∑n

i=1 ai
, (A.4)

where ai = m(xi)
T{(I − 1̄i)Σi(I − 1̄i)}−1m(xi). Then,

Rres(n, C2) ≥ max
m(·)∈C2

m(x0)
2

1 +
∑n

i=1 ai
. (A.5)

In (A.4), the equality holds when

Wi =
m(x0)

1 + ai
{(I − 1̄i)Σi(I − 1̄i)}−1m(xi). (A.6)

It follows from (2.2) that Wi given in (A.6) indeed satisfies (A.3).

Step 3. Set m(x) = Ch2
o/2[1−{(x−x0)/ho}2]+ = 2/3Ch2

oK0{(x− x0)/ho}. Then, ho < h

for large n. Using the condition of the existence of partial density, we can write

E(
n∑

i=1

ai) = n
2J−1∑

k=1

∫ x0−h

x0−h
fk(x)m2(x)E[1T{(I − 1̄10)Σ1(I − 1̄10)}−11|Sk(0)]dx{1 + o(1)}

= n
2J−1∑

k=1

ξk0

∫ x0−ho

x0−ho

fk(x)m2(x)dx{1 + o(1)}

= n
2J−1∑

k=1

ξk0fk(x0)
∫ 1

−1

4

9
C2h4

oK
2
0(t)hodt{1 + o(1)}

= n
4

15
C2h5

o

2J−1∑

k=1

ξk0fk(x0){1 + o(1)}.

It also can be shown that
∑n

i=1 ai = E(
∑n

i=1 ai){1 + oP (1)}. By straightforward calculation,

m2(x0)

1 + 4nC2h5
o

∑2J−1
k=1 ξk0fk(x0)/15

=
C2h4

o

20
{1 + o(1)} =

3

4
15−1/5C2/5

[ 1

n
∑2J−1

k=1 ξk0fk(x0)

]4/5
{1 + o(1)}.

It then follows from (A.5) that

Rres(n, C2) ≥
3

4
15−1/5C2/5

[ 1

n
∑2J−1

k=1 ξk0fk(x0)

]4/5
{1 + oP (1)}. (A.7)

Step 4. We show that Rres(n, C2) = R0,L(n, C2){1 + oP (1)}. It is clear that Rres(n, C2) ≥

R0,L(n, C2). If a linear estimate
∑n

i=1 W T
i yi =

∑n
i=1

∑n
j=1 wijYij is linear minimax efficient,

then it can be shown that

n∑

i=1

J∑

j=1

wij = 1,
n∑

i=1

J∑

j=1

wij(Xij − x0) = 0 and sup
1≤i≤n

sup
1≤j≤J

|wij| = oP (n−2/5). (A.8)
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For any m(·) ∈ C2, let rm(t) = m(t) − m(x0) − m′(x0)(t − x0). Consider function m∗(x) =

C/2(x − x0)
2I(|x− x0| > h)sgn{∑n

i=1

∑J
j=1 wijI(x = Xij)} where sgn(·) is the sign function.

Clearly m∗(·) ∈ C2 and 1̄im∗(xi) = m∗(xi). Thus, with probability 1,

max
m(·)∈C2

E[{
n∑

i=1

W T
i yi − m(x0)}2|FX

n ] ≥ {
n∑

i=1

W T
i m∗(xi)}2 ≥ C2h4

4
(

n∑

i=1

|W T
i 1̄i|1)2.

Therefore, (
∑n

i=1 |W T
i 1̄i|1)2 = OP (n−4/5). This and (A.8) ensure that

n∑

i=1

W T
i,1ΣiWi,2 =

n∑

i=1

W T
i,1Σi1̄iWi ≤ oP (n−2/5)

n∑

i=1

1T |1̄iWi| = oP (n−4/5).

where Wi,1 = (I−1̄i)Wi and Wi,2 = 1̄iWi. For every given m(·), the bias of
∑n

i=1 W T
i,1rm(xi) is

irrelevant to the value of rm(·) defined outside the interval [x0−h, x0+h] by (2.2). Therefore,

max
m(·)∈C2

E[{
n∑

i=1

W T
i yi − m(x0)}2|FX

n ] = max
m(·)∈C2

{
n∑

i=1

W T
i rm(xi)}2 +

n∑

i=1

W T
i ΣiWi

≥ max
m(·)∈C2

[
{

n∑

i=1

W T
i,1rm(xi)}2 + 2

n∑

i=1

W T
i,1rm(xi)

n∑

i=1

W T
i,2rm(xi) + {

n∑

i=1

W T
i,2rm(xi)}2]

+
n∑

i=1

W T
i,1ΣiWi,1 + 2

n∑

i=1

W T
i,1ΣiWi,2 +

n∑

i=1

W T
i,2ΣiWi,2

≥ max
m(·)∈C2

{
n∑

i=1

W T
i,1rm(xi)}2 +

n∑

i=1

W T
i,1ΣiWi,1 + oP (n−4/5)

≥ Rres(n, C2) + oP (n−4/5).

It then follows from (A.7) that

R0,L(n, C2) ≥
3

4
15−1/5C2/5

[ 1

n
∑2J−1

k=1 ξk0fk(x0)

]4/5
{1 + oP (1)}. (A.9)

The desired result (3.6) follows from (A.1), (A.2) and (A.9). The proof is complete.

A.4. Proofs of Corollaries 2 and 3

Corollaries 2 and 3 are two special cases of Proposition 2. We omit the details of the proof.
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Table 1. Comparison of methods based on 1000 simulation results

Chen and Jin’s Lin-Carroll’s Wang’s first-step Wang’s estimator Lin-Carroll’s
Proposed estimator estimator estimator estimator after iterations 2006 estimator

h Bias SD MISE1 Bias SD RMISE Bias SD RMISE Bias SD RMISE Bias SD RMISE Bias SD RMISE

0.02 0.027 0.863 25.17 0.036 1.217 2.364 0.041 1.247 2.876 0.029 0.711 0.587 0.027 0.625 0.474 0.031 0.778 0.831
0.03 0.012 0.093 0.045 0.012 0.109 1.545 0.012 0.115 1.215 0.013 0.082 0.756 0.014 0.076 0.674 0.012 0.084 1.049
0.04 0.021 0.046 0.005 0.021 0.049 1.096 0.021 0.056 1.340 0.024 0.041 0.976 0.026 0.039 1.000 0.022 0.041 0.905
0.05 0.033 0.040 0.007 0.033 0.042 1.055 0.034 0.047 1.178 0.038 0.035 1.147 0.040 0.035 1.231 0.034 0.035 0.986
0.06 0.047 0.038 0.011 0.048 0.040 1.043 0.048 0.044 1.110 0.056 0.035 1.264 0.058 0.035 1.368 0.049 0.035 1.050

Bias: average of absolute values of biases at 101 grid points
SD: average of standard deviations at 101 grid points
MISE1: average of integrated squared errors Di (i = 1, · · · , 1000) for proposed method
RMISE: MISE as a multiple of MISE1
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