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1. Introduction

The problem of estimating a covariance matrix and its inverse has been fundamental in many areas of statistics and
econometrics, including principal component analysis (PCA) and undirected graphical models for instance. The intense
research in high dimensional statistics has contributed a stream of papers related to covariance matrix estimation, including
sparse principal component analysis (Johnstone and Lu, 2009; Amini and Wainwright, 2008; Vu and Lei, 2013; Birnbaum
etal.,, 2013; Berthet and Rigollet, 2013; Ma, 2013; Cai et al., 2013), sparse covariance estimation (Bickel and Levina, 2008; Cai
and Liu, 2011; Cai et al., 2010; Lam and Fan, 2009; Ravikumar et al., 2011) and factor model analysis (Stock and Watson, 2002;
Bai, 2003; Fan et al., 2008, 2013, 2016; Onatski, 2012). A strong interest in precision matrix estimation (undirected graphical
model) has also emerged in the statistics community following the pioneering works in Meinshausen and Biihlmann (2006)
and Friedman et al. (2008). In the application aspect, many areas such as portfolio allocation (Fan et al., 2008), have benefited
from this continuing research.

In the high dimensional setting, the number of variables p is comparable or greater than the sample size n. This
dimensionality poses a challenge to the estimation of covariance matrices. It has been shown in Johnstone and Lu (2009) that
the empirical covariance matrix behaves poorly, and sparsity of leading eigenvectors circumvents this issue. Following this
work, a flourishing literature on sparse PCA has developed in-depth analysis and refined algorithms; see Vu and Lei (2013),
Berthet and Rigollet (2013) and Ma (2013). Taking a different route, Bickel and Levina (2008) advocated thresholding as a
regularization approach to estimate a sparse matrix, in the sense that most entries of the matrix are close to zero and this
approach was used independently in Fan et al. (2008) for estimating covariance matrix with factor structure.

Another challenge in high-dimensional statistics is that measurements may not have light tails. For example, large scale
datasets are often obtained by using bio-imaging technology (e.g., fMRI and microarrays) that often leads to heavy-tailed
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measurement errors (Dinov et al., 2005). Moreover, it is well known that financial returns exhibit heavy tails. These invalidate
the fundamental assumptions in high-dimensional statistics that data have sub-Gaussian or sub-exponential tails, popularly
imposed in most of the aforementioned papers. Significant relaxation of the assumption requires some new ideas and forms
the subject of this paper.

Recently, motivated by Fama-French model (Fama and French, 1993) from financial econometrics, Fan et al. (2008)
and Fan et al. (2013) considered the covariance structure of the static approximate factor model, which models the covariance
matrix by a low-rank signal matrix and a sparse noise matrix. The same model will also be the focus of the current paper.
The model assumes existence of several low-dimensional factors that drive a large panel data {y;;}i<p r<n, that is

Vi =blfi+ue, i<p, t<n, (1.1)

where f;’s are the common factors, which are observed; and b;’s are their corresponding factor loadings, which are considered
as unknown but fixed parameters in this work. The noises u;’s, known as the idiosyncratic component, are uncorrelated
with the factors f; € R'. Here r is relatively small compared with p and n. We will treat r as fixed and independent of
p and n throughout this paper. When the factors are known, this model subsumes the well-known CAPM model (Sharpe,
1964; Lintner, 1965) and Fama-French model (Fama and French, 1993). When f; is unobserved, the model tries to recover
the underlying factors for the movements of the whole panel data. Here the “approximate” factor model indicates that the
covariance X, of uy = (uy, ..., Up) is sparse, including the strict factor model in which X, is diagonal as a special case.
In addition, “static” is a specific case of the dynamic model which takes into account the time lag and allows more general
infinite dimensional representations (Forni et al., 2000; Forni and Lippi, 2001).
The covariance matrix of the outcome y; = (y1t, ..., ¥p:) from model (1.1) can be written as

¥ =B3B +%,, (1.2)

where B € RP*" is the loading matrix consisting of biT in each row, X is the covariance of f; and X, is the sparse covariance
matrix for u;. Here we assume the process of (f;, u;) is stationary so that X, ¥, do not change over time. When factors
are unknown, Fan et al. (2013) proposed applying PCA to obtain an estimate of the low rank part and sparse part X,. The
crucial assumption is that the factors are pervasive, meaning that the factors have non-negligible effects on a large amount of
dimensions of the outcomes. Wang and Fan (2017) gave more explanation from the perspective of random matrix theories
and relaxed the pervasiveness assumption in applications such as risk management and estimation of the false discovery
proportion. See Onatski (2012) for more discussions on strong and weak factors.

In this paper, we consider estimating X with known factors. Unknown factors pose more difficulties for robust estimation,
which will be explored in future works. The main focus of the paper is on robustness instead of factor recovery. Under
exponential tails of the factors and noises, Fan et al. (2011) proposed the idea of performing thresholding on the estimate of
X, obtained from the sample covariance of the residuals of multiple regression (1.1). The legitimacy of this approach hinges
on the assumption that the tails of the factor and error distributions decay exponentially, which is likely to be violated
in practice, especially in the financial applications. Thus, the need to extend the applicability of this approach beyond
well-behaved noise has driven further research such as Fan et al. (2018), in which it is assumed that y; has an elliptical
distribution (Fang et al., 1990).

This paper studies model (1.1) under a much more relaxed condition: the random variables f; and u;; have finite fourth
moments. The main observation that motivates our method is that, the joint covariance matrix of (ytT , ftT )T supplies sufficient
information to estimate BEfBT and X,. To estimate the joint covariance matrix in a robust way, the classical idea that
dates back to Huber (1964) proves to be vital and effective. The novelty here is that we let the parameter diverge in order
to control the bias in high-dimensional setting. The Huber loss function with a diverging parameter, together with other
similar functions, has been shown to produce concentration bounds for M-estimators, when the random variables have heavy
tails; see for example Catoni (2012) and Fan et al. (2017). This point will be clarified in Sections 2 and 3. The M-estimators
considered here have additional merits in asymptotic analysis, which is studied in Section 3.3.

This paper can be placed in the broader context of low rank plus sparse representation. In the past few years, robust prin-
cipal component analysis has received much attention among statisticians, applied mathematicians and computer scientists.
Their focus is on identifying the low rank component and sparse component from a corrupted matrix (Chandrasekaran et al.,
2011; Candeésetal., 2011; Xu et al., 2010). However, the matrices considered therein do not come from random samples, and
as a result, neither estimation nor inference is involved. While Agarwal et al. (2012) considered the noisy decomposition,
still the focus is more on identifying and separating the low rank part and sparse part. In spite of connections with the
robust PCA literature, such as the incoherence condition (see Section 2), this paper and its predecessors are more engaged
in disentangling “true signal” from noise, in order to improve estimation of covariance matrices. In this respect, they bear
more similarity to the literature of covariance matrix estimation.

We make a few notational definitions before presenting the main results. For a general matrix M, the max-norm of M,
or the entry-wise maximum, is denoted as |[M|lo, = max; |M;]|. The operator norm of M is ||[M| = )L,]r{azx(MTM) whereas

the Frobenius norm is |[M|f = /Zij Mj If, furthermore, M is symmetric, we denote A;j(M) as the jth largest eigenvalue,

Amax(M) as the largest one, and A ,i,(M) as the smallest one. In the paper, C is a generic constant that may differ from line to
line in both assumptions and proofs.

The paper is organized as follows. In Section 2, we present the procedure of robust covariance estimation where we
only assume finite fourth moments for both factors and noises without specific distributional assumptions. The theoretical
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justification will be provided in Section 3. Simulations will be carried out in Section 4 to demonstrate the effectiveness of the
proposed procedure. We also conduct real data analysis on portfolio risk of S&P stocks via Fama-French model in Section 5.
Technical proofs will be delayed to the appendix.

2. Robust covariance estimation

Consider the factor model (1.1) again with observed factors. It can be written in the vector form as
Ve = Bfe + ue, (2.1)
where yr = 1es .-+, Ype)', fi € R are the factors fort = 1,...,T,B = (by, ..., b,)" is the fixed unknown loading matrix

and u; = (uy, ..., upf)T is uncorrelated with the factors. We assume that (u!, fT) have zero mean and they are independent
fort = 1,2,...,T.Amotivating example from economic and financial studies is the classical Fama-French model, where
yie's represent excess returns of stocks in the market and f;’s are interpreted as common factors driving the market. It is more
natural to allow for weak temporal dependence such as a-mixing as in the work of Fan et al. (2016). Though possible, we
assume independence in this paper for the sake of simplicity of analysis.

2.1. Assumptions

We now state the main assumptions of the model. Let Xy be the covariance of f;, and X, the covariance of u;. A covariance
decomposition shows that X, the covariance of y,, comprises two parts,

Y =BXB +%,. (2.2)
We assume that X, is sparse and the sparsity level is measured through
mg = maxz (219, for some q € [0, 1]. (2.3)
=P j=p

If g = 0, my is defined to be max;<, ijp 1((Zyw)j # 0), i.e. the exact sparsity. An intuitive justification of the sparsity

measurement stems from modeling of the covariance structure: after taking out the common factors, the rest only has
weak cross-sectional dependence. In addition, we assume that || X,||, as well as || Z¢ ||, is bounded away from 0 and co. In the
case of degenerate Xr, we can always consider rescaling the factors and reduce the number of observed factors to meet the
requirement of non-vanishing minimum eigenvalue of Xy. This leads to our first assumption.

Assumption 2.1. There exists a constant C > OsuchthatC~! < || X,|| < Cand C™! < IZfll < C,where Xsisar xr
matrix with r being a fixed number.

Here assuming a fixed r is just for simplicity of presentation. It can be allowed to grow with n and p. Then we would need
to keep track of r in the theoretical analysis and impose certain growth condition on r.

Another important feature of the factor model, observed by Stock and Watson (2002), is that the factors are pervasive
in the sense that the low rank part of (2.2) is the dominant component of X'; more specifically, the top r eigenvalues grow
linearly as p. This motivates the following assumption.

Assumption 2.2. (i) There exists a constant ¢ > 0 such that A.(X) > cp.
(ii) The elements of B are uniformly bounded by a constant C.

First note, assumption (ii) implies that A{(X') < M(BEfBT) + | X2yl < A.](Zf))\.](BTB) + | Z4]l = O(p). So together with
(i), the above assumption requires leading eigenvalues to grow with the same order as p. This assumption is satisfied by
the approximate factor model, since by Weyl!’s inequality, A;(X)/p = )Li(BEfBT)/p + o(1) if the main term is bounded from
below. Furthermore, for illustrative purposes, if we additionally assume (though not needed in this paper) that each entry
of B is iid with a finite second moment, it is not hard to see Ai(BEfBT)/p = ki(Ef(BTB/p)) satisfies such a condition with
probability tending to one. Consequently, it is natural to assume A;(X')/p is lower bounded fori < r. Note that Bis considered
to be deterministic throughout the paper.

Assumption (ii) is related to the matrix incoherence condition. In fact, when Ap.4( X') grows linearly with p, the condition
of bounded ||B||» is equivalent to an incoherent structure of top eigenvectors of X, which is standard in the matrix
completion literature (Candes and Recht, 2009) and the robust PCA literature (Chandrasekaran et al., 2011).

We now consider the moment assumption of random variables in model (1.1).

Assumption 2.3. (f;, u;)is iid with mean zero and bounded fourth moment. That is, there exists a constant C > 0 such that
maxy Eft < C and max; Euj} < C.

The independence assumption can be relaxed to mixing conditions, but we do not pursue this direction in the current
paper. Note that our main Theorem 3.1 is essentially deterministic. So under certain mixing condition such as that used
by Fan et al. (2011), as long as we achieve a max-norm error bound (3.2) in Corollary 3.1, all conclusions in Theorem 3.1
follow immediately. More details are in Section 3.

We are going to establish our results based on the above assumption which only requires bounded fourth moments.
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2.2. Robust estimation procedure

The basic idea we propose is to, in the first step, estimate the covariance matrix of the joint vector (y, f;) instead of
simply the covariance of y;, although the latter is our target. The covariance of the concatenated p + r dimensional vector
zI' = (yI, fT) contains sufficient information to recover the low-rank and sparse structure. Observe that the covariance
matrix X, := Cov(z;) can be expressed as

s ( BEB +% BY \ _ ( Tu Zn
7T ;1 X )\ Za Zn )7

Any method which yields an estimate of X, as an initial estimator or estimates of En, 212, 221, 222 could be used to infer
the unknown B, Xr and X,. Specifically, using the estimator Ez, we can readily obtain an estimator of BZ‘fBT through the
identity

BXB' = £, 55, 5.

Subsequently, we can subtract the estimator of BZ‘fBT from fn to obtain f With the sparsity structure of X, assumed in
Section 2.1, the well-studied thresholding (Bickel and Levina, 2008; Rothman et al., 2009; Cai and Liu, 2011) can be employed.
Applying thresholding to Eu, we obtain a thresholded matrix ET with guaranteed error in terms of the max-norm and the
operator norm. The final step is to add ET with the estimator of BX;B" (from 2 in the first step) to produce the final
estimator 27 of X.

Due to the fact that we only assume bounded fourth moments for factors and errors, we estimate the covariance matrix
X, through robust methodology. For the sake of simplicity, we assume the vector z; has zero mean, so the covariance matrix
of z; takes the form Ez[z[T. We shall use the M-estimator proposed in Catoni (2012) and Fan et al. (2017), where the authors
proved the concentration property in the estimation of population mean of a random variable with a finite second moment.
Here the variables of interest are the entries of z[z[T , and naturally we need bounded fourth moments of z.

In essence, minimizing a suitable loss function, say Huber loss, yields an estimator of the population mean with a deviation

of order n~'/2. The Huber loss reads
2u|x| — a?, |X| > a,
la X)) = 2.4
) {xz, Xl < a. .

Choosing a = +/ (nv2)/log(e~1), € € (0, 1) where v is an upper bound of the standard deviation of the iid random variables
X; of interest, Fan et al. (2017) showed that the minimizer 1 = argmin,, Z?:l I,(X; — ) satisfies

- | -1
P(m—m <4 &) > 1—2e, (2.5)
n

when n > 8log(e~!) where u = EX;. This finite sample result holds for any distributions with bounded second moments,
including asymmetric distributions generated by Z2. This assumption of bounded second moments for mean estimation
translates into a fourth moments assumption for our covariance estimation, because covariances are products of two random
variables. When applying (2.5), we will take X; to be the square of a random variable or products of two random variables.
The diverging parameter « is chosen to reduce the bias of the M-estimator for asymmetric distributions. When applying this

method to estimate X, element-wisely, we expect fn, flz, 221, 222 to achieve a max-norm error of Op(+/log p/n), where
the logarithmic term is incurred when we bound the errors uniformly. The formal result will be given in Section 3.

In an earlier work, Catoni (2012) proposed solving the equation Z?zl hlee= (i — )] = 0, where the strictly increasing
h(x) satisfies — log(1 — x + x2/2) < h(x) < log(1 + x + x*/2). Fore € (0, 1)and n > 2log(e '), Catoni (2012) proved that

(7 | < 2log(e~1) S 1_o
— V| —————— — 2e,
p=m= n—2logle1)) —

whenn > 4log(e )anda = \/nvz(l + %)/{2 log(e—1)}, where v is an upper bound of the standard deviation. This

M-estimator can be also used for covariance estimation, though it usually has a larger bias as shown in Fan et al. (2017).
The whole procedure can be presented in the following steps:

Step 1 For each entry of the covariance matrix X,, obtain a robust estimator by solving a convex minimization problem
(through, for example, Newton-Raphson method):

(25 = argmin Y _ lu(zuzie — X). (2.6)

=t

where o is chosen as discussed above and X, = X} = ( =
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Step 2 Derive an estimator of X, through the algebraic manipulation
Si=%n-— i1222_21§21,
and then apply adaptive thresholding of Cai and Liu (2011). That is,

(Zy i=j
syl = ), i #]

where s;(-) is the generalized shrinkage function (Antoniadis and Fan, 2001; Rothman et al,, 2009) and 7; =

t((Z)i(Z.);)"%is an entry-dependent threshold.

Step 3 Produce the final estimator for X':
27— = 21222_21221 + EZ—

Note in the above steps, the choice of the parameters v (in the definition of o) and t;; is not yet specified and will be discussed
in Section 3.

There are p(p+1)/2 adaptive Huber estimators (2.6) that we need to compute in Step 1. Since all these Huber minimization
problems share a similar structure, it is possible to speed up the computation by choosing the initial values smartly in
practice, though the optimization is already fast in our simulations.

Before delving into the analysis of the procedure, we first deviate to look at a technical issue. Recall that 2 is an estimator
of X, by Weyl's inequality,

Ai(Z22) — M(ZP| < 11202 — |l

Since both matrices are of low dimensionality, as long as we are able to estimate each entry of Xy with enough accuracy (see
Lemma 3.1), || ¥, — X || vanishes with high probability as n diverges. Therefore, with high probability, X5, is invertible, and
there is no major issue implementing the procedure. In cases where positive semidefinite matrix is required, we can refine
the matrix by projecting it to its nearest positive semidefinite version in terms of the max-norm. This projection can be done
for both =, and X,. For example, for 3., we solve the following optimization problem:

Eu = argmin ||Eu - Z‘u”oo P (2-7)
2u>0

and use Eu as our estimate. Observe that
12 = Zulloo < 120 = Zulloo + 120 = Zulloo < 2010 — Zulloo-

Thus, except for a slightly worse constant, Eu inherits all the desired properties of Eu (namely good convergence rates), as
we will see in Section 3 that those properties would follow as soon as a max-norm bound holds. Hence we are able to replace
Z‘ with E without modifying our estimation procedure. Moreover, (2.7) can be cast into the semidefinite programming
problem below,

min t st |X, — X,
t,2y>0

lj <t (2.8)

which can be solved by a semidefinite programming solver, e.g. Grant et al. (2008).
3. Theoretical analysis

In this section, we will show the theoretical properties of our robust estimator under bounded fourth moments. We will
also show that when the data are known to be generated from more restricted families (e.g. sub-Gaussian), commonly used
estimators, such as the sample covariance estimator, suffice as the initial estimator in Step 1.

3.1. General theoretical properties
From the above discussion on M-estimators and their concentration results, it is immediate to have the following lemma.

Lemma 3.1. Suppose that a d-dimensional random vector X is centered and has finite fourth moment, i.e. EX = 0, max; EXi4 <
+oofori=1,2,...,p.Let o = E(XiX;) and G;; be Huber’s estimator with parameter « = / nv?/log(p?/8), then there exists a
universal constant C such that for any § € (0, 1) and n > C log(p/§), with probability 1 — 4,

. lo log(1/6
max | — oy| < Cv %g(/), (3.1)
y

where v is a pre-determined parameter satisfying v? > max; j<, Var(X:X;).
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In practice, we do not know any of the fourth moments in advance. To pick up a good v, one possibility is Lepski’s
adaptation method (Lepskii, 1992) where a sequence of geometrically increasing v is tried and the estimated v is picked up
as the middle of the smallest confidence interval intersecting all the larger ones. See Catoni (2012) for details. Alternatively,
we may simply use the empirical variance to give a rough bound of v, in a way similar to Fan et al. (2018).

Recall that z; is a p+r dimensional vector concatenating y; and f;. From Assumption 2.3, there is a constant Cy as a uniform
bound for Ezﬁ. This leads to the following result.

Corollary 3.1. Suppose that fz is an estimator of covariance matrix X,, whose entries are Huber’s estimators with parameter
a = \/nvz/log((p +1)2/8). Then there exists a universal constant C such that for any § € (0, 1) and n > Clog(p/$), with
probability 1 — 6,

- logp + log(1/38)
1%; — Zzlleo < Cv % (3.2)

where v is a pre-determined parameter satisfying v* > C,.

After Step 1 of the proposed procedure, we obtain an estimator Z‘Z that achieves the optimal rate of element-wise
convergence. With X, we proceed to establish convergence rates for both ET and =7. The key theorem that links the
estimation error under element-wise max-norm with other metrics is stated below

Theorem 3.1. Under Assumptions 2.1-2.3, if we have estimator fz satisfying

1%, = Z:lloe = 0p(y/log p/n), (3.3)
then the three-step procedure in Section 2.2 with t < /log p/n generates ff and 7 satisfying
~ ~r _ log p\ (1-9)/2
IZ7 = e = 1ED " = 5 = 0p(mp(Z25) ), (3.4)
n
and furthermore
= logp
157 - Sl = 0n(,/ =), (35)
= plogp log p\(1-9)/2
||ET—2||z=op(fn +m(=5) ). (36)
ST - _ log p\ (1-9)/2
IET =27 =0n(my( =) ), (37)

where ||Alls = p~V?| Z~Y2AX 12|y is the relative Frobenius norm defined in Fan et al. (2008), if n is large enough so that
my(log p/n)'=9/2 is bounded.

Theorem 3.1 provides a nice interface connecting the max-norm guarantee with the desired convergence rates. Therefore,
any robust method that attains the element-wise optimal rate as in Corollary 3.1 can be used in Step 1 instead of the current
M-estimator approach.

3.2. Estimators under more restricted distributional assumptions

We analyzed theoretical properties of the robust procedure in the previous subsection under the assumption of bounded
fourth moments. Theorem 3.1 shows that any estimator that achieves the optimal max-norm convergence rate could serve
as an initial pilot estimator for X, to be used in Step 2 and Step 3 of our procedure. Thus the procedure depends on the
distributional assumption (Assumption 2.3) only through Step 1 where a proper estimator X, is proposed. Sometimes,
we do have more information on the shapes of the distributions of factors and noises. For example, if the distribution of

= (fT, ul )" has a sub-Gaussian tail, the sample covariance matrix 5 = n~! Y"I'_, z.z! attains the optimal element-wise
maximal rate for estimating X,.
In an earlier work, Fan et al. (2011) proposed to simply regress observations y; on f; in order to obtain

B=Y"F(F'F) !, (3.8)

where Y = (y1,....yn)" and F = (fi,....f;)". Then they thresholded the matrix S, =2 — BZ‘fB where ¥ = n=1yy?
and Ef = n~'FTF. This regression- based method is equivalent to applying 25 directly in Step 1 and also equivalent to
solving a least-square minimization problem, and thus suffers from robustness issue when the data come from heavy-tailed
distributions. All the convergence rates achieved in Theorem 3.1 are identical with Fan et al. (2011) where exponentially
decayed tails are assumed.

As we explained, if z; is sub-Gaussian distributed, 25 instead of ER can be used. If f; and u, exhibit heavy tails, another
widely used assumption is multivariate t-distribution, Wthh is mcluded in the elliptical distribution family. The elliptical
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distribution is defined as follows. Let u € R? and ¥ € RP*P with rank(X') = q < p. A p-dimensional random vector y has an
elliptical distribution, denoted by y ~ ED,(u, X, ¢), if it has a stochastic representation (Fang et al., 1990)

v+ AU, (3.9)

where U is a uniform random vector on the unit sphere in R?, { > 0 is a scalar random variable independent of U, A € RP*4
is a deterministic matrix satisfying AA’ = X. To make the representation (3.9) identifiable, we require E¢? = q so that
Cov(y) = X. Here we also assume continuous elliptical distributions with P(¢ = 0) = 0.

If f; and u; are uncorrelated and jointly elliptical, i.e., z; = (ftT, utT)T ~ ED,(0, diag(Xy, Xy), ¢), then a well-known good
estimator for the correlation matrix R of z; is the marginal Kendall’s tau. Kendall’s tau correlation coefficient is defined as

R 2
Tjk == n(i Z sgn(( Zij — zl])(zlk —Zik)) (3.10)

i<i’

whose population counterpart is
T = P((z1j — 22j)(21k — Z2k) > 0) — P((z1j — 235)(z1k — 22x) < 0). (3.11)

For the elllptlcal family, the key identity rj, = sin(m 7j/2) relates Pearson correlation to Kendall’s correlation (Fang et al,,
1990) Using fj = sin(Tj/2), Han and Liu (2014) showed that R is an accurate estimate of R, achieving ||R —Rllee =
Op(+/logp/n). Let ¥, = DRD where R is the correlation matrix and D = diag(o1, ..., o) is a diagonal matrix consisting of
standard deviations for each dimension. We construct EK by separately estimating D and R. As before, if the fourth moment
exists, we estimate D by only considering i = j in Step 1, namely by using the adaptive Huber method.
Therefore, if z; is elliptically distributed, fK can be used as the initial pilot estimator for X, in Step 1. Note that, unlike

EK there is no closed-form expression for ZJR However, for general heavy-tailed distributions, there is no simple way to
connect the Pearson correlation with Kendall’s correlation. Thus we should favor ER instead. We will compare the three
estimators &3, X and R thoroughly through simulations in Section 4.

3.3. Asymptotics of robust mean estimators

In this section we look further into robust mean estimators. Though the result we shall present is asymptotic and not
essential for our main Theorem 3.1, it is interesting in its own right and deserves some treatment.

Perhaps the best known result of Huber’s mean estimator is the asymptotic minimax theory. Huber (1964) considered
the so-called e-contamination model:

={F|F(x)=(1—€)G(x—6)+€H(x), He F,0 € R},

where G is a known distribution, € is fixed and F is the family of symmetric distributions. Let T,, be the minimizer of
o pu(xi — w), where py(x) = x2/2 for [x| < o, and py(x) = a|x| — «?/2 for x| > «, where « is fixed. In the special
case where G is Gaussian, Huber’s result showed that with an appropriate choice of «, Huber’s estimator minimizes the
maximal asymptotic variance among all translation invariant estimators, the maximum being taken over P,.

One problem with e-contamination model is that it makes sense only when we assume symmetry of H, if 6 is the quantity
we are interested in. In contrast, Catoni (2012) and Fan et al. (2017) studied a different family, in which distributions have
finite second moments. Bickel (1976) called them “local” and “global” models respectively, and offered a detailed discussion.

This paper, along with the preceding two papers (Catoni, 2012; Fan et al.,, 2017), studies robustness in the sense of
the second model. The technical novelty primarily lies in the nice concentration property, which is fundamental to high
dimensional statistics. This requires the parameter « of py to grow with n, versus being kept fixed, such that the condition
in Corollary 3.1 is satisfied. It turns out that, in addition to the concentration property, we can establish results regarding its
asymptotic behaviors in an exact manner.

Let pu(x) = x%/2 for || < o and pp(x) = ap|X|— 2/2 for [x| > ap; its derivative ¥, = p;.Let us write A,(t) = Evn(X —t).
Denote t, as a solution of A,(t) = 0, which is unique when n is sufficiently large, and T;, a solution of Z, 1Un(xi —t) = 0.
We have the following theorem.

Theorem 3.2. Suppose that X, . .., X, is drawn from some distribution F with mean p and finite variance o 2. Suppose {o,} is
any sequence with lim,,_, o, @, = oc. Then, asn — oo,

(T, — ) 5 N0, 67),
and moreover
th — 1

_ — 1.
Eym(X — )
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Theorem 3.2 gives a decomposition of error T, — u into two components: variance and bias. The rate of bias Eyr,,(X — 1)
depends on the distribution F and {a,}. When the distribution is either symmetric or liminf, o, /«/n > 0, the second
component t, — w is o(1/4/n), a negligible quantity compared with the asymptotic variance. Note that unlike Huber’s
original approach, our robust estimator does not require symmetric restriction. This theorem also lends credibility to the
bias-variance tradeoff we observed in the simulation (see Section 4.1).

It is worth comparing the above Huber loss minimization with another candidate for robust mean estimation called
“median-of-means” given by Hsu and Sabato (2014). The method, as its name suggests, first divides samples into k subgroups
and calculates means for each subgroup, then takes the median of those means as the final estimator. The first step basically
symmetrizes the distribution by the central limit theorem and the second step is to robustify the procedure. According to Hsu
and Sabato (2014), if we choose k = 4.5log(p/§) and element-wisely estimate X, similar to (2.5), with probability 1 — §,
we have

~ logp + log(1/6
15 — Sl < 3730 gpfg(/)

Although “median-of-means” has the desired concentration property, unlike our estimator here, its asymptotic behavior
differs from the empirical mean estimator, and as a consequence, it is not asymptotically efficient when the distribution F
is Gaussian. Therefore, regarding efficiency, we prefer our proposed procedure in Section 2.2.

4. Simulations

We now present simulation results to demonstrate the improvement of the proposed robust method over the least-square
based method (Fan et al., 2008, 2011) and Kendall’s tau based method (Han and Liu, 2014; Fan et al., 2018) when factors and
errors are (i) elliptically distributed; and (ii) generally heavy-tailed.

However, one must be cautious of the choice of the tuning parameter «, since it plays an important role in the quality
of the robust estimates. Out of this concern, we shall discuss the intricacy of choosing parameter « before presenting the
performance of robust estimates of covariance matrices.

4.1. Robust estimates of variances and covariances

For random variables X, . . ., X, with zero mean that may potentially exhibit heavy-tailed behavior, the sample mean of
vij = E(XiX;) is not good enough for our estimation purpose. Though being unbiased, in the high dimensional setting, there
is no guarantee that multiple sample means stay close to the true values simultaneously.

As shown in theoretical analysis, this problem is alleviated for robust estimators constructed through M-estimators,
whose influence functions grow slowly at extreme values. The desired concentration property in (3.2) depends on the
choice of parameter «, which decides the range outside which large values cease to become more influential. However, in
practice, we have to make a good guess of Var(X;X;) as the theory suggests; even so, we may be too conservative in the choice
of a.

To show this, we plot in Fig. 1 the histograms of our estimates of v = Var(X;) in 1000 runs, where X; is generated from
a t-distribution with degree of freedom v = 4.2. The first three histograms show the estimates constructed from Huber’s
M-estimator, with parameter

nVar(X?)
a=p—2>, (4.1)
2
where 8 is 0.2, 1, 5 respectively, and the last histogram is the usual sample estimate (or 8 = oo). The quality of estimates
ranges from large biases to large variances. We also plot in Fig. 2 the histograms of estimates of v = Cov(X;, X;), where
(Xi, X;), i # jis generated from a multivariate t-distribution with v = 4.2 and an identity scale matrix. The only difference
is that in (4.1), the variance of Xl.2 is replaced by the variance of X;X;.

From Fig. 1, we observe a bias-variance tradeoff phenomenon as « varies. This is also consistent with the theory in
Section 3.3. When « is small, the robust method underestimates the variance, yielding a large bias due to the asymmetry of
the distribution oinz. As « increases, a larger variance is traded for a smaller bias, until « = o0, in which case the robust
estimator simply becomes the sample mean.

For the covariance estimation, Fig. 2 exhibits a different phenomenon. Since the distribution of X;X; is symmetric for i # j,
there is no bias incurred when « is small. Since the variance is smaller when « is smaller, we have a net gain in terms of
the quality of estimates. In the extreme case where « is zero, we are actually estimating the median. Fortunately, under
distributional symmetry, the mean and the median are the same.

The simple simulations help us to understand how to choose « in practice: if the distribution is close to a symmetric one,
one can choose o aggressively, i.e. making o smaller; otherwise, a conservative « is preferred.
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Fig. 1. The histograms show the estimates of Var(X;) with different parameters «, parametrized by g via (4.1), in 1000 runs. X; ~ t4 so that the true
variance Var(X;) = 1.909. The sample size n = 100.
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Fig. 2. The histograms show the estimates of Cov(X;, X;) with different parameters « in 1000 runs. The true covariance Cov(X;, X;) = 0.n = 100 and the
degree of freedom is 4.2.

4.2, Covariance matrix estimation

We implemented the robust estimation procedure with three initial pilot estimators fzs fz" and ff. We simulated n
samples of z; = (ftT, utT)T from a multivariate t-distribution with covariance matrix diag{l;, 5I,} and various degrees of
freedom. Each row of B is independently generated from a standard normal distribution, and once it is generated, we treat it
as fixed. The population covariance matrix of y, = Bf; + u; is ¥ = BBT + 5I,,. For p running from 200 to 900 and n = p/2, we
calculated errors of the robust procedure in different norms. As suggested by the experiments in the previous section, we
chose a larger parameter « to estimate the diagonal elements of X, and a smaller one to estimate its off-diagonal elements.
We used the thresholding parameter t = 2./logp/n. R . .

The estimation errors are gauged in the following norms: || X7 — Z,|, (Z7)"! — 21| and || X7 — X| 5 as shown in
Theorem 3.1. We considered two different settings: (1) z; is generated from multivariate t-distribution with very heavy
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Fig. 3. Errors of robust estimates against varying p. Blue line represents ratio of errors with ER over errors with 25 while black line represents ratio of
errors with EK over errors with )_',‘5 z; is generated by multivariate t-distribution with df = 3 (SOlld) 5 (dashed) and oo (dotted). The median errors and
their IQR over 100 simulations are 1ep0rted (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

(v = 3), medium heavy (v = 5), and light (v = oo or Gaussian) tail; (2) z; is element-wise iid one-dimensional
t-distribution with degree of freedom v = 3,5 and co. They are separately plotted in Figs. 3 and 4. The estimation errors
of applying sample covariance matrix 25 are used as the baseline for comparison. For example, if || 3T -y || = is used to
measure performance, the blue curve represents ratio ||(ET) —2ls/ ||(ZT) — XY'|| » while the black curve represents ratio

IETK = Z)s/IET) — Y| » where (STR, (ST, (ST are respectively estimators given by the robust procedure
with initial pilot estimators Z‘R ZJK 25 for X,. Therefore if the ratio curve moves below 1, the method is better than the
naive sample estimator given in Fan et al. (2011) and vice versa. The more it gets below 1, the more robust the procedure is
against heavy-tailed randomness.

The first setting (Fig. 3) represents a heavy-tailed elliptical distribution, where we expect the two robust methods work
better than the sample covariance based method, especially in the case of extremely heavy tails (solid lines for v = 3). As
expected, both black curves and blue curves under the three measures behave visibly better (smaller than 1). On the other
hand, if data are indeed Gaussian (dotted line for v = o0), the method with sample covariance performs better under most
measures (greater than 1). Nevertheless, our robust method still performs comparably with the sample covariance method,
as the median error ratio stays around 1 whereas Kendall's tau method can be much worse than the sample covariance
method. A plausible explanation is that the variance reduced compensates for the bias incurred in our procedure. In addition,
the IQR (interquartile range) plots tell us the proposed robust method is indeed more stable than Kendall’s tau.

The second setting (Fig. 4) provides an example of non-elliptical distributed heavy-tailed data. We can see that the
performance of the robust method dominates the other two methods, which verifies the approach in this paper especially
when data come from a general heavy-tailed distribution. While our method is able to deal with more general distributions,
Kendall’s tau method does not apply to distributions outside the elliptical family, which excludes the element-wise iid t
distribution in this setting. This explains why under various measures, our robust method is better than Kendall’s tau method
by a clear margin. Note that even in the first setting where the data are indeed elliptical, with proper tuning, the proposed
robust methods can still outperform Kendall’s tau.
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5. Real data analysis

In this section, we look into financial historical data during 2005-2013, and assess to what extent our factor model
characterizes the data.

The dataset we used in our analysis consists of daily returns of 393 stocks, all of which are large market capitalization
constituents of S&P 500 index, collected without missing values from 2005 to 2013. This dataset has also been used in Fan
et al. (2016), where they investigated how covariates (e.g. size, volume) could be utilized to help estimate factors and factor
loadings, whereas the focus of the current paper is to develop robust methods in the presence of heavy-tailed data.

In addition, we collected factors data in the same period, where the factors are calculated according to Fama-French
three-factor model (Fama and French, 1993). After centering, the panel matrix we will use for analysis, is a 393 by 2265
matrix Y, in addition to a factor matrix F of size 2265 by 3. Here 2265 is the number of daily returns and 393 is the number
of stocks.

5.1. Tail-heaviness

First, we look at how the daily returns are distributed. Especially, we are interested in the tails. In Fig. 5, we made Q-Qplots
that compare the distribution of all y;; with either Gaussian distribution or t-distributions with varying degree of freedom,
ranging from df = 2 to df = 6. We also fit a line in each plot, showing how much the return data deviate from the base
distribution. It is clear that the data tail is heavier than that of a Gaussian distribution, and that t-distribution with df = 4 is
almost in alignment with the return data. Similarly, we made the Q-Q plots for the factors in Fig. 6. The plots also show that
t-distribution is better in terms of fitting the data; however, the tails are even heavier, and t-distribution with df = 2 seems
to best fit the data.
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Fig. 5. Q-Q plot of excess returns y;; for all i and t against Gaussian distribution and t-distribution with degree of freedom 2, 4 and 6. For each plot, a line
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is fitted by connecting points at first and third quartiles.

Fig. 6. Q-Q plot of factor f;; against Gaussian distribution and t-distribution with degree of freedom 2, 4 and 6. For each plot, a line is fitted by connecting
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Fig. 7. Left panel: Histogram of eigenvalues of sample covariance matrix YY” /n. The histogram is plotted on the logarithmic scale, i.e. each bin counts the
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of sample covariance matrix YY' /n.

5.2. Spiked covariance structure

We now consider how the covariance matrix of returns looks like, since a spiked covariance structure would justify the
pervasiveness assumption. To find the spectral structure, we calculated eigenvalues of the sample covariance matrix YY7 /n,
and made a histogram based on logarithmic scale (see the left panel in Fig. 7). In the histogram, the counts in the rightmost
four bins are 5, 1, 0 and 1, representing only a few large eigenvalues, which is a strong signal of a spiked structure. We also
plotted the proportion of residue eigenvalues Z, K41 A,-/Zle Xi, against K in the right panel of Fig. 7. The top 3 eigenvalues
account for a major part of the variances, which supports the pervasive assumption.

The spiked covariance structure has been studied in Paul (2007), Johnstone and Lu (2009) and many other papers, but
under their regime, the top eigenvalues or “spiked” eigenvalues do not grow with the dimension p. In this paper, the
spiked eigenvalues have stronger signals, and thus are easier to be separated from the rest of eigenvalues. In this respect,
the connotation of “spiked covariance structure” is closer to that in Wang and Fan (2017). As empirical evidence, this
phenomenon also buttresses the motivation of study in Wang and Fan (2017).

5.3. Portfolio risk estimation

We consider portfolio risk estimation. To be specific, for a portfolio with weight vector w € RP on all the market assets,
its risk is measured by quantity w” Xw where X is the true covariance of excess returns of all the assets. Note that X is time
varying. Here we consider a class of weights with gross exposure ¢ > 1, thatis ) ,w; = 1and ) _; |w;| = c. We consider
four scenarios c = 1, 1.4, 1.8, 2.2. Note that (c — 1)/2 represents the level of exposure to short selling; in particular, c = 1
represents the case of no short selling.

To assess how well our robust estimator performs compared with the sample covariance, we calculated the covariance
estimators ER and 25 using the daily data of preceding 12 months, where ZR is our robust covariance estimator and 25 is
the sample covariance, for every trading day from 2006 to 2013. We 1ndexed those dates by t where t runs from 1 to 2013
(from 2006-01-01 to 2013-12-31, it happens to contain 2013 trading days, so here 2013 is the total number of trading days
instead of a year indicator). Let y;, 1 be the excess return of the following trading day after t. For a weight vector w, the error
we used to gauge the two approaches is

LI LT
RR(w) = 20132| TZ‘Rw—( R (w) = 2013Z| TZ‘Sw—(w Vr+1) |

Note the bias-variance decomposition

_~ 2 2 = 2
Elw Zow — (w'ye1?1” = El(w yes1)* — w' Zew|” + Elw’ Zew — w' Zowl”,

where ¥, = E yt+1ytT+1. The first term measures the size of the stochastic error that cannot be reduced while the second
term is the estimation error for the risk of portfolio w.
To generate multiple random weights w with gross exposure ¢, we adopted the strategy used in Fan et al. (2015), which

aims to generate a uniform distribution on the simplex {w : >, w; = 1, Y, |w;| = c}: (1) for each indexi < pletn; = 1
(long) with probability (¢ + 1)/2c and n; = —1 (short) w1th probability (¢ — 1)/2c (2) generate iid & by exponential
distribution; (3) for n; = 1, let w; = % . g,-/z,“:] &and forn = —1,letw; = 51/27,,:—1 &. We made a set of

scatter plots in Fig. 8, in which the x-axis represents Rf(w) and the y-axis R°(w). In addmon we highlighted in the first plot
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Fig. 8. (RR(w), R®(w)) for multiple randomly generated w. The four plots compare the errors of the two methods under different settings (upper left: no
short selling; upper right: exposure ¢ = 1.4; lower left: exposure ¢ = 1.8; lower right: exposure ¢ = 2.2). The red diamond in the first plot corresponds to
uniform weights. The dashed line is the 45 degree line representing equal performance. Our robust method gives smaller errors.

the point with uniform weights (i.e. w; = 1/p), which serves as a benchmark for comparison. The dashed line shows where
the two approaches have the same performance. Clearly, for all w the robust approach has smaller risk errors, and therefore
has better empirical performance in estimating portfolio risks.
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Appendix

Proof of Theorem 3.1. Since we have robust estimator %, such that ||§Z — X lloc = Op(+/logp/n), we clearly know
fn, flz, fﬂ, fzz achieve the same rate. Using this, let us first prove ||fu — Xulloo = Op(4/log p/n). Obviously,

121255 25, = BEB lloo = 121255, 23, — T12 T’ £, lloe = Op(y/log p/n), (A1)
because the multiplication is along the fixed dimension r and each element is estlmated with the rate of convergence
Op(4/logp/n). Also ||211 — Yllso = Op(4/logp/n), therefore Eu = 211 - 212222 221 is good enough to estimate

X, =X — BZ‘fBT with error Op(+/log p/n) in max-norm.

Once the max error of sparse matrix X, is controlled it is not hard to show the adaptive procedure in Step 2 gives Z‘T
such that the spectral error ||EuT Zull = Op(mpw n ~%) (Fan et al., 2011; Cai and Liu, 2011; Rothman et al., 2009) where
we define w, = +/log p/n. Furthermore, ||(§T)‘ o< ||(§T)‘1||||§UT — 2= - So ||(§L,T)‘1 — X, 1 is also
Op(mpwn 7) due to the lower boundedness of f || Xyl So (3.4) is valid.

Proving (3.5) is trivial. |27 — Zullee < 127 — Zullee + 12w — Zulleo = Op(T + wy) = Op(wy,) when 7 is chosen as the
same order as w, and thus

127 = Zlloo < 121225, 21 = BEB oo + 127 = Zulloo = Op(wy).
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Next let us take a look at the relative Frobenius convergence (3.6) for || 3T -y |s.
IZ7 = 2z < 12025 25 — 202y 20l + 1Z] — Zulls

(P12 — Z12)25 (201 — Zn) Iz + 21(Zn2 — Z02) 25, Z5 =

+ 12225 = 22N +12] — Zulls

=: A1 +24,+ A3+ Ay

IA

We bound the four terms one by one. The last term is the most straightforward,
Ay = p PIE] = Sl 271 = 0p(1 2] — Zull) = Op(mpw, ™).
Bound for A; uses the fact that ||§2’21 || and || X ~1!|| are Op(1) and ||§12 — X121l = Op(/plogp/n). So

RPN o _ plogp
AL <p IS — Zol2IE5 1S =op(fT);

Bound for A3 needs additional conclusion that || 21, £7' 31, || < [|B" Z7'B|||| Z5? < 2|/ Z5ll = O(1), where B = £1, 5,
and the last inequality is shown in Fan et al. (2008). So

Ay =p (25! - B0 EL P Ba3y - B EL B B
<p IE5 - ZNE 2 Tale <07 IER - S5 IFI 25 2T Sl
= Op(y/logp/(np)).
Lastly, by similar trick, we have
Ay =p Per!/? ((212 - 212)22_212;127122122_21(212 - 212)271)
<p 210 — Zolle | Z5 NIE 2155, 27 2l = 0p(y/logp/n).
Combining results above, by (A.2), we conclude that || IT — X||x = 0p(/plogp/n + my(log p/n)1-0/2),
Finally we show the rate of convergence for ||(X7)~! — X ~1||. By Woodbury formula,

Sl = - 2 R+ 2L E Eal T 2 2
Thus, letA = Xy + 2{2251221,2 = 3+ f{z(ff)*]fn and D = 2;]212,5 = (£7)"'%4,, we have the following
bound similar to (A.2):

IZT)y™" = =7 < IDA-'D" = DAT'D" || + (Z])" = =, '
I(D—D)A™'(D — D) || +2[I(D — D)A™'D|
+ DA —ATDT + IE) T - 2
=: A +24;, + A + Ay

IA

(A3)

From (3.4), A4 = Op(mpa),:*q). For the remaining terms, we need to find the rates for |[D — DJ|, [[A~'[|, [|D|| and |[A~" — A~
separately. Note that || X2 = [|BX» |l < |IB|l|| 22/l = Op(4/p) by Assumption 2.2(ii). So ||D|| = Op(,/p) and

ID = DIl < IET) T = Zull + 1 Zull(E])™ = 2,71 = 0p(/pmpw, ™).
In addition, it is not hard to show [[A — A = Op(pmywy?). In addition, we claim [|[A~'|| = Op(p~?) since Amin(A) >
Amin(ZH 2 221) = Amin(Zy Wmin( Zp)Ar(BZrB') and by Weyl's inequality, A,(BX;B") > A(X) — X = cp by
Assumption 2.2(i). Therefore, [A~" —A~"|| < [A”"[||[A~"|||A — A]l implies [[A~" —A~"|| = Op(p‘lmpa),lfq), and furthermore
[A=1|| = Op(p~"). Finally we incorporate the above rates together and conclude

= 0p(p™'ID — DII*) = Op(m’w2'~),

= 0p(p™ 2D — D||) = Op(myw)~9),
A3 = 0p(pA~" — A7) = Op(mpw)}™9).

A
A

So combining rates for Zi, i=1,2,3,4,weshow (3.7)is true. The proof is now complete. O

Proof of Theorem 3.2. Without loss of generality we can assume u = 0. By dominated converge theorem we know that
for all ¢, lim, A4(t) = —t, that A,(t) is differentiable, that A;(t) = —Ev, (X — t), and that lim, A, (t) = —1. With Taylor’s
expansion, we have

An(t) = An(0) + A,(0)t + Ay(t), (A4)
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where |Ap(t)] < [t] sup{|A,(s) — A,(0)] : 0 < s < t}. Observe that
|2(5) = 2(0)] = [P(IX = 5| < &) = P(IX] < o)
< P(|X —s| > ap) + P(|X]| > ay).
By Markov'’s inequality,
1
sup{|A,(s) — A,(0)] : 0 <s <t} < *(ZEIXI + Ifl)-
Qn
For any € € (0, 1), there exists N > 0, such that for alln > N,
1 2 1—¢€/2 1
T2 o< L2 Lopx 4y < .
1+¢ 1—¢ oy 414 ¢€)
Plugging t = (1 + €)A,(0) into (A.4),
An((1+ €)An(0)) = An(0) + A,(0)(1 + €)An(0) + An(0),
where |A,(t)] < (1 + €)|A,(0) = €|An(0)|/4. Equivalently,

[An(0)] = 2,

| a7
An((1+ €)An(0)) = A5(0)(1 + A,(0)(1 + €) + Bn),
where |8,| < €/4. Similarly,

An((1 = €)n(0)) = An(0)(1 + 2,(0)(1 — €) + By),

where |B;| < €/4. Also we have 1+ A,(0)(1+€)+ 8, < 0and 1+ A,(0)(1 — €) + B, > 0. Multiplying both sides of the
equations, we deduce that

An((1 4+ €)An(0)) - 1n((1 — €)A(0)) < 0.

If A,(0) = 0, equation A,(t) = 0 has one zero t = 0; and in fact it is the unique one for sufficiently large n, since A,(t) is

nonincreasing and A,,(0) # 0 for n large enough. If 1,,(0) # 0, at least one zero lies in the interval with endpoints (14 €)A,(0)

and (1 — €)A,(0). Since A,(0) — 0, for any zero t; in this interval we have t;, — 0, which implies A/(t;) — —1. It follows

that such zero is unique for sufficiently large n. This leads to t,/1,(0) — 1, thus proving the second claim in the theorem.
The proof of the first claim is similar in spirit to that of Huber (1964). Let us denote

T, =supft an xi —t) > 0},

= inf{t : an(x,- —t) < 0.

i=1

By monotonicity, T, € [T, T;']. Since

n> Tl

P(T, <t) an,—t<o)

it follows that for any fixed z € R,

P(Vn(Ty = ta) < 2) = P(T; <ty +2/+/n)
= P(Z Ya(xi — Up) < 0)
Yn(Xi — Up) — An(Up) N1 g (Uy)
(3 <oy )

on(Up) - on(un)

where we denote u, = t,, + z/+/n and o,(1) = E¥,(X — u)? — Ay(u).
By dominate convergence theorem, A/ (t,) — —1and on(up)> — o2. By Taylor expansion of A,(u,) at t;,
An(Un) = An(tn) + Z/\/ﬁ)\;,(tn) + A7,
where [A]| < n=12|z| sup{A,(ta +5) — Ay(ta)l: 0 < s < z/4/n}. A similar argument shows that
1
SUp{hy(t + ) = 2p(ta)l: 0 = s = 2/} = —(EX) +2lta] + J2l/V/n) =

n

This leads to An(un) = z/4/n(A(ta) + 0(1)) = z/+/n (=1 + 0(1)), and thus /n An(u,) —> —2z.
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Let us write
Yn(Xi — Un) — An(Uin)
& =
on(un)
for the centered variance &; with unit variance. If we can show

1 n
= & £ N, 1), (A5)
i=1

then by continuity of @, standard normal distribution function, we have

( fo— \/_)"(un)_>¢(§)7

on(Uin)

which gives P(v/n (T, — t;) < z) — ®(z/0). It is similar to show that P(v/n (T, — ;) < z) — ®(z/o). At this point, we are

able to conclude that the first claim in the theorem holds, i.e. \/n (T, — t,,) LN N(0, o2).
To prove (A.5), it suffices to check Lindeberg’s condition:

E(E1{|&] > Vne}) > 0

for any € > 0. Notice that A,(u,) — 0 and o,(u,) — o, we only need to show
E(Ya(X — un)1{|¥a(X — un)] > vne}) — 0.

This is true due to
V(X —un) < X — ual® < 21X + 207

and dominated convergence theorem. O
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