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In this paper, we study robust covariance estimation under the approximate factor model
with observed factors. We propose a novel framework to first estimate the initial joint
covariance matrix of the observed data and the factors, and then use it to recover the
covariance matrix of the observed data. We prove that once the initial matrix estimator is
good enough tomaintain the element-wise optimal rate, thewhole procedurewill generate
an estimated covariance with desired properties. For data with bounded fourth moments,
we propose to use adaptive Huber loss minimization to give the initial joint covariance
estimation. This approach is applicable to a much wider class of distributions, beyond sub-
Gaussian and elliptical distributions. We also present an asymptotic result for adaptive
Huber’s M-estimator with a diverging parameter. The conclusions are demonstrated by
extensive simulations and real data analysis.

© 2018 Published by Elsevier B.V.

1. Introduction

The problem of estimating a covariance matrix and its inverse has been fundamental in many areas of statistics and
econometrics, including principal component analysis (PCA) and undirected graphical models for instance. The intense
research in high dimensional statistics has contributed a stream of papers related to covariancematrix estimation, including
sparse principal component analysis (Johnstone and Lu, 2009; Amini and Wainwright, 2008; Vu and Lei, 2013; Birnbaum
et al., 2013; Berthet and Rigollet, 2013;Ma, 2013; Cai et al., 2013), sparse covariance estimation (Bickel and Levina, 2008; Cai
and Liu, 2011; Cai et al., 2010; Lamand Fan, 2009; Ravikumar et al., 2011) and factormodel analysis (Stock andWatson, 2002;
Bai, 2003; Fan et al., 2008, 2013, 2016; Onatski, 2012). A strong interest in precisionmatrix estimation (undirected graphical
model) has also emerged in the statistics community following the pioneering works in Meinshausen and Bühlmann (2006)
and Friedman et al. (2008). In the application aspect, many areas such as portfolio allocation (Fan et al., 2008), have benefited
from this continuing research.

In the high dimensional setting, the number of variables p is comparable or greater than the sample size n. This
dimensionality poses a challenge to the estimation of covariancematrices. It has been shown in Johnstone and Lu (2009) that
the empirical covariance matrix behaves poorly, and sparsity of leading eigenvectors circumvents this issue. Following this
work, a flourishing literature on sparse PCA has developed in-depth analysis and refined algorithms; see Vu and Lei (2013),
Berthet and Rigollet (2013) and Ma (2013). Taking a different route, Bickel and Levina (2008) advocated thresholding as a
regularization approach to estimate a sparse matrix, in the sense that most entries of the matrix are close to zero and this
approach was used independently in Fan et al. (2008) for estimating covariance matrix with factor structure.

Another challenge in high-dimensional statistics is that measurements may not have light tails. For example, large scale
datasets are often obtained by using bio-imaging technology (e.g., fMRI and microarrays) that often leads to heavy-tailed
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measurement errors (Dinov et al., 2005).Moreover, it iswell known that financial returns exhibit heavy tails. These invalidate
the fundamental assumptions in high-dimensional statistics that data have sub-Gaussian or sub-exponential tails, popularly
imposed in most of the aforementioned papers. Significant relaxation of the assumption requires some new ideas and forms
the subject of this paper.

Recently, motivated by Fama–French model (Fama and French, 1993) from financial econometrics, Fan et al. (2008)
and Fan et al. (2013) considered the covariance structure of the static approximate factor model, whichmodels the covariance
matrix by a low-rank signal matrix and a sparse noise matrix. The same model will also be the focus of the current paper.
The model assumes existence of several low-dimensional factors that drive a large panel data {yit}i≤p,t≤n, that is

yit = bTi ft + uit , i ≤ p, t ≤ n, (1.1)

where ft ’s are the common factors,which are observed; and bi’s are their corresponding factor loadings,which are considered
as unknown but fixed parameters in this work. The noises uit ’s, known as the idiosyncratic component, are uncorrelated
with the factors ft ∈ Rr . Here r is relatively small compared with p and n. We will treat r as fixed and independent of
p and n throughout this paper. When the factors are known, this model subsumes the well-known CAPM model (Sharpe,
1964; Lintner, 1965) and Fama–French model (Fama and French, 1993). When ft is unobserved, the model tries to recover
the underlying factors for the movements of the whole panel data. Here the ‘‘approximate’’ factor model indicates that the
covariance Σu of ut = (u1t , . . . , upt ) is sparse, including the strict factor model in which Σu is diagonal as a special case.
In addition, ‘‘static’’ is a specific case of the dynamic model which takes into account the time lag and allows more general
infinite dimensional representations (Forni et al., 2000; Forni and Lippi, 2001).

The covariance matrix of the outcome yt = (y1t , . . . , ypt )′ from model (1.1) can be written as

Σ = BΣf BT
+Σu , (1.2)

where B ∈ Rp×r is the loading matrix consisting of bTi in each row,Σf is the covariance of ft andΣu is the sparse covariance
matrix for ut . Here we assume the process of (ft , ut ) is stationary so that Σf ,Σu do not change over time. When factors
are unknown, Fan et al. (2013) proposed applying PCA to obtain an estimate of the low rank part and sparse part Σu. The
crucial assumption is that the factors are pervasive, meaning that the factors have non-negligible effects on a large amount of
dimensions of the outcomes. Wang and Fan (2017) gave more explanation from the perspective of random matrix theories
and relaxed the pervasiveness assumption in applications such as risk management and estimation of the false discovery
proportion. See Onatski (2012) for more discussions on strong and weak factors.

In this paper,we consider estimatingΣ with known factors. Unknown factors posemore difficulties for robust estimation,
which will be explored in future works. The main focus of the paper is on robustness instead of factor recovery. Under
exponential tails of the factors and noises, Fan et al. (2011) proposed the idea of performing thresholding on the estimate of
Σu, obtained from the sample covariance of the residuals of multiple regression (1.1). The legitimacy of this approach hinges
on the assumption that the tails of the factor and error distributions decay exponentially, which is likely to be violated
in practice, especially in the financial applications. Thus, the need to extend the applicability of this approach beyond
well-behaved noise has driven further research such as Fan et al. (2018), in which it is assumed that yt has an elliptical
distribution (Fang et al., 1990).

This paper studies model (1.1) under a much more relaxed condition: the random variables ft and uit have finite fourth
moments. Themain observation thatmotivates ourmethod is that, the joint covariancematrix of (yTt , f

T
t )T supplies sufficient

information to estimate BΣf BT and Σu. To estimate the joint covariance matrix in a robust way, the classical idea that
dates back to Huber (1964) proves to be vital and effective. The novelty here is that we let the parameter diverge in order
to control the bias in high-dimensional setting. The Huber loss function with a diverging parameter, together with other
similar functions, has been shown toproduce concentration bounds forM-estimators,when the randomvariables haveheavy
tails; see for example Catoni (2012) and Fan et al. (2017). This point will be clarified in Sections 2 and 3. The M-estimators
considered here have additional merits in asymptotic analysis, which is studied in Section 3.3.

This paper can be placed in the broader context of low rank plus sparse representation. In the past few years, robust prin-
cipal component analysis has receivedmuch attention among statisticians, appliedmathematicians and computer scientists.
Their focus is on identifying the low rank component and sparse component from a corruptedmatrix (Chandrasekaran et al.,
2011; Candès et al., 2011; Xu et al., 2010). However, thematrices considered therein do not come from random samples, and
as a result, neither estimation nor inference is involved. While Agarwal et al. (2012) considered the noisy decomposition,
still the focus is more on identifying and separating the low rank part and sparse part. In spite of connections with the
robust PCA literature, such as the incoherence condition (see Section 2), this paper and its predecessors are more engaged
in disentangling ‘‘true signal’’ from noise, in order to improve estimation of covariance matrices. In this respect, they bear
more similarity to the literature of covariance matrix estimation.

We make a few notational definitions before presenting the main results. For a general matrix M , the max-norm of M ,
or the entry-wise maximum, is denoted as ∥M∥∞ = maxij |Mij|. The operator norm of M is ∥M∥ = λ

1/2
max(MTM) whereas

the Frobenius norm is ∥M∥F =

√∑
ij M

2
ij . If, furthermore, M is symmetric, we denote λj(M) as the jth largest eigenvalue,

λmax(M) as the largest one, and λmin(M) as the smallest one. In the paper, C is a generic constant that may differ from line to
line in both assumptions and proofs.

The paper is organized as follows. In Section 2, we present the procedure of robust covariance estimation where we
only assume finite fourth moments for both factors and noises without specific distributional assumptions. The theoretical
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justificationwill be provided in Section 3. Simulations will be carried out in Section 4 to demonstrate the effectiveness of the
proposed procedure. We also conduct real data analysis on portfolio risk of S&P stocks via Fama–French model in Section 5.
Technical proofs will be delayed to the appendix.

2. Robust covariance estimation

Consider the factor model (1.1) again with observed factors. It can be written in the vector form as

yt = Bft + ut , (2.1)

where yt = (y1t , . . . , ypt )T , ft ∈ Rr are the factors for t = 1, . . . , T , B = (b1, . . . , bp)T is the fixed unknown loading matrix

and ut = (u1t , . . . , upt )T is uncorrelated with the factors. We assume that (uT
t , f

T
t ) have zeromean and they are independent

for t = 1, 2, . . . , T . A motivating example from economic and financial studies is the classical Fama–French model, where
yit ’s represent excess returns of stocks in themarket and ft ’s are interpreted as common factors driving themarket. It is more
natural to allow for weak temporal dependence such as α-mixing as in the work of Fan et al. (2016). Though possible, we
assume independence in this paper for the sake of simplicity of analysis.

2.1. Assumptions

Wenow state themain assumptions of themodel. LetΣf be the covariance of ft , andΣu the covariance of ut . A covariance
decomposition shows thatΣ , the covariance of yt , comprises two parts,

Σ = BΣf BT
+Σu . (2.2)

We assume thatΣu is sparse and the sparsity level is measured through

mq = max
i≤p

∑
j≤p

|(Σu)ij|q, for some q ∈ [0, 1]. (2.3)

If q = 0, mq is defined to be maxi≤p
∑

j≤p 1((Σu)ij ̸= 0), i.e. the exact sparsity. An intuitive justification of the sparsity

measurement stems from modeling of the covariance structure: after taking out the common factors, the rest only has
weak cross-sectional dependence. In addition, we assume that ∥Σu∥, as well as ∥Σf ∥, is bounded away from 0 and ∞. In the
case of degenerateΣf , we can always consider rescaling the factors and reduce the number of observed factors to meet the
requirement of non-vanishing minimum eigenvalue ofΣf . This leads to our first assumption.

Assumption 2.1. There exists a constant C > 0 such that C−1
≤ ∥Σu∥ ≤ C and C−1

≤ ∥Σf ∥ ≤ C , where Σf is a r × r
matrix with r being a fixed number.

Here assuming a fixed r is just for simplicity of presentation. It can be allowed to growwith n and p. Then wewould need
to keep track of r in the theoretical analysis and impose certain growth condition on r .

Another important feature of the factor model, observed by Stock and Watson (2002), is that the factors are pervasive
in the sense that the low rank part of (2.2) is the dominant component of Σ; more specifically, the top r eigenvalues grow
linearly as p. This motivates the following assumption.

Assumption 2.2. (i) There exists a constant c > 0 such that λr (Σ) > cp.
(ii) The elements of B are uniformly bounded by a constant C .

First note, assumption (ii) implies that λ1(Σ) ≤ λ1(BΣf BT ) + ∥Σu∥ ≤ λ1(Σf )λ1(BTB) + ∥Σu∥ = O(p). So together with
(i), the above assumption requires leading eigenvalues to grow with the same order as p. This assumption is satisfied by
the approximate factor model, since by Weyl’s inequality, λi(Σ)/p = λi(BΣf BT )/p + o(1) if the main term is bounded from
below. Furthermore, for illustrative purposes, if we additionally assume (though not needed in this paper) that each entry
of B is iid with a finite second moment, it is not hard to see λi(BΣf BT )/p = λi(Σf (BTB/p)) satisfies such a condition with
probability tending to one. Consequently, it is natural to assume λi(Σ)/p is lower bounded for i ≤ r . Note that B is considered
to be deterministic throughout the paper.

Assumption (ii) is related to the matrix incoherence condition. In fact, when λmax(Σ) grows linearly with p, the condition
of bounded ∥B∥∞ is equivalent to an incoherent structure of top eigenvectors of Σ , which is standard in the matrix
completion literature (Candès and Recht, 2009) and the robust PCA literature (Chandrasekaran et al., 2011).

We now consider the moment assumption of random variables in model (1.1).

Assumption 2.3. (ft , ut ) is iid with mean zero and bounded fourth moment. That is, there exists a constant C > 0 such that
maxk Ef 4kt < C and maxi Eu4

it < C .

The independence assumption can be relaxed to mixing conditions, but we do not pursue this direction in the current
paper. Note that our main Theorem 3.1 is essentially deterministic. So under certain mixing condition such as that used
by Fan et al. (2011), as long as we achieve a max-norm error bound (3.2) in Corollary 3.1, all conclusions in Theorem 3.1
follow immediately. More details are in Section 3.

We are going to establish our results based on the above assumption which only requires bounded fourth moments.
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2.2. Robust estimation procedure

The basic idea we propose is to, in the first step, estimate the covariance matrix of the joint vector (yt , ft ) instead of
simply the covariance of yt , although the latter is our target. The covariance of the concatenated p + r dimensional vector
zTt = (yTt , f

T
t ) contains sufficient information to recover the low-rank and sparse structure. Observe that the covariance

matrixΣz := Cov(zt ) can be expressed as

Σz =

(
BΣf BT

+Σu BΣf
Σf BT Σf

)
=:

(
Σ11 Σ12
Σ21 Σ22

)
.

Any method which yields an estimate ofΣz as an initial estimator or estimates of Σ̂11, Σ̂12, Σ̂21, Σ̂22 could be used to infer
the unknown B,Σf and Σu. Specifically, using the estimator Σ̂z , we can readily obtain an estimator of BΣf BT through the
identity

BΣf BT
= Σ12Σ

−1
22 Σ21.

Subsequently, we can subtract the estimator of BΣf BT from Σ̂11 to obtain Σ̂u. With the sparsity structure ofΣu assumed in
Section 2.1, thewell-studied thresholding (Bickel and Levina, 2008; Rothman et al., 2009; Cai and Liu, 2011) can be employed.
Applying thresholding to Σ̂u, we obtain a thresholded matrix Σ̂T

u with guaranteed error in terms of the max-norm and the
operator norm. The final step is to add Σ̂T

u with the estimator of BΣf BT (from Σ̂z in the first step) to produce the final
estimator Σ̂T ofΣ .

Due to the fact that we only assume bounded fourth moments for factors and errors, we estimate the covariance matrix
Σz through robust methodology. For the sake of simplicity, we assume the vector zt has zero mean, so the covariance matrix
of zt takes the form EztzTt . We shall use the M-estimator proposed in Catoni (2012) and Fan et al. (2017), where the authors
proved the concentration property in the estimation of population mean of a random variable with a finite second moment.
Here the variables of interest are the entries of ztzTt , and naturally we need bounded fourth moments of zt .

In essence,minimizing a suitable loss function, sayHuber loss, yields an estimator of the populationmeanwith a deviation
of order n−1/2. The Huber loss reads

lα(x) =

{
2α|x| − α2, |x| > α,

x2, |x| ≤ α.
(2.4)

Choosing α =
√

(nv2)/log(ϵ−1), ϵ ∈ (0, 1) where v is an upper bound of the standard deviation of the iid random variables
Xi of interest, Fan et al. (2017) showed that the minimizer µ̂ = argminµ

∑n
i=1 lα(Xi − µ) satisfies

P
(

|µ̂− µ| ≤ 4v

√
log(ϵ−1)

n

)
≥ 1 − 2ϵ, (2.5)

when n ≥ 8 log(ϵ−1) where µ = EXi. This finite sample result holds for any distributions with bounded second moments,
including asymmetric distributions generated by Z2. This assumption of bounded second moments for mean estimation
translates into a fourthmoments assumption for our covariance estimation, because covariances are products of two random
variables. When applying (2.5), we will take Xi to be the square of a random variable or products of two random variables.
The diverging parameter α is chosen to reduce the bias of theM-estimator for asymmetric distributions. When applying this
method to estimateΣz element-wisely, we expect Σ̂11, Σ̂12, Σ̂21, Σ̂22 to achieve a max-norm error of OP (

√
log p/n), where

the logarithmic term is incurred when we bound the errors uniformly. The formal result will be given in Section 3.
In an earlier work, Catoni (2012) proposed solving the equation

∑n
i=1 h[α

−1(µ − µ̂)] = 0, where the strictly increasing
h(x) satisfies − log(1 − x + x2/2) ≤ h(x) ≤ log(1 + x + x2/2). For ϵ ∈ (0, 1) and n > 2 log(ϵ−1), Catoni (2012) proved that

P
(

|µ̂− µ| ≤ v

√
2 log(ϵ−1)

n − 2 log(ϵ−1)

)
≥ 1 − 2ϵ,

when n ≥ 4 log(ϵ−1) and α =

√
nv2(1 +

2 log(ϵ−1)
n−2 log(ϵ−1)

)/{2 log(ϵ−1)},where v is an upper bound of the standard deviation. This

M-estimator can be also used for covariance estimation, though it usually has a larger bias as shown in Fan et al. (2017).
The whole procedure can be presented in the following steps:

Step 1 For each entry of the covariance matrixΣz , obtain a robust estimator by solving a convex minimization problem
(through, for example, Newton–Raphson method):

(Σ̂R
z )ij = argmin

x

n∑
t=1

lα(zitzjt − x), (2.6)

where α is chosen as discussed above and Σ̂z = Σ̂R
z =

(
Σ̂11 Σ̂12
Σ̂21 Σ̂22

)
.
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Step 2 Derive an estimator ofΣu through the algebraic manipulation

Σ̂u = Σ̂11 − Σ̂12Σ̂
−1
22 Σ̂21,

and then apply adaptive thresholding of Cai and Liu (2011). That is,

(Σ̂T
u )ij =

{
(Σ̂u)ij, i = j

sij((Σ̂u)ij)1(|(Σ̂u)ij| ≥ τij), i ̸= j

where sij(·) is the generalized shrinkage function (Antoniadis and Fan, 2001; Rothman et al., 2009) and τij =

τ ((Σ̂u)ii(Σ̂u)jj)1/2 is an entry-dependent threshold.
Step 3 Produce the final estimator forΣ:

Σ̂T
= Σ̂12Σ̂

−1
22 Σ̂21 + Σ̂T

u .

Note in the above steps, the choice of the parameters v (in the definition of α) and τij is not yet specified andwill be discussed
in Section 3.

There are p(p+1)/2 adaptiveHuber estimators (2.6) thatweneed to compute in Step 1. Since all theseHuberminimization
problems share a similar structure, it is possible to speed up the computation by choosing the initial values smartly in
practice, though the optimization is already fast in our simulations.

Before delving into the analysis of the procedure,we first deviate to look at a technical issue. Recall that Σ̂22 is an estimator
ofΣf , by Weyl’s inequality,

|λi(Σ̂22) − λi(Σf )| ≤ ∥Σ̂22 −Σf ∥.

Since bothmatrices are of low dimensionality, as long as we are able to estimate each entry ofΣf with enough accuracy (see
Lemma 3.1), ∥Σ̂22 −Σf ∥ vanishes with high probability as n diverges. Therefore, with high probability, Σ̂22 is invertible, and
there is no major issue implementing the procedure. In cases where positive semidefinite matrix is required, we can refine
thematrix by projecting it to its nearest positive semidefinite version in terms of themax-norm. This projection can be done
for both Σ̂u and Σ̂z . For example, for Σ̂u, we solve the following optimization problem:

Σ̃u = argmin
Σu⪰0

∥Σ̂u −Σu∥∞ , (2.7)

and use Σ̃u as our estimate. Observe that

∥Σ̃u −Σu∥∞ ≤ ∥Σ̃u − Σ̂u∥∞ + ∥Σ̂u −Σu∥∞ ≤ 2∥Σ̂u −Σu∥∞.

Thus, except for a slightly worse constant, Σ̃u inherits all the desired properties of Σ̂u (namely good convergence rates), as
wewill see in Section 3 that those properties would follow as soon as amax-norm bound holds. Hencewe are able to replace
Σ̂u with Σ̃u without modifying our estimation procedure. Moreover, (2.7) can be cast into the semidefinite programming
problem below,

min
t,Σu⪰0

t s.t. |Σ̂u −Σu|ij ≤ t , (2.8)

which can be solved by a semidefinite programming solver, e.g. Grant et al. (2008).

3. Theoretical analysis

In this section, we will show the theoretical properties of our robust estimator under bounded fourth moments. We will
also show that when the data are known to be generated frommore restricted families (e.g. sub-Gaussian), commonly used
estimators, such as the sample covariance estimator, suffice as the initial estimator in Step 1.

3.1. General theoretical properties

From the above discussion onM-estimators and their concentration results, it is immediate to have the following lemma.

Lemma 3.1. Suppose that a d-dimensional random vector X is centered and has finite fourth moment, i.e. EX = 0, maxi EX4
i <

+∞ for i = 1, 2, . . . , p. Let σij = E(XiXj) and σ̂ij be Huber’s estimator with parameter α =
√

nv2/log(p2/δ), then there exists a
universal constant C such that for any δ ∈ (0, 1) and n ≥ C log(p/δ), with probability 1 − δ,

max
ij

⏐⏐σ̂ij − σij
⏐⏐ ≤ Cv

√
log p + log(1/δ)

n
, (3.1)

where v is a pre-determined parameter satisfying v2 ≥ maxi,j≤p Var(XiXj).
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In practice, we do not know any of the fourth moments in advance. To pick up a good v, one possibility is Lepski’s
adaptation method (Lepskii, 1992) where a sequence of geometrically increasing v is tried and the estimated v is picked up
as the middle of the smallest confidence interval intersecting all the larger ones. See Catoni (2012) for details. Alternatively,
we may simply use the empirical variance to give a rough bound of v, in a way similar to Fan et al. (2018).

Recall that zt is a p+r dimensional vector concatenating yt and ft . FromAssumption 2.3, there is a constant C0 as a uniform
bound for Ez4it . This leads to the following result.

Corollary 3.1. Suppose that Σ̂z is an estimator of covariance matrix Σz , whose entries are Huber’s estimators with parameter
α =

√
nv2/log((p + r)2/δ). Then there exists a universal constant C such that for any δ ∈ (0, 1) and n ≥ C log(p/δ), with

probability 1 − δ,

∥Σ̂z −Σz∥∞ ≤ Cv

√
log p + log(1/δ)

n
, (3.2)

where v is a pre-determined parameter satisfying v2 ≥ C0.

After Step 1 of the proposed procedure, we obtain an estimator Σ̂z that achieves the optimal rate of element-wise
convergence. With Σ̂z , we proceed to establish convergence rates for both Σ̂T

u and Σ̂T . The key theorem that links the
estimation error under element-wise max-norm with other metrics is stated below.

Theorem 3.1. Under Assumptions 2.1–2.3, if we have estimator Σ̂z satisfying

∥Σ̂z −Σz∥∞ = OP (
√
log p/n), (3.3)

then the three-step procedure in Section 2.2 with τ ≍
√
log p/n generates Σ̂T

u and Σ̂T satisfying

∥Σ̂T
u −Σu∥2 = ∥(Σ̂T

u )−1
−Σ−1

u ∥2 = OP

(
mp

( log p
n

)(1−q)/2)
, (3.4)

and furthermore

∥Σ̂T
−Σ∥∞ = OP

(√
log p
n

)
, (3.5)

∥Σ̂T
−Σ∥Σ = OP

(√
p log p
n

+ mp

( log p
n

)(1−q)/2)
, (3.6)

∥(Σ̂T )−1
−Σ−1

∥ = OP

(
mp

( log p
n

)(1−q)/2)
, (3.7)

where ∥A∥Σ = p−1/2
∥Σ−1/2AΣ−1/2

∥F is the relative Frobenius norm defined in Fan et al. (2008), if n is large enough so that
mp(log p/n)(1−q)/2 is bounded.

Theorem3.1 provides a nice interface connecting themax-normguaranteewith the desired convergence rates. Therefore,
any robust method that attains the element-wise optimal rate as in Corollary 3.1 can be used in Step 1 instead of the current
M-estimator approach.

3.2. Estimators under more restricted distributional assumptions

We analyzed theoretical properties of the robust procedure in the previous subsection under the assumption of bounded
fourth moments. Theorem 3.1 shows that any estimator that achieves the optimal max-norm convergence rate could serve
as an initial pilot estimator for Σz to be used in Step 2 and Step 3 of our procedure. Thus the procedure depends on the
distributional assumption (Assumption 2.3) only through Step 1 where a proper estimator Σ̂z is proposed. Sometimes,
we do have more information on the shapes of the distributions of factors and noises. For example, if the distribution of
zt = (f Tt , u

T
t )

T has a sub-Gaussian tail, the sample covariance matrix Σ̂S
z = n−1 ∑n

t=1 ztz
T
t attains the optimal element-wise

maximal rate for estimatingΣz .
In an earlier work, Fan et al. (2011) proposed to simply regress observations yt on ft in order to obtain

B̂ = Y T F (F T F )−1, (3.8)

where Y = (y1, . . . , yn)T and F = (f1, . . . , fn)T . Then they thresholded the matrix Σ̂u = Σ̂ − B̂Σ̂f B̂T where Σ̂ = n−1YY T

and Σ̂f = n−1F T F . This regression-based method is equivalent to applying Σ̂S
z directly in Step 1 and also equivalent to

solving a least-square minimization problem, and thus suffers from robustness issue when the data come from heavy-tailed
distributions. All the convergence rates achieved in Theorem 3.1 are identical with Fan et al. (2011) where exponentially
decayed tails are assumed.

As we explained, if zt is sub-Gaussian distributed, Σ̂S
z instead of Σ̂R

z can be used. If ft and ut exhibit heavy tails, another
widely used assumption is multivariate t-distribution, which is included in the elliptical distribution family. The elliptical
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distribution is defined as follows. Let µ ∈ Rp andΣ ∈ Rp×p with rank(Σ) = q ≤ p. A p-dimensional random vector y has an
elliptical distribution, denoted by y ∼ EDp(µ,Σ, ζ ), if it has a stochastic representation (Fang et al., 1990)

y d
= µ+ ζAU , (3.9)

where U is a uniform random vector on the unit sphere in Rq, ζ ≥ 0 is a scalar random variable independent of U , A ∈ Rp×q

is a deterministic matrix satisfying AA′
= Σ . To make the representation (3.9) identifiable, we require Eζ 2 = q so that

Cov(y) = Σ . Here we also assume continuous elliptical distributions with P(ζ = 0) = 0.
If ft and ut are uncorrelated and jointly elliptical, i.e., zt = (f Tt , u

T
t )

T
∼ EDp(0, diag(Σf ,Σu), ζ ), then a well-known good

estimator for the correlation matrix R of zt is the marginal Kendall’s tau. Kendall’s tau correlation coefficient is defined as

τ̂jk :=
2

n(n − 1)

∑
i<i′

sgn((zij − zi′j)(zik − zi′k)) , (3.10)

whose population counterpart is

τjk := P((z1j − z2j)(z1k − z2k) > 0) − P((z1j − z2j)(z1k − z2k) < 0) . (3.11)

For the elliptical family, the key identity rjk = sin(πτjk/2) relates Pearson correlation to Kendall’s correlation (Fang et al.,
1990). Using r̂jk = sin(πτ̂jk/2) , Han and Liu (2014) showed that R̂ is an accurate estimate of R, achieving ∥̂R − R∥∞ =

OP (
√
log p/n). Let Σz = DRD where R is the correlation matrix and D = diag(σ1, . . . , σp) is a diagonal matrix consisting of

standard deviations for each dimension. We construct Σ̂K
z by separately estimating D and R. As before, if the fourth moment

exists, we estimate D by only considering i = j in Step 1, namely by using the adaptive Huber method.
Therefore, if zt is elliptically distributed, Σ̂K

z can be used as the initial pilot estimator for Σz in Step 1. Note that, unlike

Σ̂K
z , there is no closed-form expression for Σ̂R

z . However, for general heavy-tailed distributions, there is no simple way to
connect the Pearson correlation with Kendall’s correlation. Thus we should favor Σ̂R

z instead. We will compare the three
estimators Σ̂S

z , Σ̂
K
z and Σ̂R

z thoroughly through simulations in Section 4.

3.3. Asymptotics of robust mean estimators

In this section we look further into robust mean estimators. Though the result we shall present is asymptotic and not
essential for our main Theorem 3.1, it is interesting in its own right and deserves some treatment.

Perhaps the best known result of Huber’s mean estimator is the asymptotic minimax theory. Huber (1964) considered
the so-called ϵ-contamination model:

Pϵ = {F | F (x) = (1 − ϵ)G (x − θ)+ ϵH(x), H ∈ F, θ ∈ R},

where G is a known distribution, ϵ is fixed and F is the family of symmetric distributions. Let Tn be the minimizer of∑n
i=1 ρH (xi − µ), where ρH (x) = x2/2 for |x| < α, and ρH (x) = α|x| − α2/2 for |x| ≥ α, where α is fixed. In the special

case where G is Gaussian, Huber’s result showed that with an appropriate choice of α, Huber’s estimator minimizes the
maximal asymptotic variance among all translation invariant estimators, the maximum being taken over Pϵ .

One problemwith ϵ-contaminationmodel is that it makes sense onlywhenwe assume symmetry ofH , if θ is the quantity
we are interested in. In contrast, Catoni (2012) and Fan et al. (2017) studied a different family, in which distributions have
finite secondmoments. Bickel (1976) called them ‘‘local’’ and ‘‘global’’ models respectively, and offered a detailed discussion.

This paper, along with the preceding two papers (Catoni, 2012; Fan et al., 2017), studies robustness in the sense of
the second model. The technical novelty primarily lies in the nice concentration property, which is fundamental to high
dimensional statistics. This requires the parameter α of ρH to grow with n, versus being kept fixed, such that the condition
in Corollary 3.1 is satisfied. It turns out that, in addition to the concentration property, we can establish results regarding its
asymptotic behaviors in an exact manner.

Let ρn(x) = x2/2 for |x| < αn and ρn(x) = αn|x|−α2
n/2 for |x| ≥ αn; its derivativeψn = ρ ′

n. Let uswrite λn(t) = Eψn(X−t).
Denote tn as a solution of λn(t) = 0, which is unique when n is sufficiently large, and Tn a solution of

∑n
i=1 ψn(xi − t) = 0.

We have the following theorem.

Theorem 3.2. Suppose that x1, . . . , xn is drawn from some distribution F with mean µ and finite variance σ 2. Suppose {αn} is
any sequence with limn→∞ αn = ∞. Then, as n → ∞,

√
n (Tn − tn)

d
−→ N(0, σ 2),

and moreover
tn − µ

Eψn(X − µ)
→ 1.
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Theorem 3.2 gives a decomposition of error Tn −µ into two components: variance and bias. The rate of bias Eψn(X −µ)
depends on the distribution F and {αn}. When the distribution is either symmetric or lim infn αn/

√
n > 0, the second

component tn − µ is o(1/
√
n), a negligible quantity compared with the asymptotic variance. Note that unlike Huber’s

original approach, our robust estimator does not require symmetric restriction. This theorem also lends credibility to the
bias–variance tradeoff we observed in the simulation (see Section 4.1).

It is worth comparing the above Huber loss minimization with another candidate for robust mean estimation called
‘‘median-of-means’’ given byHsu and Sabato (2014). Themethod, as its name suggests, first divides samples into k subgroups
and calculates means for each subgroup, then takes the median of those means as the final estimator. The first step basically
symmetrizes the distribution by the central limit theoremand the second step is to robustify the procedure. According toHsu
and Sabato (2014), if we choose k = 4.5 log(p/δ) and element-wisely estimate Σz , similar to (2.5), with probability 1 − δ,
we have

∥Σ̂z −Σz∥∞ ≤ 3
√
3v

√
log p + log(1/δ)

n
.

Although ‘‘median-of-means’’ has the desired concentration property, unlike our estimator here, its asymptotic behavior
differs from the empirical mean estimator, and as a consequence, it is not asymptotically efficient when the distribution F
is Gaussian. Therefore, regarding efficiency, we prefer our proposed procedure in Section 2.2.

4. Simulations

Wenowpresent simulation results to demonstrate the improvement of the proposed robustmethodover the least-square
based method (Fan et al., 2008, 2011) and Kendall’s tau based method (Han and Liu, 2014; Fan et al., 2018) when factors and
errors are (i) elliptically distributed; and (ii) generally heavy-tailed.

However, one must be cautious of the choice of the tuning parameter α, since it plays an important role in the quality
of the robust estimates. Out of this concern, we shall discuss the intricacy of choosing parameter α before presenting the
performance of robust estimates of covariance matrices.

4.1. Robust estimates of variances and covariances

For random variables X1, . . . , Xp with zero mean that may potentially exhibit heavy-tailed behavior, the sample mean of
vij = E(XiXj) is not good enough for our estimation purpose. Though being unbiased, in the high dimensional setting, there
is no guarantee that multiple sample means stay close to the true values simultaneously.

As shown in theoretical analysis, this problem is alleviated for robust estimators constructed through M-estimators,
whose influence functions grow slowly at extreme values. The desired concentration property in (3.2) depends on the
choice of parameter α, which decides the range outside which large values cease to become more influential. However, in
practice, we have tomake a good guess of Var(XiXj) as the theory suggests; even so, wemay be too conservative in the choice
of α.

To show this, we plot in Fig. 1 the histograms of our estimates of v = Var(Xi) in 1000 runs, where Xi is generated from
a t-distribution with degree of freedom ν = 4.2. The first three histograms show the estimates constructed from Huber’s
M-estimator, with parameter

α = β

√
nVar(X2

i )
2

, (4.1)

where β is 0.2, 1, 5 respectively, and the last histogram is the usual sample estimate (or β = ∞). The quality of estimates
ranges from large biases to large variances. We also plot in Fig. 2 the histograms of estimates of v = Cov(Xi, Xj), where
(Xi, Xj), i ̸= j is generated from a multivariate t-distribution with ν = 4.2 and an identity scale matrix. The only difference
is that in (4.1), the variance of X2

i is replaced by the variance of XiXj.
From Fig. 1, we observe a bias–variance tradeoff phenomenon as α varies. This is also consistent with the theory in

Section 3.3. When α is small, the robust method underestimates the variance, yielding a large bias due to the asymmetry of
the distribution of X2

i . As α increases, a larger variance is traded for a smaller bias, until α = ∞, in which case the robust
estimator simply becomes the sample mean.

For the covariance estimation, Fig. 2 exhibits a different phenomenon. Since the distribution of XiXj is symmetric for i ̸= j,
there is no bias incurred when α is small. Since the variance is smaller when α is smaller, we have a net gain in terms of
the quality of estimates. In the extreme case where α is zero, we are actually estimating the median. Fortunately, under
distributional symmetry, the mean and the median are the same.

The simple simulations help us to understand how to choose α in practice: if the distribution is close to a symmetric one,
one can choose α aggressively, i.e. making α smaller; otherwise, a conservative α is preferred.
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Fig. 1. The histograms show the estimates of Var(Xi) with different parameters α, parametrized by β via (4.1), in 1000 runs. Xi ∼ t4.2 so that the true
variance Var(Xi) = 1.909. The sample size n = 100.

Fig. 2. The histograms show the estimates of Cov(Xi, Xj) with different parameters α in 1000 runs. The true covariance Cov(Xi, Xj) = 0. n = 100 and the
degree of freedom is 4.2.

4.2. Covariance matrix estimation

We implemented the robust estimation procedure with three initial pilot estimators Σ̂S
z , Σ̂

K
z and Σ̂R

z . We simulated n
samples of zt = (f Tt , u

T
t )

T from a multivariate t-distribution with covariance matrix diag{Ir , 5Ip} and various degrees of
freedom. Each row of B is independently generated from a standard normal distribution, and once it is generated, we treat it
as fixed. The population covariance matrix of yt = Bft + ut isΣ = BBT

+ 5Ip. For p running from 200 to 900 and n = p/2, we
calculated errors of the robust procedure in different norms. As suggested by the experiments in the previous section, we
chose a larger parameter α to estimate the diagonal elements ofΣz , and a smaller one to estimate its off-diagonal elements.
We used the thresholding parameter τ = 2

√
log p/n.

The estimation errors are gauged in the following norms: ∥Σ̂T
u −Σu∥, ∥(Σ̂T )−1

−Σ−1
∥ and ∥Σ̂T

−Σ∥Σ as shown in
Theorem 3.1. We considered two different settings: (1) zt is generated from multivariate t-distribution with very heavy
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Fig. 3. Errors of robust estimates against varying p. Blue line represents ratio of errors with Σ̂R
z over errors with Σ̂S

z , while black line represents ratio of
errors with Σ̂K

z over errors with Σ̂S
z . zt is generated by multivariate t-distribution with df = 3 (solid), 5 (dashed) and ∞ (dotted). The median errors and

their IQR over 100 simulations are reported. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

(ν = 3), medium heavy (ν = 5), and light (ν = ∞ or Gaussian) tail; (2) zt is element-wise iid one-dimensional
t-distribution with degree of freedom ν = 3,5 and ∞. They are separately plotted in Figs. 3 and 4. The estimation errors
of applying sample covariance matrix Σ̂S

z are used as the baseline for comparison. For example, if ∥Σ̂T
− Σ∥Σ is used to

measure performance, the blue curve represents ratio ∥(Σ̂T )R−Σ∥Σ/∥(Σ̂T )S −Σ∥Σ while the black curve represents ratio
∥(Σ̂T )K − Σ∥Σ/∥(Σ̂T )S − Σ∥Σ where (Σ̂T )R, (Σ̂T )K , (Σ̂T )S are respectively estimators given by the robust procedure
with initial pilot estimators Σ̂R

z , Σ̂
K
z , Σ̂

S
z for Σz . Therefore if the ratio curve moves below 1, the method is better than the

naive sample estimator given in Fan et al. (2011) and vice versa. The more it gets below 1, the more robust the procedure is
against heavy-tailed randomness.

The first setting (Fig. 3) represents a heavy-tailed elliptical distribution, where we expect the two robust methods work
better than the sample covariance based method, especially in the case of extremely heavy tails (solid lines for ν = 3). As
expected, both black curves and blue curves under the three measures behave visibly better (smaller than 1). On the other
hand, if data are indeed Gaussian (dotted line for ν = ∞), the method with sample covariance performs better under most
measures (greater than 1). Nevertheless, our robust method still performs comparably with the sample covariance method,
as the median error ratio stays around 1 whereas Kendall’s tau method can be much worse than the sample covariance
method. A plausible explanation is that the variance reduced compensates for the bias incurred in our procedure. In addition,
the IQR (interquartile range) plots tell us the proposed robust method is indeed more stable than Kendall’s tau.

The second setting (Fig. 4) provides an example of non-elliptical distributed heavy-tailed data. We can see that the
performance of the robust method dominates the other two methods, which verifies the approach in this paper especially
when data come from a general heavy-tailed distribution. While our method is able to deal with more general distributions,
Kendall’s tau method does not apply to distributions outside the elliptical family, which excludes the element-wise iid t
distribution in this setting. This explainswhy under variousmeasures, our robustmethod is better than Kendall’s taumethod
by a clear margin. Note that even in the first setting where the data are indeed elliptical, with proper tuning, the proposed
robust methods can still outperform Kendall’s tau.
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Fig. 4. Errors of robust estimates against varying p. Blue line represents ratio of errors with Σ̂R
z over errors with Σ̂S

z , while black line represents ratio of
errors with Σ̂K

z over errors with Σ̂S
z . zt is generated by element-wise iid t-distribution with df = 3 (solid), 5 (dashed) and ∞ (dotted). The median errors

and their IQR over 100 simulations are reported. (For interpretation of the references to colour in this figure legend, the reader is referred to theweb version
of this article.)

5. Real data analysis

In this section, we look into financial historical data during 2005–2013, and assess to what extent our factor model
characterizes the data.

The dataset we used in our analysis consists of daily returns of 393 stocks, all of which are large market capitalization
constituents of S&P 500 index, collected without missing values from 2005 to 2013. This dataset has also been used in Fan
et al. (2016), where they investigated how covariates (e.g. size, volume) could be utilized to help estimate factors and factor
loadings, whereas the focus of the current paper is to develop robust methods in the presence of heavy-tailed data.

In addition, we collected factors data in the same period, where the factors are calculated according to Fama–French
three-factor model (Fama and French, 1993). After centering, the panel matrix we will use for analysis, is a 393 by 2265
matrix Y , in addition to a factor matrix F of size 2265 by 3. Here 2265 is the number of daily returns and 393 is the number
of stocks.

5.1. Tail-heaviness

First, we look at how the daily returns are distributed. Especially, we are interested in the tails. In Fig. 5, wemadeQ–Qplots
that compare the distribution of all yit with either Gaussian distribution or t-distributions with varying degree of freedom,
ranging from df = 2 to df = 6. We also fit a line in each plot, showing how much the return data deviate from the base
distribution. It is clear that the data tail is heavier than that of a Gaussian distribution, and that t-distribution with df = 4 is
almost in alignment with the return data. Similarly, we made the Q–Q plots for the factors in Fig. 6. The plots also show that
t-distribution is better in terms of fitting the data; however, the tails are even heavier, and t-distribution with df = 2 seems
to best fit the data.
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Fig. 5. Q–Q plot of excess returns yit for all i and t against Gaussian distribution and t-distribution with degree of freedom 2, 4 and 6. For each plot, a line
is fitted by connecting points at first and third quartiles.

Fig. 6. Q–Q plot of factor fit against Gaussian distribution and t-distribution with degree of freedom 2, 4 and 6. For each plot, a line is fitted by connecting
points at first and third quartiles.
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Fig. 7. Left panel: Histogram of eigenvalues of sample covariance matrix YY T /n. The histogram is plotted on the logarithmic scale, i.e. each bin counts the
number of log λi in a given range. Right panel: Proportion of residue eigenvalues

∑p
i=K+1 λi/

∑p
i=1 λi , against varying K , where λi is the ith largest eigenvalue

of sample covariance matrix YY T /n.

5.2. Spiked covariance structure

We now consider how the covariance matrix of returns looks like, since a spiked covariance structure would justify the
pervasiveness assumption. To find the spectral structure, we calculated eigenvalues of the sample covariance matrix YY T/n,
and made a histogram based on logarithmic scale (see the left panel in Fig. 7). In the histogram, the counts in the rightmost
four bins are 5, 1, 0 and 1, representing only a few large eigenvalues, which is a strong signal of a spiked structure. We also
plotted the proportion of residue eigenvalues

∑p
i=K+1 λi/

∑p
i=1 λi, against K in the right panel of Fig. 7. The top 3 eigenvalues

account for a major part of the variances, which supports the pervasive assumption.
The spiked covariance structure has been studied in Paul (2007), Johnstone and Lu (2009) and many other papers, but

under their regime, the top eigenvalues or ‘‘spiked’’ eigenvalues do not grow with the dimension p. In this paper, the
spiked eigenvalues have stronger signals, and thus are easier to be separated from the rest of eigenvalues. In this respect,
the connotation of ‘‘spiked covariance structure’’ is closer to that in Wang and Fan (2017). As empirical evidence, this
phenomenon also buttresses the motivation of study in Wang and Fan (2017).

5.3. Portfolio risk estimation

We consider portfolio risk estimation. To be specific, for a portfolio with weight vector w ∈ Rp on all the market assets,
its risk is measured by quantitywTΣwwhereΣ is the true covariance of excess returns of all the assets. Note thatΣ is time
varying. Here we consider a class of weights with gross exposure c ≥ 1, that is

∑
iwi = 1 and

∑
i |wi| = c. We consider

four scenarios c = 1, 1.4, 1.8, 2.2. Note that (c − 1)/2 represents the level of exposure to short selling; in particular, c = 1
represents the case of no short selling.

To assess how well our robust estimator performs compared with the sample covariance, we calculated the covariance
estimators Σ̂R

t and Σ̂S
t , using the daily data of preceding 12 months, where Σ̂R

t is our robust covariance estimator and Σ̂S
t is

the sample covariance, for every trading day from 2006 to 2013. We indexed those dates by t where t runs from 1 to 2013
(from 2006–01–01 to 2013–12–31, it happens to contain 2013 trading days, so here 2013 is the total number of trading days
instead of a year indicator). Let γt+1 be the excess return of the following trading day after t . For a weight vectorw, the error
we used to gauge the two approaches is

RR(w) =
1

2013

2013∑
t=1

⏐⏐wT Σ̂R
t w − (wTγt+1)2

⏐⏐, RS(w) =
1

2013

2013∑
t=1

⏐⏐wT Σ̂S
t w − (wTγt+1)2

⏐⏐.
Note the bias–variance decomposition

E|wT Σ̂tw − (wTγt+1)2|
2

= E|(wTγt+1)2 − wTΣtw|
2
+ E|wT Σ̂tw − wTΣtw|

2
,

where Σt = Eγt+1γ
T
t+1. The first term measures the size of the stochastic error that cannot be reduced while the second

term is the estimation error for the risk of portfolio w.
To generate multiple random weights w with gross exposure c , we adopted the strategy used in Fan et al. (2015), which

aims to generate a uniform distribution on the simplex {w :
∑

iwi = 1,
∑

i |wi| = c}: (1) for each index i ≤ p let ηi = 1
(long) with probability (c + 1)/2c and ηi = −1 (short) with probability (c − 1)/2c; (2) generate iid ξi by exponential
distribution; (3) for ηi = 1, let wi =

c+1
2 · ξi/

∑
ηi=1 ξi and for ηi = −1, let wi = −

c−1
2 · ξi/

∑
ηi=−1 ξi. We made a set of

scatter plots in Fig. 8, in which the x-axis represents RR(w) and the y-axis RS(w). In addition, we highlighted in the first plot
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Fig. 8. (RR(w), RS (w)) for multiple randomly generated w. The four plots compare the errors of the two methods under different settings (upper left: no
short selling; upper right: exposure c = 1.4; lower left: exposure c = 1.8; lower right: exposure c = 2.2). The red diamond in the first plot corresponds to
uniform weights. The dashed line is the 45 degree line representing equal performance. Our robust method gives smaller errors.

the point with uniform weights (i.e.wi = 1/p), which serves as a benchmark for comparison. The dashed line shows where
the two approaches have the same performance. Clearly, for allw the robust approach has smaller risk errors, and therefore
has better empirical performance in estimating portfolio risks.
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Appendix

Proof of Theorem 3.1. Since we have robust estimator Σ̂z such that ∥Σ̂z − Σz∥∞ = OP (
√
log p/n), we clearly know

Σ̂11, Σ̂12, Σ̂21, Σ̂22 achieve the same rate. Using this, let us first prove ∥Σ̂u −Σu∥∞ = OP (
√
log p/n). Obviously,

∥Σ̂12Σ̂
−1
22 Σ̂

T
21 − BΣf BT

∥∞ = ∥Σ̂12Σ̂
−1
22 Σ̂

T
21 −Σ12Σ

−1
22 Σ

T
21∥∞ = OP (

√
log p/n) , (A.1)

because the multiplication is along the fixed dimension r and each element is estimated with the rate of convergence
OP (

√
log p/n). Also ∥Σ̂11 − Σ∥∞ = OP (

√
log p/n), therefore Σ̂u = Σ̂11 − Σ̂12Σ̂

−1
22 Σ̂

T
21 is good enough to estimate

Σu = Σ − BΣf BT with error OP (
√
log p/n) in max-norm.

Once the max error of sparse matrix Σu is controlled, it is not hard to show the adaptive procedure in Step 2 gives Σ̂T
u

such that the spectral error ∥Σ̂T
u − Σu∥ = OP (mpw

1−q
n ) (Fan et al., 2011; Cai and Liu, 2011; Rothman et al., 2009) where

we define wn =
√
log p/n. Furthermore, ∥(Σ̂T

u )−1
− Σ−1

u ∥ ≤ ∥(Σ̂T
u )−1

∥∥Σ̂T
u − Σu∥∥Σ

−1
u ∥. So ∥(Σ̂T

u )−1
− Σu

−1
∥ is also

OP (mpw
1−q
n ) due to the lower boundedness of ∥Σu∥. So (3.4) is valid.

Proving (3.5) is trivial. ∥Σ̂T
u −Σu∥∞ ≤ ∥Σ̂T

u − Σ̂u∥∞ + ∥Σ̂u −Σu∥∞ = OP (τ + wn) = OP (wn) when τ is chosen as the
same order as wn and thus

∥Σ̂T
−Σ∥∞ ≤ ∥Σ̂12Σ̂

−1
22 Σ̂

T
21 − BΣf BT

∥∞ + ∥Σ̂T
u −Σu∥∞ = OP (wn).
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Next let us take a look at the relative Frobenius convergence (3.6) for ∥Σ̂T
−Σ∥Σ .

∥Σ̂T
−Σ∥Σ ≤ ∥Σ̂12Σ̂

−1
22 Σ̂

T
21 −Σ12Σ

−1
22 Σ

T
21∥Σ + ∥Σ̂T

u −Σu∥Σ

≤ ∥(Σ̂12 −Σ12)Σ̂−1
22 (Σ̂21 −Σ21)T∥Σ + 2∥(Σ̂12 −Σ12)Σ̂−1

22 Σ
T
21∥Σ

+ ∥Σ12(Σ̂−1
22 −Σ−1

22 )ΣT
21∥Σ + ∥Σ̂T

u −Σu∥Σ

= : ∆1 + 2∆2 +∆3 +∆4 .

(A.2)

We bound the four terms one by one. The last term is the most straightforward,

∆4 ≤ p−1/2
∥ΣT

u −Σu∥F∥Σ
−1

∥ = OP (∥ΣT
u −Σu∥) = OP (mpw

1−q
n ).

Bound for∆1 uses the fact that ∥Σ̂−1
22 ∥ and ∥Σ−1

∥ are OP (1) and ∥Σ̂12 −Σ12∥F = OP (
√
p log p/n). So

∆1 ≤ p−1/2
∥Σ̂12 −Σ12∥

2
F∥Σ̂

−1
22 ∥∥Σ−1

∥ = OP

(√
p log p
n

)
;

Bound for ∆3 needs additional conclusion that ∥ΣT
21Σ

−1Σ12∥ ≤ ∥BTΣ−1B∥∥Σ22∥
2

≤ 2∥Σ22∥ = O(1), where B = Σ12Σ
−1
22

and the last inequality is shown in Fan et al. (2008). So

∆3 = p−1/2tr1/2
(
(Σ̂−1

22 −Σ−1
22 )ΣT

21Σ
−1Σ12(Σ̂−1

22 −Σ−1
22 )ΣT

21Σ
−1Σ12

)
≤ p−1/2

∥(Σ̂−1
22 −Σ−1

22 )ΣT
21Σ

−1Σ12∥F ≤ p−1/2
∥Σ̂−1

22 −Σ−1
22 ∥F∥Σ

T
21Σ

−1Σ12∥

= OP (
√
log p/(np)) .

Lastly, by similar trick, we have

∆2 = p−1/2tr1/2
(
(Σ̂12 −Σ12)Σ̂−1

22 Σ
T
21Σ

−1Σ21Σ̂
−1
22 (Σ̂12 −Σ12)Σ−1

)
≤ p−1/2

∥Σ̂12 −Σ12∥F∥Σ̂
−1
22 ∥∥Σ−1

∥
1/2

∥ΣT
21Σ

−1Σ12∥
1/2

= OP (
√
log p/n).

Combining results above, by (A.2), we conclude that ∥Σ̂T
−Σ∥Σ = OP (

√
p log p/n + mp(log p/n)(1−q)/2).

Finally we show the rate of convergence for ∥(Σ̂T )−1
−Σ−1

∥. By Woodbury formula,

Σ−1
= Σ−1

u −Σ−1
u Σ12[Σ22 +ΣT

12Σ
−1
u Σ21]

−1ΣT
21Σ

−1
u .

Thus, let A = Σ22 + ΣT
12Σ

−1
u Σ21, Â = Σ̂22 + Σ̂T

12(Σ̂
T
u )−1Σ̂21 and D = Σ−1

u Σ12, D̂ = (Σ̂T
u )−1Σ̂12, we have the following

bound similar to (A.2):

∥(Σ̂T )−1
−Σ−1

∥ ≤ ∥D̂̂A−1D̂T
− DA−1DT

∥ + ∥(Σ̂T
u )−1

−Σ−1
u ∥

≤ ∥(̂D − D)̂A−1 (̂D − D)T∥ + 2∥(̂D − D)̂A−1DT
∥

+ ∥D(̂A−1
− A−1)DT

∥ + ∥(Σ̂T
u )−1

−Σ−1
u ∥

= : ∆̃1 + 2∆̃2 + ∆̃3 + ∆̃4 .

(A.3)

From (3.4), ∆̃4 = OP (mpω
1−q
n ). For the remaining terms, we need to find the rates for ∥D̂ − D∥, ∥̂A−1

∥, ∥D∥ and ∥̂A−1
− A−1

∥

separately. Note that ∥Σ12∥ = ∥BΣ22∥ ≤ ∥B∥∥Σ22∥ = OP (
√
p) by Assumption 2.2(ii). So ∥D∥ = OP (

√
p) and

∥D̂ − D∥ ≤ ∥(Σ̂T
u )−1

∥∥Σ̂12 −Σ12∥ + ∥Σ12∥∥(Σ̂T
u )−1

−Σ−1
u ∥ = OP (

√
pmpω

1−q
n ).

In addition, it is not hard to show ∥̂A − A∥ = OP (pmpω
1−q
n ). In addition, we claim ∥A−1

∥ = OP (p−1) since λmin(A) ≥

λmin(ΣT
12Σ

−1
u Σ21) ≥ λmin(Σ−1

u )λmin(Σf )λr (BΣf BT ) and by Weyl’s inequality, λr (BΣf BT ) ≥ λr (Σ) − ∥Σ∥ ≥ cp by
Assumption 2.2(i). Therefore, ∥̂A−1

− A−1
∥ ≤ ∥A−1

∥∥̂A−1
∥∥̂A− A∥ implies ∥̂A−1

− A−1
∥ = OP (p−1mpω

1−q
n ), and furthermore

∥̂A−1
∥ = OP (p−1). Finally we incorporate the above rates together and conclude

∆̃1 = OP (p−1
∥D̂ − D∥

2) = OP (m2
pω

2(1−q)
n ) ,

∆̃2 = OP (p−1/2
∥D̂ − D∥) = OP (mpω

1−q
n ) ,

∆̃3 = OP (p∥̂A−1
− A−1

∥) = OP (mpω
1−q
n ) .

So combining rates for ∆̃i, i = 1, 2, 3, 4, we show (3.7) is true. The proof is now complete. □

Proof of Theorem 3.2. Without loss of generality we can assume µ = 0. By dominated converge theorem we know that
for all t , limn λn(t) = −t , that λn(t) is differentiable, that λ′

n(t) = −Eψ ′
n(X − t), and that limn λ

′
n(t) = −1. With Taylor’s

expansion, we have

λn(t) = λn(0) + λ′

n(0)t +∆n(t), (A.4)
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where |∆n(t)| ≤ |t| sup{|λ′
n(s) − λ′

n(0)| : 0 ≤ s ≤ t}. Observe that⏐⏐λ′

n(s) − λ′

n(0)
⏐⏐ =

⏐⏐P(|X − s| ≤ αn) − P(|X | ≤ αn)
⏐⏐

≤ P(|X − s| > αn) + P(|X | > αn).

By Markov’s inequality,

sup{|λ′

n(s) − λ′

n(0)| : 0 ≤ s ≤ t} ≤
1
αn

(
2E|X | + |t|

)
.

For any ϵ ∈ (0, 1), there exists N > 0, such that for all n > N ,

|λn(0)| ≤ 2,
1 + ϵ/2
1 + ϵ

≤ −λ′

n(0) ≤
1 − ϵ/2
1 − ϵ

,
1
αn

(2E|X | + 4) ≤
ϵ

4(1 + ϵ)
.

Plugging t = (1 + ϵ)λn(0) into (A.4),

λn((1 + ϵ)λn(0)) = λn(0) + λ′

n(0)(1 + ϵ)λn(0) +∆n(t),

where |∆n(t)| ≤ (1 + ϵ)|λn(0)| ϵ
4(1+ϵ) = ϵ|λn(0)|/4. Equivalently,

λn((1 + ϵ)λn(0)) = λn(0)(1 + λ′

n(0)(1 + ϵ) + βn),

where |βn| ≤ ϵ/4. Similarly,

λn((1 − ϵ)λn(0)) = λn(0)(1 + λ′

n(0)(1 − ϵ) + β ′

n),

where |β ′
n| ≤ ϵ/4. Also we have 1 + λ′

n(0)(1 + ϵ) + βn < 0 and 1 + λ′
n(0)(1 − ϵ) + β ′

n > 0. Multiplying both sides of the
equations, we deduce that

λn((1 + ϵ)λn(0)) · λn((1 − ϵ)λn(0)) ≤ 0.

If λn(0) = 0, equation λn(t) = 0 has one zero t = 0; and in fact it is the unique one for sufficiently large n, since λn(t) is
nonincreasing and λ′

n(0) ̸= 0 for n large enough. If λn(0) ̸= 0, at least one zero lies in the interval with endpoints (1+ϵ)λn(0)
and (1 − ϵ)λn(0). Since λn(0) → 0, for any zero t ′n in this interval we have t ′n → 0, which implies λ′

n(t
′
n) → −1. It follows

that such zero is unique for sufficiently large n. This leads to tn/λn(0) → 1, thus proving the second claim in the theorem.
The proof of the first claim is similar in spirit to that of Huber (1964). Let us denote

T−

n = sup{t :

n∑
i=1

ψn(xi − t) > 0},

T+

n = inf{t :

n∑
i=1

ψn(xi − t) < 0}.

By monotonicity, Tn ∈ [T−
n , T

+
n ]. Since

P(T−

n < t) = P
( n∑
i=1

ψn(xi − t) ≤ 0
)
,

it follows that for any fixed z ∈ R,

P(
√
n (T−

n − tn) < z) = P(T−

n < tn + z/
√
n)

= P(
n∑

i=1

ψn(xi − un) ≤ 0)

= P
( 1

√
n

n∑
i=1

ψn(xi − un) − λn(un)
σn(un)

≤ −

√
n λn(un)
σn(un)

)
,

where we denote un = tn + z/
√
n and σn(u) = Eψn(X − u)2 − λn(u)2.

By dominate convergence theorem, λ′
n(tn) → −1 and σn(un)2 → σ 2. By Taylor expansion of λn(un) at tn,

λn(un) = λn(tn) + z/
√
n λ′

n(tn) +∆n
z ,

where |∆n
z | ≤ n−1/2

|z| sup{λ′
n(tn + s) − λ′

n(tn)|: 0 ≤ s ≤ z/
√
n }. A similar argument shows that

sup{λ′

n(tn + s) − λ′

n(tn)|: 0 ≤ s ≤ z/
√
n } ≤

1
αn

(2E(X) + 2|tn| + |z|/
√
n ) = o(1).

This leads to λn(un) = z/
√
n (λ′

n(tn) + o(1)) = z/
√
n (−1 + o(1)), and thus

√
n λn(un) → −z.
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Let us write

ξi =
ψn(xi − un) − λn(un)

σn(un)
for the centered variance ξi with unit variance. If we can show

1
√
n

n∑
i=1

ξi
d

−→ N(0, 1), (A.5)

then by continuity ofΦ , standard normal distribution function, we have

P
( 1

√
n

n∑
i=1

ξi ≤ −

√
n λn(un)
σn(un)

)
→ Φ

( z
σ

)
,

which gives P(
√
n (T−

n − tn) < z) → Φ(z/σ ). It is similar to show that P(
√
n (T+

n − tn) < z) → Φ(z/σ ). At this point, we are
able to conclude that the first claim in the theorem holds, i.e.

√
n (Tn − tn)

d
−→ N(0, σ 2).

To prove (A.5), it suffices to check Lindeberg’s condition:

E(ξ 2i 1{|ξi| >
√
n ϵ}) → 0

for any ϵ > 0. Notice that λn(un) → 0 and σn(un) → σ , we only need to show

E(ψ2
n (X − un)1{|ψn(X − un)| >

√
n ϵ}) → 0.

This is true due to

ψ2
n (X − un) ≤ |X − un|

2
≤ 2|X |

2
+ 2u2

n

and dominated convergence theorem. □
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