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Abstract

Motivated by the sampling problems and heterogeneity issues common in high-

dimensional big datasets, we consider a class of discordant additive index models.

We propose method of moments based procedures for estimating the indices of such

discordant additive index models in both low and high-dimensional settings. Our

estimators are based on factorizing certain moment tensors and are also applicable in

the overcomplete setting, where the number of indices is more than the dimensionality

of the datasets. Furthermore, we provide rates of convergence of our estimator in both

high and low-dimensional setting. Establishing such results requires deriving tensor

operator norm concentration inequalities that might be of independent interest. Finally,

we provide simulation results supporting our theory. Our contributions extend the

applicability of tensor methods for novel models in addition to making progress on

understanding theoretical properties of such tensor methods.
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1 Introduction

High-dimensional big datasets are typically collected by aggregating information from a

variety of sources. Such diverse sources of data, invariably cause sampling challenges and

heterogeneity issues [Fan et al., 2014]. Motivated by these concerns, in this work, we consider

a class of additive index models (AIMs) described as follows. Given the covariate X, we

let Z = {Zj = fj(〈X, β∗j 〉) + εj}j∈[k] be an underlying set of latent models. That is, Z is an

unordered collection of the responses of k single index models (SIMs), that are unobservable.

Here {εj}j∈[k] are exogenous noise. Moreover, based on Z, the observed response Y is given

by a real-valued function h : Z → R such that

E(Y |X) = E(h(Z)|X) = g1(〈X, β∗1〉) + g2(〈X, β∗2〉) + . . .+ gk(〈X, β∗k〉). (1)

Here, the functions g actually depend on the choice of h and f . To avoid notational clutter,

we just use g to denote it. In addition, we note that the function h can be a random function

that is independent of Z. We call this model as discordant additive index model (DAIM), as

the response Y depends on the latent set Z. We allow the model to be overcomplete, where

the number of index models, k, is larger than the dimensionality d. Given n i.i.d. observations

{(X(i), h(Z(i)))}i∈[n] of the DAIM in (1), our goal is to estimate the parametric components

{β∗j }j∈[k].

Our estimators are based on method of moments approach and involve factorizing higher-

order moment tensors. The corresponding second-order analogue, called as principal component

analysis, has been leveraged widely for estimation in several statistical problems, for example,

factor modeling, dimensionality reduction, estimation in mixture models and community

detection. Furthermore, inferential and computational properties of such estimators for the

above problems are relatively well understood. It is worth noting that establishing operator

norm bounds for certain random matrices played a crucial part in deriving such results. We

refer the reader to Fan et al. [2018] for a detailed survey of such results. In comparison, for the

higher-order case, both the methodology and the theory of tensor factorization approaches are

still in its infancy. In this paper, we adopt the tensor decomposition framework [Anandkumar

et al., 2014a,b, Sun et al., 2017] for estimating the parameters of the DAIM in (1), and also

derive operator norm bounds for the decomposed moment tensors, thereby making progress

towards understanding theoretical properties of higher-order decompositions and widening
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their applicability.

We now provide two concrete instantiations of the DAIM by appropriately defining the

sampling function h and motivate their applications. A canonical example of DAIM are the

mixture models used to model heterogeneity [McLachlan and Peel, 2004, Fan et al., 2014,

Städler et al., 2010]. In this setting, only one element of the latent Z is observed. That is,

h(Z) is assumed to be a random function that picks element Zj with probability πj where∑
j∈[k] πj = 1. Hence the observation is given by Y = h(Z) = Zj with probability πj . Again, it

is easy to see that the model is an instantiation of the DAIM posited in (1), with appropriately

defined g functions. Correspondingly in the sample setting, given n i.i.d samples X(i) ∈ Rd and

the matrix Zij ∈ Rk×n, for each column, one of the k entries is observed and the probability

of observing the j-th entry is given by πj independently for all columns. From a practical

perspective, heterogenous data is ubiquitous. For example, in genomics and neuroscience, the

occurrences of systematic biases is natural due to the data being combined from multiple

sources. Similarly in financial econometrics, the sources of data available includes stocks,

trading data and unstructured text from news and blog sources. In these situations, failure to

acknowledge data heterogeneity leads to wrong inferences [Fan et al., 2014]. Furthermore, in

practice the non-parametric component can be misspeficied and the number of components, k,

can be greater than the dimensionality of the dataset causing more challenges for estimation.

Yet another example of the DAIM is the problem of correspondence retrieval proposed

recently in Andoni et al. [2017]. Here, the correspondence between the model under con-

sideration (βj) and the actual responses at hand (Zj) is unobserved. Instead, we observe

say the average (or sum) of the responses, k−1
∑

j∈[k] Zj. It is clear that if the sampling

function is taken as h(Z) = k−1
∑

j∈[k] Zj = k−1
∑

j∈[k][fj(〈X, β∗j 〉) + εj], the model is an

instantiation of the DAIM posited in (1), with appropriately defined g functions that depend

on the corresponding f functions. In the sample setting, given n i.i.d. samples X(i) ∈ Rd,

consider the matrix Z ∈ Rk×n where each Zij = fj(〈X(i), βj〉) + ε
(i)
j . Let {Z(i)}i∈[n] be n i.i.d.

sets of latent observations, where Z(i) = {Zij, j ∈ [k]}. Then the ith responses Yi is given by

h(Zi) = k−1
∑

j∈[k] Zij . That is, we do not observe the matrix Z which has the correspondence

information in the sample setting. Instead, we observe discordant observations of the form

h(Z(i)), which obscures the correspondence information. From a practical point of view,

such a lack of correspondence occurs in several situations. For example in high-dimensional
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nonlinear multi-task learning models [Yang et al., 2009], due to privacy or record linkage

issues, one might not observe the correspondence between the response and the covariates of

the different models. Furthermore, our models also are applicable to nonlinear compressed

sensing in the discordant setting which has wide applications as described in [Unnikrishnan

et al., 2015]. Similar to the previous example, model misspecification and having a large

number of components, k, cause significant challenges for estimation.

Contributions: Motivated by the above discussion, we focus on the task of estimating the

parametric components of the DAIM, while being agnostic to the nonparametric compo-

nents. First, it is worth noting that likelihood/least-squares based approaches depend on

the specification of the nonparametric components and is not agnostic to them. Hence, we

propose to use a higher-order moment decomposition based procedure to provably recover the

parametric components with unknown nonparametric components. Under a Gaussian design

assumption on the covariate and under mild regularity assumptions on the unknown nonpara-

metric components (the specific details are provided in §2.1), we provide polynomial-time

computable estimators that achieve optimal statistical rates, in both low and high-dimensional

settings, with sufficiently large number of samples. The statistical rates for our estimator

are established based on obtaining novel concentration inequalities in tensor operator norm

for the considered moment tensors, which might be of independent interest. Finally, from a

practical point of view, our estimator for the parametric components could also be used as

initializers for alternating minimization algorithms (e.g., the EM algorithm) to estimate the

nonparametric components efficiently.

Notations: We denote by [n] the set of integers {1, . . . , n}. Furthermore, for a vector u ∈ Rd

and an index set F ⊆ [d], the truncation of u with respect to the set F , denoted as ϑF (u), is

defined coordinate-wise as

[ϑF (u)]i =

ui if i ∈ F

0 otherwise.

We also use the notation ϑs(u) to denote the case where F consists of the top-s entries

of u in absolute value. We denote an `-th order symmetric tensor by A ∈ Rd⊗`. Recall

that a tensor is symmetric if Aj1j2···j` = Ajσ(1)jσ(2)···jσ(`) , for every permutation σ of the

indices. For a given vector u ∈ Rd, we define the `-th order rank-1 tensor formed from u
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as u⊗`. Similarly, for a given set of k vectors u(1), . . . , u(`) ∈ Rd, the rank-1 tensor formed

by taking the outer product of them is given by u(1) ⊗ u(2) ⊗ · · · ⊗ u(`). In addition, let

A and B be two `-th order tensors, we define the inner product between A and B as

〈A,B〉 =
∑d

j1=1 · · ·
∑d

j`=1Aj1j2...j` · Bj1j2...jk . Furthermore, for any A ∈ Rd⊗` and p ∈ (0,∞),

we define the element-wise `p-norm as ‖A‖p = (
∑d

j1,...,j`=1 |Aj1j2···j` |p)1/p. Note that this

generalizes the standard element-wise `p-norm of a vector. We also denote the `-th order

polynomial form of the tensor A as A(u(1), . . . , u(`)) =
〈
A, u(1) ⊗ u(2) ⊗ · · · ⊗ u(`)

〉
. Note that

here A(u(1), . . . , u(`)) is a function of {u(j)}j∈[`]. The operator norm of a tensor A is then

defined as

‖A‖op = sup
{∣∣A(u(1), . . . , u(`))

∣∣ : u(1), u(2), . . . , u(`) ∈ Sd−1
}
, (2)

where Sd−1 = {u ∈ Rd : ‖u‖2 = 1} is the unit sphere in Rd. Note that when the tensor is sym-

metric, the operator norm can alternatively be calculated as ‖A‖op = sup
{∣∣A(u, . . . , u)

∣∣ : u ∈
Sd−1

}
. Note that when ` = 2, we recover the matrix operator norm. We also define the sparse

symmetric tensor operator norm, for some 1 ≤ r ≤ d, as

‖A‖op,r = sup
{∣∣A(u, . . . , u)

∣∣ : u ∈ Sd−1 and ‖u‖0 ≤ r
}
. (3)

For a (`− 1)-th order symmetric tensor-valued function A`−1(a) : Rd 7→ Rd⊗(`−1), its deriva-

tive is given by an `-th order symmetric tensor ∇aA`−1(a) which is defined entry wise as

[∇aA`−1(a)]i1,...,i` = ∂[A`−1(a)]i1,...,i(`−1)
/∂ai` . Finally, for a function f(a) : Rd → R, its `-th

derivative is denoted as f (`)(a). We end this section by describing the format of the paper. In

§2, we precisely define the class of DAIM that we consider and outline our estimator which

is based on decomposing higher-order moment tensors. In §3, we present our main results

regarding the rate of convergence of our estimators in both low and high-dimensional setting,

that involve obtaining tensor operator norm concentration results. The proofs are relegated

to §A.

2 Model Definition and Estimation

We now introduce the precise definitions of the models that we consider in this work and

outline our moment-based estimation procedure. As discussed in §1, our primary motivation for

the DAIM in (1) is based on handling discordance and heterogeneity in the high-dimensional
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big data settings. In the following, we define two instantiations of the DAIM and propose the

corresponding estimation procedures. We first introduce the discordant single index models,

which is a special case of DAIM under discordance.

Definition 1 (Discordant SIMs). We assume that there are k unordered latent single index

models denoted by Z = {Zj = fj(〈β∗j , X〉, εj)}j∈[k]. Here X ∈ Rd is the covariate, {εj}j∈[k] ⊆ R

are the random noise independent of X, and {fj : R2 → R}j∈[k] are unknown link functions.

Based on Z, we observe the response variable Y = h1(Z) = k−1
∑

j∈[k] Zj.

In this model, the set of responses Z is latent and the response observed is given by the

average function h1(Z). In addition, since the norm of β∗j can be absorbed in the unknown

function fj , β
∗
j is not identifiable. Hence, we assume that β∗j has norm one for all j ∈ [k], and

focus on estimating them while being agnostic to the nonparametric components {fj}j∈[k].

Furthermore, we assume that the number of latent single index models, k, can be larger than

the dimensionality d, which yields an overcomplete model. A more precise characterization of

overcompleteness is provided in §3. Finally, the average function could also be changed to

other additive functions for generality. We next define the mixture of single index models,

yet another special case of DAIM, to deal with heterogeneity.

Definition 2 (Mixture of SIMs). Similar to Definition 1, let Z = {Zj = fj(〈θ∗j , x〉, εj)}j∈[k]

be the unordered responses of the k latent single index models. In addition, we assume that

Z̃ ∈ [k] is a discrete random variable such that P(Z̃ = j|X = x) = πj for any j ∈ [k]. Here

we assume that
∑

j∈[k] πj = 1. Based on Z and Z̃, the response variable is Y = h2(Z) = ZZ̃.

We note that here h2 : Z → R is a random function. Similar to the previous case, the

components of the mixture model, θ∗j are assumed to be normalized and the number of

components can be larger than the dimensionality. This model can be slightly generalized

to allow the mixing proportion P(Z = j|X = x) to be a function of 〈X, θ∗j 〉. That is,

P(Z = j|X = x) = πj(〈θ∗j , x〉), where πj is a univariate function. Such a model is more general

and has close relationships to the mixture of experts model [Jacobs et al., 1991] and to modal

regression [Chen et al., 2016]. Although we do not concentrate explicitly on this case, our

method and the theoretical results could be easily extended to such a general setting.
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2.1 Estimation via Third-Order Tensor

We now outline our procedure for estimating the indices ({β∗j∈[k] and {θ∗j}j∈[k] ) for both

models. As mentioned in §1, our estimation procedure is based on decomposing a moment

tensor and is agnostic to the nonparametric components {fj}j∈[k]. Specifically, our method is

based on the higher-order score tensors, which are defined as follows.

Definition 3 (Higher-Order Score Tensors [Janzamin et al., 2014]). Let p : Rd → R be the

probability density function of N(0, Id). For each positive integer `, we define the `-th order

score function S` : Rd → Rd⊗` recursively by letting

S`(x) = −S`−1(x)⊗∇ log p(x) +∇S`−1(x), S1(x) = −∇ log p(x), (4)

By this definition, note that the first-order score vector and the second-order score matrix

are S1(x) = x and S2(x) = Id− xx>, respectively. Then by (4), the third-order score tensor is

S3(x) = x⊗ x⊗ x−
d∑
j=1

(x⊗ ej ⊗ ej + ej ⊗ x⊗ ej + ej ⊗ ej ⊗ x), (5)

where {ej}j∈[d] ⊆ Rd are the standard basis for Rd. Based on the score tensors, we now

introduce the moment tensors, whose decompositions reveal the parameters of interest.

Lemma 1. For any j ∈ [k], let fj : R2 → R be the link function in Definition 1 or Definition

2, and let εj be the exogenous random noise. We define ϕj(u) = Eεj [fj(u, εj)], where the

expectation is taken with respect to the randomness in εj. We also define γ∗j = Eξ∼N(0,1)[ϕ
(`)
j (ξ)],

for any j ∈ [k] and any positive integer `. Then under assumption that X is a standard

Gaussian vector, we have

E
[
h1(Z) · S`(X)

]
=

1

k

k∑
j=1

γ∗j · β∗j
⊗`, E

[
h2(Z) · S`(X)

]
=

k∑
j=1

πj · γ∗j · θ∗j
⊗`. (6)

Proof. This lemma follows by a straightforward application of the higher-order Stein’s iden-

tity [Janzamin et al., 2014].

This lemma suggests that the parameters can be recovered by decomposing the sample

versions of the moment tensors in (6). The main reason for considering the higher-order

moment tensors (` ≥ 3), as opposed to second-order moment matrices (` = 2) is that tensor

decomposition is unique up to permutation and scaling [Landsberg, 2011]. This allows us to
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estimate the parameters themselves as opposed to the subspace spanned by the parametric

components. Furthermore, tensor decomposition also allows one to work in the overcomplete

setting (k > d). As mentioned in §1, this is particularly relevant for performing mixture of

regression in big data settings, where the number of sub-populations in a dataset is typically

large. While in theory, one can consider arbitrarily higher-order tensors, in the sample setting,

they are notoriously harder to estimate without relying on stringent model assumptions. In

this work, we consider specifically the case of ` = 3 and provide a detailed characterization of

the rates of convergence for the proposed estimators. We discuss more about the theoretical

results in case of ` > 3 as well as their pros and cons in Remark 10. Based on the above

discussion, given n samples {(X(i), h(Z(i)))}, i ∈ [n], we can estimate the moment tensor

in (6) by

M̂1 =
1

n

n∑
i=1

h1(Z(i)) · S3(X(i)) =
1

n

n∑
i=1

(1

k

∑
j∈[k]

Z
(i)
j

)
· S3(X(i)), (7)

M̂2 =
1

n

n∑
i=1

h2(Z(i)) · S3(X(i)) =
1

n

n∑
i=1

Y (i) · S3(X(i)). (8)

where S3 is the third order score function defined in (5). In what follows, we abuse our

notation slightly and use M̂ to denote both M̂1 and M̂2 whenever there is no confusion. Our

estimators for {β∗j }j∈[k] and {θ∗j}j∈[k] are then obtained by applying the tensor decomposition

algorithms, described in §2.2 next, to M̂1 and M̂2 respectively.

2.2 Tensor Power Methods

Now we construct estimators of the parametric components by applying the tensor power

methods [Anandkumar et al., 2014a,b, Sun et al., 2017] to the moment tensor M̂ under both

the low and high-dimensional settings.

Low-Dimensional Setting. We apply the regular tensor power method to M̂ in the low-

dimensional setting where n ≥ d, which is an extension of the standard matrix power method

to tensors. To simplify the notation, for any two vectors u, v ∈ Rd and any third-order tensor

A ∈ Rd⊗3, we denote the tensor-vector product between A and u, v by A(I, u, v) ∈ Rd, whose

entries are specified by

[A(I, u, v)]j1 =
d∑

j2=1

d∑
j3=1

Aj1j2j3uj2vj3 , j1 ∈ [d].
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Algorithm 1 Power Method for Overcomplete Tensor Decomposition

Input: Moment tensor M̂ ∈ Rd×d×d, number of initializations L, number of iterations N .

for τ = 1, . . . L do

Initialize using unit vectors v̂
(0)
τ

for t = 0, . . . , N − 1 do

Perform power iteration

v̂(t)
τ =

M̂(I, v̂
(t−1)
τ , v̂

(t−1)
τ )

‖M̂(I, v̂
(t−1)
τ , v̂

(t−1)
τ )‖2

(9)

end for

end for

Cluster the {v̂(N)
τ }τ∈[L] into k clusters using the method in Algorithm 3

Output: The k cluster centroids as {β̂j}j∈[k] when M̂ = M̂1 and as {θ̂j}j∈[k] when M̂ = M̂2

With this notation, the tensor power method is presented in Algorithm 1. While the main

intuition behind the tensor power method is similar to the matrix power method, there are

delicate issues that arise solely for tensors. The main issue is that perturbation results similar

to the famous Davis-Kahn theorem for matrices do not exists in the tensor setting. Recently,

Anandkumar et al. [2014a,b] establish the local and global convergence properties of this

algorithm. We leverage their results to establish statistical rates of convergence for our setting.

High-Dimensional Setting. Since the estimation error using the regular tensor power

method depends polynomially on the dimensionality, such a method is not applicable to the

high-dimensional setting, where n < d and the parametric components are sparse. To remedy

this issue, we apply the truncated tensor power method to M̂ so as to leverage the sparsity,

which is analyzed in Sun et al. [2017]. Specifically, in each iteration, after a standard power

iteration, we first truncate the vector based on the top s̄ absolute values of the current iterate,

and then normalize the truncated iterate. This modification is given formally in (10). The

overall algorithm is presented for completeness in Algorithm 2.

Note that the tensor power methods described in Algorithms 1 and 2 involve post-processing

in the form of clustering. Furthermore, the success of the algorithms also hinges on the quality

of initialization, since the objective function of tensor decomposition is nonconvex. We now

discuss about these two crucial steps needed for the recovery of parametric components.
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Algorithm 2 Truncated Power Method for Overcomplete Sparse Tensor Decomposition

Input: Moment tensor M̂ ∈ Rd×d×d, number of initializations L, number of iterations N ,

rank k, and sparsity s̄.

for τ = 1, . . . L do

Initialize using unit vectors v̂
(0)
τ

for t = 0, . . . , N − 1 do

Perform a power iteration step

ṽ(t)
τ =

M̂(I, v̂
(t−1)
τ , v̂

(t−1)
τ )

‖M̂(I, v̂
(t−1)
τ , v̂

(t−1)
τ )‖2

Apply truncation to ṽ
(t)
τ and then do normalization

v̂(t)
τ =

ϑs̄(ṽ
(t)
τ )

‖ϑs̄(ṽ(t)
τ )‖2

(10)

end for

end for

Cluster the {v̂(N)
τ }τ∈[L] into k clusters using the method in Algorithm 3

Output: The k cluster centroids as {β̂j}j∈[k] when M̂ = M̂1 and as {θ̂j}j∈[k] when M̂ = M̂2

Clustering. Notice that in both Algorithms 1 and 2, the final step is a clustering procedure of

the L solution vectors {v̂τ}τ∈[L] (we drop the superscript based on N here to avoid notational

clutter). The main idea behind this clustering step is to estimate the k components based on

using the most correlated vectors from {v̂τ}τ∈[L] as initialization in the power method. The

clustering procedure is outlined in Algorithm 3.

Initialization. Obtaining a good initial point, satisfying the condition of required for the

theoretical results in §3 is a challenging task. In theory, provably good initialization could be

obtaining based on unfolding and singular value decompositions when k ≤ cd where c is an

arbitrary constant. In practice, it has been observed in several works [Anandkumar et al.,

2014a, Sun et al., 2017] that random initialization works well even in the overcomplete setting.

However, obtaining a theoretical statement quantifying this observation has remained elusive

so far. We note that, even with random initialization, the number of initialization L needs to

be set for both Algorithm 1 and 2.
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Algorithm 3 Clustering Step for (Truncated) Tensor Power Method

Input: M̂ ∈ Rd×d×d, the set S = {v̂τ , τ ∈ [L]}.
for j = 1, . . . , k do

Find v̂ = argmax
v∈S

|M̂ � (v ⊗ v ⊗ v)|

Perform N iterates of (9) (resp. (9) and (10)) for low-dimensional setting (resp. high-

dimensional setting) with v̂ as the initial point. Denote the final update as v̂j.

Remove all v̂τ ∈ S such that ‖v̂τ ± v̂‖2 ≤ 0.5

end for

Output: The k cluster centroids {v̂j}j∈[k].

3 Main Results

In this section, we state our main result for estimating the parameters {β∗j }j∈[k] and {θ∗j}j∈[k]

of the two models in Definitions 1 and 2 respectively. Our proofs consists of two parts. We first

leverage a deterministic results (i.e., results deterministic up to randomness in the algorithm’s

initialization) concerning the convergence of tensor power method (resp. truncated tensor

power method) from Anandkumar et al. [2014b] (resp. from Sun et al. [2017]). Specifically,

for the low-dimensional case, such a deterministic convergence result relates the statistical

performances of the estimators constructed by Algorithm 1 to ‖M̂ − E[Y · S3(X)]‖op, where

M̂ = M̂1 and Y = h1(Z) for the discordant SIMs, and M̂ = M̂2 and Y = h2(Z) for mixture

of SIMs. Similarly, for the high-dimensional setting, the deterministic result in Sun et al.

[2017] bounds the statistical error of the estimators in Algorithm 2 by ‖M̂ −E[Y ·S3(X)]‖op,r.

Our major contribution in this work is obtaining high-probability concentration bounds for

both ‖M̂ − E[Y · S3(X)]‖op and ‖M̂ − E[Y · S3(X)]‖op,r, which might be of interest to other

models estimated using method-of moments. Compared to the matrix concentration results,

obtaining concentration results for higher-order tensors are significantly challenging. The main

difficulty is obtaining sharp concentration bounds for certain polynomial functions of random

variables, that enables one to leverage the ε-netting combined with union bound argument.

We refer the reader to the proofs in §A for the details. Before we state and discuss our main

results, we first outline the assumptions we make in this work, which can be classified into

two types that correspond to the probabilistic and deterministic parts of our proof. While

the probabilistic assumptions are the same for both the low- and high-dimensional cases, the
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deterministic assumptions on the parameters vary for the low and high-dimensional settings.

Assumption 1 (Probabilistic Assumptions). For the discordant SIMs in Definition 1 and

mixture SIMs in Definition 2, we assume that the following conditions are satisfied.

1.1 Noise Assumption. The noise ε1, . . . , εk are such that the response Y is a sub-exponential

random variable with ‖Y ‖ψ1 ≤ Ψ, where Y = h1(Z) for discordant SIMs and Y = h2(Z)

for mixture of SIMs.

1.2 Covariate Assumption. The covariate X ∼ N(0, Id) is a Gaussian random vector.

1.3 Regularity Assumption. Recall that we define {γ∗j }j∈[k] in Lemma 1. For discordant

SIMs, we assume that there exists γmax, γmin > 0 such that {γ∗j /k}j∈[k] ⊆ [γmin, γmax]. In

addition, for mixture SIMs, we assume that {γ∗j · πj}j∈[k] ⊆ [γmin, γmax].

The assumption that Y is sub-exponential is a substantially weaker condition allowing for

potentially heavy-tailed noise. Relaxing this assumption would incur a significant loss in the

rates of convergence of ‖M̂ −E[Y ·S3(X)]‖op and ‖M̂ −E[Y ·S3(X)]‖op,r, which consequently

leads to slower rates of convergence for estimating the parameters {β∗j }j∈[k] and {θ∗j}j∈[k]. The

assumption that X has i.i.d Gaussian entries could be relaxed to the case of X ∈ N(0,Σ)

with a well-conditioned Σ. Such an assumption is standard in several works on estimating

functionals of covariance matrices; see for example [Cai et al., 2016]. We do not explicitly

concentrate on the relaxed assumption so as to highlight the main message of the paper in

a simpler setting. Relaxing the assumption on X further to non-Gaussian distributions is

rather delicate, which is further discussed in §6. Roughly in this setting, either more structure

should be enforced on the parameters, or more information about the density of X must be

known. We now state our results for the low and high-dimensional setting in Subsections 3.1

and 3.2 respectively.

3.1 Low-dimensional Results

We first characterize the statistical rate of convergence for β̂j and θ̂j in the low-dimensional

setting. As mentioned previously, in order to obtain the estimation rates stated in Theorem 5,

we require concentration bounds on ‖M̂1−E[h1(Z) ·S3(X)]‖op and ‖M̂2−E[h2(Z) ·S3(X)]‖op.

We state the result below.
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Theorem 4. Note that we define tensors M̂1 and M̂2 in (7) and (8), respectively. Under

Assumption 1, when n · d is sufficiently large, with probability at least 1− exp(−2d), we have

∥∥M̂1 − E[h1(Z) · S3(X)]
∥∥

op
≤ K max

(√
d

n
,
d5/2

n

)
(11)

where K is an absolute constants. The same bound holds for
∥∥M̂2 − E[h2(Z) · S3(X)]

∥∥
op

.

The above theorem, establishes concentration of M̂1 − E[h1(Z) · S3(X)] and M̂2 − E[h2(Z) ·
S3(X)] in tensor operator norm. The proof of the above theorem is involved and is deferred

to the appendix. We now proceed to state the results for estimation error. In order to do

so, apart from Assumption 1, we make the following deterministic assumptions on the true

parameters {β∗j }j∈[k] and {θ∗j}j∈[k] corresponding to the two models in §2. In what follows,

absolute constants are denoted by C or K indexed with a subscript. The values of the

constants may change from line to line.

Assumption 2 (Low-dimensional Deterministic Assumptions). Let U = [u1, · · · , uk] ∈ Rd×k

be a matrix with vectors {uj}j∈[k] ⊆ Rd as its columns. We introduce the following two

conditions on {uj}j∈[k], which are assumed to be satisfied by both {β∗j }j∈[k] and {θ∗j}j∈[k].

2.1 Incoherence condition. There exist absolute constants C0 and C1 such that

ψ = max
i 6=j
|u>i uj| ≤ C0/

√
d and ‖U‖op ≤ 1 + C1

√
k/d.

2.2 Overcompleteness. The number of SIM, k = o(d3/2).

The incoherence assumption is a standard condition in the literature on high-dimensional

statistics literature [Donoho and Huo, 2001, Donoho et al., 2006] and is particularly common

for theoretical analysis of tensor decomposition [Anandkumar et al., 2014a,b, Sun et al., 2017].

It is a relaxation of more restrictive orthogonality condition and allows for a much broader

class of parameter vectors in the DAIM models we consider. Relaxing such an assumption is

significantly harder and may lead to inefficient estimation rates. Furthermore, to characterize

the performance of our estimator, note that β∗j and θ∗j are unidentifiable in the DAIM since

fj in (1) is unknown. Thus, for two vectors u1 and u2, we use

d(u1, u2) = min
{
‖u1 − u2‖2, ‖u1 + u2‖2

}
(12)
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to measures the distance between u1 and u2 up to sign-flips, which is used to evaluate the

performance of the estimator. Additionally, we define the following two parameters that

characterize the rates of convergence and the requirement for initialization respectively:

%(M̂, γ) =
2
√

5

γmin

∥∥M̂ − E[Y · S3(X)]
∥∥

op
+

2
√

5C1γmax

γmin

√
kψ2,

%0(γ) = min

[√
γmin

6γmax

,
γmin

4γmax

− C1

√
k

d
,

γmin

4
√

5C2γmax

− 2C0

C2

√
d

(
1 + C1

√
k

d

)2]
.

Note that in the above definition, Y = h1(Z) when M̂ = M̂1 and Y = h2(Z) when M̂ = M̂2.

With the above notation, we now state our theorem for estimation rates.

Theorem 5 (Rates in Low-dimensions). For discordant SIMs in Definition 1 and mixture

SIMs in Definition 2, let {β̂j}j∈[k] and {θ̂j}j∈[k] be the estimators returned by Algorithm 1 with

M̂1 and M̂2 as inputs, respectively. Under Assumptions 1 and 2, we assume the number of

iterations satisfy N1 ≥ C3 log{γmin/[γmax · %(M̂1, γ)]} and N2 ≥ C4 log{γmin/[γmax · %(M̂2, γ)]}
for M̂1 and M̂2 are used respectively. Then with probability tending to 1, for any j ∈ [k], we

have

d(β̂j, β
∗
j ) ≤

2
√

5

γmin

[
K max

(√
d

n
,
d5/2

n

)]
+

2
√

5C1γmax

√
kψ2

γmin

(13)

as long as the initialization β̂
(0)
τ satisfies respectively d(β̂

(0
τ , θ∗j ) ≤ %0(γ). The same results also

holds for d(θ̂j, θ
∗
j ) as long as the corresponding initialization satisfies d(β̂

(0
τ , β∗j ) ≤ %0(γ).

Proof. The proof of the theorem follows immediately by combining the statements of Theorem

1 in Anandkumar et al. [2014b] and part (a) of Theorem 4 on tensor norm concentration,

proved in Appendix A.4.

Remark 6. The above theorem has two terms that characterize the rates of convergence of β̂j

to β∗j and θ̂j to θ∗j . The first term in (13) is essentially the error of estimating the third-order

moment tensors in (6) using the empirical tensors in (7) and (8). Moreover, such a estimation

error has different behaviors in the low-sample regime (n ≤ d4) and in the high-sample regime

(n ≥ d4). Specifically, in the low-sample regime, the rate is dominated by the slower d5/2/n

term; whereas in the high-sample regime it is dominated by the faster rate
√
d/n. Hence, with

big data, the statistical rate of convergence can be much faster. In addition, the second term in

(13) could be interpreted as the approximation error term, which arises from the analysis of the
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tensor power method for overcomplete tensor decomposition [Anandkumar et al., 2014b]. The

incoherence condition in Assumption 2 leads to the constraint that k = o(d3/2) for consistency.

This essentially controls the level of overcompleteness in the model for consistent estimation

of the parameters.

Finally, we note that in the context of mixture of generalized linear models, Sedghi

et al. [2016] presented a theorem on statistical rates of convergence for a related estimator.

Unfortunately, the presented rates are highly sub-optimal in comparison and no proofs are

provided.

3.2 High Dimensional Results

Similar to the low-dimensional setting, we now present sparse tensor operator norm bounds

that are required to obtain the estimation error rates in the high-dimensional setting.

Theorem 7. Under Assumption 1, when n · d is sufficiently large, with probability at least

1− 8 exp[−3r log(d)], we have

∥∥M̂1 − E[h1(Z) · S3(X)]
∥∥

op,r
≤ K max

{√
r log(d)

n
,
[r log(d)]5/2

n

}
(14)

where r is a positive integer (typically much less than d) and K is an absolute constant. The

same bound also holds for
∥∥M̂2 − E[h2(Z) · S3(X)]

∥∥
op,r

.

The proof of the above theorem is deferred to the appendix. We now state the following

deterministic assumption on the parametric components required in the high-dimensional

setting.

Assumption 3 (High-dimensional Deterministic Assumptions). Let {uj}j∈[k] be a set of

vectors in Rd and let U = [u1, · · · , uk] be the matrix with the vectors as its columns. The

following three conditions on {uj}j∈[k] are assumed to hold for both {β∗j }j∈[k] and {θ∗j}j∈[k].

1. Sparsity. The vectors uj has at most s non-zero entries, i.e., ‖u∗j‖0 ≤ s for any j ∈ [d].

2. Incoherence condition. There exist absolute constants C5 and C6 such that

ψ = max
i 6=j
|u>i uj| ≤ C5/

√
s and ‖U‖op ≤ 1 + C6

√
k/s.
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3. Overcompleteness. The number of mixture components k = o(d3/2).

While the form of the incoherence and overcompleteness conditions are same as in the low-

dimensional setting, we additionally assume that the parametric components are s-sparse.

Estimation in this setting corresponds to decomposing the moment tensors in (6) into sparse

factors. For this problem, Sun et al. [2017] proposed a sparse tensor power method for such a

decomposition, outlined in Algorithm 3. We now state the main result of this section based

on the notations below. Analogous to the low-dimensional setting, we define

φ(M̂, γ) =
2
√

5

γmin

‖M̂ − E[Y · S3(X)]‖op,(s+s̄) +
2
√

5C6γmax

γmin

√
kψ2,

φ0(γ) = min

[
γmin

6γmax

− C6

√
k

s
,

γmin

4
√

5C7γmax

− 2C5

C7

√
s

(
1 + C6

√
k

s

)2 ]
,

where Y = h1(Z) when M̂ = M̂1 and Y = h2(Z) when M̂ = M̂2. Now we are ready to state

the estimation rates for the high-dimensional setting.

Theorem 8 (Rates in High-dimensions). For the two models in Definitions 1 and 2, let

{β̂j}j∈[k] and {θ̂j}j∈[k] be the estimators returned by Algorithm 2 with M̂1 and M̂2 as inputs,

respectively. Under Assumptions 1 and 3, we assume the number of iterations satisfy N ≥
C8 log(φ0(γ)/φ(M̂1, γ)) and N ≥ C9 log(φ0(γ)/φ(M̂2, γ)) for M̂1 and M̂2 are used respectively.

Then with probability tending to 1, for any j ∈ [k], d(β̂j, β
∗
j ) is upper bounded by

2
√

5

γmin

(
K3 ·max

{[
(s+ s̄) log(d)

n

]1/2

,
[(s+ s̄) log(d)]5/2

n

})
+

2
√

5C1γmax

√
kψ2

γmin

as long as the initialization β̂
(0)
τ satisfies d(β̂

(0
τ , θ∗j ) ≤ φ0(γ). The same bound also holds for

d(θ̂j, θ
∗
j ) as long as the corresponding initialization satisfies d(β̂

(0
τ , β∗j ) ≤ φ0(γ).

Proof. The proof of the theorem follows immediately by combining the statements of Theorem

3.6 in Sun et al. [2017] and our result on sparse tensor concentration in Theorem 7, proved

in Appendix A.5.

Remark 9. Similar to the low-dimensional case, in Theorem 8, the first two terms in the

statistical rate characterizes the error of estimating the moment tensors in (6) using the

empirical tensors in (7) and (8). Thanks to the sparsity assumption, such an estimation error

depends only poly-logarithmically on dimensionality d. Indeed, if we pick s̄ = Θ(s), then the
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estimation error is predominantly controlled by a polynomial in s/n. Similar to the previous

case, the estimation error has different behaviors in the low-sample regime (n ≤ s4) and in

the high-sample regime (n ≥ s4). Up to poly-logarithmic terms in d, in the low-sample regime,

the rate of convergence is dominated by the slower s5/2/n term and in the high sample regime

it is dominated by
√
s/n. Recall that in the low-dimensional case, the sample complexity

and the rate of convergence are crucially dependent on d and hence is not feasible for the

high-dimensional situations. Indeed in the high-dimensional setting our estimator leverages

the structural sparsity assumption, as is commonly done in the literature on high-dimensional

statistics, to get a milder dependence on the dimensionality.

Remark 10. As discussed in §2, our theoretical results in both §3.1 and §3.2 are detailed for

the case of third-order moment tensor decompositions (i.e., ` = 3). It is indeed possible to easily

extend our results for general `-th order decomposition. In this case, the overcompleteness

assumption could be relaxed to k = o(d`/2) allowing for a wider class of parametric components.

Indeed this comes at the cost of requiring more samples to estimate a higher-order moment

tensor accurately. Specifically, for the estimation error, one would obtain

max

(√
d

n
,
d(`+2)/2

n

)
and max

(√
(s+ s̄) log(d)

n
,
[(s+ s̄) log(d)](`+2)/2

n

)
respectively in Theorem 5 and 8. In order to obtain the above rates, the main modification

required is to re-derive the concentration result in Lemma 3 for this setting. Seen from the

proof of this lemma in §A.2, for the `-th order moments, we could similarly construct i.i.d.

sub-Gaussian random variables and apply Theorem 11 to obtain the desired concentration

results.

4 Numerical Experiments

In this section, we evaluate the finite-sample performances of the proposed estimators via

numerical simulations. Without loss of generality, we only present the results for the discordant

SIMs in Definition 1; the performance of mixture of SIMs are similar. We consider both the

low- and high-dimensional settings. Throughout the experiments, for the k latent single index

models Z = {Zj = fj(〈β∗j , X〉, εj)}j∈[k], we set the link functions to be the same for simplicity.

Specifically, for any j ∈ [j], we let fj(u, v) = h(u) + v, where h : R→ R is one of the following
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three univariate functions:

h1(u) = u3 + 10 · exp(−u2) (15)

h2(u) = u3 + 5 · sin(2 · u2)

h3(u) = u3 + 10 · tanh(u2).

In addition, we let {εj}j∈[k] be i.i.d. Gaussian random variables with mean zero and variance

1/k, and set X ∼ N(0, Id). Finally, for the low-dimensional case, the signal parameters

{β∗j }j∈[k] are generated as follows. We let {vj}j∈[k] be k orthornormal vectors in Rd and let

{ej}j∈[k] be k i.i.d. N(0, Id) random vectors. Then we define each β∗j by vj +κ ·ej/‖vj +κ ·ej‖2,

where κ > 0 is a small constant chosen such that the signal parameters satisfy the incoherence

condition given in Assumption 2. In addition, for the high-dimensional case, note that the

signal parameters has s nonzero entries. We first generate s incoherent vectors, denoted by

{uj}j∈[s] ⊆ Rs, in the same fashion as in the low-dimensional setting. Let m = dk/se. We

generate m disjoint subsets R1, . . . ,Rm of [d] with cardinality r randomly. For any j ∈ [k],

suppose j can be written as j = pm+ q where p, q ≥ 0 and q < m. Then we let the support

of β∗j be Rp+1, and let it be uq+1 when restricting on the support. One could easily verify

that {β∗j }j∈[k] defined in this way satisfy Assumption 3.

Furthermore, in the low-dimensional setting, for all the experiments, we set d = 20,

k ∈ {3, . . . , 7}, and let n vary. Let {β̂j}j∈[k] be the final estimators returned by Algorithm

1 with the input moment tensor M̂ given in (7). We set the number of initializations and

iterations to be L = 200 and N = 300, respectively. We access the estimation performance

by computing maxj∈[k]{d(β̂j, β
∗
j )}, where the distance function d is defined in (12). In Figure

1, we plot the estimation error against the inverse signal strength max{
√
d/n, d5/2/n} for all

the three link functions in (15), based on 100 independent trials for each (n, d, k). As shown

in Theorem 5, the estimation error is bounded by a linear function of max{
√
d/n, d5/2/n}.

Moreover, the slope of this linear function does not depends on n, d, or k, and the intercept is

bounded by C ·
√
k ·ψ2 for some constant C > 0, where ψ is the incoherence parameter defined

in (3.2). As shown in Figure 1, all the curves of estimation errors are below a straight line with

positive slope and intercept, which corroborates the statistical rates in the low-dimensional

settings established in Theorem 8.

Similarly, in the high-dimensional regime, we set d = 100, s ∈ {3, 4, 5}, k ∈ {3, . . . , 7},
and let n vary. In this case, we also report the estimation error maxj∈[k]{d(β̂j, β

∗
j )}, where
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{β̂j}j∈[k] are the output of Algorithm 2 with the input moment tensor M̂ given in (7). For

the hyperparameters of Algorithm 2, we set L = 100, N = 200, and s̄ = 3s in all experiments,

where s̄ is the parameter of the truncation step. Moreover, as suggested by Theorem 8,

we define the inverse signal strength by max{
√
s log d/n, (s log d)5/2/n}, which reflects the

theoretical estimation accuracy. We plot the estimation error against the inverse signal

strength in Figure 2. As shown in the figures, the estimation errors are all bounded by a

linear function of the inverse signal strength and are not sensitive to the choice of k, which

is suggested by Theorem 8. Specifically, the three plots in the first row correspond to the

results for s = 3, and the case of s = 4 and s = 5 are reported in the second and last row

respectively. The three columns correspond to link functions h1, h2, and h3, respectively.
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(a) h1(u) = u3 + 10 · exp(−u2) (b) h2(u) = u3 + 5 · sin(2 · u2), (c) h3(u) = u3 + 10 · tanh(u2)

Figure 1: Plots of the estimation error maxj∈[k]{d(β̂j , β∗j )} against the inverse signal strength

max{
√
d/n, d3/2/n}, in which {β̂j}j∈[k] are the output of Algorithm 1 with the input moment tensor

M̂ defined in (7). The link function is one of h1, h2, and h3 in (15). The three columns correspond

to h1, h2, and h3, respectively. Moreover, we set d = 20, k ∈ {3, . . . , 7}, and let n vary. We generate

each figure based on 100 independent trials for each (n, d, k).

5 Related Work

To the best of our knowledge, there is no related work on the general DAIM considered in

this work apart from linear correspondence retrieval [Andoni et al., 2017]. Mixture models

are a popular class of models in the literature to handle heterogeneity, with applications to

regression [Chaganty and Liang, 2013, Zhong et al., 2016], classification [Jacobs et al., 1991,

Sun et al., 2014, Sedghi et al., 2016] and clustering [McLachlan and Peel, 2004, Verzelen
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(a) h1(u) = u3 + 10 · exp(−u2) (b) h2(u) = u3 + 5 · sin(2 · u2), (c) h3(u) = u3 + 10 · tanh(u2)

Figure 2: Plots of the estimation error maxj∈[k]{d(β̂j , β∗j )} against the inverse signal strength

max{
√
s log d/n, (s log d)5/2/n} are the output of Algorithm 1 with the input moment tensor M̂

defined in (7). The link function is one of h1, h2, and h3 in (15). Moreover, we set d = 100,

s ∈ {3, 4, 5}, k ∈ {3, . . . , 7}, and let n vary. We generate each figure based on 100 independent trials

for each (n, d, s, k).

et al., 2017, Zhao et al., 2017]. In terms of estimation, most of the above works focus on

the parametric and/or low-dimensional setting. In comparison, handling heterogeneity in a

high-dimensional and completely nonparametric setting is much more challenging. Recently,

a mixture of nonparametric regression model was analyzed by Huang et al. [2013]. A related

technique of modal regression was also analyzed by Chen et al. [2016]. Both methods are

based on kernel smoothing techniques. While being completely nonparametric, they also
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suffer from the curse of dimensionality and are not applicable in the overcomplete setting. An

interesting comprise is offered by the semiparametric single index model that we study in this

work and described in detail in §2. Such a model is popular in the econometrics literature and

in particular allows us to deal with the overcomplete high-dimensional setting efficiently. The

recent work of Xiang and Yao [2016] also proposed a similar model in the low-dimensional

setting. But they do not address the statistical and computational issues associated with

estimation in such models and their estimation procedure is not applicable in the overcomplete

high-dimensional setting we consider. Furthermore, recall that our estimators are based on

decomposing certain higher-order moment tensors. In the recent past, several works have

proposed the use of tensor decomposition techniques for estimation in several parametric latent

variable models apart from the ones cited above. Apart from mixture models for prediction,

such techniques have also been used for estimating means of a Gaussian mixture model [Hsu

and Kakade, 2013, Anandkumar et al., 2014a], for estimating community membership in

mixed membership models [Anandkumar et al., 2013], estimating the parametric components

in generalized linear model [Sedghi et al., 2016] and hidden-layer neural networks [Zhong et al.,

2017, Mondelli and Montanari, 2018] and tensor sketching [Hao et al., 2018]. While being

related, those works essentially consider parametric latent variable models in low-dimensional

settings and are not suitable to the cases with unknown links or model misspecification that

we consider. Furthermore, several works have also concentrated on coming up with faster

algorithm for tensor decomposition in general (see for example the recent work of Ge and

Ma [2017] and the references there in). We remark that any such algorithmic advances could

be directly applicable to the model that we consider.

6 Discussion

In this work, we propose moment-based estimators for estimating the parametric components

of overcomplete discordant additive index models, in both low and high-dimensional setting.

Our models are motivated by sampling and heterogeneity issues common in high-dimensional

big data paradigm. Our estimators are based on using tensor power method to decompose

certain higher-order moment tensors. We establish statistical rate of convergence for our

estimators. Numerical results are provided to corroborate the theoretical results.

We conclude the paper with a discussion of two future directions. While the main focus
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of the paper was on estimating the parametric components of the model in (1), one can use

the estimated parametric components to obtain the nonparametric components as well as a

second step, using the idea of errors in variable additive index model [Fan and Truong, 1993,

Liang et al., 1999, Carroll et al., 2006]. Next, in this paper we mainly considered the case

of Gaussian covariates. Using the score based version of Stein’s identity [Stein et al., 2004],

assuming knowledge of the density of X, our methods could be extended to non-Gaussian

covariates. A potential issue is the score function might be heavy-tailed. Recently Yang et al.

[2017] proposed a method for dealing with heavy-tailed score functions but it is not clear

how to extend their approach for the overcomplete setting. Furthermore, using the zero-bias

transformation version of Stein’s identity and assuming a stringent structure on the parameter

vectors β∗j , similar estimation rates with sub-Gaussian covariates could be obtained. Relaxing

the Gaussian assumption, without additional assumption on either the covariates or on the

parameter vectors seems to be a much harder task that we plan to address in the near future.

A Proofs of Main Results

In this section, we first provide the proofs of moment bounds, concentration bounds and net

argument used to obtained the tensor concentration results. Before we proceed, we recall the

definition of the ψ1-norm and ψ2-norm for a random variable X:

‖X‖ψ1 = sup
p≥1

{
p−1 ·

(
E|X|p

)1/p} ‖X‖ψ2 = sup
p≥1

{
p−1/2 ·

(
E|X|p

)1/p}
. (16)

Such norms are closely associated with the notion of sub-Gaussian and sub-exponential random

variables that are standard in the literature on high-dimensional statistics; we refer the reader

to [Vershynin, 2010] for a detailed discussion on such random variables and associated results.

A.1 Moment Bounds

Lemma 2. Let {Aj}j∈[m] ⊆ R be m sub-exponential random variables. Let Φ = maxj∈[m] ‖Aj‖ψ1,

then m−1
∑

j∈[m] Aj is a sub-exponential random variable with ψ1-norm bounded by Φ.

Proof. For simplicity, let B = m−1
∑

j∈[m] Aj . By the definition of ψ1-norm, we bound E(|B|p)

22



for any p ≥ 1. By the triangle inequality and the AM-GM inequality, we have

E(|B|p) ≤ 1

mp

∑
j1,j2,...,jp

E
(
|Aj1Aj2 · · ·Ajp |

)
(17)

≤ 1

mp · p
∑

j1,j2,...,jp

[
E(|Aj1|p) + . . .+ E(|Ajp |p)

]
, (18)

where (17) follows from the triangle inequality, and (18) follows from the GM-AM inequality.

Moreover, since ‖Aj‖ψ1 ≤ Ψ for any j ∈ [m], we have

E(|Aj|p) ≤ (p · Φ)p, for any p ≥ 1. (19)

Thus, combining (17), (18), and (19), we obtain that p−1 · [E(|B|p)]1/p ≤ Φ for any p ≥ 1, i.e.,

‖B‖ψ1 ≤ Φ. Therefore, we conclude Lemma 2.

A.2 Concentration Results

Since the response Y in the additive index model is sub-exponential, we also need to consider

concentration results involving sub-exponential random variables. For convenience of the

reader, we first briefly recall the present a result on the concentration of polynomial functions

of sub-Gaussian random vectors in Adamczak and Wolff [2015], which is applied in Lemma 3

below. Recall that, X is sub-Gaussian if its ψ2-norm is bounded.

Moreover, in the following, we introduce a norm for tensors, which will be used in the

concentration results. Let ` ∈ N+ be a positive integer. We denote by P` the set of its

partitions of [`] into non-empty and non-intersecting disjoint sets. Moreover, let A = (ai)i∈[n]`

be a tensor of order-`, whose entries are of the form

ai = ai1,i2,...,i` , where i = (i1, i2, . . . , i`).

Finally, let J = {J1, . . . , Jk} ∈ P` be a fixed partition of [`], where Jj ⊆ [`] for each j ∈ [k].

Let |J | denote the cardinality of the J , which is equal to k. We define a norm ‖ · ‖J by

‖A‖J = sup

{ ∑
i∈[n]`

ai

k∏
j=1

x
(j)
iJj

:
∥∥x(j)

∥∥
2
≤ 1,x(j) ∈ Rn|Jj | , 1 ≤ j ≤ k

}
, (20)

where we write iI = (ik)k∈I for any I ⊆ [`] and the supremum is taken over all possible k

vectors {x(1), . . . ,x(k)}. Here each x(j) in (20) is a vector of dimension n|Jj | with Euclidean
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norm no more than one. Suppose Jj = {t1, t2, . . . , tα} ⊆ [`], then the iJj -th entry of x(j) is

x
(j)
iJj

= x
(j)
it1 ,it2 ,...,itα

.

The norm defined in (20) is a generalization of some commonly seen vector and matrix

norms. For example, when ` = 1, (20) is reduced to the Euclidean norm of vectors in Rn. In

addition, let A ∈ Rn×n be a matrix, then J is a partition of {1, 2}, which implies that J is

either {[2]} or {{1}, {2}}. By the definition in (20), we have

‖A‖{[2]} = sup

{∑
i,j∈[n]

aijxij :
∑
ij∈[n]

x2
ij ≤ 1

}
= ‖A‖F ,

which recovers the matrix Frobenius norm. Moreover, when J = {{1}, {2}}, we have

‖A‖{1},{2} = sup

{∑
i,j∈[n]

aijxiyj :
∑
i∈[n]

x2
i ≤ 1,

∑
j∈[n]

y2
j ≤ 1

}
= ‖A‖op,

which is the operator norm of A. Based on the norm ‖ · ‖J defined in (20), we introduce a

concentration result for polynomials of sub-Gaussian random vectors, which is a simplified

version of Theorem 1.4 in Adamczak and Wolff [2015].

Theorem 11 (Theorem 1.4 Adamczak and Wolff [2015]). Let X = (X1, . . . , Xn) ∈ Rn be

a random vector with independent components. Moreover, we assume that such that for all

i ∈ [n], we have ‖Xi‖ψ2 ≤ Υ, where the ψ2-norm is defined in (16). Then for every polynomial

F : Rn → R of degree L, we have:

P
(∣∣F (X)− E[F (X)]

∣∣ ≥ t
)
≤ 2 exp

[
−KL · ηF (t)

]
,

where the univariate function ηF (t) is given by

ηF (t) = min
1≤`≤L

min
J∈P`

[
t

Υ` ·
∥∥E[D`F (X)]

∥∥
J

]2/|J |

. (21)

Here ‖ · ‖J is defined in (20), ‖ · ‖p is the `p-norm of a random variable, and D`F (·) is the

`-th derivative of F , which is takes values in the `-th order tensors.

Based on this theorem, we are ready to introduce a concentration inequality for the

product of two sub-exponential random variables. This inequality might be of independent

interest.
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Lemma 3. Let {(Xi, Yi)}i∈[n] be n independent copies of random variables X and Y . We

assume that X is a sub-Gaussian random variable with ‖X‖ψ2 ≤ Υ1, and Y is a sub-

exponential random variable with ‖Y ‖ψ1 ≤ Υ2 for some constants Υ1 and Υ2. Here the ψ1-

and ψ2-norms are defined in (16). Then for any t ≥ K ·max{Υ3
1,Υ1} ·Υ2, we have

P
{∣∣∣∣ 1n

n∑
i=1

[
X3
i · Yi − E(X3Y )

]∣∣∣∣ ≥ t

}

≤ 4 exp

{
−K1 ·min

[(
t√

nΥ3
1 ·Υ2

)2

,

(
t

Υ3
1 ·Υ2

)2/5]}
, (22)

P
{∣∣∣∣ 1n

n∑
i=1

[
Xi · Yi − E(XY )

]∣∣∣∣ ≥ t

}

≤ 4 exp

{
−K2 ·min

[(
t√

nΥ1 ·Υ2

)2

,

(
t

Υ1 ·Υ2

)2/3]}
. (23)

Here K, K1 and K2 are absolute constants.

Proof. We first establish (22). For any i ∈ [n], we define a random variable A+
i as the positive

part of X3
i · Yi and let A−i be the negative part. That is, we let A+

i = X3
i Yi · 1{X3

i · Yi ≥ 0}
and A−i = A+

i −X3
i · Yi. By these definitions, we have X3

i · Yi = A+
i − A−i . In the following,

we establish upper bounds for

P
(∣∣∣∣ 1n

n∑
i=1

A+
i − E(A+

i )

∣∣∣∣ ≥ t

)
and P

(∣∣∣∣ 1n
n∑
i=1

A−i − E(A−i )

∣∣∣∣ ≥ t

)
(24)

for any t ≥ K ·Υ3
1 ·Υ2, where K > 0 is some absolute constant that will be specified later.

Note that, by symmetry, it suffices to bound the first term in (24). Our proof utilizes the

concentration inequality for polynomials of sub-Gaussian random variables, which is given in

Theorem 11. To proceed, we first define n random variables Zi = ηi|A+
i |1/5 for i ∈ [n], where

{ηi}i∈[n] are n independent Rademacher random variables. We show that {Zi}i∈[n] are n i.i.d.

sub-Gaussian random variables. Notice that by definition, we have |Zi| = |A+
i |1/5 ≤ |X3

i ·Yi|1/5.
By Hölder’s inequality, for any integer p ≥ 1, we have

E(|Zi|p) ≤ E
(
|Xi|3p/5 · |Yi|p/5

)
≤
[
E(|Xi|3p/2)

]2/5 · [E(|Yi|p/3)
]3/5

. (25)

In addition, by the definition of the ψ2-norm, we have

E(|Xi|3p/2) ≤
(√

3p/2 · ‖X‖ψ2

)3p/2 ≤ (3p/2)3p/4 ·Υ3p/2
1 , (26)
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where we use the fact that ‖X‖ψ2 ≤ Υ1. Similarly, for Yi, by the definition of the ψ1-norm,

we have

E
(
|Yi|p/3

)
≤
(
p/3 · ‖Yi‖ψ1

)p/3 ≤ (p/3)p/3 ·Υp/3
2 , (27)

where Υ2 is an upper bound for ‖Y ‖ψ1 . Combining (25), (26), and (27), we obtain[
E(|Zi|p)

]1/p ≤ [(3p/2)3p/10 · (p/3)p/5 ·Υ3p/5
1 ·Υp/5

2

]1/p
(28)

≤
√

3p/2 ·Υ3/5
1 ·Υ1/5

2 .

Hence, by the definition of ψ2-norm and (28), we have

‖Zi‖ψ2 = sup
p≥1

{
p−1/2

[
E(|Zi|p)

]1/p} ≤√3/2 ·Υ3/5
1 ·Υ1/5

2 , (29)

which implies that Zi is a sub-Gaussian random variable with ψ2-norm bounded by a constant

depending on Υ1 and Υ2.

In the rest of the proof of (22), we establish a concentration inequality for {Z5
i }i∈[n]. To

apply Theorem 11, we let f(u) = u5 and define F : Rn → R by F (z) =
∑n

i=1 f(zi). Then by

definition, the high-order derivatives of F are diagonal tensors whose only nonzero entries

are diagonal. Specifically, for any ` ∈ [5] and any i1, i2, . . . , i` ∈ [n], we have[
D`F (z)

]
i1,...,i`

= 1{i1 = i2 = · · · = i`} · f (`)(zi1),

where z is an arbitrary vector in Rn. To simplify the notation, for any a1, . . . , an ∈ R, we

denote by diag`{a1, . . . , an} the `-th order diagonal tensor with diagonal entries a1, a2, . . . , an.

Using this notation, for any ` ∈ [5], we can write

D`F (z) = diag`
[
f (`)(z1), . . . , f (`)(zn)

]
. (30)

Moreover, for diagonal tensors, the norm ‖ · ‖J defined in (20) have simple forms. For any

a ∈ Rn and any integer ` ≥ 1, we have

‖diag`{a1, . . . , an}‖J = 1{|J | = 1} · ‖a‖2 + 1{|J | ≥ 2} · ‖a‖max. (31)

In addition, note that |f (`)(u)| ≤ 5! · |u|5−` for any u ∈ R. For i.i.d. random variables {Zi}i∈[n],

we define Z = (Z1, . . . , Zn)>. Combining (30) and (43), we obtain∥∥E[D`F (Z)]
∥∥
J = 1{|J | = 1} ·

√
n ·
∣∣E[f (`)(Z1)]

∣∣+ 1{|J | ≥ 2}
∣∣E[f (`)(Z1)]

∣∣. (32)
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Now we are ready to apply Theorem 11. The function ηF (t) defined in (21) now becomes

ηF (t) = min
`∈[5]

min
J∈P`

{
t · ‖Z1‖−`ψ2

·
∥∥E[D`F (Z)]

∥∥−1

J

}2/|J |
. (33)

Note that the tail probability in Theorem 11 is equal to exp[−K · ηF (t)], where K is an

absolute constant. To upper bound this term, in the sequel, we establish an lower bound

for ηF (t). We first establish an upper bound for
∥∥E[D`F (Z)]

∥∥
J . Since f(u) = u5, we have

|f `(u)| ≤ 5! · |u|5−`. Thus, by (32) we have∥∥E[D`F (Z)]
∥∥
J ≤ 5! ·

(
1{|J | = 1} ·

√
n+ 1{|J | ≥ 2}

)
· E
(
|Z1|5−`

)
.

Note that Z1 is a sub-Gaussian random variable. By the definition of ψ2-norm in (16), we

have E(|Z1|k) ≤ (
√
k)k · ‖Z1‖kψ2

for any k ≥ 0, where we follow the convention by letting

00 = 1. Therefore, by (32) we have∥∥E[D`F (Z)]
∥∥
J

≤ 25 ·
(√

5− `
)5−` ·

(
1{|J | = 1} ·

√
n+ 1{|J | ≥ 2}

)
· ‖Z1‖5−`

ψ2
, (34)

for any ` ∈ [5]. We denote C` = 25 · (5− `)(5−`)/2 to simplify the notation, which is an absolute

constant. Now we combine (33) and (34) to obtain

‖Z1‖`ψ2
·
∥∥E[D`F (Z)]

∥∥
J ≤ C` ·

(
1{|J | = 1} ·

√
n+ 1{|J | ≥ 2}

)
· ‖Z1‖5

ψ2
.

Plugging this inequality in (33), we have

ηF (t) ≥ min
`∈[5]

{
min

[(
t/
√
n · C−1

` ‖Z1‖−5
ψ2

)2
, min

2≤|J |≤`

(
t · C−1

` ‖Z1‖−5
ψ2

)2/|J |
]}
.

When t > C` · ‖Z1‖5
ψ2

for any ` ∈ {2, . . . , 5}, we simplify the above inequality by

ηF (t) ≥ min
{

min
`∈[5]

[(
t/
√
n · C−1

` ‖Z1‖−5
ψ2

)2
]
, min

2≤`≤5

[(
t · C−1

` ‖Z1‖−5
ψ2

)2/`
]}

= min
{(
t/
√
n · C̃−1

0 ‖Z1‖−5
ψ2

)2
, min

2≤`≤5

[(
t · C−1

` ‖Z1‖−5
ψ2

)2/`
]}
, (35)

where we define C̃0 = max`∈[5] C`. Note that the ψ2-norm of Z1 is bounded in (29), which

implies

C` · ‖Z1‖5
ψ2
≤ K ·Υ3

1 ·Υ2 (36)
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for all ` ∈ [5], where K is some absolute constant. We denote the term on the right-hand side

of (36) by KΥ for simplicity.

Thus, combining (35) and (36), we have

ηF (t) ≥ min
{[
t/(
√
n ·KΥ)

]2
, min

2≤`≤5
(t/KΥ)2/`

}
.

When t ≥ KΥ, we have

ηF (t) ≥ min
{[
t/(
√
n ·KΥ)

]2
, (t/KΥ)2/5

}
. (37)

Plugging (37) in Theorem 11, since |Zi|5 = |A+
i | = A+

i , when t ≥ 2KΥ, we obtain

P
[∣∣∣∣ n∑

i=1

A+
i − E(A+

i )

∣∣∣∣ ≥ t/2

]
≤ 2 exp

[
−C · ηF (t/2)

]
≤ 2 exp

(
−C min

{[
t/(2
√
n ·KΥ)

]2
, [t/(2KΥ)]2/5

})
, (38)

where C is an absolute constant that does not rely on Υ1 and Υ2. Similarly, for A−i , using

the same analysis, we obtain that

P
[∣∣∣∣ n∑

i=1

A−i − E(A−i )

∣∣∣∣ ≥ t/2

]
≤ 2 exp

(
−C min

{[
t/(2
√
n ·KΥ)

]2
, [t/(2KΥ)]2/5

})
. (39)

Note that |a− b| ≥ t implies that |a| ≥ t/2 or |b| ≥ t/2 for any a, b ∈ R and t > 0. Combining

(38) and (39), we finally obtain

P
[∣∣∣∣ n∑

i=1

X3
i · Y − E(X3 · Y )

∣∣∣∣ ≥ t

]
≤ P

[∣∣∣∣ n∑
i=1

A+
i − E(A+

i )

∣∣∣∣ ≥ t/2

]
+ P

[∣∣∣∣ n∑
i=1

A−i − E(A−i )

∣∣∣∣ ≥ t/2

]

≤ 4 exp

{
−K1 ·min

[(
t√

nΥ3
1 ·Υ2

)2

,

(
t

Υ3
1 ·Υ2

)2/5]}
, (40)

where K1 is an absolute constant. Note that, by (36), here we require t ≥ K · Υ3
1 · Υ2 for

some constant K. Thus, we establish (22).

To conclude the proof of this lemma, it remains to show (23). The proof is similar to the

derivations above. Now, for any i ∈ [n], we define B+
i and B−i as the positive and negative

parts of Xi · Yi, respectively. Then we have Xi · Yi = B+
i −B−i by definition.
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We first establish a concentration inequality for {B+
i }i∈[n]. To utilize Theorem 11. To pro-

ceed, we first define Zi = ηi|B+
i |1/3 for i ∈ [n], where {ηi}i∈[n] are n independent Rademacher

random variables. Then we show that {Zi}i∈[n] are n i.i.d. sub-Gaussian random variables.

For any integer p ≥ 1, Hölder’s inequality implies that

E(|Zi|p) ≤ E
(
|Xi|p/3 · |Yi|p/3

)
≤
[
E(|Xi|p/2)

]2/3 · [E(|Yi|p)
]1/3

. (41)

Moreover, since ‖X‖ψ2 ≤ Υ1 and ‖Y ‖ψ1 ≤ Υ2, by the definition of the ψ2- and ψ1-norms, we

have

E(|Xi|p/2) ≤
(√

p/2 · ‖X‖ψ2

)p/2 ≤ (p/2)p/4 ·Υp/2
1 , (42)

E(|Yi|p) ≤
(
p · ‖Yi‖ψ1

)p ≤ pp ·Υp
2.

Thus, combining (41) and (42), we obtain[
E(|Zi|p)

]1/p ≤ [(p/2)p/6 · pp/3 ·Υ2p/3
1 ·Υp/3

2

]1/p ≤ √p ·Υ1/3
1 ·Υ1/3

2 ,

which implies that ‖Zi‖ψ2 ≤ Υ
1/3
1 ·Υ1/3

2 . Thus, Zi is a sub-Gaussian random variable with

ψ2-norm bounded by Υ
1/3
1 ·Υ1/3

2 .

To prove (23), we establish a concentration inequality for {Z3
i }i∈[n]. Similar to the pervious

case, we let f(u) = u3 and define F : Rn → R by F (z) =
∑n

i=1 f(zi). By this construction,

for any ` ∈ {1, 2, 3}, the `-th order derivative of F is given by

D`F (z) = diag`
[
f (`)(z1), . . . , f (`)(zn)

]
. (43)

Note that here D`F (z) has the same form as (30). Similar to (34), we have

‖Z1‖`ψ2
·
∥∥E[D`F (Z)]

∥∥
J

≤ 3! ·
(√

3− `
)3−` ·

(
1{|J | = 1} ·

√
n+ 1{|J | ≥ 2}

)
· ‖Z1‖3

ψ2

≤ K ·
(
1{|J | = 1} ·

√
n+ 1{|J | ≥ 2}

)
·Υ1 ·Υ2, (44)

where K is a constant that does not depend on Υ1 and Υ2. Moreover, by (44), for any t

satisfying t ≥ K ·Υ1 ·Υ2, the function ηF (t) defined in (21) can be lower bounded by

ηF (t) = min
`∈[3]

min
J∈P`

{
t · ‖Z1‖−`ψ2

·
∥∥E[D`F (Z)]

∥∥−1

J

}2/|J |

s ≥ min
{[
t
/

(
√
n ·KΥ1Υ2)

]2
,
[
t
/

(KΥ1Υ2)
]2/3}

. (45)
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Note that |Zi|3 = |B+
i | = B+

i . Plugging (45) in Theorem 11, for any t satisfying t ≥ 2K ·Υ1 ·Υ2,

we have

P
[∣∣∣∣ n∑

i=1

B+
i − E(B+

i )

∣∣∣∣ ≥ t/2

]
≤ 2 exp

[
−C · ηF (t/2)

]
≤ 2 exp

(
−C min

{[
t/(2
√
n ·KΥ1Υ2)

]2
, [t/(2KΥ1Υ2)]2/3

})
, (46)

where C is an absolute constant that is does not reply on Υ1 and Υ2. Similarly, using the

same analysis, we obtain a similar concentration inequality for {B−i }i∈[n]:

P
[∣∣∣∣ n∑

i=1

B−i − E(B−i )

∣∣∣∣ ≥ t/2

]
≤ 2 exp

(
−C min

{[
t/(2
√
n ·KΥ1Υ2)

]2
, [t/(2KΥ1Υ2)]2/3

})
. (47)

Therefore, combining (46) and (47), we finally obtain that

P
[∣∣∣∣ n∑

i=1

Xi · Y − E(X · Y )

∣∣∣∣ ≥ t

]
s

≤ 4 exp
(
−K2 ·min

{[
t/(2
√
n ·Υ1Υ2)

]2
, [t/(2Υ1Υ2)]2/3

})
(48)

where K2 is an absolute constant. Note that here we require t ≥ K ·Υ1Υ2 for some absolute

constant K > 0. Therefore, combining (40) and (48), we conclude the proof of Lemma 3.

A.3 Net Argument for Tensor Operator Norm

In this section, we prove the ε-net argument for tensor operator norm. The ε-net argument is

a standard technique for bounding the operator norm of matrices, whereas its construction is

relatively more involved in the tensor case.

In the sequel, for generality, we focus on `-th order tensors in Rd. For any `-th order tensor

A ∈ Rd⊗`, the operator norm of A is given by

‖A‖op = sup
{∣∣A(u(1), . . . , u(`))

∣∣ : u(1), u(2), . . . , u(`) ∈ Sd−1
}
, (49)

where Sd−1 is the unit sphere in Rd. In addition, for any r ∈ [d], we define the r-sparse subset

of Sd−1 as

Sd−1(r) =
{
u ∈ Rd : ‖u‖2 = 1, ‖u‖0 ≤ r

}
. (50)
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Then the sparse tensor norm of A is defined by

‖A‖op,r = sup
{∣∣A(u(1), . . . , u(`))

∣∣ : u(1), u(2), . . . , u(`) ∈ Sd−1(r)
}
. (51)

Moreover, for any set E ⊆ Rd, we say N is an ε-net for E , if for any u ∈ E , there exists v ∈ N
such that ‖u− v‖2 ≤ ε. Then we are ready to present the ε-argument for `-th order tensors,

which is given in the following lemma.

Lemma 4 (ε-net argument for tensors). For any ε ∈ (0, 1/`), let NS(ε) and NS(ε, r) be the

ε-nets of Sd−1 and Sd−1(r), respectively. Then for any `-th order tensor A ∈ Rd⊗`, we have

‖A‖op ≤ (1− ` · ε)−1 · sup
{∣∣A(u(1), . . . , u(`))

∣∣ : {u(j)}j∈[`] ⊆ NS(ε)
}
, (52)

‖A‖op,r ≤ (1− ` · ε)−1 · sup
{∣∣A(u(1), . . . , u(`))

∣∣ : {u(j)}j∈[`] ⊆ NS(ε, r)
}
. (53)

Moreover, when A is a symmetric tensor, we further have

‖A‖op ≤ (1− ` · ε)−1 · sup
u∈NS(ε)

∣∣A(u, u, . . . , u)
∣∣, (54)

‖A‖op,r ≤ (1− ` · ε)−1 · sup
u∈NS(ε,r)

∣∣A(u, u, . . . , u)
∣∣. (55)

Note that our Lemma 4 covers the ε-argument for matrices by setting ` = 2. In this case,

we have

‖A‖op = sup
x,y∈Sd

x>Ay ≤ (1− 2ε)−1 sup
x,y∈NS(ε)

x>Ay,

which is the Lemma 5.4 in Vershynin [2010].

Proof of Lemma 4. In the following, we first prove the results for ‖ · ‖op. Let A ∈ Rd⊗` be a `-

th order tensor. By the definition of the tensor spectral norm, there exist u(1), . . . , u(`) ∈ Sd−1

such that ‖A‖op = A(u(1), . . . , u(`)). Moreover, for any j ∈ [`] , there exists v(j) ∈ NS(ε)
such that ‖u(j) − v(j)‖2 ≤ ε. In the following, we prove tbound the difference between

A(u(1), . . . , u(`)) and A(v(1), . . . , v(`)). To simplify the notation, we define δ(j) = u(j) − v(j) by

and let δ̄(j) = δ(j)/‖δ(j)‖2 for all j ∈ [`]. By triangle inequality, we have∣∣A(u(1), . . . , u(`))− A(v(1), . . . , v(`))
∣∣

≤
∣∣A(u(1), . . . , u(`))− A(u(1), . . . , u(`−1), v(`))

∣∣
+
∣∣A(u(1), . . . , u(`−1), v(`))− A(v(1), . . . , v(`))

∣∣. (56)
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For the first term on the right-hand side of (56), we have∣∣A(u(1), . . . , u(`))− A(u(1), . . . , u(`−1), v(`))
∣∣ =

∣∣A(u(1), . . . , u(`−1), δ(`))
∣∣

=
∣∣A(u(1), . . . , u(`−1), δ̄(`))

∣∣ · ‖δ(`)‖2 ≤ ‖δ(`)‖2 · ‖A‖op,

where the last inequality follows from the the definitions of ‖A‖op. Similarly, for the second

term, we have∣∣A(u(1), . . . , u(`−1), v(`))− A(v(1), . . . , v(`))
∣∣

≤
∣∣A(u(1), . . . , u(`−1), v(`))− A(u(1), . . . , u(`−2), v(`−1), v(`))

∣∣
+
∣∣A(u(1), . . . , u(`−2), v(`−1), v(`))− A(v(1), . . . , v(`))

∣∣
≤ ‖δ(`−1)‖2 · ‖A‖op +

∣∣A(u(1), . . . , u(`−2), v(`−1), v(`))− A(v(1), . . . , v(`))
∣∣.

Continuing the same argument, we finally obtain that∣∣A(u(1), . . . , u(`))− A(v(1), . . . , v(`))
∣∣

≤
(
‖δ(1)‖2 + . . .+ ‖δ(`)‖2

)
· ‖A‖op ≤ ` · ε · ‖A‖op, (57)

where the last inequality follows from the definition of NS(ε). Thus, by triangle inequality,

we have

|A(v(1), . . . , v(`))| ≥
∣∣A(u(1), . . . , u(`))

∣∣− ∣∣A(u(1), . . . , u(`))− A(v(1), . . . , v(`))
∣∣

≥ (1− ` · ε) · ‖A‖op,

which proves (52). Moreover, when A is a symmetric tensor, we could choose u(1) = u(2) =

. . . = u(`) = u ∈ Sd−1 and v(1) = v(2) = . . . = v(`) = v ∈ NS(ε) such that ‖A‖op = A(u, . . . , u)

and ‖u− v‖2 ≤ ε. Then by (57) we have

|A(v, . . . , v)| ≥
∣∣A(u, . . . , u)

∣∣− ∣∣A(u, . . . , u)− A(v, . . . , v)
∣∣

≥
(
1− ` · ‖u− v‖2

)
· ‖A‖op ≥ (1− ` · ε) · ‖A‖op,

which concludes (54). Following the same argument with Sd−1 and NS(ε) replaced by Sd−1(r)

and NS(ε, r), respectively, we also have (53) and (55). Thus, we conclude the proof.
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A.4 Proof of Theorem 4

In this section, we present the proof of Theorem 4. Since the results for M̂1 and M̂2 are

established using similar techniques, in the following, we first present a detailed proof of the

bound on ‖M̂2 − E[h2(Z) · S3(X)]‖op, then prove the other part by showing the differences.

Upper bound for ‖M̂2 − E[h2(Z) · S3(X)]‖op. First note that by the definition of third

order score function S3 in (5), we have M̂2 = T̂1 + T̂2, where M̂2 is given in (8), and we define

T̂1 and T̂2 respectively by

T̂1 =
1

n

n∑
i=1

Y (i) ·X(i) ⊗X(i) ⊗X(i), (58)

T̂2 =
1

n

n∑
i=1

d∑
j=1

Y (i) ·
(
X(i) ⊗ ej ⊗ ej + ej ⊗X(i) ⊗ ej + ej ⊗ ej ⊗X(i)

)
, (59)

where Y (i) = h2(Z(i)) is the response of of the mixture of SIMs. Note that we have

E(M̂2) = E[h2(Z) · S3(X)] =
k∑
j=1

γ∗j · θ∗⊗3
j ,

where the second equality follows from Lemma 1. By the triangle inequality, we have∥∥M̂2 − E(M̂2)
∥∥

op
≤
∥∥T̂1 − E(T̂1)

∥∥
op

+
∥∥T̂2 − E(T̂2)

∥∥
op
. (60)

In the sequel, we upper bound the two terms on the right-hand of (60) separately.

First, since T̂1 and T̂2 defined in (58) and (59) are symmetric tensors, the definition of

tensor operator norm in (49) yields that∥∥T̂1 − E(T̂1)
∥∥

op
= sup

u∈Sd−1

{∣∣∣T̂1(u, u, u)− E
[
T̂1(u, u, u)

]∣∣∣}, (61)

where Sd−1 = {u ∈ Rd : ‖u‖2 = 1} is the unit sphere in Rd. Similar to showing the concen-

tration of random matrices, our derivation consists of two steps. In the first step, we firstly

apply the ε-net argument for tensor operator norm. Then we bound the concentration of

|T̂1(u, u, u)− E[T̂1(u, u, u)]| for any fixed u ∈ Sd−1 and apply a union bound over the ε-net.

To begin with, let NS(ε) be the ε-net of the unit sphere Sd−1 for any ε ∈ (0, 1). We now

appeal to Lemma 4, which shows that taking the supremum in (61) over NS(1/6) instead of
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Sd−1 only incurs a small error. Specifically, we apply Lemma 4 with ` = 3, and ε = 1/6 to T̂1

to obtain ∥∥T̂1 − E(T̂1)
∥∥

op
≤ 2 sup

u∈NS(1/6)

{∣∣∣T̂1(u, u, u)− E
[
T̂1(u, u, u)

]∣∣∣}. (62)

In the next step, we derive a concentration inequality for T̂1(u, u, u) with fixed u ∈ Sd−1,

and apply a union bound of NS(1/6) to conclude the proof.

By the definition of T̂1 in (58), we have we have

T̂1(u, u, u) =
1

n

n∑
i=1

Y (i) · (X(i)>u)3.

By Assumption 1, {Y (i)}i∈[n] are i.i.d. sub-exponential random variables with ψ1-norm bounded

by Ψ. Moreover, since {X(i)}i∈[n] are i.i.d. N(0, Id) random vectors, X(i)>u are independent

standard Gaussian random variables for each u ∈ Sd−1. Thus ‖X(i)>u‖ψ2 ≤ Υ0 where Υ0 is a

constant. To bound |T̂1(u, u, u)− E[T̂1(u, u, u)]|, we apply (22) in Lemma 3 to obtain that

P
{∣∣∣T̂1(u, u, u)− E

[
T̂1(u, u, u)

]∣∣∣ ≥ t/n
}

≤ 4 exp
(
−K1 ·min

{
[t/(
√
nΥ3

0 ·Ψ)]2, [t/(Υ3
0 ·Ψ)]2/5

})
, (63)

where K1 is a constant. Moreover, this inequality holds for any t ≥ C1 ·Υ3
0 ·Ψ, where C1 is a

constant. Since both Ψ and Υ0 are constants, we can rewrite (63) as

P
{∣∣∣T̂1(u, u, u)− E

[
T̂1(u, u, u)

]∣∣∣ ≥ t/n
}

≤ 4 exp
[
−C̃ ·min

(
t2/n, t2/5

)]
, (64)

where C̃ is a constant depending on Υ0 and Ψ. Based on (64), we take a union bound over

NS(1/6). As shown in Lemma 5.2 in Vershynin [2010], the capacity of NS(ε) is bounded by

(1 + 2/ε)d for any ε ≥ 0. Thus we have |NS(1/6)| ≤ 13d, which implies that

P
(

sup
u∈NS(1/6)

{∣∣∣T̂1(u, u, u)− E
[
T̂1(u, u, u)

]∣∣∣} ≥ t/n

)
≤ 4 exp

[
−C̃ ·min

(
t2/n, t2/5

)
+ log 13 · d

]
, (65)

Now we set C̃ ·min(t2/n, t2/5) = 6d. Note that C̃ is a constant. Solving the equation for t

yields that

t = K1/2 ·max
(√

nd, d5/2
)

(66)
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for some constant K1 depending on Ψ and Υ0. Note that (63) holds for t ≥ C1 ·Υ3
0 ·Ψ. Thus,

we require that nd ≥ (2C1/K1)2 ·Υ6
0 ·Ψ2. In this case, t defined in (66) satisfies (65).

Finally, combining (62), (65), (66), we conclude that∥∥T̂1 − E(T̂1)
∥∥

op
≤ K1 ·max

(√
d/n, d5/2/n

)
(67)

holds with probability at least 1− 4 exp(−3d).

Moreover, for T̂2 defined (59) and any u ∈ Sd−1, we have

T̂2(u, u, u) =
3

n

n∑
i=1

Y (i) ·
d∑
j=1

(X(i)>u) · (u>ej)2

=
3

n

n∑
i=1

Y (i) · (X(i)>u) ·
d∑
j=1

u2
j =

3

n

n∑
i=1

Y (i) · (X(i)>u),

where the last equality holds since ‖u‖2 = 1. Note that Y (i) and (X(i)>u) are sub-exponential

and sub-Gaussian random variables, respectively, with ‖X(i)>u‖ψ2 ≤ Υ0 and ‖Y ‖ψ1 ≤ Ψ. By

(23) in Lemma 3, we have

P
{∣∣∣T̂2(u, u, u)− E

[
T̂2(u, u, u)

]∣∣∣ ≥ t/n
}

≤ 4 exp
(
−K2 ·min

{
[t/(
√
nΥ0 ·Ψ)]2, [t/(Υ0 ·Ψ)]2/3

})
, (68)

where K2 > 0 is a constant. Note that (68) holds for any t ≥ C1 ·Υ0Ψ. Then we take a union

bound for all u ∈ NS(1/6) in (68) to obtain that

P
(

sup
u∈NS(1/6)

{∣∣∣T̂2(u, u, u)− E
[
T̂2(u, u, u)

]∣∣∣} ≥ t/n

)
≤ 4 exp

[
−C̃ ·min

(
t2/n, t2/3

)
+ log 13 · d

]
, (69)

where C̃ is a constant depending on Υ0 and Ψ. Similar to (66), setting C̃ ·min(t2/n, t2/3) = 6d

implies that

t = K2/2 ·max
(√

nd, d3/2
)

(70)

for some constant K2. When nd ≥ (2C1/K2)
2 · Υ2

0 · Ψ2, t defined in (70) satisfies that

t ≥ C1 ·Υ0Ψ, which implies that (69) holds for such a t. Finally, combining (69) and (70),

we obtain ∥∥T̂2 − E(T̂2)
∥∥

op
≤ K2 ·max

(√
d/n, d3/2/n

)
(71)
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with probability at least 1− 4 exp(−3d). Then combining (67) and (71), since d5/2 > d3/2, we

conclude that ∥∥M̂2 − E[h2(Z) · S3(X)]
∥∥

op
≤ K ·max

(√
d/n, d5/2/n

)
(72)

holds with with probability at least 1 − 8 exp(−3d), where the constant K in (72) can be

chosen to be K1 +K2. When d is sufficiently large such that exp(d) ≥ 8, we conclude that (72)

holds with probability at least 1−exp(−2d). Recall that we require nd ≥ C ·max{Υ6
1,Υ

2
1} ·Ψ2

for some constant C > 0, which holds when n and d are sufficiently large.

Upper bound for ‖M̂1 − E[h1(Z) · S3(X)]‖op. To conclude the proof, it remains to bound

‖M̂1−E[h1(Z) · S3(X)]‖op. For notational simplicity, we denote h1(Z(i)) = k−1
∑

j∈[k] Z
(i)
j by

W (i) for any i ∈ [n]. Then by (7), we can write M̂1 =
∑n

i=1W
(i) · S3(X(i)) = T̂3 + T̂4, where

we define T̂3 and T̂4 respectively by

T̂3 =
1

n

n∑
i=1

W (i) ·X(i) ⊗X(i) ⊗X(i),

T̂4 =
1

n

n∑
i=1

d∑
j=1

W (i) ·
(
X(i) ⊗ ej ⊗ ej + ej ⊗X(i) ⊗ ej + ej ⊗ ej ⊗X(i)

)
.

We note that here the T̂3 and T̂4 is defined in the same fashion as T̂1 and T̂2 defined in (58)

and (59) with {Y (i)}i∈[n] replaced by {W (i)}i∈[n]. Then triangle inequality implies that∥∥M̂1 − E[h1(Z) · S3(X)]
∥∥

op
≤
∥∥T̂3 − E(T̂3)

∥∥
op

+
∥∥T̂4 − E(T̂4)

∥∥
op
. (73)

Moreover, by Assumption 1, we have ‖Zj‖ψ1 ≤ Ψ for each j ∈ [k]. We appeal to Lemma 2 to

obtain that ‖h1(Z)‖ψ1 ≤ Ψ, which implies that ‖W (i)‖ψ1 ≤ Ψ for any i ∈ [n]. Thus, following

the same derivation for (72) with Y (i) replaced by W (i) for all i ∈ [n], we obtain that∥∥M̂1 − E[h1(Z) · S3(X)]
∥∥

op
≤ K ·max

(√
d/n, d5/2/n

)
. (74)

with probability at least 1− exp(−2d). Here the constant K in (74) can be set as K1 +K2,

where K1 and K2 are given in (66) and (70), respectively. Finally, combining (72) and (74),

we conclude the proof of Theorem 4.

A.5 Proof of Theorem 7

The proof of Theorem 7 is similar to that of Theorem 4. Recall that we define W (i) =

k−1
∑

j∈[k] Z
(i)
j , whose ψ1-norm is bounded by Ψ. Using the similar argument as in Theorem 4,
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we only need to consider M̂2; the result for M̂1 follows similarly by replacing Y (i) by W (i) for

all i ∈ [n].

Moreover, recall that we define T̂1 and T̂2 in (58) and (59), respectively, which satisfy

M̂2 = T̂1 + T̂2. For any r ∈ [d], by the definition of ‖ · ‖op,r in (3) and the triangle inequality,

we have ∥∥T̂ − E(T̂ )
∥∥

op,r
≤
∥∥T̂1 − E(T̂1)

∥∥
op,r

+
∥∥T̂2 − E(T̂2)

∥∥
op,r

. (75)

In the sequel, we bound the two terms on the right-hand side of (75) separately.

We first bound ‖T̂1−E(T̂1)‖op,r. Let NS(ε, r) be the ε-net of Sd−1(r) = {u ∈ Sd−1 : ‖u‖0 ≤
r}. We apply the ε-net argument for ‖ · ‖op,r. By Lemma 4 with ` = 3 and ε = 1/6, we have∥∥T̂1 − E(T̂1)

∥∥
op,r
≤ 2 sup

u∈NS(1/6,r)

{∣∣∣T̂1(u, u, u)− E
[
T̂1(u, u, u)

]∣∣∣}. (76)

Note that for any u ∈ Sd−1, (64) gives an upper bound of the tail probability

P
{∣∣∣T̂1(u, u, u)− E

[
T̂1(u, u, u)

]∣∣∣ ≥ t/n
}
.

Based on (64) , we take a union bound over NS(1/6, r). The cardinality of NS(1/6, r) satisfies

∣∣NS(1/6, r)
∣∣ ≤ (d

r

)
· 13s ≤ (13ed/r)r. (77)

Combining (64) and (77), we have

P
(

sup
u∈NS(1/6,r)

{∣∣∣T̂1(u, u, u)− E
[
T̂1(u, u, u)

]∣∣∣} ≥ t/n

)
≤ 4 exp

[
−C̃ ·min

(
t2/n, t2/5

)
+ r · log(13ed/r)

]
, (78)

where C̃ is a constant. Setting C̃ ·min(t2/n, t2/5) = 7r · log(d/r). Note that C̃ is a constant.

Solving the equation for t yields that

t = K3/2 ·max
{√

rn · log(d/r), [r · log(d/r)]5/2
}

(79)

for some constant K3 depending on Ψ and Υ0. Finally, combining (76), (78), (79), we conclude

that ∥∥T̂1 − E(T̂1)
∥∥

op,r
≤ K3 ·max

{[
r log(d/r)

n

]1/2

,
[r log(d/r)]5/2

n

}
(80)
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with probability at least 1− 4 exp[−3r · log(d/r)].

It remains to bound ‖T̂2−E(T̂2)‖op,r. Following the similar argument, by taking an union

bound over NS(ε, r) using the concentration inequality in (63), we have

P
(

sup
u∈NS(1/6)

{∣∣∣T̂2(u, u, u)− E
[
T̂2(u, u, u)

]∣∣∣} ≥ t/n

)
≤ 4 exp

[
−C̃ ·min

(
t2/n, t2/3

)
+ r · log(13ed/r)

]
, (81)

Now we set C̃ ·min(t2/n, t2/3) = 7r · log(d/r) in (81), which implies that

t = K4/2 ·max
(√

nd, d3/2
)

(82)

for some constant K4. Finally, combining (81) and (82), we obtain that

∥∥T̂2 − E(T̂2)
∥∥

op,r
≤ K4 ·max

{[
r log(d/r)

n

]1/2

,
[r log(d/r)]3/2

n

}
(83)

with probability at least 1− 4 exp[−3r · log(d/r)].

Moreover, note that r log(d/r) ≤ log d and r log d ≥ 1. Therefore, combining (80) and

(83), we conclude that, with probability at least 1− 8 exp[−3r · log d], we have

∥∥M̂2 − E[h1(Z) · S3(X)]
∥∥

op,r
≤ K ·max

{(
r log d

n

)1/2

,
(r log d)5/2

n

}
, (84)

where K = K3 +K4. Thus we conclude the proof for M̂2. Finally, we recall that the bound

on ‖M̂1−E[h1(Z) · S3(X)]‖op,r can be derived in the similar fashion as (84) by replacing Y (i)

by W (i) for each i ∈ [n]. Therefore, we conclude the proof of Theorem 7.
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