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Fig. 1. Surface flattening and area manipulation using a brain surface model. A brain surface extracted from MRI data with color
coded components with (a) a lateral view and (b) a medial view. The major brain folds are color coded for easy recognition. (c)
Conformal mapping result, and (d) our area-preservation mapping result. By comparison, our method accurately preserves the size
of the area for each fold component, while conformal mapping leads to severe area distortions (severely shrinking some brain folds
while enlarging others).

Abstract—We present a novel area-preservation mapping/flattening method using the optimal mass transport technique, based on
the Monge-Brenier theory. Our optimal transport map approach is rigorous and solid in theory, efficient and parallel in computation,
yet general for various applications. By comparison with the conventional Monge-Kantorovich approach, our method reduces the
number of variables from O(n2) to O(n), and converts the optimal mass transport problem to a convex optimization problem, which
can now be efficiently carried out by Newton’s method. Furthermore, our framework includes the area weighting strategy that enables
users to completely control and adjust the size of areas everywhere in an accurate and quantitative way. Our method significantly
reduces the complexity of the problem, and improves the efficiency, flexibility and scalability during visualization. Our framework, by
combining conformal mapping and optimal mass transport mapping, serves as a powerful tool for a broad range of applications in
visualization and graphics, especially for medical imaging. We provide a variety of experimental results to demonstrate the efficiency,
robustness and efficacy of our novel framework.

Index Terms—Area-preservation mapping, surface flattening, optimal transport map, Monge-Brenier theory, visualization and graph-
ics applications

1 INTRODUCTION
1.1 Motivation

With the fast generation of large and complex data nowadays, it is
desirable to develop new frameworks aiming at generating a visual-
ization of the entire data needed for navigation, detection, exploration
and a global understanding of selected objects or regions of interest
(ROIs). Complex geometric structures are often better visualized and
analyzed by mapping the surface properties, such as normal map, an-
gle, or area, to a simple canonical domain, such as a rectangle or a
sphere. Surface flattening and texture mapping offer a good way of vi-
sualizing a surface section by enabling the visualization of all surface
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parts within a single planar image.
In general, surface flattening and texture mapping unavoidably in-

troduces distortions. There are two types of distortions, angle distor-
tion and area distortion. A mapping, which is both angle preservation
and area preservation, must be isometric. Therefore, the surface must
have zero Gaussian curvature everywhere, namely a developable sur-
face or a ruled surface. For general surfaces, one can only choose
either angle-preservation mapping or area-preservation mapping, but
never both of them simultaneously.
Angle-preservation (conformal) mapping/surface flattening pre-

serves local shapes, and thus has been broadly used in many feature
oriented applications in visualization and medical imaging. However,
a conformal method usually substantially distorts area, thus failing to
display accurate size of area, including height, width, thickness or di-
ameter of ROIs. Unfortunately, these distorted area parameters are
extremely important in many medical image recognition and auto di-
agnosis applications, such as brain fold detection [10] or colon polyps
detection and diagnosis [15, 30]. Moreover, it is well known that
conformal mapping induces severe area distortions for surfaces with
long tube shapes, such as the elongated lion head model, as shown
in Fig. 2. This disadvantage derives from the fundamental obsta-
cle of conformal mapping theory and we can not easily overcome
it. Imagine a cylinder r(θ ,z) = (cosθ ,sinθ ,z), a conformal mapping
φ(θ ,z) = e−z(cosθ ,sinθ ) maps it to the unit disk, the area distortion
factor e−2z is exponential with respect to the height z, and in practice
easily exceeds the machine precision.
By comparison, area-preservation mapping can generate accurate

and information lossless mapping results, which is a key objective
for many medical imaging applications, with the ability to carry out
measurements for detecting anatomic abnormalities. For example, in
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virtual colonoscopy, the physician may want to measure and compare
different sizes of polyps, in order to determine disease conditions and
cancer risks [13]. A special case of this problem also occurs in any ap-
plication where volume or area measurement is critical (e.g., brain data
[10, 12, 37]). From human cognition perspective, area-preservation
mapping and flattening can also enhance the viewer’s ability to easily
recognize the component-aware patches or long branch parts distribu-
tion of models, and consequently understand the local feature with the
knowledge of a global structure (Fig. 2). Therefore, area-preservation
mapping has vast potentials for many visualization and graphics appli-
cations.
To simultaneously tackle the above challenges, we have developed a

flattening framework which provides a global view of the surface with
minimal area distortion, while, at the same time, maximally preserv-
ing local angle/shape features on the flattened surface. In this work,
we introduce our flattening framework using optimal mass transport
(OMT), based on Monge-Brenier theory [6].

1.2 Optimal Mass Transport

Our approach is inspired by the similarity between our mapping prob-
lem and the OMT problem. Monge [22] has raised the classical OMT
problem that concerns determining the optimal way, with minimal
transportation cost, to move a pile of soil from one place to another.
Formally, spaces X and Y are with measures μ and ν , respectively,
the transportation cost for moving from x ∈ X to y ∈ Y is c(x,y). The
optimal transport map T : X → Y is measure preserving, namely for
any B ⊂ Y , ν(B) = μ(T−1(B)), it minimizes the total transportation
cost

∫
X c(x,T (x))μ(x)dx. From OMT perspective, the surface map-

ping/flattening can be viewed as an optimal transport map T , and the
size of area can be viewed as the preserved measures μ and ν .
The solution of the OMT problem lies at the following theory. Kan-

torovich [16] has proved the existence and uniqueness of the optimal
transport plan. The Monge-Kantorovich optimization is as follows,
the space X and Y are discretized to samples X = {x1,x2, · · · ,xn}, Y =
{y1,y2, · · · ,yn}, with Dirac measures μ = {μi}, ν = {ν j}. A transport
plan is represented as n2 unknown variables γi j, ∑i γi j = ∑ j γi j = 1, γi j
represents the percentage of μi at xi, which is transported to y j . Then
the total transportation cost is a linear function ∑i j γi jc(xi,y j). Thus
the optimal transport plan can be solved using a linear programming
method on n2 variables.
Monge-Kantorovich optimization has been used in numerous fields

from physics, econometrics to computer science, including data com-
pression and image processing [23]. Recently, researchers have re-
alized that optimal transport could provide a powerful tool in image
processing, if one could reduce its high computational cost [10, 27].
However, it has one fundamental disadvantage that the number of vari-
ables isO(n2), which is unacceptable to visualization and graphics ap-
plications since a high resolution 3D/volume dataset normally includes
more than 106 vertices.
An alternative Monge-Brenier optimization can significantly reduce

the number of variables. Brenier [7] has developed a different ap-
proach for special optimal transport problem, where the cost func-
tion c(x,y) is a quadratic distance c(x,y) = ‖x− y‖2. Brenier’s theory
proves that there is a convex function u : X → R, and the unique op-
timal transport map is given by its gradient map, x→ gradu(x). The
Monge-Brenier’s approach reduces the unknown variables from n2 to
n, which greatly reduces the computational cost, and improves the ef-
ficiency. In our framework, we follow Monge-Brenier’s approach.

1.3 Area-PreservationMapping/Flattening

Texture mapping on arbitrary surfaces with minimal distortion can
preserve the local and global structure of the texture [36]. Dominitz
and Tannanbaum [10] have proposed a method to compose confor-
mal mapping with an area-preservation mapping, using the technique
of OMT, based on Monge-Kantorovich theory [16], which accurately
preserves the area element and also maximally preserves the angle.
Suppose we want to compute an area-preservation map from a metric
surface (S,g), where g is the Riemannian metric, to the planar disk D.

(a) (b)

(c) (d)

Fig. 2. Disadvantages of conformal mapping for elongated shapes. (a)
Front view and (b) back view of the elongated lion head surface model.
Surface flattening results induced by (c) conformal mapping and by (d)
our area-preservation mapping. Conformal mapping generates major
area distortions for both the lion face and the vase regions, while our
method preserves them accurately for clear view without losing any in-
formation (highlighted by the red circles).

The method starts with an angle preserving φ : S→ D, which intro-
duces area distortions on the disk; the area distortion factor is used to
define a measure on the disk, denoted as μ . Then, an optimal mass
transport map is computed between the disk with this measure and the
disk with the Euclidean measure dxdy, ψ : (D,μ)→ (D,dxdy). The
composition ψ ◦φ : S→ D gives the area-preservation map.
Their method is based on Monge-Kantorovich’s theory and ap-

proaches, which require n2 variables. For example, in image registra-
tion applications, a 1024× 1024 image would result in 240 variables,
the storage cost is thus very high, and the computation is extremely
expensive.
In contrast, we use Monge-Brenier’s approach to compute the opti-

mal transport map. Our discrete algorithm is solidly based on the vari-
ational principle [11]. Basically, we only discretize the target space Y ,
and find a convex function whose gradient gives the optimal transport
map. Finding the OMT is equivalent to optimizing a convex energy,
which can be efficiently achieved using Newton’s method. The whole
computation requires only n variables. Therefore, this method greatly
reduces the computation cost and improves the efficiency.

Our Contributions

The key contribution of this work is the introduction of a novel area-
preservation mapping/flattening algorithm using the optimal transport
technique, based on Monge-Brenier theory. The new method has the
following merits:

• It reduces the number of variables from n2 to n, greatly reducing
the complexity.

• It converts the optimal mass transport problem to a convex op-
timization problem, and can be solved using Newton’s method,
greatly improving the efficiency.

• The algorithm gives users full control of the size of area every-
where. Users can design and manipulate the area of each trian-
gular component freely, improving the flexibility.

2839ZHAO ET AL: AREA-PRESERVATION MAPPING USING OPTIMAL MASS TRANSPORT



The organization of this paper is as follows: In Section 2, we review
and discuss related work. In Section 3 and Section 4, we describe the
theory of our OMT optimization and sketch the analytical procedure
and algorithms to find the optimal mapping. We illustrate examples us-
ing our framework, discuss relevant implementation issues and present
distortion comparisons in Section 5. Finally, in Section 6, we summa-
rize our work as conclusion and propose some possible future research
directions.

2 RELATED WORK

We review the research projects on optimal mass transport that are
most relevant to our approach targeting both algorithms and applica-
tions, and discuss the comparisons with our framework.

Theoretic Development. In 1781, Monge [22] has formulated
the OMT problem. In the 1940’s, Kantorovich [16] has proved the ex-
istence and the uniqueness of the optimal transport plan. At the end
of 1980’s, Briener [7] has proved that the optimal transport map is the
gradient map of a convex function, when the transportation cost is the
quadratic of the Euclidean distance. In the discrete case, Brenier’s re-
sult is equivalent to the existence and the uniqueness of the convex
polyhedron with prescribed projected facet areas. This has been first
shown by Alexandroff [3] in 1920’s. Aurenhammer [4] has shown the
connection between Brenier’s construction and power diagram, where
the existence has been proven. Recently, the connection between the
discrete optimal transport map and the discrete Monge-Ampere equa-
tion, which is based on variational approach, has been given by Gu et
al. [11].

Monge-Kantorovich Approach. Most existing works are
based on Monge-Kantorovich approach. Bonnel et al. [5] have pro-
posed a method for interpolation between distributions or functions
based on advection instead of blending for rendering purposes. This
method decomposes distributions or functions into sums of radial ba-
sis functions (RBFs), then solves a mass transport problem to pair
the RBFs and applies partial transport to obtain the interpolated func-
tion. Rubner et al. [25] have proposed a content based image re-
trieval method using the earth mover distance as a metric for the OMT
problem. However, it fails to give a warped grid, an essential require-
ment for image registration and image morphing. Rehman et al. [27]
have listed several advantages of the OMT method for multiresolu-
tion 2D/3D nonrigid registration. Meanwhile, they stress the fact that
the optimization of OMT is computationally expensive and emphasize
that it is important to find efficient numerical methods to solve this
issue.

Monge-Brenier’s Approach. The following techniques are
based on Monge-Brenier’s approach. Merigot [21] has proposed a
multiscale approach to solve the optimal transport problem. To solve
an optimal transport problem between a measure with density μ to a
discrete measure ν , this method builds a sequence ν0 = ν, . . . ,νL of
simplifications. Then, it first solves the easier transport problem be-
tween μ and νL, and uses the solution of the problem to be the initial
guess for the optimal transport between μ and ν(L−1). This step is it-
erated until a solution to the original OMT problem. The method is
applied for computing the Wasserstein distances between probability
distributions, and for image interpolation. de Goes et al. [9] have pro-
vided an optimal transport driven approach for 2D shape reconstruc-
tion and simplification. They have further presented a formulation of
capacity constrained Voronoi tessellation as an optimal transport prob-
lem for image processing [8]. This method produces high quality blue
noise point sets with improved spectral and spatial properties. Com-
pared to our method, de Goes’s method only applies between 2D do-
mains while our method maps a 3D surface to a 2D domain. Our
method can further lead to a fast, scalable algorithm to generate high
quality blue noise point distributions of arbitrary density functions.

Minimal Flow Method. Tannenbaum group has introduced this
novel approach. The basic idea is to construct an initial mass preserva-
tion mapping, then deform the mapping such that the total transporta-
tion cost is reduced and the deformed mapping is still mass preserving.

Namely, it designs a gradient flow in the space of all mass preserva-
tion mapping space. Haker et al. [14] have presented a method for
image registration and warping based on the OMT. The method is pa-
rameter free and has the unique global optimum. However, its linear
programming of the optimal map can be solved with O(n2) variables,
which is prohibitively expensive when n is large. Zhu et al. [34] have
combined conformal mapping and area-preservation mapping for flat-
tening branched physiological surfaces, such as vessels. The optimal
transport map is carried using the minimal flow approach. Similar
method has been applied for image morphing [35]. Rehman et al. [27]
have applied the minimizing flow approach for the OMT with appli-
cations to non-rigid 3D image registration. The implementation also
employs multi-grid and parallel methodologies on a consumer graph-
ics processing unit (GPU) for fast computation. Although comput-
ing the optimal map has been shown to be computationally expensive
in the past, we show that our approach is orders of magnitude faster
than previous work. Dominitz and Tannenbaum [10] have proposed to
use the OMT for texture mapping. The method begins with an angle-
preservation mapping and then corrects it using the mass transport pro-
cedure derived via a certain gradient flow. A multiresolution scheme
is incorporated into the flow to obtain fast convergence to the opti-
mal mapping. Both methods require designing divergence free vector
fields to drive a diffeomorphic flow to minimize the energy.
Comparison. Our method mainly follows the Monge-Brenier

approach, based on the variational principle [11]. Comparing to the
state-of-the-art techniques, it has many merits as follows:

• Comparing to the Monge-Kantorovich approaches [5, 16, 27],
our method only requires O(n) variables. In contrast, Kan-
torovich approach requires O(n2) variables. Therefore, our
method greatly reduces the storage complexity, and it is thus
much more efficient.

• Comparing to the Monge-Brenier based approaches [8, 9, 21], all
the existing methods are for image processing tasks. Our method
however focuses on surfaces. For image processing, the samples
are relatively uniform, and therefore, the computation is rela-
tively stable. In our case, the sample points are produced by the
conformal mapping, the sample density is highly non-uniform,
and thus conventional methods are very vulnerable and error-
prone for the large area distortions induced by the conformal
mapping. Our experiments indicate that conventional methods
are not robust enough. Therefore, we have specially designed
our step length control algorithm (Section 4.2) to improve the
robustness.

• Comparing to the minizing flow methods [10, 14, 35], the solu-
tion of latter is equivalent to a gradient descend method for opti-
mizing the transportation cost. In contrast, our method is equiva-
lent to the Newton’s method to optimize a convex energy, which
has a higher order convergence rate. Therefore, our method is
more efficient.

3 THEORETICAL FOUNDATION
In this section, we present the theoretical foundation of our framework.

3.1 Optimal Mass Transport
Monge’s Problem. The problem of finding a map T minimizing

Eqn. 1 (such that ν = T#μ), has been first studied by Monge [6] in
the 18th century. Let X and Y be two metric spaces with probability
measures (volumes or areas) μ and ν , respectively. Assume X and Y
have equal total measures (volumes or areas):

∫
X

μ =
∫
Y

ν.

A map T : X → Y is measure preserving (volume or area preserva-
tion) if for any measurable set B⊂Y , such that:

μ(T−1(B)) = ν(B).
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Let us denote by c(x,y) the transportation cost for sending x ∈ X to
y ∈Y , then, the total transportation cost is given by:

∫
X
c(x,T (x))dμ(x). (1)

If this condition is satisfied, ν is said to be the push forward of μ by
T , and we write ν = T#μ .
In the 1940s, Kantorovich [16] has introduced the relaxation of

Monge’s problem and solved it using linear programming. At the
end of 1980’s, Brenier [7] has proved that there is a convex function
f :X→R, and the optimal mass transport map is given by the gradient
map x→ ∇ f (x).

3.2 Discrete Optimal Mass Transport

Suppose μ has compact support on X , define:

Ω = supp μ = {x ∈ X |μ(x)> 0},

and assume Ω is a convex domain in X . The space Y is discretized to
Y = {y1,y2, · · · ,yn} with Dirac measure ν = ∑n

j=1 ν jδ (y−y j).
We define a height vector h= (h1,h2, · · · ,hn) ∈ R

n, consisting of n
real numbers. For each yi ∈ Y , we construct a hyperplane defined on
X :

πi(h) : 〈x,yi〉+hi = 0, (2)

where 〈,〉 is the inner product in Rn.
Define a function:

uh(x) = max
1≤i≤n

{〈x,yi〉+hi}, (3)

then f (h,x) is a convex function. We denote its graph by G(h), which
is an infinite convex polyhedron with supporting planes πi(h). The
projection of G(h) induces a polygonal partition of Ω,

Ω =
n⋃
i=1

Wi(h),Wi(h) = {x ∈ X |uh(x) = 〈x,yi〉+hi}∩Ω. (4)

Each cellWi(h) is the projection of a facet of the convex polyhedron
G(h) onto Ω. The convex function uh on each cell Wi(h) is a linear
function πi(h), therefore, the gradient map

grad uh :Wi(h)→ yi, i= 1,2, · · · ,n. (5)

maps eachWi(h) to a single point yi.
The following theorem plays a fundamental role here:

Theorem 1 For any given measure ν , such that

n

∑
j=1

ν j =
∫

Ω
μ,ν j > 0,

there must exists a height vector h unique up to adding a constant
vector (c,c, · · · ,c), the convex function Eqn. 3 induces the cell de-
composition of Ω, Eqn. 4, such that the following area-preservation
constraints are satisfied for all cells,

∫
Wi(h)

= νi, i= 1,2, · · · ,n. (6)

Furthermore, the gradient map graduh optimizes the following trans-
portation cost

E(T ) :=
∫

Ω
|x−T (x)|2μ(x)dx. (7)

The existence and uniqueness have been first proven by Alexandrov
[3] using a topological method. The existence has been also proven by
Argmstrong [4], and the uniqueness and optimality have been proven
by Brenier [7].

Recently, Gu et al. [11] have given a novel proof for the existence
and uniqueness based on variational principle. We follow their ap-
proach in our paper. First, define the admissible space of the height
vectors:

H0 := {h|
∫
Wi(h)

μ > 0,∑
i
hi = 0}.

Then, define the energy E(h) as the volume of the convex polyhedron
bounded by the graph G(h) and the cylinder through Ω minus a linear
term,

E(h) =
∫

Ω
uh(x)μ(x)dx−

n

∑
i=1

νihi. (8)

The gradient of the energy is given by:

∇E(h) =
(∫

Wi(h)
μ−μi

)
, (9)

Suppose the cellsWi(h) andWj(h) intersects at an edge ei j =Wi(h)∩
Wj(h)∩Ω, then, the Hessian of E(h) is given by:

∂ 2E(h)
∂hi∂h j

=

{ ∫
ei j μ Wi(h)∩Wj(h)∩Ω �= /0
0 otherwise

(10)

In Gu et al. [11], it is proven that H0 is convex, and the Hessian is
positive definite onH0, this implies the convexity of the energy in Eqn.
8. Furthermore, the global unique minimum h is an interior point of
H0. At the minimum point, ∇E(h) = 0, this implies the gradient map
graduh meets the measure-preserving constraints in Eqn. 6. Further-
more, this gradient map is the optimal mass transportation map.
Due to the convexity of the volume energy (Eqn. 8), the global

minimum can be obtained efficiently using Newton’s method. Com-
paring to Kantorovich’s approach, where there are n2 unknowns, this
approach has only n unknowns.

3.3 Conformal Mapping
In our current work, we also apply conformal mapping [29] to map a
topological surface onto the planar domain. Suppose (S,g) is a sur-
face embedded in R

3, with the induced Euclidean metric g. Let the
mapping φ : (S,g)→ (D,dx2+dy2) transform the surface to the pla-
nar unit disk D, where dx2+ dy2 is the planar Euclidean metric. We
say φ is a conformal mapping, or angle-preservation mapping, if φ is
a diffeomorphism, such that:

g(x,y) = e2λ (x,y)(dx2+dy2),

where λ : S→ R is a smooth function defined on the surface, the so
called conformal factor.

Theorem 2 (Riemann Mapping) Suppose (S,g) is an oriented met-
ric surface, which is of genus zero with a single boundary. Given an
interior point p ∈ S and a boundary point q ∈ ∂S, there is a unique
conformal mapping φ : S→ D, satisfying φ(p) = 0 and φ(q) = 1.

We follow the approach proposed by Dominitz et al. in [10],
which gives us an area-preservation mapping with shape preserva-
tion. First, we map the surface (S,g) onto the planar disk using a
Riemann mapping φ : S→D, then the conformal factor defines a mea-
sure on D, e2λ (x,y)dxdy. We construct an optimal mass transport map
τ : (D,e2λ (x,y)dxdy)→ (Ω,dxdy), whereΩ is a planar convex domain,
the composition τ ◦φ : (S,g)→ (Ω,dxdy) is an area-preservation map-
ping.

4 OPTIMAL MASS TRANSPORT MAP
This section gives the detailed algorithms for the optimal mass trans-
port map generation. Fig. 3 shows the pipeline of our OMT based
area-preservation framework. The input surface is approximated by a
triangular meshM, with vertex sets V , face sets F and a convex planar
domain Ω, represented as a convex polygon. Our goal is to compute
an area-preservation map from the mesh M to the planar domain Ω.
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Our discrete algorithm is based on the Monge-Briener theory and uti-
lizes the variational principle to solve the optimization problem. For
the input, aiming to get ROIs with arbitrary shape (e.g., irregular shape
of the brain folds), we utilize the saliency map [18] for the ROI detec-
tion. Once users specify local area weight wi everywhere, the system
will iteratively solve the OMT map and refine the area-preservation
result that yields strict equality of weighted sizes of area between the
input surface and flattened plane. The area weighting parameter wi is
defined as weighted areas in 2D or weighted volumes in 3D. After the
generation of the OMT map (bijectively area-preservation mapping),
we directly apply the ROI guided texture mapping to obtain the output.

Fig. 3. The pipeline of our OMT based area-preservation framework.

Merits of Saliency Map. The application of saliency map can
(1) accurately detect arbitrary ROI shape to obtain the accurate area
preservation; and (2) provide hierarchical resolution of surface mod-
els, supporting the reduction of triangles in the context area, while
preserving high resolution ones in ROIs, for the purpose of fast com-
putation. Take the brain model as an example, instead of using the
original model with 100K faces, with the saliency guided ROI detec-
tion, we can significantly reduce the face account to 10K or less (data
oriented).

4.1 Initialization
Our algorithm uses the conformal mapping result (angle preservation)
to set up the initial position for each vertex vi. We first normalize the
mesh such that its total area equals to the area of the planar domain
Ω. We then initialize a discrete conformal mapping φ :M→D. In our
framework, we utilize the discrete Ricci flow method [29] to achieve
this step. Then, after assigning each vertex a target area w̄i, we define
for each vertex vi ∈ V the Dirac measure associated with it, as one
third of the total area of faces adjacent to it,

μ(vi) =
1
3 ∑
[vi,v j ,vk]∈F

Area([vi,v j,vk]),

where [vi,v j,vk] represents the triangle formed by vertices vi,v j and
vk.
We use the images of all the vertices as the sample points of the unit

disk D, Y = {φ(vi)|vi ∈ V}, each sample φ(vi) is associated with the
Dirac measure μ(vi). By translation and scaling, we transform Y to be
contained by Ω.

4.2 Optimal Mass Transport Mapping
According to the Monge-Briener theory, we need to find the height
vector h = (h1,h2, · · · ,hn). Fix a height vector, the support planes
are given by πi(h) : 〈x,yi〉 + hi, the convex function is uh(x) =
maxi〈x,yi〉+ hi, and its graph G(h) can be computed as upper en-
velope of the supporting plane πi(h). The projection of G(h) onto Ω
forms a polygonal partition Ω =

⋃
iWi(h).

The implementation details are listed in Alg. 1. In order to preserve
the area of cell Wi, we need to iteratively update the virtual variable
for each vertex with height vector h = (h1,h2, · · · ,hn) (details in the
paragraph Initial Height Vector below). Thus, in each iteration, we
first compute the power diagram, using each vertex as a point and the
weighted radius as the power in the diagram. Then, in step 3, we com-
pute the dual triangulation of this calculated power diagram (details in

Algorithm 1 Area-preservation Mapping
Input: Input triangular mesh M, total area π and area difference
threshold δw.
Output: A unique diffeomorphic area-preservation mapping f :
M → D, where D is a unit disk. The area wi of each cell Wi ∈ D

is close to the target area wi.
1. Run conformal mapping by discrete Ricci flow method [29] φ :
M→D, whereD is a unit disk. Assign each site φ(vi)∈Dwith zero
power weight, and target area wi = μ(vi) defined above. Translate
and scale all sites so that they are in the unit disk.
2. Compute the power diagram and calculate the area wi of each
cellWi.
3. Compute the dual power Delaunay triangulation, and compute
the lengths of edges in the diagram and triangulation to form the
Hessian matrix of the convex energy in Eqn. 7 .
4. Update the power h← h+H−1(w̄−w).
5. Repeat step 2 through step 4, until ‖wi−wi‖ of each cell is less
than δw.
6. Compute the centroid of cell Wi, denoted as ci. Then the area-
preservation mapping is given by τ−1 ◦ φ(vi) = ci, where τ is the
Brénier map τ :Wi→ φ(vi).

the paragraph Power Diagram below). We record every edge length
in both the power diagram and its dual triangulation in this step to
form the Hessian matrix. In step 4 (the last step of each iteration),
we use Newton’s method to solve the gradient energy equation (Eqn.
9) and to update the height vector h until it satisfies that ‖wi−wi‖ of
each cell is less than δw (details in the paragraph Hessian Matrix be-
low). Finally, in step 6, we update the vertex position as the center of
the power Voronoi diagram to obtain the parameterization result with
area-preservation.
Initial Height Vector. At the initial stage, we scale and trans-

form a point setY to ensure they are contained inΩ, and then compute
the Voronoi diagram with zero power weights, or namely, with initial
heights hi =−1/2‖yi‖2, where ‖yi‖2 is the point position in the planar
domain. This guarantees that all the cells are non-empty.

(a) (b)

Fig. 4. Construction of (a) the power Voronoi diagram and (b) the power
Delaunay triangulation.

Power Diagram. The OMT based area-preservation computa-
tion for the partition of Ω is equivalent to the classical power di-
agram in computational geometry [11]. Given a point set Y =
{y1,y2, · · · ,yn}, each point yi associated with the weight wi as its
power, the power distance from any point x to yi is defined as:

Pow(x,yi) =
1
2
‖x−yi‖

2−
1
2
wi,

Then, the power diagram is the Voronoi diagram when we use the
power distance instead of the standard Euclidean distance.
In our method, the partition induced by the convex function uh in

Eqn. 3 is equivalent to the power diagram with the power weight:

wi = 2hi+ 〈yi,yi〉.
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Therefore, the computation can be carried out using power diagram
functionalities in standard computational geometry library, such as
CGAL [1]. The construction of the power Voronoi diagram and the
power Delaunay triangulation are illustrated in Fig. 4.

Hessian Matrix. In our algorithm, we represent the gradient of
energy ∇E(h) in Eqn. 9 as the area changes of cell (w̄−w), where w̄
and w as weighting values. Then, compute the dual triangulation and
the cell areas to form the gradient, as in Eqn. 9,

∇E(h) = (Area(Wi(h)∩Ω))

Following the theory proposed by Gu et al. [11], in order to form the
Hessian as in Eqn. 10, we compute all edge lengths ei j and the dual
edge lengths ēi j from the power diagram and its dual triangulation
(Fig. 4). Then, we use the following matrix: H(h) = (hi j(h)), where

hi j(h) =

⎧⎨
⎩
−|ei j|/|ēi j| i �= j,Wi∩Wj ∩Ω �= /0
−∑k �=i hik i= j
0 otherwise,

hi j is the (i, j) entry of a matrix, (i �= j) is the off diagonal entry, and
the diagonal entry is defined as hii = −∑k �=i hik (namely, hii is equal
to the sum of all off diagonal entries).
Then, we use Newton’s method to update the height vector

h← h+ εH(h)−1∇E(h),

where ε is the step length.

Step Length Control. During the computation, it is crucial to
ensure that all the cellsWi(h)∩Ω are non-empty. Suppose at step k all
the cells are non-empty, then, we update hk←hk+εH(hk)−1∇E(hk).
If some cells are empty in the power diagram induced by hk+1, we will
return to hl , shrink the step length ε to be 1/2ε , and try again. If some
cells are still degenerated, we shrink the step length iteratively, until
all the power cells are non-empty.
Following the implementation details listed in Alg. 1, we have

tested our algorithms on different surface models (details in Section
5). For practical implementations, we may need to deal with surface
models with different topologies, such as the earth and brain models
which are genus zero without any boundary, and map and graph cases
which are genus zero with an open boundary. The basic idea is to make
the topologies of the source domain and the parameter domain consis-
tent. For example, if we want to map a genus zero surface without an
open boundary, such as the brain surface, to a unit disk parameter do-
main, we cut a very small hole on the surface to get an open boundary
so that the source domain and parameter domain have the consistent
topology.

(a) (b)

Fig. 5. Surface flattening of a chest model using our area-preservation
mapping for direct display and accurate measurement. The yellow cir-
cles highlight the corresponding ROIs between (a) the 3D surface model
and (b) the 2D flattened plane.

4.3 ROIs Guided Texture Mapping
After computing the bijective area-preservation surface mapping be-
tween the 3D surface model and the flattened 2D disk or rectangu-
lar parameter domain, the texture mapping is straightforward with the
ROIs guided alignment. With respect to user predefined mapping cri-
teria (e.g., fix the disk boundary or fix the four corner points of a rect-
angular domain with the alignment of ROIs), the bijective texture map-
ping between parameterizations and image pixels is syntactically and
semantically trivial. We directly call texture mapping functions pro-
vided by OpenGL with bilinear interpolation, which is fast and easy
to implement. Moreover, we consider model shape and rendering fac-
tors, such as depth, view angle, and camera position to obtain reality
style visualization, especially for medical data. The pixel color and
alpha can be adjusted by the user defined transfer functions.

5 AREA-PRESERVATION MAPPING APPLICATIONS
To demonstrate the merits of our area-preservation mapping method,
we apply our framework to various visualization applications, includ-
ing the medical and informatics visualization. Then we provide a dis-
tortion measurement analysis to demonstrate the advantage of our sys-
tem in a quantitative fashion.
5.1 Medical Applications
We first test our method using various medical data. Our highly area-
preservation results can be obtained in an interactive-rate, even for
various large and complicated datasets. For every medical dataset ac-
quired from CT or MRI, we start from using the visualization toolkit
(VTK) [17] to convert a volume dataset to a triangulation mesh as the
input, with filters to remove noise and aliasing. Then, we can utilize
our mapping framework to achieve various visualization results.

Easy and Accurate Area Measurement. Fig. 5 shows a ma-
jor advantage of our area-preservation mapping and flattening method.
Our mapping framework can bijectively project the 3D surface model
to a unit 2D disk, so that the physician can directly and accurately vi-
sualize and measure the size of the entire ROI area without repeatedly
rotating and scaling.
Saliency Feature Guided Area-preservation Mapping.

We use saliency map [18] guided area-preservation mapping for di-
verse computer aided detection (CAD) applications. Fig. 6 shows the
design detail. After extracting the surface model (Fig. 6a) from CT
colon data (Fig. 6b), we use saliency map [18] for the polyp detection
(Fig. 6d). Our area-preservation flattening framework is only applied
in the detected ROIs, providing an area-preservation view of polyps
for the accurate measurement of the diameter and the size of area (ver-
ified by the doctor’s measurement as ground truth in the original 3D
surface model). By comparison with the conformal mapping method
(Fig. 6f), our framework (Fig. 6e) preserves major shape character-
istics of the colon surface (e.g., colon folds) without any obviously
visual distortion.
Arbitrary Area Weighting Scheme. Flattening the brain sur-

face with area preservation is important to visualize and study neural
activity or to detect diseases/disfunctions [38]. For the easy recogni-
tion of different brain folds, we use colors to mark different folds as
the ROIs (Fig. 1a and Fig. 1b). In contrast to the conformal mapping
result (Fig. 1c), Fig. 1d shows our area-preservation mapping result
using the MRI brain dataset, which accurately displays accurate sizes
of brain folds without severely compressing or stretching. Moreover,
users can set different weight coefficients in ROIs to flexibly adjust
sizes of different ROI areas (default 1X: equal area).

5.2 Informatics Applications
With the general application property of parameterization and texture
mapping, we can easily apply our framework for various informatics
applications including earth map, city map and graph.
Earth Map. The fundamental challenge for earth visualization

lies at mapping the sphere earth model to a planar domain with max-
imal information preserved. Direct projection only projects the half
sphere, and then causes severe information lost (Fig. 7b). The state-
of-the-art method, such as conformal mapping (Fig. 7c), preserves the

2843ZHAO ET AL: AREA-PRESERVATION MAPPING USING OPTIMAL MASS TRANSPORT



(a) (b)

(c) (d)

(e) (f)
Fig. 6. Saliency map guided area-preservation mapping using a colon
model. (a) A 3D colon surface, extracted from CT axis images, such as
(b). (c) One possible polyp detected using (d) the saliency map [18].
Surface flattening results using (e) our area-preservation mapping and
(f) conformal mapping. By comparison, our result generates the accu-
rate polyp size for area measurement (verified by the doctor’s measure-
ment of the polyp as ground truth) without any severe angle distortion.

whole sphere with angle preservation, but severely compresses some
continents while inappropriately enlarging others without any control.
By comparison, our method (Fig. 7d) can keep the original areas for
all major continents, providing the accurate size and area impression
for users.

City Map. Our system also provides a direct multiresolution dis-
play, functioned as a “magic-lens” to reveal additional details in the
ROIs. Our method makes the multiscale alignment accurate but easy
without the need of any predefined landmark, due to the accurate area
preservation. As shown in Fig. 8, our method generates multiresolu-
tion texture mapping to reveal additional street information of the city
map. The result demonstrates that our method can well magnify the
ROI without causing any obvious distortion.

Network Graph. Our system can generate various visual dis-
plays for the graph visualization to satisfy diverse user requirements,
due to the flexible weight settings. We showcase its merit using a
network visualization example from the AT&T graph library [2], as

(a) (b)

(c) (d)
Fig. 7. Different mapping results and comparisons using an earth sur-
face model. (a) A 3D earth model. (b) Direct projection mapping with
large information loss. (c) Conformal mapping result with large area dis-
tortions. (d) Our area-preservation mapping result with accurate area
preservation and small angle distortion (highlighted by the red frames).

shown in Fig. 9a. Each graph node stands for a network station,
while each straight line depicts direct connection between two neigh-
bor nodes. Fig. 9b enlarges the radius of the central core to increase
the node separation, while compressing exterior nodes to further re-
duce the potential attention. Fig. 9c shows another area manipulation
style: compressing central nodes while enlarging exterior nodes for
further separation. There is no efficient way to generate a similar re-
sult using either geometry methods (e.g., conformal magnifier [33]) or
deformation methods (e.g., moving least squares [31, 32]). Taking a
close look at Fig. 9d, the conformal magnifier fails to flexibly control
magnification ratios in both focus and context regions. It excessively
enlarges the central core area, while compressing exterior nodes with-
out any control. By comparison, our system can easily manipulate the
size of area everywhere to generate user preferred views with appro-
priate node distributions.
Hierarchical Magnification. We can directly apply our map-

ping framework as a cascaded magnifier: applying the same magnifier
repeatedly on the prior computing magnification result to obtain ex-
ponentially increasing magnification ratios. Since our method can ac-
curately preserve the size of area by setting the target weight, we can
guarantee that the final target region would be precise after each mag-
nification process. Fig. 10 shows that our hierarchical magnification
can easily and accurately reach the high magnification ratio.

5.3 Implementation
In order to support fast visual display, our framework combines both
CPU and GPU for computing optimization, parameterization, texture
mapping and volume rendering using C++ with OpenGL library. Our
algorithm and solution of the optimal transport map is easy to imple-
ment robustly to have interactive-rate computation for most experi-
mental cases in this paper, overcoming a major limitation of the OMT
problem - computation inefficiency. By comparison with other opti-
mization algorithms, such as [10] and [37], comparative experiments
show that our system provides a significant speedup, empirically at
least 3-5 times faster, as shown in Table 1 (more comparison details
are listed in Section 2). For the application of large volumetric data
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Fig. 8. Multiresolution view without any predefined landmarks. (a) The original New York city (NYC) map. (b) NYC map with multiresolution texture
images. The red frames highlight the corresponding multiresolution texture maps in the ROI. (c) Area manipulation result with a detailed view to
show additional street information. The high resolution detail view can be easily aligned/merged into the low scale map without using any landmark
due to accurate area preservation.

(a) (b)

(c) (d)

Fig. 9. Mapping comparisons using the network graph. (a) Original
graph layout [2]. Magnification results with (b) the central nodes as the
ROI, and with (c) the surrounding exterior nodes as the ROI, using our
framework. (d) Magnification result using conformal magnifier [33]. By
comparison, our method has flexible area control to generate various
views.

(e.g., brain dataset with size 2562 × 142), we can easily obtain full
resolution results in interactive-rate using various surface models with
texture mapping or volume rendering. To further increase the flexi-
bility of system control, our framework embeds mesh editing tools,
allowing users to interactively choose a tradeoff between quality and
computing speed.
All experiments have been carried out on an Intel Core2Duo

2.2GHz laptop with 4GB memory and Windows 7 as the operating
system. Generally, the cost linearly depends on the property of the
surface models (the vertex and face counts) and the number of it-
erations needed for the desired accuracy. Table 2 presents detailed
performance of our method, which shows that our method is signif-

Table 1. Performance comparison of several area-preservation methods
(e.g., Dominitz et al. [10] and Zou et al. [37]) using models with different
vertex and face counts. N: the number of vertices, F: the number of
faces, AP: area-preservation parametrization time (in ms).

Model N F Our AP AP [10] AP [37]
Tube 1649 3035 102 278 951

HemiSphere 3456 6846 265 815 2436
Square 5252 10471 474 1926 7104
Gaussian 10201 20006 812 5142 15705

Table 2. Computing time for all experimental cases using our framework.
N: the number of vertices, F: the number of faces, AP: area-preservation
parametrization time (bijective mapping) and T: texture mapping time.

Model Texture N F AP (ms) T (ms)
Chest Chest 1528 2999 97 42
Brain MRI brain 14499 29662 1254 108
Colon CT colon 12762 24953 1096 97
Sphere Earth 3456 6846 265 63
Square City 5252 10471 474 62
Sphere Graph 3456 6846 265 71
Gaussian Graph 10201 20006 812 45

icantly fast and suitable for real-time/interactive operations, even for
large datasets with high resolution requirements. In theory, finer sur-
face models increase in resolution to support finer rendering but hav-
ing longer computation time. Fortunately, the combination of saliency
map and hierarchical mesh design (high resolution in the ROI, while
low resolution in the context) allows our framework to work accurately
and effectively.

5.4 Quantitative Analysis for Area-preservation Mapping

The main challenge of a good area-preservation mapping is yielding
strict equality of area elements between the original surface and the
flattened result at its final state. We examine both the area distortion
and the quasi-conformal distortion per face over the mesh as the quan-
titative analysis. We define γmax and γmin as the larger and smaller
eigenvalues of the Jacobian of the affine transformation that maps the
domain triangles to the original surface, normalized with the hypothe-
sis that the total area of the surface equals that of the domain. Then, the
area distortion metric ϒ is computed as ϒ = log(γmaxγmin), while the
quasi-conformal distortion metric Λ is computed using Λ = log( γmax

γmin ).
In both cases, zero indicates that there is no distortion and a larger
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(a) (b) (c)
Fig. 10. Hierarchical magnification views of a simulated radial graph. Colors are used to illustrate the node overlaps: from red (no overlap) to
purple (most overlap). (a) Original radial graph. (b) 2X and (c) 4X cascade magnification results. The 4X magnification is generated using the 2X
magnifier again on its prior magnified result. With the increasing magnification ratio, the central nodes are enlarged for a clear separation view,
while compressing the exterior nodes.

(a)

(b)
Fig. 11. Comparison histograms of mapping distortions using the lion
head model of Fig. 2. (a) Conformal mapping (CM) and (b) our area-
preservation mapping (AP). Left column: the area distortion. Right col-
umn: the angle distortion. By comparison, our framework (b) generates
good mapping results with accurate area preservation and small angle
distortions.

value means a larger distortion.
Fig. 11 shows the histograms of the area distortion and the quasi-

conformal (angle) distortion for both conformal mapping [29] and our
area-preservation approach, using the lion head surface model (Fig.
2). By comparison with conformal mapping, as shown in Fig. 11b,
our system can generate good area-preservation results with very small
area distortions (the area-distortion error distribution is less than 2%)
even for the complicated surface model (in theory, more complicated
models typically lead to larger area distortion errors). Therefore, our
framework has accurately linear area magnification with respect to

predefined weighting values.

6 CONCLUSIONS AND FUTURE WORK

In this paper, we present a new framework using the optimal mass
transport method, which is implemented in a novel manner and
used for various visualization and graphic applications. We present
a computationally efficient numerical scheme to achieve the area-
preservation mapping. With the combination of CPU and GPU, our
system becomes practical for the use on large 3D datasets in terms
of both speed and accuracy. Our system is built based on geometric
parameterization techniques, where an area-preservation map with the
minimal area distortion is generated for each input 3D surface model.
The use of parameterization is compatible with various volume ap-
plications, easily and efficiently supporting the handling of various
complicated data [20]. Moreover, the saliency map makes it easy and
accurate to detect arbitrary ROIs and further supports mesh reduction
in the context area. With respect to selected ROIs, results are gener-
ated after texture mapping or volume rendering using corresponding
parameterized surface models to obtain flattened views with the opti-
mized area preservation. In term of interactive operations, users can
simply set different weights in the ROIs, enabling an extremely flexi-
ble style of area manipulations for data exploration and analysis. All
experimental results and comparisons have demonstrated that our new
OMT bases optimization approach has great potentials and applica-
tions in visualization and graphics.
A major limitation of our framework is that due to the mapping

theory, our system inevitably generates angle distortions for achieving
optimal area-preservation mapping. However, because we embed con-
formal mapping into our system (initialization), users can interactively
select mapping styles to satisfy various requirements. For the future
work, inspired by Sandhu et al. [26] and Wang et al. [28], our frame-
work can be further extended to volumetric mapping. Meanwhile, be-
cause we use Voronoi diagram and its dual Delaunay triangulation for
our OMT based mapping, inspired by Rong et al. [24], we can use
the GPU to further accelerate the computing speed. In addition, a for-
mal user study is necessary to further demonstrate advantages of our
framework for various applications.
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