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Computing general geometric structures on surfaces using Ricci flow
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Abstract

Systematically generalizing planar geometric algorithms to manifold domains is of fundamental importance in computer aided design field.
This paper proposes a novel theoretic framework, geometric structure, to conquer this problem. In order to discover the intrinsic geometric
structures of general surfaces, we developed a theoretic rigorous and practical efficient method, Discrete Variational Ricci flow.

Different geometries study the invariants under the corresponding transformation groups. The same geometry can be defined on various
manifolds, whereas the same manifold allows different geometries. Geometric structures allow different geometries to be defined on various
manifolds, therefore algorithms based on the corresponding geometric invariants can be applied on the manifold domains directly.

Surfaces have natural geometric structures, such as spherical structure, affine structure, projective structure, hyperbolic structure and conformal
structure. Therefore planar algorithms based on these geometries can be defined on surfaces straightforwardly.

Computing the general geometric structures on surfaces has been a long lasting open problem. We solve the problem by introducing a novel
method based on discrete variational Ricci flow.

We thoroughly explain both theoretical and practical aspects of the computational methodology for geometric structures based on Ricci flow,
and demonstrate several important applications of geometric structures: generalizing Voronoi diagram algorithms to surfaces via Euclidean struc-
ture, cross global parametrization between high genus surfaces via hyperbolic structure, generalizing planar splines to manifolds via affine struc-
ture. The experimental results show that our method is rigorous and efficient and the framework of geometric structures is general and powerful.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Different geometries can be defined on the plane R2

and each of them studies different invariants under the
corresponding transformation group of R2. The most common
geometries on the plane are

(1) Euclidean geometry. The transformation group is the rigid
motion group and each rigid motion has the form φ : R2

→

R2

φ(p) = Op + q, O ∈ SO(R, 2), q ∈ R2, (1)

where O is a rotation matrix with determinant +1, and
SO(R, 2) represents the 2 dimensional special real rotation
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matrix group. The invariants are the distance between two
arbitrary points, angles of corners, collinearity (i.e., all
points lying on a line initially still lie on a line after
transformation) etc.

(2) Affine geometry. The transformation group is the affine
transformation group,

φ(p) = Ap + q, A ∈ GL(R, 2), q ∈ R2, (2)

where A is a real matrix with a positive determinant, and
GL(R, 2) denotes the 2 dimensional real general matrix
group. The invariants are the collinearity, ratio between
distances, and parallelism.

(3) Projective geometry. The transformation group is the
real projective transformation, φ ∈ PGL(R, 2) where
PGL(R, 2) represents a 2 dimensional real projective
matrix group,

φ(x, y) =

(
αx + βy + γ

δx + εy + ζ
,
ηx + θy + κ

δx + εy + ζ

)
,
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Fig. 1. Atlas: surface is covered by a set of charts (Uα, φα), where φα :

Uα → R2. If two charts (Uα, φα) and (Uβ , φβ ) overlap, the transition function
φαβ : R2

→ R2 is defined as φαβ = φβ ◦ φ−1
α .

∣∣∣∣∣∣
α β γ

η θ κ

δ ε ζ

∣∣∣∣∣∣ 6= 0. (3)

The invariants are the colinearity and the cross ratio among
four points on the line.

Different algorithms in computer graphics, computational
geometry, solid modeling, and visualization are based on
different geometries. The following are some examples:

(1) Voronoi diagram. Given a set of points {pk} ⊂ R2, the
whole plane is partitioned to cells {Ck}. A point p belongs
to Ck , where k = min j |p − p j |. Therefore, the Voronoi
diagram is based on planar Euclidean geometry, where
distance plays vital role.

(2) Point location. Given a triangulation of the plane and an
arbitrary point p, the point location algorithm will find the
unique triangle which contains p. Suppose p is contained in
a triangle ∆p0p1p2, then every element of the barycentric
coordinates of p(α, β, γ ) must be positive, where

p = αp0 + βp1 + γ p2.

It is obvious that barycentric coordinates are affine
invariants. Therefore, the point location algorithm solely
depends on the affine geometry of the plane.

(3) Line segments intersection. The sweep line algorithm
computes all the intersections among a set of line segments
on the plane. colinearity and intersection relations are
invariant under projective transformation. Therefore, line
segment intersection algorithms are based on the projective
geometry of the plane.

One of the fundamental problems in graphics, geometric
modeling, computational geometry and visualization is
To find feasible ways to define different geometries on surfaces,
such that the algorithms designed for planar domains can be
systematically and straightforwardly generalized to the surface
domains.
Geometric structures offer theoretically rigorous and practi-
cally efficient solutions to this central problem.

1.1. Geometric structures

Suppose Σ is a surface in R3 as shown in Fig. 1. A family
of open sets Uα covers the surface such that Σ ⊂

⋃
Uα . φα is
Table 1
Geometric structures on surfaces

(X, G)

Structure
Parameter
domain X

Trans.
group, G

Oriented metric surfaces

Spherical S2 Sphere Rotation
SO(3)

Genus zero closed, open

Euclidean R2 Plane Rigid
motion

Genus one closed, open

Hyperbolic H2 Hyperbolic
space

Möbius High genus closed, open

Affine R2 Plane Affine
GL(R, 2)

Genus one closed, open

Projective RP2 Projective
space

Projective All oriented surfaces

a homeomorphism and maps Uα onto the plane:

φα : Uα → R2.

The pair (Uα, φα) is called a local chart. Suppose two open sets
Uα and Uβ intersect each other, then the chart transition map is
defined as

φαβ : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ), φαβ = φβ ◦ φ−1
α .

The union of all local charts {(Uα, φα)} form an atlas,
denoted as A . If all chart transition maps φαβ of A belong
to the rigid motion group with the form in Eq. (1), then A
is a Euclidean atlas. Similarly, if φαβ belongs to the affine
transformation group with the form of Eq. (2) or projective
transformation group with the form of Eq. (3), then A is
called an affine atlas or projective atlas. Two Euclidean (affine
or projective) atlases are compatible, if their union is still a
Euclidean (affine or projective) atlas. A Euclidean, (affine or
projective) structure of a surface Σ is the union of all its
compatible Euclidean (affine or projective) atlases.

Euclidean, (affine or projective) geometry can be defined on
the surface Σ via Euclidean (affine or projective) structure.
Suppose surface Σ has a Euclidean atlas A ; we want to
measure the distance between two points p and q, which
are close enough to be covered by a chart (Uα, φα). Then
we measure the distance between φα(p) and φα(q) on the
parameter domain φα(Uα). If p, q are also covered by another
chart (Uβ , φβ), we can similarly measure the distance between
φβ(p), φβ(q) on the parameter domain φβ(Uα). Because the
transition map φαβ is a rigid motion on R2, it preserves distance.
Therefore, the two measurements are consistent. In this way,
we can define the distances between two arbitrary points on Σ ,
therefore Euclidean geometry is defined on Σ directly.

General (X, G) geometric structures can be defined in a
similar way on a general surface Σ , where X is a topological
space and G is the transformation group of X . An (X, G) atlas
A of Σ is with chart transition maps φαβ in G and local
parameters φα(Uα) in X . Two (X, G) atlases are compatible, if
their union is still an (X, G) atlas. The union of all compatible
(X, G)-atlases of Σ forms its (X, G) structure. The common
(X, G) structures on surfaces are summarized in Table 1.

The existence of a specific geometric structure on a
given surface is determined by the surface topology. Surfaces
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with positive Euler numbers allow a spherical structure;
surfaces with zero Euler numbers allow an affine [2,1] and
Euclidean structure; surfaces with negative Euler numbers
allow hyperbolic structure [4].

Conventional polar form splines are constructed from affine
invariants, therefore, manifold splines are based on the affine
structure of the surface. Because of topological obstruction,
general surfaces do not admit affine structure. Projective
structure exists for all oriented surfaces. If a spline scheme is
based on projective invariants, it can be defined on all surfaces
directly.

It is a very challenging problem to design a rigorous and
practical methodology to compute general geometric structures
on surfaces. Ricci flow is developed recently in geometric
analysis field for the purpose of proving Poincaré conjecture.
It offers a powerful tool to conquer this problem. To the
best of our knowledge, we are the first group to design a
discrete algorithm for computing hyperbolic structure and real
projective structure on general surfaces, based on Ricci flow.

1.2. Ricci flow

Surface Ricci flow was first introduced by Hamilton in [11],
and recently used to prove Poincaré conjecture [30–32]. Ricci
flow was generalized to the combinational setting in [8].
The main idea is to conformally deform the Riemannian
metric of the surface driven by its curvature, such that the
curvature evolves like a heat diffusion and becomes a constant
everywhere eventually. The metric with constant curvature is
called uniformization metric. Ricci flow will deform the metric
to the uniformization metric.

Suppose Σ is a surface with the metric tensor g = (gi j ), and
K is the current Gaussian curvature, then Ricci flow is defined
as

∂gi j

∂t
= −2K gi j . (4)

It is proven that the Ricci flow with normalized total surface
area will flow the metric such that the Gaussian curvature on
the surface is constant, namely the Gaussian curvature function
limt→∞ K (t, p) converges to a constant function.

In our paper, we use Ricci flow to compute uniformization
metrics for surfaces with non-positive Euler numbers, from
which we construct surface hyperbolic structure, real projective
structure, and affine structure.

1.3. Contribution

This paper introduces a novel framework for geometric
algorithm design: general geometric structures, such as affine
structure, hyperbolic structure and real projective structure.
Geometric structures allow different geometries to be defined
on surfaces directly, and planar algorithms to be generalized to
surfaces straightforwardly.

Compared to other structures, the hyperbolic structure and
real projective structure have not been fully studied. This
paper emphasizes on introducing novel and practical algorithms
to compute hyperbolic structure and real projective structure
for general surfaces. The algorithm is based on a recently
developed theoretical tool in the differential geometry field —
Ricci flow. To the best of our knowledge, we are the first group
to practically compute hyperbolic structure using Ricci flow,
and also the first one to introduce a practical method to compute
real projective structure. Therefore, the major contributions of
this paper are:

• Introduce a novel theoretical framework: Geometric
structures, which enable algorithms defined on planar
domains to be systematically generalized to surfaces.

• Design and implement a novel geometric tool: discrete
variational Ricci flow.

• Design and implement a practical and efficient algorithm
based on Ricci flow to compute hyperbolic structures for
surfaces with negative Euler number.

• Design and implement a practical and efficient algorithm
based on Ricci flow to compute real projective structures for
arbitrary surfaces.

2. Previous work

Geometric structures have been implicitly and explicitly
applied in geometric modeling, computer graphics and medical
imaging. For the genus zero case, the spherical structure was
studied for texture mapping in [14,15] and for conformal brain
mappings in [18,13]. Algorithms for computing conformal
structures were introduced in [16,17], and the method is based
on computing holomorphic differentials on surfaces.

Affine structure has been applied for constructing spline
surfaces on general manifolds in [19], where the affine
structures are induced by holomorphic differentials computed
using the algorithms in [16,17].

Hyperbolic structure was applied in [9] for the topological
design of surfaces, where the high genus surfaces were
represented as quotient spaces of the Poincaré disk over
Fuchsian group actions. In [5], Grimm and Hughes defined
parameterizations for high genus surfaces and constructed
functions on them. Wallner and Pottmann introduced the
concept of spline orbifold in [7], which defined splines on three
canonical parameter domains: the sphere, the plane, and the
Poincaré disk. Hyperbolic geometry was visualized in [26].
The key difference between these works and our current one
is that our method computes the hyperbolic metric which is
conformal to the original metric on the surface, but their works
only consider the topology and ignore the geometry of the
surface. For many real applications, such as texture mapping,
shape analysis and spline constructions, conformality between
the original and the final metrics is highly desirable.

Recently, Goldman [29] examines some possible alternative
mathematical foundations for computer graphics, such as
Grassmann spaces and tensors. General geometric structures on
manifolds contribute to the theoretical foundations for graphics
and geometric modeling.

Ricci flow on surfaces was first introduced by Hamilton [11].
Ricci flow on 3-manifolds has been applied for the proof of
Poincaré conjecture. Theoretical results of combinatorial Ricci
flow have been summarized in [8]. Conventional Ricci flow can
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(a) X > 0. (b) X = 0. (c) X < 0.

Fig. 2. Uniformization Theorem: all surfaces with Riemann metric can be conformally embedded into three canonical spaces: the unit sphere, the plane and the
hyperbolic space. χ represents the Euler number of the surface.
be formulated as the gradient descent method for optimizing
a special energy form, and the deficiency of its speed makes
Ricci flow impractical. Practical algorithms are given in [25] for
computing hyperbolic structures and real projective structures
on surfaces. In our work, we improved the theoretical results
in [8] by considering surface Riemannian metric induced from
R3 instead of from the combinational structure. We replaced
the gradient descent method with Newton’s method to speed up
Ricci flow completion by tens of times. We named this novel
algorithm the discrete variational Ricci flow. A practical system
for computing hyperbolic and real projective structures for real
surfaces has been developed based on discrete variational Ricci
flow.

Circle packing was first introduced by Thurston in the
seventies in [3]. A practical software system for circle packing
with improved algorithm can be found in [12], which considers
the combinatorial structure of the triangulation only. Recently,
circle packing has been generalized to circle patterns [24,20]
and used for surface parameterization in [10], which focuses
on Euclidean geometry. Circle packing, circle pattern and
discrete Ricci flow can be unified using the derivative cosine
law [21].

Our work is based on a novel theoretical tool — discrete
variational Ricci flow — and focuses on hyperbolic structure
and real projective structure instead of Euclidean structure.
Furthermore the hyperbolic metrics computed using our
method are conformal to the original metrics. The conformal
hyperbolic metrics convey much geometric information of the
surfaces, which are valuable for the purposes of shape analysis.
3. Theoretical background

In this section we briefly introduce the major concepts from
algebraic topology, differential geometry and Riemann surface
to explain geometric structures on surfaces, and review discrete
Ricci flow needed in the current work. We limit ourselves
to those concepts that are directly relevant to our work. For
detailed explanations, we refer readers to [4,8].

3.1. Uniformization theorem

Suppose Σ is an oriented surface in R3, with induced
Euclidean metric g, and u : Σ → R is a function defined on
M , then e2u g is another metric for Σ , which is called a metric
conformal to g.

The uniformization theorem claims that there exists a
unique function u, such that under the metric e2u g, the
Gaussian curvatures of the interior points are constant,
and the boundaries become geodesics. e2u g is called the
uniformization metric. Surfaces with positive Euler numbers
have spherical uniformization metrics with +1 curvature;
surfaces with zero Euler number has flat uniformization metric
with 0 curvature; surfaces with negative Euler numbers have
hyperbolic uniformization metric with −1 curvature. The
uniformization metrics will induce the spherical, Euclidean,
and hyperbolic structures respectively, see Fig. 2.

3.2. Fundamental group and universal cover

Two curves are homotopic to each other, if they can deform
to each other on the surface. Closed loops are classified to
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homotopy classes by homotopic relation. Two closed curves
sharing common points can be concatenated to form another
loop. This operation defines the multiplication of homotopic
classes. Therefore, all the base pointed homotopy classes form
the so called the first fundamental group of Σ , and are denoted
as π1(Σ ).

The fundamental group is finitely generated. Suppose a
surface Σ is with g handles, and there are two distinct
generators a, b on each handle. If they intersect once, but
disjoint with generators on other handles, then all g pairs of
generators form a set of canonical fundamental group basis,
denoted as {a1, b1, a2, b2, . . . , ag, bg}.

Suppose that Σ̄ and Σ are surfaces, then (Σ̄ , π) is said
to be a covering space of Σ if π is surjective and locally
homeomorphic. Furthermore, if Σ̄ is simply connected, (Σ̄ , π)

is the universal covering space of Σ .
A transformation of the universal covering space φ :

Σ̄ → Σ̄ is a deck transformation, if π = π ◦ φ. All deck
transformations form a group G. It is also called the Fuchsian
group of Σ if the transformation is hyperbolic isometry.

The deck transformation group is isomorphic to the
fundamental group. Suppose p ∈ Σ is an arbitrary point on
Σ , its pre-images are π−1(p) = {p0, p1, p2, . . . , pn, . . .} on
Σ̄ . Suppose a deck transformation φ ∈ G maps p0 to pk , then
a curve on the universal covering space

γ : [0, 1] → Σ̄ , γ (0) = p0, γ (1) = pk,

connects p0 and pk and its projection π(γ ) is a loop on Σ . The
homotopy class of π(γ ) is solely determined by p0 and pk ,
independent of the choice of γ . By this way, we get a bijective
map from deck transformations to the first fundamental group
of Σ .

A fundamental domain F is a subset of Σ̄ , such that
the universal covering space is the union of conjugates
of F , and any two conjugates have no interior point
in common. Given a canonical fundamental group gen-
erators {a1, b1, a2, b2, . . . , ag, bg}, we can slice Σ along
the curves and get a fundamental domain with boundary
a1b1a−1

1 b−1
1 a2b2a−1

2 b−1
2 · · · agbga−1

g b−1
g .

For any surface Σ , its uniformization metric is also a
metric for its universal cover Σ̄ . The universal cover can be
isometrically embedded in one of the three canonical spaces:
sphere, plane and hyperbolic space.

3.3. Hyperbolic space models

One of the anomalies of hyperbolic geometry was the
realization that it has no isometric embedding in Euclidean
space. Here are two common non-isometric embeddings for
hyperbolic geometry: one is the Poincaré model, the other is
the Klein model.

3.3.1. Poincaré model
The Poincaré model is a unit disk D2 in the complex plane

with the Riemannian metric ds2
=

4dzdz̄
(1−zz̄)2 .

The geodesics are circular arcs perpendicular to the
boundary of the unit disk ∂D2. The isometric transformation
in this model is the so called Möbius transformation with the
form

φ(z) = eiθ z − z0

1 − z̄0z
, z, z0 ∈ C, θ ∈ [0, 2π).

The above Möbius transformation maps z0 to the center of the
disk, and rotates the whole disk by angle θ . Hyperbolic circles
are also Euclidean circles.

The Poincaré model is a conformal model, whereas the Klein
model is a real projective model.

3.3.2. Klein model
The Klein model is another model of the hyperbolic space

also defined on the unit disk D2. Any geodesic in the Klein
model is a chord of the unit circle of the boundary of D2. The
map from the Poincaré model to the Klein model is β : H2

→

D2,

β(z) =
2z

1 + z̄z
, β−1(z) =

1 −
√

1 − z̄z
z̄z

z. (5)

Any Möbius transformation φ in the Poincaré model becomes
a real projective transformation β ◦φ ◦β−1 in the Klein model.

3.4. Discrete surface Ricci flow

Ricci flow is a powerful tool to compute the uniformization
metrics. It is a process to deform the metric g(t) according to
its induced Gauss curvature K (t), where t is the time parameter

dgi j (t)
dt

= −K (t)gi j (t). (6)

The following theorem postulates that Ricci flow defined in
(6) converges, and the metric g(t) is conformal to the original
one at any time t . Eventually, the Gauss curvature will become
a constant. The corresponding metric g(∞) is the desired
uniformization metric.

Theorem 1 (Hamilton 1982). For a closed surface of non-
positive Euler characteristic, if the total area of the surface
is preserved during the flow, the Ricci flow will converge to a
metric such that the Gaussian curvature is constant everywhere.

The spherical case is shown in the following theorem,

Theorem 2 (Chow). For a closed surface of positive Euler
characteristic, if the total area of the surface is preserved
during the flow, the Ricci flow will converge to a metric such
that the Gaussian curvature is constant every where.

Recently, Ricci flow on 3-manifolds has been applied for the
proof of Poincaré conjecture [30–32].

But in engineering fields, smooth surfaces are often
approximated by discrete surfaces with triangulations. In the
following, we discuss the discrete Ricci flow theory, which
considers triangular mesh Σ with vertex set V , edge set E and
face set F .
Discrete Riemannian metric. The Riemannian metric on an
Euclidean or hyperbolic mesh S (we say a mesh is Euclidean
or hyperbolic if all its faces are Euclidean or hyperbolic) is
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determined by its edge lengths. Therefore we define the discrete
Riemannian metric on a mesh as its edge lengths, l : E → R+,

such that for a face {i, j, k}, the edge lengths satisfy the triangle
inequality, li j + l jk > lki . Because the above triangle inequality
is linear, it is easy to verify that all the discrete Riemannian
metrics for a given mesh form a convex polytope in Rn , where
n is the number of edges.

A weight on the mesh is a function Φ : E → [0, π
2 ], on each

edge ei j . A radius on the mesh is a function Γ : V → R+, on
each vertex vi by assigning a positive number γi . They realize
each edge ei j joining vi to v j by a Euclidean segment of length

li j =

√
γ 2

i + γ 2
j + 2γiγ j cos Φ(ei j ). (7)

And for each face, {li j , l jk, lki } satisfy triangle inequality. In the
hyperbolic case, the length can be deduced from the hyperbolic
cosine law:

li j = cosh−1(cosh γi cosh γ j + sinh γi sinh γ j cos Φ(ei j )). (8)

Definition 3 (Circle Packing Metric). The pair of the vertex
radius function and edge weight function on a mesh Σ {Γ ,Φ}

is called a circle packing metric of Σ .

Intuitively, circle packing metric can be interpreted in the
following way: we associate each vertex vi with a cone of
radius γi . For each edge ei j , two cones on vi and v j intersect
each other with an angle Φi j . In the smooth case, a conformal
deformation will map an infinitesimal circle to an infinitesimal
circle with intersection angles preserved. Therefore, we can
define two circle packing metrics on the same mesh which are
conformally equivalent to each other.

Definition 4 (Conformal Circle Packing Metrics). Two circle
packing metrics {Γ1,Φ1} and {Γ2,Φ2} are conformally
equivalent, if Φ1 ≡ Φ2.

Therefore, a conformal deformation of a circle packing metric
only modifies the vertex radii.
Discrete Gauss curvature. Discrete Gauss curvature is defined
as the angle deficit on a mesh. For an interior vertex vi , the
discrete Gauss curvature is

Ki = 2π −

∑
fi jk∈F

α
jk
i , (9)

where α
jk
i represents the corner angle attached to vertex vi

in the face fi jk . Similarly, for a boundary vertex, the discrete
Gauss curvature is

Ki = π −

∑
fi jk∈F

α
jk
i . (10)

Continuous Ricci flow is the conformal deformation of the
Riemannian metric, such that the deformation is proportional to
the Gaussian curvature. Similarly, we can define discrete Ricci
flow in the following
Definition 5 (Discrete Ricci Flow). On a Euclidean triangle
mesh with circle packing metric, the Euclidean Ricci flow is

dγi (t)
dt

= −Kiγi (t). (11)

On a hyperbolic triangle mesh with circle packing metric, the
discrete hyperbolic Ricci flow is

dγi (t)
dt

= −Ki sinh γi (t). (12)

The following theoretical results guarantee the convergence of
the discrete Ricci flow.

Theorem 6 (Discrete Ricci Flow). The discrete Ricci flows
(11) and (12) are convergent to the uniformization metric and
the convergence rate is exponential.

More theoretical details can be found in [8].
Discrete Ricci flows can be treated as the gradient flows of

minimizing special energies.

Definition 7 (Discrete Ricci Energy). Let ui = ln γi in
Euclidean case, ui = ln tanh γi

2 in hyperbolic case, then the
Euclidean Ricci energy and hyperbolic Ricci energy are defined
as

f (u) =

∫ u

u0

n∑
i=1

Ki dui , (13)

where u = (u1, u2, . . . , un), u0 = (0, 0, . . . , 0).

The energy is defined on the space formed by all conformal
circle packing metrics, which is simply connected. The
integration path from u0 to u can be arbitrarily chosen, while the
energy is consistent. The Hessian matrix for both the Euclidean
Ricci energy and hyperbolic Ricci energy are positive definite,
therefore their energies are convex, existing as a unique global
minimal point. Instead of using discrete Ricci flow (11) and
(12), we can directly minimize the Ricci energy using Newton’s
method, which is much more efficient in practice.

4. Algorithms to compute geometric structures on surfaces

For any surface with boundaries, we can convert it
to a closed symmetric surface using the double covering
method [16]. First we make two copies of the surface, then
we reverse the orientation of one of them and glue the
two copies along their corresponding boundaries. The double
covered surface admits a uniformization metric conformal to
its original metric and the original boundary curves become
geodesics under this metric. The real projective structures of the
original surface and its double covering can be induced by this
uniformization metric. Therefore, in the following discussion,
we only focus on closed surfaces.
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4.1. Genus zero surface

Closed genus zero surfaces have spherical structures and
real projective structures. The universal covering space of a
closed genus zero surface is itself. Therefore, the surface can
be conformally mapped to the unit sphere.

A method based on nonlinear heat flow to construct
conformal maps between a closed genus zero surface and
the unit sphere S2 is introduced in [18]. The spherical
uniformization metrics are induced by these conformal maps.

The real projective structure can be deduced from the
spherical structure directly. We set six tangent planes at the
intersection points between the unit sphere and the axes, then
project the sphere onto these tangent planes using central
projection. This procedure produces the real projective atlas for
the surface. Fig. 4 demonstrates the spherical structure and real
projective structure of a closed genus zero surface.

4.2. Genus one surface

Closed genus one surfaces have affine structures which
can be treated as special cases of real projective structures,
and can be induced from surfaces’ flat uniformization metrics
where Gaussian curvatures are zero everywhere. The universal
covering space of a closed genus one surface can be embedded
in the Euclidean plane. Each fundamental domain is a
parallelogram, and the deck transformations are translations
on the plane. There are two methods to compute the flat
uniformization metrics for closed genus one surfaces.

4.2.1. Holomorphic 1-form method
The flat uniformization metric on a closed genus one

surface can be induced by the holomorphic 1-forms on it. A
holomorphic 1-form can be treated as a pair of vector fields
with zero divergence and curl, and orthogonal to each other. The
algorithms for computing holomorphic 1-forms are introduced
in [16,17]. By integrating one of its holomorphic 1-forms, the
universal covering space of a closed genus one surface can be
conformally mapped to the plane, which induces an affine atlas
for the surface.

4.2.2. Discrete Euclidean Ricci flow method
The flat uniformization metric on a closed genus one surface

can also be computed using the discrete Euclidean Ricci flow
method. This method is particularly good for surfaces with
boundaries compared with the holomorphic 1-form method
which has to produce singularities on genus one surfaces with
boundaries.

Given a triangular mesh, we first compute a circle packing
metric {Γ ,Φ} (see Eq. (7)) to approximate its induced
Euclidean metric. Then we use Newton’s method to minimize
the Euclidean Ricci energy, see Eq. (13). The Hessian matrix of
the energy is

∂2 f
∂ui∂u j

=
∂Ki

∂u j
=

∂Ki

∂r j
r j .

The Hessian matrix is positive definite, therefore the energy
is strictly convex, with a unique global minimum. Newton’s
method can be used to find the minimum with stable
convergence.

4.3. High genus surface

High genus surfaces have hyperbolic structures and
real projective structures. Both of them can be induced
from hyperbolic uniformization metrics on surfaces. The
following algorithms are designed to compute the hyperbolic
uniformization metric, hyperbolic structure and real projective
structure for a given surface Σ with genus g greater than one.

(1) Compute a canonical homology basis and canonical
fundamental domain of the surface Σ .

(2) Compute hyperbolic uniformization metric of the surface Σ
using discrete hyperbolic Ricci flow method.

(3) Compute its Fuchsian group generators in the Poincaré disk
model.

(4) Construct a hyperbolic atlas.
(5) Convert the hyperbolic atlas to the real projective atlas.

The algorithm in the first step, computing canonical
homology basis and canonical fundamental domain, has been
studied in computational topology and computer graphics
literature [23,22]. We adopted the methods introduced in [6].
The following discussion will explain other steps in detail.

4.3.1. Compute hyperbolic uniformization metric
The discrete hyperbolic Ricci flow method is simple and

powerful for computing the uniformization metrics of high
genus surfaces. Comparing with Euclidean Ricci flow, there are
two major differences

(1) Suppose a triangular face on the mesh with edge lengths,
instead of treating it as a triangle in the Euclidean space, we
treat it as a triangle in hyperbolic space. Then all the angles
in the triangle can be calculated using the hyperbolic cosine
law (8).

(2) In the energy form in Eq. (13), let ui = ln tanh γi
2 , therefore

the Hessian matrix of the energy f is

∂2 f
∂ui∂u j

=
∂Ki

∂r j
sinh r j .

The other parts of the algorithm are identical to those of the
Euclidean Ricci flow. The hyperbolic Ricci energy is strictly
convex, with a unique global minimum, which gives us the
desired hyperbolic uniformization metric.

4.3.2. Compute Fuchsian group generators in the Poincaré
disk model

This step aims to compute the canonical Fuchsian group
generators used for computing the universal covering space and
hyperbolic structure in the next step.
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4.3.2.1. Compute fundamental group generators. We first
compute a set of canonical fundamental group generators
{a1, b1, a2, b2, . . . , ag, bg}. Assume the base point is p, then
ai ’s and b j ’s are closed loops through the base point.
The surface S is sliced open along the fundamental group
generators to form a topological disk F called the canonical
fundamental domain. The boundary of F has the form ∂ F =

a1b1a−1
1 b−1

1 a2b2a−1
2 b−1

2 · · · agbga−1
g b−1

g .

4.3.2.2. Isometric embed in hyperbolic disk. We isometrically
embed the universal covering space Σ̄ onto the Poincaré disk
using the uniformization metric computed from Section 4.3.1,
and let φ : Σ̄ → H2 denote the isometric embedding.

We first select a face f012 from Σ arbitrarily. Suppose
three edge lengths are {l01, l12, l20}, and the corner angles are
{θ12

0 , θ20
1 , θ01

2 } under the uniform hyperbolic metric. We simply
embed the triangle as

φ(v0) = 0, φ(v1) =
el01 − 1
el01 + 1

, φ(v2) =
el02 − 1
el02 + 1

eiθ12
0 .

Then we can embed all the faces which share an edge with the
first embedded face. Suppose a face fi jk is adjacent to the first
face, and vertices vi , v j have been embedded. A hyperbolic
circle is denoted as (c, r), where c is the center, and r is the
radius. Then φ(vk) should be one of the two intersection points
of the two hyperbolic circles (φ(vi ), lik) and (φ(v j ), l jk).
Also, the orientation of φ(vi ), φ(v j ), φ(vk) should be counter-
clockwise. In the Poincaré model, a hyperbolic circle (c, r)

coincides with an Euclidean circle (C, R), satisfying

C =
2 − 2µ2

1 − µ2|c|2
c, R2

= |C|
2
−

|c|2 − µ2

1 − µ2|c|2
,

where µ =
er

−1
er +1 . So the intersection points between two

hyperbolic circles can be found by intersecting the two
corresponding Euclidean circles. The orientation of triangles
can also be determined using Euclidean geometry on the
Poincaré disk.

We can continuously embed faces which share edges with
embedded faces in the same manner, until we embed enough
portion of the whole Σ̄ onto the Poincaré disk.

4.3.2.3. Compute Fuchsian group generators. Given two pairs
of points (p0, q0) and (p1, q1) in the Poincaré disk, such that
the geodesic distance from p0 to q0 equals that from p1 to q1.
Then there exists a unique Möbius transformation φ, such that
p1 = φ(p0) and q1 = φ(q0). φ can be constructed in the
following way: construct a Möbius transformation φ0 mapping
p0 to the origin and q0 to a positive real number, with

φ0 = e−iθ0
z − p0

1 − p̄0z
, θ0 = arg

q0 − p0

1 − p̄0q0
.

Similarly, we can define another Möbius transformation φ1,
which maps p1 to the origin, q1 to a real number, and φ1(q1)

equal to φ0(q0). Then the desired Möbius transformation φ is:
φ = φ−1

1 ◦ φ0.
Let ak, a−1

k ⊂ ∂ F are two boundary curve segments with
their starting and ending vertices ∂ak = q0 − p0 and ∂a−1

k =
p1 − q1, then the Mobius transformation (p0, q0) → (p1, q1)

is the Fuchsian generator βk corresponding to bk . In fact, βk
maps ak to a−1

k . Similarly, we can compute αk which maps b−1
k

to bk . Therefore, we can compute a set of canonical Fuchsian
group generators {α1, β1, α2, β2, . . . , αg, βg} corresponding
to the set of canonical fundamental group generators
{a1, b1, a2, b2, . . . , ag, bg} computed from Section 4.3.2.1.

4.3.3. Construct hyperbolic structure
With the computed universal covering space and the

Fuchsian group generators, now we can construct the
hyperbolic structure of the given surface now. First we construct
a family of open sets {Uα}, such that the union of the open sets
covers the surface Σ , Σ ⊂

⋃
Uα . Then we locate a pre-image

of each Uα in the universal covering space Σ̄ , as π−1(Uα). The
embedding of the pre-image π−1(Uα) in the Poincaré disk gives
the local coordinates of Uα , namely

φα := φ ◦ π−1

where φ is the embedding map for the universal covering space
to the Poincaré disk. If one point p ∈ Σ on the surface Σ is
covered by two charts (Uα, φα) and (Uβ , φβ), suppose pα ∈ Ūα

and pβ ∈ Ūβ , and a curve connecting pα, pβ is denoted as γ .
The homotopy class of π(γ ) is determined by pα, pβ , denoted
as [ p̄α, p̄β ]. Assume [ p̄α, p̄β ] = γ1γ2γ3 · · · γn , where γk is one
of the ai ’s or bi ’s, we replace ai in [ p̄α, p̄β ] by αi , bi by βi in
γ to get the chart transition map φαβ with the form

φαβ = φ1 ◦ φ2 ◦ φ3 · · · φn,

where φ j is one of the αi ’s or βi ’s. Therefore we construct
a hyperbolic atlas {(Uα, φα)} which induces the hyperbolic
structure of the surface.

4.3.4. Construct real projective structure
For a closed surface Σ with genus g > 1, its real

projective atlas can be deduced from its hyperbolic structure
(but the reverse is not true). Suppose {(Uα, φα)} is a hyperbolic
atlas of Σ , then a real projective atlas {(Uα, τα)} can be
straightforwardly constructed. Let

τα = β ◦ φα and ταβ = β ◦ φαβ ◦ β−1,

where β is the map from the Poincaré model to the Klein model
defined in Eq. (5).

Suppose φα has the form

φα = eiθ z − z0

1 − z̄0z
,

where z0 = x0 + iy0, we use homogeneous coordinates
(xw, yw, w) to parameterize the points (x, y) on the Klein
model, then the transition map ταβ has the following form:
ταβ =

1
λ

OT , where λ = x2
0 + y2

0 − 1, and O is the rotation
matrix. O and T are:

O =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 ,
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Fig. 3. Visualization of affine and real projective invariants: (a) Genus one hyper-sheet surface with three boundaries. (b) Its affine structure: a finite portion of its
universal covering space embedded on the plane. (c) Parallel lines w.r.t. to the affine structure on the hyper-sheet surface. (d) Parallel lines on one chart of the affine
structure. (e) Two overlapping real projective charts of the eight model. In the overlapping part, a straight line on one chart is still a straight line on the other chart.

Fig. 4. Genus zero David head model: (a) David head model. (b) Spherical structure. (c) Projective structure: six charts.

Fig. 5. Genus one kitten model: (a) Kitten model. (b) One chart on the plane. (c) Its Euclidean (affine) structure: a finite portion of its universal covering space on
the plane. (d) The Voronoi diagram algorithm generalized on the surface via its Euclidean structure, four fundamental domains are shown.
T =

1 + x2
0 − y2

0 2x0 y0 −2x0
2x0 y0 1 − x2

0 + y2
0 −2y0

2x0 2y0 −1 − x2
0 − y2

0

 6= 0. (14)

5. Applications

We apply geometric structures for various applications,
which demonstrate the generality and the simplicity of this
methodology. The experimental results also show the feasibility
and the practical value of discrete variational Ricci flow.

5.1. Visualize geometric structures on surfaces

Although geometric structures are natural structures on
surfaces, due to their abstract and intricate nature, they are
difficult to perceive and understand. Furthermore, because
of the lack of a feasible way to compute them, geometric
structures are still not broadly appreciated and applied. In
this paper, we visualize common geometric structures on
general surfaces by using modern graphics and visualization
techniques. Fig. 3(a)–(d) shows the fact that parallelism can
be defined on surfaces coherently via their affine structures.
While (e) illustrates a projective invariant, collinearity can be
defined on a surface via projective structure. Fig. 4 shows the
closed genus zero David head model with its spherical structure
and the induced projective structure. Fig. 5(a)–(c) illustrates the
closed genus one kitten model with its affine structure. Fig. 6
shows the hyperbolic structures of two genus zero surfaces with
three boundaries. Figs. 7–11 visualize hyperbolic structures and
real projective structures for surfaces with genus greater than
one.

5.2. Generalize Voronoi diagram algorithm to surfaces

Closed genus one surfaces equip Euclidean uniformization
metrics, which can induce flat embeddings of the original
surfaces onto the plane, such that the planar Voronoi diagram
algorithm can be directly generalized to surfaces. Fig. 5(d)
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Fig. 6. Hyperbolic structure of genus zero surfaces with three boundaries: (a) Skull model. (b) One fundamental domain embedded in the Poincaré disk. (c) Its
universal covering space embedded in the Poincaré disk. (d) David head model. (e) One fundamental domain embedded in the Poincaré disk. (f) Its universal
covering space embedded in the Poincaré disk.

Fig. 7. Hyperbolic structure of World Cup model and David model. (a) Genus two World Cup model. (b) Hyperbolic structure induced from isometric embedding
of Universal covering space in Poincaré model. (c) Genus three David model. (d) Hyperbolic structure induced from isometric embedding of Universal covering
space in Poincaré model.

Fig. 8. Hyperbolic structure and real projective structure of amphora model. (a) Genus two amphora model. (b) Hyperbolic structure induced from isometric
embedding of Universal covering space in the Poincaré model. (c) Real projective structure induced from isometric embedding of Universal covering space in the
Klein model.
shows the Voronoi diagram algorithm generalized to the kitten
model via its Euclidean structure, where the Voronoi diagram is
depicted on a finite portion of the universal covering space.

5.3. Cross parameterizations

The cross parameterization between two different surfaces
with identical topology has many useful applications, including
surface metamorphosis, texture transfer, registration, shape
comparison and so on [27]. However, when the given two
surfaces have complicated topologies, it is very challenging to
get the cross parameterization between them [28,27].
Using the uniformization metrics and Ricci flow, the cross
parameterization between two different surfaces (Σ1,Σ2) can
be easily carried out. First, we compute their canonical
fundamental domains (F1, F2); then we compute their
uniformization metrics and embed the fundamental domains
onto the corresponding canonical space; finally, we construct a
harmonic map which maps the embedded fundamental domains
to each other. The harmonic map induces a map between two
surfaces. Fig. 12 shows the cross parameterization between
the two high genus surfaces. The left most and right most are
the two surfaces’ conformal embedding onto the Poincaré disk
derived from the discrete hyperbolic Ricci flow.
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Fig. 9. Hyperbolic structure and real projective structure of knotty model. (a) Genus two knotty model. (b) Hyperbolic structure induced from isometric embedding
of Universal covering space in the Poincaré model. (c) Real projective structure induced from isometric embedding of Universal covering space in the Klein model.

Fig. 10. Hyperbolic structure and real projective structure of sculpture model. (a) Genus three Sculpture model. (b) Hyperbolic structure induced from isometric
embedding of Universal covering space in the Poincaré model. (c) Real projective structure induced from isometric embedding of Universal covering space in the
Klein model.

Fig. 11. Hyperbolic structure and real projective structure of Greek Sculpture model. (a) Genus four Greek Sculpture model. (b) Hyperbolic structure induced from
isometric embedding of Universal covering space in the Poincaré model. (c) Real projective structure induced from isometric embedding of Universal covering
space in the Klein model.

Fig. 12. Cross parameterization between two genus two surfaces.
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Fig. 13. Manifold T -spline: constructing T -spline surface from an affine atlas computed using Euclidean Ricci flow. (a) David head model. (b) Flat metric induces
affine structure. (c) Manifold T -spline surface with knots structure. (d) Control net.

Fig. 14. More examples of manifold T -spline: (a) Kitten model. (b) Manifold T -spline kitten. (c) Control net. (d) Bird model. (e) Manifold T -spline bird. (f) Control
net.

Fig. 15. Manifold Triangle B-spline: (a) Hyper-sheet model. (b) Manifold Triangle B-spline hyper-sheet. (c) Control net. (d) Bunny model. (e) Manifold Triangle
B-spline bunny (f) Control net.
5.4. Manifold splines

Conventional splines are defined on planar domains.
However, it is natural to define splines directly on surfaces with
general topologies. The concept of manifold splines was first
introduced in [19], where the splines are defined on manifold
domains and the evaluations of the splines are independent of
the choice of the local charts. The significant advantage of the
manifold splines is that it is defined globally, and locally on
each chart, it is similar to a conventional planar spline.

It has been proved that defining splines over arbitrary
manifolds is equivalent to the existence of an affine atlas of the
underlying manifold, so the key to construct a manifold spline
is to construct the affine structure on the surface. The affine
structures derived from Ricci flow are applied for constructing
manifold T -splines and triangular B-splines shown in Figs. 13–
15.
6. Conclusion

This work proposes a novel theoretic framework, geometric
structures on general surfaces, which has fundamental
importance in geometric modeling fields. Geometric structures
allow different geometries to be defined on surfaces, therefore
planar algorithms can be systematically generalized to manifold
domains.

In order to compute geometric structures on arbitrary
surfaces, we design and implement a powerful geometric
tool, discrete variational Ricci flow, which can manipulate the
Riemannian metrics on surfaces. So far, Ricci flow is the only
way to compute hyperbolic and real projective structures.

Theoretically rigorous and practically efficient algorithms
for computing affine structure, hyperbolic structure and real
projective structure are thoroughly explained.
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Extensive experiments are performed, which verify the
solidness and feasibility of the algorithms. Geometric structures
and Ricci flow are applied for several important applications,
such as cross parameterizations, manifold splines etc.

Several important problems remain open. The real projective
structure computed in this work is derived from hyperbolic
structure. In theory, there exist real projective structures which
are intrinsically different from the hyperbolic structure. We will
explore alternative algorithm to compute them.

Conventional polar form splines are based on affine
structure, which doesn’t exist for general surfaces. Instead,
projective structure exists for all surfaces. In order to define
manifold splines based on projective structure, novel spline
scheme based on projective invariants should be invented. We
will investigate along this direction in the future.
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