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Problem Definition

The problem is concerned about computing virtual coordinates for greedy routing
in a wireless ad hoc network. Consider a set of wireless nodes S densely deployed
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inside a geometric domain R ⊆ R2. Nodes within comminication range can directly
communication with each other. We ask whether one can compute a set of virtual
coordinates for S such that greedy routing has guaranteed delivery? In particular,
each node forwards the message to the neighbor whose distance to the destination,
computed under the virtual coordinates and some metric function d, is the smallest. If
such a neighbor can always be found, greedy routing successfully delivers the message
to the destination. The problem can be phrased as finding a greedy embedding of S in
some geometric space, such that greedy routing always succeeds.

In the setting of this entry we assume that the nodes are a dense sample of the
domain R such that the communication graph on S contains a triangulated mesh Σ
as a discrete approximation of R.

Key Results

The key result is a family of distributed algorithms for computing the greedy embedding
using discrete Ricci flow. Given a triangular mesh Σ with vertex set V , edge set E and
face set F , we can define a piecewise linear metric by the edge lengths on Σ: l : E → R+

that satisfies the triangle inequality for each triangle face. The piecewise linear metric
determines the corner angles of the triangles on Σ, by the cosine law. The discrete
curvature Ki at a vertex vi is defined as the angle deficit on the mesh. If vi is an
interior vertex, Ki = 2π−

∑
j θj, where θj’s are the corner angles at vi. If vi is a vertex

on the boundary, Ki = π −
∑

j θj, where θj’s are the corner angles at vi. Thus, the
curvature at an interior vertex vi is 0 if the surface is flat at vi. The curvature at a
boundary vertex vi is 0 if the boundary is locally a straight line at vi. See Figure 1
(i). The famous Gauss-Bonnet theorem states that the total curvature is a topological
invariant:

∑
vi∈V Ki = 2πχ(Σ), where χ(Σ) is the Euler characteristic number3 of Σ.

Ricci flow is a process that deforms the surface metric to meet any target curvature
that is admissible by the Gauss-Bonnet theorem.
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Fig. 1. The circle packing metric.

A conformal map in the continuous surface preserves the intersection angle of
any two curves. In the discrete case, the “intersection angle” is defined using the circle
packing metric [Thurston(1976), Stephenson(2005)]. We place a circle at each vertex
vi with radius γi such that for each edge eij the circles at vi, vj intersect or are tangent
to each other. The intersection angle is denoted by φ(eij). The pair of vertex radii and

3 The Euler characterisitcs number of a surface is 2− 2g − h, where g is the genus or the number of
handles and h is the number of holes.
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the intersection angles on a mesh Σ, (Γ, Φ), is called a circle packing metric of Σ. See
Figure 1 (ii). Two circle packing metrics (Γ1, Φ1) and (Γ2, Φ2) on the same mesh are
conformal equivalent, if Φ1 ≡ Φ2. Therefore, a conformal deformation of a circle packing
metric only modifies the vertex radii γi’s and preserves the intersection angles. Note
that the circle packing metric and the edge lengths (the piecewise linear metric) on one
mesh can be converted to each other by using the cosine law.

Now we are ready to introduce the discrete Ricci flow algorithm. Let ui to
be log γi for each vertex. Then, the discrete Ricci flow, introduced in the work

of [Chow and Luo(2003)], is defined as follows: dui(t)
dt

= K̄i − Ki, where Ki, K̄i are
the current and target curvature at vertex vi respectively. Discrete Ricci flow can be
formulated in the variational setting, namely, it is a negative gradient flow of some
special energy form. f(u) =

∫ u

u0

∑n
i=1(K̄i − Ki)dui, where u0 is an arbitrary initial

metric and K̄ is the prescribed target curvature. The integration above is well de-
fined, and called the Ricci energy. The discrete Ricci flow is the negative gradient flow
of the discrete Ricci energy. The discrete metric which induces K̄ is the minimizer
of the energy. Computing the desired circle packing metric with prescribed curvature
K̄ is equivalent to minimizing the discrete Ricci energy. The discrete Ricci energy is
strictly convex (namely, its Hessian is positive definite after a normalization). The
global minimum uniquely exists, corresponding to the metric ū, which induces K̄. The
discrete Ricci flow converges to this global minimum and the convergence is expo-
nentially fast [Chow and Luo(2003)], i.e., |K̄i − Ki(t)| < c1e

−c2t, where c1, c2 are two
positive constants. This represents a centralized algorithm for computing the discrete
Ricci flow on Σ. In the following we describe the distributed algorithm for different
type of greedy routing scenarios.

Discrete Ricci Flow Algorithm

To apply discrete Ricci flow for greedy routing, we take a triangular mesh Σ as a
subgraph from the communication graph. All non-triangular faces are considered as
network holes that will be mapped to circular holes in the embedding. All nodes not
on hole boundaries have zero curvature under the mapping. Thus the embedding is
denoted as a circular domain. With the virtual coordinates and Euclidean distance
metric, greedy routing guarantees delivery4.

In particular, we set all edge lengths to be initially 1, which determines the
initial curvature at each node. In particular, we choose the circle packing metric by
placing a circle of initial radius 1/2 on each node. The circles at adjacent nodes are
tangent to each other. Thus the intersection angle is kept at 0. We now set the target
curvature at interior nodes to be zero and at hole boundary nodes to be 2π/k with k
as the number of nodes on the hole boundary. The algorithms runs in a gossip-style.
In each round, each node exchanges it radius with neighbors and computes its own
Gaussian curvature. The algorithm stops when the current curvature is within error ε
from the specified target curvature.

At each gossip round, node vi is associated with a disk with radius eui , where ui
is a scalar value. The length of the edge connecting vi and vj equals to eui + euj . The
corner angles of each triangle can be estimated using cosine law by each node locally.
That is, the angle θjki in triangle [vi, vj, vk] is

θjki = cos−1
l2ij + l2ki − l2jk

2lijlki
4 For a node in the interior of the triangulation, if the corner angle is greater than 2π/3 we will adopt

greedy routing on an edge that has provably guaranteed delivery.
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The curvature ki at vi is,

ki =

{
2π −

∑
jk θ

jk
i , vi 6∈ ∂M

π −
∑

jk θ
jk
i , vi ∈ ∂M

When the target curvature is not met, ui is modified proportionally to the difference
between the target curvature and the current curvature.

ui ⇐ ui + δ(k̄i − ki)

Once the curvatures are computed, the triangulation is then flattened out by
a simple flooding from a triangle root. Given three edge lengths of the root triangle
[v0, v1, v2], the node coordinates can be constructed directly. Then the neighboring
triangle of the root, e.g. [v1, v0, vi], can be flattened, the virtual coordinates of vi is the
intersection of two circles, one is centered at v0 with radius l0i, the other is centered at
v1 with radius l1i. In similar way, the neighbors of the newly flattened triangles can be
further embedded. The virtual coordinates of the whole network are thus computed.

Fig. 2. (a) A network of 7000 nodes with many holes; (b) Virtual coordinates.

Discrete Hyperbolic Ricci Flow

The key result in conformal geometry says that any surface with a Riemannian metric
admits a Riemannian metric of constant Gaussian curvature, which is conformal to
the original metric. Such metric is called the uniformization metric. Thus, depending
on the surface topology, the uniformization metric has either positive constant, zero,
or negative constant curvature everywhere. Simply connected surfaces with constant
curvature are only of three canonical types: the sphere (constant positive curvature
everywhere), the Euclidean plane (zero curvature everywhere), and the hyperbolic plane
(negative curvature everywhere). Discrete Ricci flow is a powerful tool to compute the
uniformization metric.

In our setting, when the triangulation Σ has two or more holes, it has negative
total curvature. Thus its uniformization metric is hyperbolic. To actually embed the
surface and realize the uniformization metric, the holes in the network are cut open to
get a simply connected triangulation T . Using discrete hyperbolic Ricci flow we embed
T in a convex region S in hyperbolic space. Each node is given a hyperbolic coordinate.
Each edge uv has a length d(u, v) as the geodesic between u, v in the hyperbolic space.
In this way, greedy routing with the hyperbolic metric, i.e., send the message to the
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neighbor closer to the destination measured by hyperbolic distance, has guaranteed
delivery.

The hyperbolic Ricci flow is very similar to the Euclidean version with a few
modifications. First all metrics are hyperbolic. The edge length lijof eij is determined
by the hyperbolic cosine law:

cosh lij = cosh γi cosh γj + sinh γi sinh γj cosφij. (1)

Let ui = log tanh γi
2

, the discrete Ricci flow is defined as

dui(t)

dt
= −Ki, (2)

where Ki is the discrete Gaussian curvature at vi. Once the hyperbolic metric is com-
puted, we can embed the triangulation isometrically onto the Poincare disk.

Generalized Discrete Surface Ricci Flow

There are many schemes for discrete surface Ricci flow [Zhang et al(2014)Zhang, Guo, Zeng, Luo, Yau, and Gu],
including tangential circle packing, Thurston’s circle packing, inversive distance circle
packing, Yamabe flow, virtual radius circle packing and mixed typed schemes. All of
them can be unified as follows. The combinatorial structure of the triangulation is Σ, it
is with one of three background geometries: Euclidean E2, hyperbolic H2, and spherical
S2. Each vertex is associated with a circle, the vertex radii function is γ : V → R+.
Each vertex is also associated with a constant ε, which indicates the scheme. Each edge
has a conformal structure coefficient η : E → R. So a circle packing metric is given by
(Σ, γ, η, ε). The discrete conformal factor is given by

ui =

 log γi , E2

log tanh γi
2
, H2

log tan γi
2

, S2

The length of [vi, vj] is given by
l2ij = 2ηije

ui+uj + εie
2ui + εje

2uj , E2

cosh lij =
4ηije

ui+uj+(1+εie
2ui )(1+εje

2uj )

(1−εie2ui )(1−εje2uj )
, H2

cos lij =
4ηije

ui+uj+(1−εie2ui )(1−εje2uj )
(1+εie2ui )(1+εje

2uj )
, S2

The discrete Ricci flow is given by

dui(t)

dt
= K̄i −Ki(t),

where K̄ : V → R is the prescribed target curvature, which is the negative gradient
flow of the discrete Ricci energy

E(u) =

∫ u∑
i

(K̄i −Ki)dui.

For the discrete surfaces with Euclidean back ground geometry, the Ricci energy is
convex on the space

∑
i ui = 0. For those with hyperbolic background geometry, the

energy is convex. For spherical case, the energy is indefinite.
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For Yamabe scheme (where ε ≡ 0), the combinatorial structure Σ is Delaunay,
if for each edge [vi, vj] share by two faces [vi, vj, vk] and [vj, vi, vl], θ

k
ij + θlji ≤ π. If

during the Yamabe flow, the combinatorial structure can be updated to ensure the
Delaunay condition, then for any K̄ : V → (−∞, 2π) satisfying the Gauss-Bonnet
constraint

∑
v∈V K̄(v) = 2πχ(Σ), the Yamabe flow with surgery can lead to the dis-

crete metric that realizes the target curvature, the convergence is exponentially fast.
This theorem implies the discrete uniformization theorem: any closed polyhedral sur-
face admits a polyhedral metric discretely conformal to the original one, which in-
duces constant Gaussian curvature everywhere [Gu et al(2013)Gu, Luo, Sun, and Wu,
Gu et al(2014)Gu, Guo, Luo, Sun, and Wu].

Fig. 3. Discrete surface uniformization.

Applications

The presented Ricci flow algorithms can be applied for a variety of routing prim-
itives for large-scale wireless sensor networks with non-uniform node distribution.
Beside guaranteed delivery [Sarkar et al(2009)Sarkar, Yin, Gao, Luo, and Gu], we can
also achieve multiple additional desirable routing objectives, all derived from the
unique property of a conformal mapping. For example, greedy routing on a cir-
cular domain may accumulate high traffic load on the interior hole boundaries.
To alleviate that, we can reflect the network along a hole boundary using a Mo-
bius transformation and map a copy of the network to cover the interior of the
hole, recursively [Sarkar et al(2010)Sarkar, Zeng, Gao, and Gu]. See Figure 5. Rout-
ing on this covering space makes traffic load more balanced as hole boundaries
essentially ‘disappear. In another case, when there are sudden link or node fail-
ures, we can apply a Mobius transformation to generate a different circular domain,
with the sizes and positions of the holes rearranged, on which greedy routing gen-
erates a different path [Jiang et al(2011)Jiang, Ban, Goswami, adn Jie Gao, and Gu].
Thus quick recovery from a spontaneous failure is possible. The hyperbolic Ricci
flow can be used to map the domain with the holes cut open to a convex polygon
that can tile up the entire hyperbolic plane. This mapping supports greedy rout-
ing with specified ‘homotopy types, i.e., routes that go around holes in different
ways [Zeng et al(2010)Zeng, Sarkar, Luo, Gu, and Gao]. See Figure 4. Hyperbolic em-
bedding can be generalized to 3D sensor networks with complex topology as in the
case of monitoring underground tunnels [Yu et al(2012)Yu, Yin, Han, Gao, and Gu].
Aditional applications include generation of ‘space filling curves for arbitrary do-
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Fig. 4. Computing the shortest paths using the hyperbolic embedding of a 3-connected domain with
1286 nodes. Two different paths are generated using greedy routing towards images of the destination
in different patches.

mains [Ban et al(2013)Ban, Goswami, Zeng, Gu, and Gao], supporting greedy routing
in mobile networks [Li et al(2013)Li, Zeng, Zhou, Gu, and Gao], etc.

Fig. 5. 3-level circular reflections and a routing path.

Open Problems

Given a smooth surface S with a Riemannian metric g, the smooth Ricci flow leads to
the uniformization metric e2λg, where λ is the smooth conformal factor. If the surface
is tessellated to get a discrete surface M0, and discrete Ricci flow is performed on M0,
one obtains discrete conformal factor function u0. When M is subdivided by n times,
the discrete conformal factor is un, whether limn→∞ un = λ.

Experimental Results

URLs to Code and Data Sets

http://www.cs.sunysb.edu/∼gu/tutorial/RicciFlow.html
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