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Abstract 

Suppose that ye is an unknotted simple closed curve contained in the 3-sphere which 
happens to be invariant under a subgroup G of the Mobius group of S3 = the group 
(generated by inversions in 2-spheres). It is shown that there is an equivariant isotopy yt, 

0 < t Q 1, from ye to a round circle yi. 

Keywords: Knot; Unknotting; Mobius group; Mobius energy 

AMS (MOS). Subj. Class.: 53AO4, 57M25; secondary 58E 

The existence of a Miibius invariant energy functional E : {smooth simple closed 
curves in the 3-sphere S3) -+ Rf achieving its minimum precisely on round circles 
has stimulated renewed interest in finding a “natural” unknotting procedure on 
the space of topologically unknotted simple closed curves [3,6]. A “natural” flow 
from unknots to round circles should, at a minimum, satisfy: (1) continuity in initial 
conditions; (2) conservation of symmetry: a G-invariant loop, G c Miib(S3), should 
remain G-invariant as it evolves; and (3) all trajectories converge to a round circle. 
A flow satisfying (1) and (3) follows from Hatcher’s famous paper on the Smale 
conjecture [4]. In this paper, we prove: 
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Theorem. For every compact subgroup G of the Miibius group M6b(S3), if y C S3 IYY 
a smooth unknotted G-invariant simple closed curve, then there exists a smooth 

family of G-invariant simple closed curves yt, 0 < t Q 1, with y. = y and y1 a round 

circle. 

The Mobius group M6b(S3) is the lo-dimensional Lie group of two components 
generated by inversions in 2-spheres. 

This shows that there is no obstruction to combining properties (2) and (3): for 
all compact subgroups G c M6b(S3), r,((round G-invariant circles)) + r. ({un- 
knotted G-invariant simple closed curves)> is onto. 

It is still an open question whether then there could be any topological 
obstruction to properties Cl), (21, and (3) being simultaneously achieved, i.e., to 
combining parameters and symmetry. There would be no such obstruction if for all 
compact subgroups G c M6b(S3): 

rTTi( (round G-invariant circles}) 

-+ ri( { unknotted G-invariant simple closed curves)) 

is an isomorphism. 

(*) 

For example, if G is multiplication by e 2?ri/P, then ( * > is equivalent to showing 
Diff(L,,,) z Normalizer(G)/G = T*. This type of generalization of Hatcher’s the- 
orem is presently unknown. It is worth noting that ( * > probably would have a very 
interesting formal consequence: 

pt = {round circles} /Miib( S”) 

= (unknotted simple closed curves) /Miib( S3). (**I 

Here is a sketch of the proof that (*) implies ( * * ). Beginning with the largest 
G (partially ordered by inclusion), piece together deformation retractions of 
G-principal bundles a strata at a time to obtain a Mobius equivariant deformation 
retraction of (unknotted simple closed curves} to {round circles). To make this 
sketch precise, one would have to enter into the details of the topology of 
(unknotted simple closed curves) and its G-stratification, a task which we have not 
considered warranted unless ( * ) is established. 

The organization of this paper is as follows. Suppose G is a compact subgroup 
of M6b(S3) leaving a smooth unknot K invariant. If G is not finite, then K is 
invariant under a circle action and therefore is a round circle. Thus, it suffices to 
consider finite groups G. If K lies in a round a-sphere S*, then S* is G-invariant 
unless K is a round circle. In the latter case, K is isotopic to a round circle in S* 
G-equivariantly. If K is not in any round 2-sphere, the restriction of G to K gives 
a faithful representation G + DiffCK). Thus, G is a cyclic or a dihedral group. 
This is the case that we will focus on in this paper. We will recall the list of all 
cyclic and dihedral subgroups of Miib(S3) up to conjugation in Section 1. For the 
proof, we work our way through the list. The argument varies considerably from 
case to case and draws from time to time on substantial theorems. If the result 
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derives from some simple unifying topological principle, we have not succeeded in 
finding it. The theorem in the cyclic group case is in Section 2, and the dihedral 
group case is in Section 3. 

1. Cyclic and dihedral subgroups of O(4) 

We will list all cyclic and dihedral subgroups of O(4) (M6b(S3)) up to conjuga- 
tion in this section. Each subgroup G c O(4) will be represented by 4 X 4 matrices 
generating the group. To see the group action on S3, we identify S3 with 
E3 = R3 u (4 via stereographic projections and represent the action by Mobius 
transformations in R3, e.g., the antipodal map is given by x ++ -x/I x I ’ for 
XEIW3. 

Let Z, be the cyclic group of order it generated by a; D,, the dihedral group 

(a, PIa”= 1, p2 = 1, @aP = a-‘); 

R,= 

U denotes the unit circle in the v-plane. 

1.1. Cyclic subgroups Z, 

(a) n = 2. All Z, subgroups of O(4) are conjugate to one of the following four 
groups. The matrix denotes the generator of Z,. 

-1 
1 

ff= 

[ 1 1 ’ 
1 

(Y acts as the reflection in the v-plane in R3 (with a 2-sphere as the fixed point 
set); 

-1 
-1 LX= 

[ 1 1 ’ 
1 

(Y acts as the r-rotation about the x-axis in R3 (with a circle as the fixed point set); 

(Y acts as the map x * --x in n3 (with two points as the fixed point set); 

-_[’ -l _1 _1], 

(Y is an antipodal map x +P -x/I x I * in R3 (without fixed point). 
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(b) n > 3. Z,, is generated by 

49 0 
a = 0 R,, I 1 

where 0 = 2al/n, 8’ = 2nl’/n, 0 < 1,f’ Q n - 1, ((1, 1’1, n) = 1. a acts as the com- 
position of the 2rl/n-rotation about the z-axis with the 2Tl’/n-rotation about the 
unit circle U in the q-plane. 

(c) n B 3. n even. Z, is generated by 

where 8 = 2vl/n, (1, n) = 1, or 2. (Y acts as the composition of 2rl’/n-rotation 
about the z-axis with the reflection about the q-plane. 

1.2. Dihedral groups D,, 

Each representation of D,, into O(4) leaves a 2-plane invariant. Thus each 
representation is constructed as the direct sum of two 2-dimensional representa- 
tions of Dzn, see Serre [81. 

(a) II = 2. D,, is isomorphic to Z, $ Z, generated by (Y and p. There are six 
mutually nonconjugate subgroups of O(4) isomorphic to Z, @ Z,. The generators 
a, /3 of the group are listed as follows. 

-I’ -l _1 _I], p=r’ +l +1 +(I? 
a is x c) -x/I x 1 2 and p is the reflection about the xv-plane; 

n_[l -l _1 _I; R[I -l 1 I], 
Q is x r--) -x/I x ( 2 and p is the T-rotation about the x-axis; 

_I’ l _1 _J P=[’ l l J 

a! is the r-rotation about the z-axis and p is the reflection about the xv-plane; 
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(Y is the n-rotation about the z-axis and p is the reflection about the z-plane; 

(Y is the r-rotation about the z-axis and /3 is the T-rotation about the x-axis; 

1[1 1 -1 _j, P=[’ -l _1 I], 

(Y is the r-rotation about the unit circle U in the xy-plane and /3(x) = --x. 
(b) n 2 3. D,, is generated by 

where 8 = 27rl/n, 0’ = 2Tl’/n, 0 G 1, 1’ Q n - 1, ((I, I’), n) = 1. (Y is the composi- 
tion of the 2nf/n-rotation about the z-axis with the 2Tl’/n-rotation about U, and 
p is the T-rotation about the x-axis. 

Cc) n & 3. D,, is generated by 

where 8 = 2n/n. cx is represented as 2a/n-rotation about the z-axis and p is the 
a-rotation about the n-axis. 

(4 n > 3. D,, is generated by 

where 0 = 2r/n. cx is the 2r/n-rotation about the z-axis and p is the reflection 
about the xz-plane. 

(e> n a 3. D,,, is generated by 

where 0 = 2T/n. a is the 2r/n-rotation about U and p: x H --x in R3. 
(f) n > 3, n even. D,, is generated by 

where 8 = 2~r/n. (Y is the composition of 2~/n-rotation about the z-axis with the 
r-rotation about U and p is the n-rotation about the x-axis. 

(g) n a 3, n euen. D,, is generated by 

a=[: _;,], P=[‘d pd]. 
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0 = 2n/n. (Y is the composition of 2r/n-rotation about the z-axis with the 
p-rotation about U and p is the reflection about the xz-plane. 

(h) n 2 3, it even. D,, is generated by 

19 = 2rr/n. (Y is the composition of 2a/n-rotation about the z-axis with the 
reflection about the v-plane and p is the reflection in the z-plane. 

(i> it & 3, II even. D,, is generated by 

8 = 2T/n. (Y is the composition of 2r/n-rotation about the z-axis with the 
reflection about the xy-plane, and /3 is the orientation reversing involution of lR3 

with two fixed points at (* 1, 0, 01. 

1.3. Group actions on solid tori 

Each isometry of the product metric on D2 X S’ is of the form (z, r> * 

(f&z>, f2(t)), where fi(z) = &z, or 8,~ for some Bi E Si, D2= (2 E @ 1 1 z 1 Q 11 

and S1 = {z E C I I z I = l]. 

Proposition 1.1. Each finite group G acting on D2 X S1 is conjugate to an action by 
isometry on D2 X S’ with respect to the product metric. 

The proof is a direct consequence of the equivariant Dehn lemma and the 
solution of the Smith conjecture. Because many similar cases must be considered, 
only a sketch is given. 

Proof (sketch). According to the equivariant Dehn lemma [5] there exists an 
essential G-invariant disk D2 - D2 X S’ imbedded in D2 x S’ or a G-invariant 
family LI D2 - D2 x S’ of disjointly imbedded essential disks. By elementary 
3-manifold topology (chiefly the Schoenflies theorem), cutting along those disks 
yields a 3-ball or family of 3-balls on which G acts. 

It is well known that finite group actions on S’ X S’ = aD2 X S’ are all conju- 
gate to linear actions, i.e., finite subgroups of the affine group of Z 8 Z and 
therefore solvable. The Smith conjecture [l] states that smooth cyclic group actions 
on B3 are all conjugate to linear actions and this result has been extended to 
smooth actions of any solvable group on B3. Thus the actions of G on the cutting 
disks and the complementary balls are all linear. By considering cases one may 
check that these can be reglued to obtain exactly the standard actions of D2 X S’. 

cl 
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Almost certainly, all smooth, finite group actions on B3 are linear. This is a very 
special case of the Thurston orbifold theorem. But since the latter has not been 
published or even fully exposited, we have exploited the fact the most difficult 
group A, acting on B3 does not arise from actions on a solid torus to avoid relying 
on Thurston’s theorem. 

Remark. (1) As a special consequence, we see that there is no self homeomorphism 
h of D* x S’ so that h*(z, t) = (f, t). 

(2) We will call actions by isometries “standard actions”. 

2. Cyclic group actions 

Suppose K is an unknot which is not lying in a round 2-sphere and is invariant 
under a cyclic group Z, c O(4). We will prove that K is equivariantly isotopic to a 
round circle. 

We will use the following notations. N(K) denotes the interior of a small 
invariant regular neighborhood of K; D* denotes (z I z E C, I z I d 1); S1 denotes 
(t I t E C, I t I = 1); D* x S' denotes a solid torus; Z denotes the closed interval [0, 
11. By a core of a solid torus D* X S’ we mean a curve in the interior of D* x S' 
isotopic to (0) X S'. Since K is assumed to be trivial, N(K)’ is homeomorphic to 
D* x S' and has an induced Z.-action. If the i&-action on N(K)’ has an invariant 
meridian disc, then K bounds an equivariant disc in S3. Any finite group action on 
a disc has a global fiied point. Thus, K is equivariantly isotopic to a round circle 
centered at the fixed point. 

There are five cases which need to be considered in the cyclic group case. 
Case 1: The order n = 2. There are four types of nonconjugate Z, actions on R3 

according to the dimension of Fix(a) (cy is a generator of 77,). 
(a) Fix(a) is a 2-sphere. We may assume that (Y is the reflection about the 

xy-plane. Then K n Fix(a) = 2-point set since K is assumed to be not in a sphere. 
The action of cy on N(K)' is conjugate to (z, t) e (2, t), (z, t> ED* x S'. Thus, 
there is an invariant disc D X {t). 

(b) Fix(a) is a circle. We may assume that (Y is the T-rotation about the z-axis. 
If K n Fix(a) # fl it must be two points. In this case a-action on N(K)’ is 
conjugate to (z, t> ++ (2, t), (z, t> ED* X S'. If K n Fix(a) = fl then a-action on 
N(K)” is conjugate to (z, t> ~3 c-z, t>, (z, t) ED* X S'. In both cases, there are 
invariant meridian discs. 

(c) Fix(a) is a 2-point set. We may assume that a(x) = -x, x E R3. If K n 
Fix(a) = (6, then a-action in N(K)’ is conjugate to (z, t) + c-z, t), (z, t) E D2 x 
S'. It has an invariant meridian. If K n Fix(a) # @, K n Fix(a) = (0, w}. By an 
equivariant isotopy of K, we may assume that K is a part of a straight line L near 
0 and 03, say outside the region 1x 1 r G I x I Q R}. We may further equivariantly 
isotopy K so that K coincides with L near 0 and cx) respecting the orientation. See 
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K IEWK 

Fig. 1. Untwist K by n-rotation near 0. 

Fig. 1. The goal now is to equivariantly isotope K to L in A4 = Ix I y G I x I 6 R) 

leaving their endpoints fixed. To this end, we consider the quotient {x I y Q I x 1 G 

RI/x - a(x). It is homeomorphic to [wP2 x Z where the quotient L n A4 corre- 
sponds to p x I. The quotient of K f~ M is an arc $ in R P2 X Z whose comple- 
ment is homeomorphic to {Mobius band} X Z since a-action on N(K)’ is standard. 
Using these product structures, we find an annulus A = C X Z where C is an 
essential simple closed curve in RP2 passing through p and another annulus A’ 

which is properly embedded containing Z? so that aA’ f~ [wP2 X {i) are essential 
simple closed curves, for i = 0, 1. 

Since any two essential simple closed curves in [wP2 are isotopic, we may 
isotope 2 so that aA’ n &4 n [wP2 x (i) consists of the point p X {i} for i = 0, 1, 
and that A’ intersects A transversely. Let y be the intersection arc y in A nA 
from p x (O} to p x (l}. Then, using the annuli A and A”, we see that k is isotopic 
to y in A’ and y is isotopic to p x Z in A. Thus k is isotopic to p X Z in [wP2 X Z 
(possibly moving the endpoints). On the other hand, by the assumption on the 
orientations on K and L, the loop k up x Z is null homotopic in R P2 x I. Thus k 
is isotopic to p X Z leaving the endpoint fixed. Lifting this isotopy to {x 1 y < I x I G 

R) = M, we show that K n M is equivariantly isotopic to L n M leaving the 
endpoints fixed. 

(d) (Y is fued point free. This will be covered in Case 2. 
Case 2: n > 3, and (Y generates a free cyclic action. We may assume that (Y is the 

composition of the 2r/n-rotation about the z-axis with the 2rZ/n-rotation about 
the unit circle U in the xy-plane, where (I, n> = 1. The z-axis and U are both 
invariant whose quotients in the lens space L(n, I> = S3/x _ (Y(X) are the cores of 
a genus one Heegaard splitting of L(n, 1). The unknot K also descends to a core 
of a genus one Heegaard splitting of L(n, 0 since Z,-action on N(K)” is standard. 
If n 2 3, the result that K is equivariantly isotopic to the z-axis or U follows from 
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a theorem of Bonahon 121 on the uniqueness of genus one Heegard splitting of lens 
space Un, I). If n = 2, the result that the genus one Heegaard splitting of RP3 is 
unique still holds. Indeed, suppose T is a genus one Heegaard surface in lRP3 in 
general position with respect to RP2 c RP3. Then the intersection T n RP2 
consists of several disjoint circles. Since any two essential circles in 5!P2 are 
intersecting, and any two disjoint essential circles in T are parallel, we see that 
there is exactly one circle C in T n RP2 so that C is essential in both T and RP2 
and that all other circles in T n RP2 are null homotopic in both T and RP2 
respectively. By the standard innermost circle and exchange argument, we may 
isotopy T so that T n R P2 consists of only one circle (which is automatically 
essential). Thus all genus one Heegaard splittings of RP3 are isotopic. This gives a 
proof of Case l(d). 

Case 3: n z 3, and LY generates a cyclic action with a one-dimensional fixed point 

set. We may assume that (Y is the 2r/n-rotation about the z-axis. Since n 2 3, 
K n FiX(c~j= @. The Z,-action on N(K)” is conjugate to (z, t) - (e2ri/nz, t) on 
D2 X S’. Thus, there are invariant meridian discs. We would like to state without 
proof two consequences of this action. 

Lemma 2.1. If an unknot K is invariant under a 2T/n-rotation about an axis L and 
KnL=@, na2,then 

(a) (K, L) is a Hopf link. In particular, the linking number between K and L is 

one. 
(b) Suppose K’ is another such unknot, K n K’ = (6, then the linking number 

between K and K’ is divisible by n. 

Case 4: n 2 3, and o generates an orientation preserving nonfree action which 
does not have a global one-dimensional fIxed point set. We may assume that (Y is the 
composition of 2rr/l-rotation about the z-axis with the 2rp/m-rotation about the 
unit circle U in the v-plane, where, 1 f m, 1, m 2 2, gcd(p, m) = 1, and n = 
lcm(1, m). We divide it into two subcases. 

(a) gcd(1, m) = 1. Then n = lm, and Z, = Z, $ Z, where the two generators in 
the direct sum are the 2Ir/m-rotation about U denoted by p and the 2r/l-rota- 
tion about the z-axis denoted by y. We claim that the only invariant unknots are 
Fix@) and Fix(y). Indeed, since one of 1, m is at least three, K cannot meet both 
Fix@) and Fix(y). K n (Fix(P) U Fix(y)) = fl is also impossible. To see this, by 
Lemma 2.1(b), the linking number lk(K, Fix@)) ’ d’ ’ 1s ivisible by 1 since both K and 
Fix@) are invariant under y. On the other hand, by Lemma 2.1(a), lk(K, 
Fix@)) = 1 since K is invariant under p. The other way to see this is to note that 
the Z, @ Z,-action on N(K)” is nonstandard. Thus, the only case left is that K 
meets one of Fix@) or Fix(y) in two points, say I K n Fix@) 1 = 2. This implies 
m = 2. Thus la 3. However K n Fix@) is y-invariant. Therefore I K n Fix(@) ( 2 3. 
This is absurd. 

(b) gcd(1, m) = a, where a < 2, I= ab, m = ac gcd(b, c> = 1, gcd(p, UC) = 1 and 
both b, c 3 2. Then cPb IS the 2rpb/c-rotation about U, and cPc is the 2rc/b-ro- 
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tation about the z-axis. By Case 4(a), b & 2, c > 2 implies that the only invariant 
unknots are Fix(cuub) and Fix(a”“). 

(c) gcd(l, m) = a, a > 2, 1= ab, m = UC, gcd(p, UC) = 1, and one ofb or c ts one. 
We may assume without loss of generality that b = 1. Thus, (Y is the composition of 
2n/l-rotation about the z-axis with the 2rrp/lc-rotation about U where 
gcd(p, lm) = 1. Now c? is the 2Tp/c-rotation about U. Assume first that c 2 3, or 
c = 2 together with U n K = @. By Lemma 2.1(a), (K, U) forms a Hopf link. Take a 
small invariant regular neighborhood N(U) of U so that K n N(U) = $j and 
{z-axis) n N(U I= 8. Then both K and the z-axis are two invariant cores of the 

solid torus m. Thus they are equivariantly isotopic since Z,-action on N(tl)’ 
is free and conjugate to (z, t) H (ezVi/‘z, ezTP/“t) in D2 X S’. In the rest case, 
c = 2, and I K n U I = 2. This case does not occur since n > 3 and K n U is 
a-invariant imply that I K n U 1 a 3. 

Case 5: The group is generated by an orientation reversing (Y of order at least 
three. We may assume that (Y is the composition of 2rr/m-rotation about the z-axis 
with the reflection about the v-plane and LY has order It. Fix(a) = (0, m}. Since 
n 2 3, K n Fix(a) = fl. If m is odd, n = 2m, and am is the reflection about the 
v-plane. Thus, K is invariant under both 2T/m-rotation about the z-axis and the 
reflection about the w-plane. Since m > 3, K is either in the xy-plane (which is 
excluded by the assumption on K) or K is the z-axis. If m is even, m = n. If 
m & 6, or m = 4 together with K n (z-axis) = @, then the cyclic group action on 
N(K)’ is conjugate to the (z, t) c) (ezrilm z, t) action on D2 X S’. Thus, there are 
invariant discs. If m = 4 and K intersects the z-axis in two points, then by 
considering the induced action of Z, on N(K)“, we see that the generator (Y has 
order 4 and that LX’ is conjugate to (z, t) M (_Z, i). This is impossible by the remark 
following Proposition 1.1. 

3. Dihedral group actions 

We will continue the use of the notations introduced in Section 2. Thus, K is an 
invariant unknot which is not in any 2-sphere. The dihedral group D,, is gener- 
ated by LY, p satisfying (Y” = 1, p2 = 1, and Pap = (Y-I. We will show that K is 
equivariantly isotopic to a round circle. The cases in the following paragraphs are 
not in the order that we used in Section 1.2. The most interesting case (Case 1 
corresponding to 1.2(b) in the list) is proven first. 

Case 1: n > 3 and (Y is the composition of 2a/n-rotation about the t-axis with 
2al/n-rotation about U, gcd(l, n) = 1 and /3 is the T-rotation about the x-axis. 

There are two subclasses. 
(a) K n Fix@) = two points. Then the orbit space s3/(a,@> (as orbifold) has 

underlying space S3 and singular set a 2-bridge knot corresponding to Fix@). The 
z-axis and the unit circle in the n-plane U are both D,,-invariant. Their quotients 
in ,S3/(a,p) form the top and bottom tunnels in the standard presentation of the 
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2-bridge knot. Since the action D,, on N(K)’ is conjugate to the standard action, 
there is also an unknot L invariant under D,, which is a core of N(K)‘. Thus, the 
quotients of k’, L of K and L respectively in S3/(cy,/3) form the top and bottom 
tunnels of a new presentation of the 2-bridge knot. By a result of Schubert [7l 
these tunnels as a pair are unique up to isotopy leaving the 2-bridge knot invariant. 
Thus k is isotopic to one of the quotients of the z-axis or V in S3/(~,p> so that 
during the isotopy the endpoints stay in the 2-bridge knot. This is equivalent to 
saying that K is equivariantly isotopic to the z-axis or V. 

(b) KnFixt@=@. Th is case does not occur. Indeed, in the quotient space 
S3/(~), the descending p of p has fiied point set Fix@) which is disjoint from 
the quotient K of K. Since K is p-invariant, N(K)” is also p-invariant and 
contains Fix(p). By the classification of Z,-involution on N(K)‘, Fix(D) must be a 
core curve of N(K)“. Thus Fix(p) is a generator of the lens space s3/(a>. This 
implies Fix(P) is a-invariant in S3 which contradicts the assumption it > 3. 

Case 2: n 2 3 and (Y is the composition of 2r/-rotation about the z-axis with the 
2aq/m-rotation about V, and /3 is the T-rotation about the x-axis where 1 # m, l,m 

> 2, gcd(q, m) = 1, and n = lcm(l, m). By the proof of Case 4 in Section 2, the 
only case needed to be considered is that m = lp. Thus, we may assume that (Y is 
the composition of the 2n/Z-rotation about the z-axis with the 2rq/pl-rotation 
about V. By the proof of Case 4 in Section 2, K and V form a Hopf link. Take a 
small regular invariant neighborhood N(V) of V so that K n N(V) = ld. Then we 
have the action of dihedral group D,, on A$W so that both K and the z-axis are 
invariant cores. The cyclic group ((r > acts freely on m and is conjugate to the 
action (2, t‘) ++ (e2Ti/’ z, e2Tqi/p’t) on D2 x S’. In the quotient space m/(a), 
K descends to a core curve K. Furthermore, p descends to an orientation 

preserving involution p on N(U)C/((Y) w IC h’ h is conjugate to (2, t> - (2, t) in 
D2 x S’. Now, if KIT Fix(p) # fl, then K and the quotient of the z-axis are 
p-invariant cores and both intersect Fix@ at two points. Thus, they are isotopic 
by considering a further quotient by p. The case that K n Fix@) = 0 does not 
occur. Indeed, by Lemma 2.1(a), Fix(P) is a core curve of N(K)“. Since (a) also 
acts on N(K)‘, by Proposition 1.1, (a) will leave Fix@) invariant which is absurd. 

Case 3: n = 2. There are six Z, @ Z, nonconjugate subgroups of O(4). Let cr 
and p be the generators. 

(a) cr is the a-rotation about V and /3 is the map x c, -x. If Kn (Fix(a) u 

Fix@))= @, then the action on N(K)” is conjugate to (Y:(z, t)e(-z, t) and 
p : (z, t) ++ ( -2, t). Thus, there are invariant meridian discs. If K n Fix(a) consists 
of two points and K n Fix@) = @, then the action on N(K)’ is conjugate to 
(Y :(z, t) - (2, t) and p :(z, t) H (-z, t) on D’ x S’. There still exist invariant 
meridian discs. The interesting case remaining is when K n Fix@) = Fix@) = 
IO, ~1. We will distinguish two more cases: K n Fix(a) = fl or K n Fix(a) f 1. If 
Kn Fix(a) = @, then K and Fix(a) form a Hopf link. Take a small invariant 
regular neighborhood N of N(V) so that N n (K U {the z-axis}) = 6. Then both K 

and the z-axis are invariant core curves of N(U)C. In the quotient solid torus 
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N(U)c/(rr), the quotients K and z of K and the z-axis are still core curves. /3 

descends to p in N(U)“/(a) which is conjugate to (z, t) e (-2, t) on ID2 X S’. In 
fact, Fix@) consists of the quotient of Fix@) and (0, 0, f 1). Since K is p-in- 
variant, K n Fix@) = Fix@. Therefore, the result will follow from the following 

lemma. 

Lemma 3.1. Suppose K,, K, are two core curues in D2 x S' both invariant under 

p:(z, t) e C-z, t) and Fix@) cKi f or i = 1, 2. Then K, is B-equivariant isotopic 
ro K,. 

Proof. We may assume for simplicity that K, = (01 x 5". Since the pair (D2 X S', 
K,) is p-equivariantly homeomorphic to (D2 x S', K2) by Proposition 1.1 in 
Section 1.3, we find two disjoint meridian discs, D, and D_ 1 so that Di fl K, = (0, i> 
for i = 1, - 1 (the fixed points of F). We may also assume that Di intersects 
D X {j) transversely for j = 1, - 1. In particular, Di n D X {i} contains an arc Ci 

passing through (0, i). The rest of the submanifolds Di fl D X {i) are arcs and 
circles. By the standard innermost disc or half disc argument and the exchange 
principle, we equivariantly isotope K, so that Di n D X Ii} consists of only the arc 
containing (0, il. A further equivariant isotopy sends Di to D X {i} for i = 1, - 1. 

Suppose 1, - 1 decompose S’ into two arcs A and B. Then isotope L n D X A to 
0 X A in D x A fixing a(0 xA). Using p-invariance, it gives an isotopy of L n D X B 

to 0 X B in D X B fixing a(0 X B). Thus, the result follows. 0 

If K n Fix(a) f fl, then K is equivariantly isotopic to a line in the v-plane. To 
see this, consider the quotient ,S3/(a, p) which is the suspension %!P2 of lRP2 
with the singular set consisting of the two points and a circle 0 in the middle level 
of the suspension. Furthermore, u is an essential curve in the middle level 
projective space. The cone points Cl, C, correspond to the quotient of Fix@) and 
(0, 0, f 11, and the circle D corresponds to the quotient of Fix(o) = U. The 
quotient of the w-plane gives a cone over 0 denoted by C,(u). The quotient k of 
K in ZRP2 is an arc joining Cl to 0. Since the ((u, @)-action on N(K)’ is 
standard, there is an invariant sphere S2 c R3 containing K and U. The quotient 
s2 of S2 in Z!4P2 is a topological cone from C, to i% We may assume that s2 
intersects C,(o) transversely away from the cone point C,. Since 0 has a 
nontrivial normal bundle, the number of intersection points of s2 with C,(u) at u 
is odd. This shows there is an intersection arc y in 3” n C@) joining Cl to u. 
Therefore g is isotopic to y in 3’ leaving C, fixed, and leaving 0 invariant. 
Similarly, using the cone C,(v), we isotope y to a quotient of a straight line in the 
xy-plane leaving C, fixed and I? invariant. This gives the equivariant isotopy 
between K and a straight line in the w-plane. 

(b) (Y is the involution x c) -x/l x ( ’ and p is the wrotation about the z-axis. If 
K n Fix@) # fi, then the same argument on the tunnels on 2-bridge knots still 
works. Since cyp is the r-rotation about U, the same argument works for K n 
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Fix(o$) # 1. In the remaining cases, K n (Fix@) U Fix(@)) = fl. Consider the 
quotient S3/((r, p) which is S3 with singular set consisting of the Hopf link. Each 
component of the link corresponds to Fix@) and Fix(+). The unknot K descends 
to an unknot k in S3 so that both pairs (R, quotient of Fix(a)) and (k, quotient 
of Fix@)) are Hopf links. Thus d is isotopic to the quotient of Fix(a) leaving the 
quotients of Fix(a) and Fix(P) invariant. The lifting of the isotopy gives the 
required one in S3. 

(c) (Y h the involution x ++ -x/I x I 2 and p is the rej7ection about the xy-plane. 

Then y = crp is the orientation reversing involution fixing (0, 0, + 1) only. For any 
invariant unknot K, K n Fix@) consists of two points. K fl Fix(y) # fl since other- 
wise the (p, y)-action on N(K)’ is conjugate to p : (z, t) - (5, t) and y : (t, t) 4 

C-z, ?) on D2 X S’ which implies (Y has fixed point in S3. Therefore K contains 
(0, 0, k 1). The orbifold S3/((r, p) is a cone over RP2, denoted by C(RP2) where 
the cone point C corresponds to Fix(+) and RP2 corresponds to Fix@). The 
straight-line segments from the cone point C to RP2 corresponds to circles in R3 
containing (0, 0, 5 1) (orthogonal to the xy-plane). Our goal is to show that the 
quotient k of K in C(RP2) is isotopic to one of these line segments. Clearly i is 
an arc joining C to a point in llW2. Furthermore, the complement of k in C(RP2) 
is homeomorphic to the {open Mobius band} X Z due to the standard action of 
((Y, ~3) on N( K Y. By the same argument used in the proof of Case 3(a), k is 
isotopic to a straight-line segment in C(RP2) leaving both C and RP2 invariant. 
Thus K is isotopic equivariantly to the z-axis. 

(d) (Y is the r-rotation about the z-axis and /3 is the r-rotation about the x-axis. 

Then ct$ is the n-rotation about the y-axis. K must intersect one of Fix(a), 
Fix(P), or FixcaP), due to the classification of Z, 8 Z,-action on N(K)‘. Similarly, 
K cannot intersect exactly one of Fix(a), Fix@) or Fix(c@> at two points. Thus, K 

intersects exactly two of Fix(a), Fix(P) and Fix(a/3) each in two points. Then the 
action on N(K)’ is conjugate to (z, t>++(-Z, t> and (z, t)++(Z, 7) on D2xS1. 
Therefore, there exists an invariant meridian disc. 

(e) (Y is the wrotation about the z-axis and /3 is the rejlection about the xy-plane. 

Then K n Fix@) consists of two points and K n Fix(a) consists of two points (the 
other possibility that K n Fix(a) = fl is excluded by the assumption that K is not 
in a 2-sphere). In this case, the action on N(K)’ is conjugate to (Y : (z, t) - (2, 1) 

and p : (z, t> - (2, t> on D2 x S’. Thus, there exists an invariant meridian disc. 
(f) (Y is the r-rotation about the z-axis and p is the reflection about the xz-plane. 

Since K is not in any 2-sphere, K n Fix@) consists of two points. If K n Fix(P) c 
Fix(a), then the action on N(K)’ is conjugate to (Y :(z, t) - (2, 7) and p :(z, t) - 

(2, t) in ID2 X S’. If (Kn Fix(P)) n Fix(a)= @, then the action on N(K)’ is 
conjugate to cx : (z, t) e (-2, t) and p : (z, t) * (2, t) in D2 X Si. In both cases, 
there exist invariant meridian discs. 

Case 4: n 2 3 and (Y is the 2-m/n-rotation about the z-axis and p k the r-rotation 

about the x-a_xrk. The invariant unknot K does not intersect Fix(a) since n 2 3. 
K n Fix@) # fl by the classification of D,, on D2 x S’. Thus, K n Fix@) consists 
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of two points and the action on N(K)” is conjugate to LY : (z, t) H (eZTilnz, t) and 
p : (z, t) t+ (2, 7) on D* X S’. This shows that there exists an invariant meridian 
disc. 

Case 5: n > 3 and CY is the 2T/n-rotation about the z-axis and p is the ref7ection 

about the xz-plane. In this case, K n Fix@) consists of two points and K n Fix(a) 
= @. Thus, the action on N(K)’ is conjugate to cu:(z, t) - (e2Ti/nz, t) and 
p : (z, t) * (2, t) on D2 X S’. We find again an invariant meridian disc. 

Case 6: n > 3 and (Y is the 2T/n-rotation about U and /? is the map x c) -n in 
D3. K n Fix(a) = fl since n B 3. The quotient orbifold S3/( (Y) is S3 with singular 
locus at an unknot D of order 2. The involution p descends to p: S3 + S3 which is 
again the map x + -x. Let the quotient of K be z and the quotient of the z-axis -- 
be z. By Lemma 2.1(a), (K, U) and (z, 0) are still the Hopf links. Take a 
p-invariant small neighborhood N(o) in the quotient. We see that both K and z 
are P-invariant cores of A@)“. If K n Fix@) = (0, ~1, then by Lemma 3.1 K is 
B-equivariantly isotopic to z in A@)‘. Thus, the result follows. In the other case 
K n Fix(p) = @, the action on N(K)” is conjugate to (Y : (z, t> - (e2Ti/nz, t) and 
p: (z, t) c) (-z, t) on ID2 X S’. Thus, there exists an invariant meridian disc. 

Cases 7, 8: n 2 3 and n is even and cy is the composition of 2r/nrotation about 

the z-axis with the T-rotation about U, and p is either the r-rotation about the x-axis 

or p is the reflection about the xz-plane. 
Given an invariant unknot K, K n Fix(cy*) = a by the proof of Case 4(c). 

Furthermore, K and Fix((u2) form a Hopf link. Thus, by taking a small invariant 
regular neighborhood N of Fix(a’) so that N n (KU V> = fl we see that both K - 
and U are invariant cores of the solid torus A’“. It remains to show that K is 

c equivariantly isotopic to U in N . To this end, we consider the quotient N”/(U) 
which is a solid torus so that the quotients of K and U are still the core curves of 
it. Now p descends to an involution p which is either (z, t> - (z, 1) or (z, t) - 

(2, t) on D* x S1 (note that the case /3 is the r-rotation about the x-axis and 
K n Fix@) = fl does not occur). Thus, to finish the proof of this case, it suffices to 
show that any two p-invariant core curves in Dz X S’ are equivariantly isotopic. In 

c both cases, the result follows by considering the further quotient N /(a, p) which 
is an orbifold whose underlying space is a ball. 

Case 9. n & 3, n is even and (Y is the composition of the 2T/n-rotation about the 
z-axis with the reflection about the xy-plane and /3 is the reflection about the xz-plane. 
By the proof of Case 5 in Section 2, the invariant unknot K does not intersect 
Fix((u*). Since K is not planar, K n Fix(P) consists of two points. Thus, the action 
on N(K)’ is conjugate to (Y : (z, ?) e (e 2ni/n~, 7) and p : (z, t) ++ (2, t) on ID* x S1. 

Thus, there exists an invariant meridian disc. 
Case 10: n & 3, n is even and cx is the composition of 21~/n-rotation about the 

z-axis with the reflection about the xy-plane and p is the orientation reversing Mobius 
involution of R3 with exactly two fixed points ( f 1, 0, 0). If the invariant unknot K 
does not contain Fix(P), then the dihedral group action on N(K)” is conjugate to 
u : (2, t> * (ezailn z, 1) and /3 :(z, t) t-* (-2, t). Thus there exists an invariant 
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meridian disc. If K n Fix@) = Fix@), we consider a small invariant regular 

neighborhood N of Fix(a*) so that Nn (KU U> = @. By Lemma 2.1(a), K and U 
are invariant core curves of NC. Our goal is to show that K is isotopic to U inside 
NC equivariantly. To see this, we consider the quotient N’/((Y*>. Both (Y and p 
descend to E and p in N”/((Y*) so that (G, p> is conjugate to the Z, @ Z,-action: 
z:(z, t) ++ (Z,- t) and p:<z, t) +, c-z, i) on D* x S'. The quotients i and c of 
K and U are still invariant cores of N’/((r’>. Furthermore k 1 Fix@). Thus, the 
result follows from the following lemma. 

Lemma 3.2. Suppose L is a core of D* X S' invariant under Z:(z, t) c, (Z,- t) and 
6: (z, t) ++ (-z, i) and Fix@) c L. Then L is (5, &equivariantly isotopic to the 

standard core 0 X S'. 

Proof. Let A be the invariant annulus {z I z =Z} X S' in D* X S1. Since the 
Z, @ Z, action on D* x S' - N(K) is conjugate to the standard action, there exists 
an invariant annulus A’ properly imbedded in 0’ X S' so that L c int(A’) and 
&4’ = &4. By a slight perturbation, we may assume that A intersects A’ trans- 
versely in int(A’) and Fix@) CA f-MA’. Thus there exists an intersection curve y in 
A n A’ containing (0, 1). 

Claim. D(y) = y and Z(r) = y. 

The first statement is clear from the invariance of A, A’. If 5(-y) # y, then 
Z(r) n y = @. Thus E(y) is the other intersection curve in A &4’ containing 
(0, - 1). Since E restricted on A is the r-rotation about the core curve, 5(y) n y = 
fl implies both y and Z(y) are null homotopic. Thus, they bound two disjoint discs 
in A and they also bound two discs D, and D, in A’. D, U D, is B-invariant by 
the construction. However, since Di will be in one side of D* X S' -A (at least 
near aDi>, D, U D, is not p-invariant. 

Therefore A’ n A contains an (Z, &invariant intersection curve y. Now, L is 
equivariantly isotopic to y in A’ and y is equivariantly isotopic to IO) X S' in A. 
Thus the result follows. 0 
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