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CELL DECOMPOSITIONS OF TEICHMÜLLER SPACES OF

SURFACES WITH BOUNDARY

REN GUO AND FENG LUO

Abstract. A family of coordinates ψh for the Teichmüller space of a compact
surface with boundary was introduced in [7]. In the work [8], Mondello showed
that the coordinate ψ0 can be used to produce a natural cell decomposition of
the Teichmüller space invariant under the action of the mapping class group.
In this paper, we show that the similar result also works for all other coordinate
ψh for any h ≥ 0.

1. Introduction

In this note, we show that each of the coordinate ψh (h ≥ 0) introduced in [7]
can be used to produce a natural cell decomposition of the Teichmüller space of a
compact surface with non-empty boundary and negative Euler characteristic. We
will show that the underlying point sets of the cells are the same as the one ob-
tained in the previous work of Ushijima [10], Hazel [4], Mondello [8]. However, the
coordinates ψh for h ≥ 0 introduce different attaching maps for the cell decompo-
sition. In the sequel, unless mentioned otherwise, we will always assume that the
surface S is compact with non-empty boundary so that the Euler characteristic of
S is negative.

1.1. The arc complex. We begin with a brief recall of the related concepts. An
essential arc a in S is an embedded arc with boundary in ∂S so that a is not
homotopic into ∂S relative to ∂S. The arc complex A(S) of the surface, introduced
by J. Harer [3], is the simplicial complex so that each vertex is the homotopy
class [a] of an essential arc a, and its simplex is a collection of distinct vertices
[a1], . . . , [ak] such that ai∩aj = ∅ for all i 6= j. For instance, the isotopy class of an
ideal triangulation corresponds to a simplex of maximal dimension in A(S). The
non-fillable subcomplex A∞(S) of A(S) consists of those simplexes ([a1], . . . , [ak])
such that one component of S − ∪k

i=1ai is not simply connected. The simplices in
A(S)−A∞(S) are called fillable. The underlying space of A(S)−A∞(S) is denoted
by |A(S)−A∞(S)|.

1.2. The Teichmüller space. It is well-known that there are hyperbolic metrics
with totally geodesic boundary on the surface S. Two hyperbolic metrics with
geodesic boundary on S are called isotopic if there is an isometry isotopic to the
identity between them. The space of all isotopy classes of hyperbolic metrics with
geodesic boundary on S is called the Teichmüller space of the surface S, denoted
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by Teich(S). Topologically, Teich(S) is homeomorphic to a ball of dimension
6g− 6+ 3n where g is the genus and n > 0 is the number of boundary components
of S.

Theorem 1 (Ushijima [10], Hazel [4], Mondello [8]). There is a natural cell de-

composition of the Teichmüller space Teich(S) invariant under the action of the

mapping class group.

Ushijima [10] proved this theorem by following Penner’s convex hall construction
[9]. Following Bowditch-Epstein’s approach [1], Hazel [4] obtained a cell decomposi-
tion of the Teichmüller space of surfaces with geodesic boundary and fixed boundary
lengths. In [6], the second named author introduced ψ0-coordinate to parameterize
the Teichmüller space Teich(S) of a surface S with a fixed ideal triangulation. Mon-
dello [8] pointed out that the ψ0-coordinate produces a natural cell decomposition
of Teich(S).

In [7], for each real number h, the second named author introduced the ψh-
coordinates to parameterize Teich(S) of a surface S with a fixed ideal triangulation.
The ψ0-coordinate is a special case of the ψh-coordinates.

The main theorem of the paper is the following.

Theorem 2. Suppose S is a compact surface with non-empty boundary and negative

Euler characteristic. For each h ≥ 0, there is a homeomorphism

Πh : Teich(S) → |A(S)−A∞(S)| × R>0

equivariant under the action of the mapping class group so that the restriction of Πh

on each simplex of maximal dimension is given by the ψh-coordinate. In particular,

this map produces a natural cell decomposition of the moduli space of surfaces with

boundary.

We will show that the underlying cell-structures for various h′s are the same.

1.3. Related results. For a punctured surface S with weights on each puncture,
the classical Teichmüller space of S admits cell decompositions. This was first
proved by Harer [3] and Thurston (unpublished) using Strebel’s work on quadratic
differentials and flat cone metrics. The corresponding result in the context of hyper-
bolic geometry was proved by Bowditch-Epstein [1] and Penner [9] using complete
hyperbolic metrics of finite area on S so that each cusp has an assigned horo-
cycle. The constructions in [1] and [9] are more geometrically oriented. Indeed,
the construction of spines and Delaunay decompositions based on a given set of
points and horocycles are used in [1]. Our approach is the same as that of [1] us-
ing Delaunay decompositions. The existence of such Delaunay decompositions for
compact hyperbolic manifolds with geodesic boundary was established in the work
of Kojima [5] for 3-manifolds. However, the same method of proof in [5] also works
for compact hyperbolic surfaces. Our main observation in this paper is that those
ψh-coordinates introduced in [7] capture the Delaunay condition well.

1.4. Plan of the paper. In section 2, we recall the definition and properties of
ψh-coordinates which will be used in the proof of Theorem 2. In section 3, we
prove a simple lemma which clarifies the geometric meaning of ψh-coordinates. In
section 4, we review the Delaunay decomposition associated to a hyperbolic metric
following Bowditch-Epstein [1] and Kojima [5]. Theorem 2 is proved in section 5.
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2. ψh-coordinates

An ideal triangulated compact surface with boundary (S, T ) is obtained by re-
moving a small open regular neighborhood of the vertices of a triangulation of a
closed surface. The edges of an ideal triangulation T correspond bijectively to the
edges of the triangulation of the closed surface. Given a hyperbolic metric d with
geodesic boundary on an ideal triangulated surface (S, T ), there is a unique geomet-
ric ideal triangulation T ∗ isotopic to T so that all edges are geodesics orthogonal to
the boundary. The edges in T ∗ decompose the surface into hyperbolic right-angled
hexagons.
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Figure 1.

Let E be the set of edges in T . For any real number h, the ψh-coordinate of a
hyperbolic metric introduced in [7] is defined as ψh : E → R,

ψh(e) =

∫

a+b−c

2

0

coshh(t)dt +

∫

a
′+b

′
−c

′

2

0

coshh(t)dt

where e is an edge shared by two hyperbolic right-angled hexagons and c, c′ are
lengths of arcs in the boundary of S facing e and a, a′, b, b′ are the lengths of arcs
in the boundary of S adjacent to e so that a, b, c lie in a hexagon. See Figure 1.

Now consider the map Ψh : Teich(S) → R
E sending a hyperbolic metric d to its

ψh-coordinate. The following two theorems are proved in [7].

Theorem 3 ([7]). Fix an ideal triangulation of S. For each h ∈ R, the map

Ψh : Teich(S) → R
E is a smooth embedding.

An edge cycle (e1, H1, ..., en, Hn) is a collection of hexagons and edges in an
ideal triangulation so that two adjacent hexagons Hi−1 and Hi share the edge ei
for i = 1, ..., n where H0 = Hn.

Theorem 4 ([7]). Fix an ideal triangulation of S. For each h ≥ 0, Ψh(Teich(S)) =
{z ∈ R

E | for each edge cycle (e1, H1, ..., en, Hn),
∑n

i=1 z(ei) > 0}. Furthermore,

the image Ψh(Teich(S)) is a convex polytope.

3. Hyperbolic right-angled hexagon

We will use the following notations and conventions.
Given two points P,Q in the hyperbolic plan H, the distance between P and Q

will be denoted by |PQ|. If P 6= Q, the complete geodesic in H containing P and
Q will be denoted by PQ. Suppose H is a hyperbolic right-angled hexagon whose
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vertices are A1, B1, A2, B2, A3, B3 labeled cyclically (see Figure 2). Let C be the
circle tangent to the three geodesics A1B1, A2B2 and A3B3. The hyperbolic center
of C is denoted by O. Let Xi = C ∩ AiBi be the tangent point for i = 1, 2, 3. The
geodesic BiAi+1 decomposes the hyperbolic plane into two sides. The subindices
are counted modulo 3, i.e., A4 = A1 etc.

Lemma 5. The following holds for i = 1, 2, 3.

|AiBi|+ |Ai+1Bi+1| − |Ai+2Bi+2| =






2|XiBi|, if O and H are in the same side of BiAi+1

0, if O ∈ BiAi+1

−2|XiBi|, if O and H are in different sides of BiAi+1

Proof. Since Xj is the tangent point for j = 1, 2, 3, we have

(1) |XjBj | = |Xj+1Aj+1|.

According to the location of O with respect to the hexagon, we have three cases to
consider.

Case 1. If O is in the interior of the hexagon, see Figure 2(a). We have, for
j = 1, 2, 3,

|AjBj| = |XjAj |+ |XjBj |.

Combining with (1), we obtain |AjBj |+ |Aj+1Bj+1|− |Aj+2Bj+2| = 2|XjBj |. Thus
we have verified the lemma in this case since O and H are in the same side of
BjAj+1 for each j = 1, 2, 3.

Case 2. If O is in the boundary of the hexagon, without of losing generality, we
assume O ∈ B1A2. See Figure 2(b). We have

|A1B1| = |X1A1|,

|A2B2| = |X2B2|,

|A3B3| = |X3A3|+ |X3B3|.

Combining with (1), we obtain

|A1B1|+ |A2B2| − |A3B3| = 0,
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|A2B2|+ |A3B3| − |A1B1| = 2|X2B2|,

|A3B3|+ |A1B1| − |A2B2| = 2|X3B3|.

Thus we have verified the lemma in this case since O ∈ B1A2, O and H are in the
same side of B2A3 and in the same side of B3A1.

Case 3. If O is outside of the hexagon H , without of losing generality, we may
assume O and H are in the same side of B2A3 and in the same side of B3A1, but
in different sides of B1A2. See Figure 2(c). We have

|A1B1| = |X1A1| − |X1B1|,

|A2B2| = |X2B2| − |X2A2|,

|A3B3| = |X3A3|+ |X3B3|.

Combining with (1), we obtain

|A1B1|+ |A2B2| − |A3B3| = −2|X1B1|,

|A2B2|+ |A3B3| − |A1B1| = 2|X2B2|,

|A3B3|+ |A1B1| − |A2B2| = 2|X3B3|.

Thus we have verify the lemma in this case. �

4. Delaunay decompositions

Let’s recall the construction of the Delaunay decomposition associated to a hy-
perbolic metric following Bowditch-Epstein [1]. For higher dimensional hyperbolic
manifolds, see Epstein-Penner [2] and Kojima [5].

Let (S, d) be a hyperbolic metric with geodesic boundary on the compact surface
S. Let d be a hyperbolic metric with geodesic boundary on S. The Delaunay
decomposition of (S, d) produces a graph Σ∗

d, called the spine of the surface S so
that Σ∗

d is the set of points in S which have two or more distinct shortest geodesics
to ∂S.

To be more precise, let n(p) be the number of shortest geodesics arcs from p

to ∂S. The spine Σ∗

d of (S, d) is the set {p ∈ S|n(p) ≥ 2}. And the vertex of
Σ∗

d is the set {p ∈ S|n(p) ≥ 3}. The set Σ∗

d is shown (see Bowditch-Epstein [1],
Kojima [5]) to be a graph whose edges are geodesic arcs in S. The the edges of
Σ∗

d are denoted by e∗1, ..., e
∗

N . By the construction, each of point in the interior of
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an edge e∗i , i = 1, ..., N, has precisely two distinct shortest geodesics to ∂S. Each
edge e∗i connects the two vertices which are the points having three or more distinct
shortest geodesics to ∂S. By [5] or [1], it is known that Σ∗

d is a strong deformation
retract of the surface S.

Associated with the spine Σ∗

d is the so called Delaunay decomposition of the
hyperbolic surface. Here is the construction.

For each edge e∗ of the spine, there are two boundary components B1 and B2

(may be coincide) of the surface so that points in the interior of e∗ have exact two
shortest geodesic arcs a1 and a2 to B1 and B2. Let e be the shortest geodesic
from B1 to B2. It is known that e is homotopic to a1 ∪ a2 and e intersects e∗

perpendicularly. Furthermore, these edges e’s are pairwise disjoint. The collection
of all such e’s decompose the surface S into a collection of right-angled polygons.
These are the 2-cell, or the Delaunay domains. We use Σd to denote the cell
decomposition of the surface S whose 2-cells are the Delaunay domains, whose 1-
cells consist of these e’s and the arcs in the boundary of S. One can think of Σ∗

d

as a dual to Σd as follows. For each 2-cell D in Σd, there is exactly one vertex v
of Σ∗

d so that v lies in the interior of D. Furthermore, by the construction, v is of
equal distance to all edges of D ∩ ∂S. Consider the hyperbolic circle in S centered
at v so that it is tangent to all edges in D ∩ ∂S. We call it the inscribed circle of
the Delaunay domain D.

Figure 3(a) is an example of the spine of a four-hole sphere, where the spine
is the graph of thick lines. In Figure 3(b), the thick lines produce a Denaulay
decomposition.

5. Proof of the main theorem

5.1. Construction of the homeomorphism. To prove Theorem 2, for each h ≥
0, we construct the map Πh : Teich(S) → |A(S)−A∞(S)| ×R>0 as follows. Given
a hyperbolic metric d with geodesic boundary, we obtain the spine Σ∗

d and the
Delaunay decomposition Σd of S in the metric d. Let (e∗1, ..., e

∗

N) be the edges of
the spine and (e1, ..., eN ) be the edges of the Delaunay decomposition where ei
is dual to e∗i . See Figure 4. Suppose ei is shared by two 2-cells D and D′. The
inscribed circle of D is denoted by C. Let b be one of the two edges of D adjacent
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to the edges ei. Let α be the length of the arc contained in b with end points C ∩ b
and ei ∩ b. Similarly, we find the inscribed circle of D′ and the length α′. Now
define a function for each h ≥ 0:

(2) πh(ei) =

∫ α

0

coshh(t)dt+

∫ α′

0

coshh(t)dt.

Note that, due to Delaunay condition, α, α′ are positive for each i. Therefore
πh(ei) > 0 for each i.

It is clear from the definition that the Delaunay decomposition and the coordi-
nates πh(ei) depend only on the isotopy class of the hyperbolic metric. In other
words, they are independent of the choice of a representative of a point of the Te-
ichmüller spaces Teich(S). A point of Teich(S) is denoted by [d]. We obtain a
well-defined map

Πh : Teich(S) → |A(S) −A∞(S)| × R>0(3)

[d] 7→ (

N
∑

i=1

πh(ei)
∑N

i=1 πh(ei)
· [ei],

N
∑

i=1

πh(ei)),

where (e1, ..., eN ) are the edges of the Delaunay decomposition of (S, d) and [ei] is

a isotopy class. Note that
∑N

i=1
πh(ei)∑
N

i=1
πh(ei)

· [ei] is a point in the fillable simplex

with vertices [e1], ..., [eN ] of the arc complex, since the sum of the coefficient of the
vertices is 1 and πh(ei) > 0 for all i.

In the rest of the section, we will show that Πh is injective, onto, and is a
homeomorphism.

5.2. One-to-one. We claim that the map Πh is one-to-one. Suppose there are
two hyperbolic metrics d, d′ such that Πh([d]) = Πh([d

′]). Then their associated
Delaunay decompositions are the same by definition. Say {e1, ..., eN} is the set of
edges in Σd = Σd′ . If N = 6g− 6+ 3n where g is the genus and n is the number of
boundary components of S, then (e1, ..., eN) is an ideal triangulation. In this case
each 2-cell is a right-angled hexagon. Suppose edge ei is shared by hexagons D and
D′. See Figure 5.

Let c be the length of boundary arc opposite to ei and a, b be lengths of boundary
arcs adjacent to ei inD. Since the center of the inscribed circle ofD and the hexagon
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D are in the same side of ei, by Lemma 5, we have a + b − c = 2α. Similarly, for
hexagon D′, we have a′ + b′ − c′ = 2α′. Thus

πh(ei) =

∫ α

0

coshh(t)dt+

∫ α′

0

coshh(t)dt

=

∫

a+b−c

2

0

coshh(t)dt+

∫

a
′+b

′
−c

′

2

0

coshh(t)dt

= ψh(ei)

where ψh(ei) is exactly the ψh-coordinate of a hyperbolic metric evaluated at ei.
Thus from Πh([d]) = Πh([d

′]) we obtain Ψh([d]) = Ψh([d
′]) for the ideal triangula-

tion (e1, ..., eN), N = 6g−6+3n. By Theorem 3, we see that [d] = [d′] ∈ Teich(S).
If N < 6g − 6 + 3n, we add edges eN+1, ..., e6g−6+3n such that (e1, ..., eN , eN+1,

..., e6g−6+3n) is an ideal triangulation. More precisely, in a 2-cell of the Delaunay
decomposition which is not a hexagon, we add arbitrarily geodesic arcs perpendic-
ular to boundary components bounding the 2-cell which decompose the 2-cell into
a union of hexagons.

See Figure 6(a). Suppose edge ei, i ≤ N, is shared by two 2-cells D,D′. There
is a hyperbolic right-angled hexagon H contained in D having ei as an edge. Note
that H is a component of S − ∪6g−6+3n

i=1 ei. Recall that the inscribed circle C of D
is also the inscribed circle of H . Let c be the length of boundary arc opposite to
ei and a, b be lengths of boundary arcs adjacent to ei in H . Since the center of C
and H are in the same side of ei, by Lemma 5, we have a + b − c = 2α, where α
is the length in the definition of πh(ei). From the 2-cell D′, we obtain hexagon H ′

and a′ + b′ − c′ = 2α′. Therefore

πh(ei) =

∫ α

0

coshh(t)dt+

∫ α′

0

coshh(t)dt

=

∫

a+b−c

2

0

coshh(t)dt+

∫

a
′+b

′
−c

′

2

0

coshh(t)dt

= ψh(ei)

See Figure 6(b). Suppose edge ei, i > N, is shared by two hexagon H,H ′ in the
ideal triangulation (e1, ..., eN , eN+1, ..., e6g−6+3n), where H and H ′ are obtained
from the same 2-cell. Therefore H and H ′ have the same inscribed circle C which
is also the inscribed circle of the 2-cell containing H,H ′. In hexagon H , let c be the
length of boundary arc opposite to ei and a, b be lengths of boundary arcs adjacent
to ei. In hexagon H ′, we define a′, b′, c′. There are two possibilities to consider. If
the center of C is in ei. Then by Lemma 5, a+ b− c = 0 = a′+ b′− c′. If the center
of C is not in ei, without of losing generality, we assume the center and H are in
the same side of ei. Denote by A the tangent point of C at a boundary component.
Denote by B the intersection point of ei with the same boundary component. By
Lemma 5, we have a+b−c = 2|AB| and a′+b′−c′ = −2|AB|. The two possibilities
give the same conclusion, for i > N ,

ψh(ei) =

∫ x

0

coshh(t)dt+

∫

−x

0

coshh(t)dt = 0.
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Thus from Πh([d]) = Πh([d
′]) we obtain Ψh([d]) = Ψh([d

′]) for the ideal triangu-
lation (e1, ..., eN , eN+1, ..., e6g−6+3n). In fact the i-th entry of Ψh([d]) = Ψh([d

′]) is
zero as N + 1 ≤ i ≤ 6g − 6 + 3n. By Theorem 3, we see that [d] = [d′] ∈ Teich(S).

5.3. Onto. We claim the map Πh : Teich(S) → |A(S) − A∞(S)| × R>0 is onto.

Given a point (
∑N

i=1 zi · [ei], x). If N = 6g − 6 + 3n, then (e1, ..., eN ) is an ideal
triangulation of S. The vector (xz1, ..., xzN ) satisfies the condition in Theorem 4
since each entry is positive. By Theorem 4, there is a hyperbolic metric d whose
ψh-coordinate is (xz1, ..., xzN ), i.e., ψh(ei) = xzi. Since we have shown in last

subsection that πh(ei) = ψh(ei) in this case. Therefore Πh([d]) = (
∑N

i=1 zi · [ei], x).
If N < 6g−6+3n, then e1, ..., eN is a cell decomposition of S. Let T be an ideal

triangulation (e1, ..., eN , eN+1, ..., e6g−6+3n) obtained from the cell decomposition.
Then the vector (xz1, ..., xzN , 0, ..., 0) (there are 6g− 6+3n−N zeros) satisfies the
condition in Theorem 4 since there does not exists an edge cycle consisting of only
the “new” edges ei, i > N. By Theorem 4, there is a hyperbolic metric d whose ψh-
coordinate is (xz1, ..., xzN , 0, ..., 0), i.e., ψh(ei) = xzi, i ≤ N and ψh(ei) = 0, i > N .

Suppose edge ei, i > N is shared by two hexagonsH,H ′. By the discussion of last
subsection, from ψh(ei) = 0 we conclude that the inscribed circles of H and H ′ have
the same tangent points at the two boundary components intersecting ei. Therefore
the two circles have the same center. Thus they coincide. If a 2-cell is decomposed
into several hexagons, then the inscribed circles of all the hexagons coincide. This
shows that the 2-cell has a inscribed circle. Thus the cell decomposition (e1, ..., eN)
is the Delaunay decomposition of (S, h).

For edge ei, i ≤ N, from the discussion of last subsection, we see πh(ei) = ψh(ei).

Therefore Πh([d]) = (
∑N

i=1 zi · [ei], x).

5.4. Continuity of Πh. We follow the idea in §8 and §9 of Bowditch-Epstein [1]
to prove the continuity.

Let {ds}∞s=1 be a sequence of hyperbolic metrics on S with geodesic boundary
converging to a hyperbolic metric d with geodesic boundary. We claim that the
sequence of points {Πh([d

s])}∞s=1 converges to the point Πh([d]).



10 REN GUO AND FENG LUO

Case 1. If, for s sufficiently large, the Delaunay decomposition associated to d
has the same combinatorial type as the Delaunay decomposition associated to ds.
Assume that the Delaunay decomposition associated to d has the edges e1, ..., eN
with N ≤ 6g − 6 + 3n and the Delaunay decomposition associated to ds has the
edges es1, ..., e

s
N so that esi is isotopic to ei for 1 ≤ i ≤ N. Since the metrics {ds}

converge to the metric d, the geodesic length of edges {esi} converge to the geodesic
length of the edge ei.

Assume that the edge ei is shared by two 2-cells D and D′ of (S, d). Corre-
spondingly, the edge esi is shared by two 2-cells Ds and D′s of (S, ds). As in §5.1
and Figure 4, let C be the inscribed circle of D and b be one of the two edges of
D adjacent to ei. Let α be the length of the arc contained in b with end points
C ∩ b and ei ∩ b. Let αs be the length of the corresponding arc in Ds. Assume
eD1, ..., eDt ∈ {e1, ..., eN} are the edges of D in the interior of S. By the elemen-
tary hyperbolic geometry, the radius of C is a continuous function of the lengths
of eD1, ..., eDt. Therefore α is a continuous function of the lengths of eD1, ..., eDt.
Thus the sequence {αs} converges to α. By the same argument, for the 2-cell D′,
we have the length α′ and α′s so that the sequence {α′s} converges to α′. By the
definition (2), the sequence {πh(esi )} converges to πh(ei). By the definition (3),
the sequence of points {Πh([ds])}∞s=1 converges to the point Πh([d]). Geometrically,
this is a sequence of interior points in a simplex of the arc complex converging to
an interior point in the same simplex.

Case 2. If for s sufficiently large, the Delaunay decomposition associated to ds

have the same combinatorial type with each other but different from that associated
to d. Assume that the Delaunay decomposition associated to d has the edges
e1, ..., eN with N < 6g − 6 + 3n and the Delaunay decomposition associated to ds

has the edges es1, ..., e
s
N , e

s
N+1, ..., e

s
N+M with N +M ≤ 6g − 6 + 3n so that esi is

isotopic to ei for 1 ≤ i ≤ N.

Since esj is isotopic to es
′

j for N + 1 ≤ j ≤ N +M and s, s′ sufficiently large, we

can add an edge ej on (S, d) which is isotopic to esj for N + 1 ≤ j ≤ N +M . Now
the edges e1, ..., eN , eN+1, ..., eN+M produce a cell decomposition of S which has
the same combinatorial type with the cell decomposition obtained from the edges
es1, ..., e

s
N , e

s
N+1, ..., e

s
N+M .

We get the same situation of Case 1. The convergence of metrics implies the
convergence of the edge lengths which implies the convergence of the πh-coordinates.
In Case 2, since the edges eN+1, ..., eN+M are added to a Delaunay decomposition,
we know from §5.2 that πh(ej) = 0 as N + 1 ≤ j ≤ N +M . Geometrically, this
is a sequence of interior points in the a simplex of the arc complex converging to a
point on the boundary of the simplex.

5.5. Continuity of Π−1
h . Let {ps}∞s=1 be a sequence of points in |A(S)−A∞(S)|×

R>0 converging to a point p. We claim that the sequence of hyperbolic metrics
{Π−1

h (ps)} converges to the hyperbolic metric Π−1
h (p).

Case 1. If, for s sufficiently large, {ps} and p are in the same simplex, then the
Delaunay decomposition associated to Π−1

h (ps) and Π−1
h (p) have the same combi-

natorial type. If it is needed, by adding edges in the 2-cells which are not hexagons,
we obtain a fixed topological ideal triangulation of the surface S. Note that the
πh(e) = 0 if e is an edge being added. For an edge ei on (S,Π−1

h (p)), denote by esi
the corresponding edge on (S,Π−1

h (ps)). Now we have a fixed ideal triangulation
and that the sequence of coordinates {πh(e

s
i )} converges to the coordinate πh(ei)
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for each edge ei. By §5.2, πh(esi ) = ψh(e
s
i ) and πh(ei) = ψh(ei). Therefore the

sequence of coordinates {ψh(e
s
i )} converges to the coordinate ψh(ei) for each edge

ei. By Theorem 3, the sequence of hyperbolic metrics {Π−1
h (ps)} converges to the

hyperbolic metric Π−1
h (p).

Case 2. If, for s sufficiently large, {ps} are in the interior of a simplex and
p is on the boundary of the simplex. Assume that the Delaunay decomposition
associated to Π−1

h (p) has the edges e1, ..., eN with N < 6g−6+3n and the Delaunay

decomposition associated to Π−1
h (ps) has the edges es1, ..., e

s
N , e

s
N+1, ..., e

s
N+M with

N +M ≤ 6g− 6+3n so that esi is isotopic to ei for 1 ≤ i ≤ N. We can add an edge
ej on (S,Π−1

h (p)) which is isotopic to the edge esj for N + 1 ≤ j ≤ N +M . By the
assumption that {πh(esi )} converges to πh(ei) for 1 ≤ i ≤ N and {πh(esj)} converges
to 0 for N + 1 ≤ j ≤ N +M . Since ej is added to the Delaunay decomposition of

Π−1
h (p), πh(ej) = 0 as N + 1 ≤ j ≤ N +M . We get the situation of Case 1. We

may add more edges to obtain a fixed ideal triangulation. The same arguments of
Case 1 can be used to establish the claim.

To sum up, we have proved Theorem 2:

Πh : Teich(S) → |A(S)−A∞(S)| × R>0

is a homeomorphism.
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