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Abstract

Heegaard diagrams on the boundary of a handlebody are studied from the dynamics systems point
of view. A relationship between the strongly irreducible condition of Casson—Gordan and the Masur’s
domain of discontinuity for the action of the handlebody group is established.
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1. Introduction

By aHeegaard diagram on a handlebodye mean the isotopy class of a maximal col-
lection of disjoint, pairwise non-isotopic essential simple loops (a pants-decomposition)
on the boundary surface. We say a Heegaard diagratnoisgly irreducibleif each com-
ponent of the diagram intersects all meridian discs. The notion of strongly irreducibility
is motivated by the work of Casson and Gordon [2] on the strongly irreducible Heegaard
splittings in which any two meridian discs from different handlebodies intersect. The aim
of the paper is to study the space of Heegaard diagrams from the dynamics system point of
view. The dynamics system consists of the action of the handlebody group on Thurston’s
space of measured laminations [6,11,13,15,19]. H. Masur made a deep study of the dy-
namics system and found the maximal open subset on which the handlebody group acts
properly discontinuously. Our result is the following.

Theorem 1. (a) A Heegaard diagram is in Masur’s domain of discontinuity if and only if it
is strongly irreducible in the above sense.
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(b) If « is a strongly irreducible Heegaard diagram amdis a hyperbolic metric on
the boundary of the handlebody of a genus at least two, there is a computable constant
K > 0 (depending only ow, d) so thatl («, dD) > K1;(d D) for all meridian discsD in
the handlebody wherg (x) is the length of the geodesic representative isotopic &md
I(x, y) is the geometric intersection number.

It is well known that for any hyperbolic metric on a closed surface and for any
numbern, there is an algorithm to list the isotopy classes of loops of length at most
As a consequence, one sees that for any numlleere is an algorithm to find the set of
isotopy classes of meridian discs whose intersection number with a strongly irreducible
Heegaard diagram is at most:z. Thus we obtain the following.

Corollary 2 (Johannson [5])Given two Heegaard diagrams so that one of them is
strongly irreducible, there is an algorithm to decide if these two diagrams are related by a
handlebody homeomorphism.

The part (a) of Theorem 1 follows easily from a theorem of Starr [18] which
characterizes irreducible curves systems on the boundary of a handlebody. (See [20,
p. 689], for a short proof of Starr's theorem.) We were not aware of Starr’'s theorem when
we worked on Theorem 1 and produced a proof Starr's theorem using the results obtained
in [8]. This proof may be of some interests as it uses defining equations for the geometric
intersection number functions.

The proof of part (b) of Theorem 1 uses a simple fact on counting the intersection points
of curve systems on surfaces (Lemma 2.1). Namely, a striagstriaight arcs and a string
of b straight arcs in a convex planar region intersect at mbgpoints unless some arcs
overlap. This counting lemma is used repeatedly to obtain the estimate on the céhstant

The paper is organized as follows. In Section 2, we introduce some background material.
In particular, the intersection number with a pair of surface filling curve systems is
emphasized. This intersection number is the combinatorial analogue of the length of the
geodesics. We prove Lemma 2.1 which is the counterpart of an inequality of Thurston [3,
p. 58]. In Section 3, we give a new proof of Starr’'s theorem. Theorem 1 and Corollary 2
are proven in Section 4. Some questions about Heegaard splittings are raised in Section 5.
Also in Section 5, we discuss the relationship between the strongly irreducible Heegaard
splittings and the Heegaard diagrams. In Appendix A we give a second proof of Starr's
theorem.

2. Preliminarieson the measured lamination space

Let us fix a set of notations.

X, r is the compact orientable surface of gegusith » boundary components;

S =8(%,,,) is the set of isotopy classes of essential simple loopEgpy;

CS =CS(X%,,,) is the set of isotopy classes of curve systemsin where acurve
systemis a finite disjoint union of essential non-boundary parallel simple loops and
essential proper arcs on the surface;
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H, is the handlebody of genys> 2;
Unless stated otherwise, we take the suriide be the boundary of the handlebody
in the rest of the paper;
FN =FN(X) is the set of isotopy classes of pants-decompositions on the surface;
CS; =CS;(X) is the subset of S = CS(X) consisting of curve systems so that each
component of the system is null homotopichR ;
S =CS8;(X)NS(X) is the set of isotopy classes of the boundary of meridian discs;
FN, =CS, NFN is the set of pants-decompositions of the handlebody by the meridian
discs;
Mod(X) is the mapping class group Honme@@)/Iso of the surface;
I' = I, is the handlebody group consisting of isotopy classes of homeomorphisms of
the surfaces which extend to homeomorphisms of the handlebody;
ML = ML(X) is Thurston’s space of measured laminations on the surface.
The isotopy class of a 1-dimensional submanifelis denoted bya]. The geometric
intersection number between two isotopy clasges is denoted byl («, 8) = min{|a N
bl: a €a, be B}. We also usel(a,b), I([a],b) and I (a, [b]) to denotel ([a], [D]).
The intersection number function on the measured lamination spaces will also be denoted
by 7. A component of an isotopy clagg] € CS is the isotopy class of a componentaf
A regular neighborhood of a 1-dimensional submanitold denoted by (a). For details
on the space of measured laminations, see [1,3,16,19] and the references cited therein.

Definition (Masur[11]). The limit setL for the action of the handlebody groupon the
space of measured laminations is defined to be the closure of te get S; in the space
of measured lamination$1L. Let 2 = {o € ML(X): I(a, B) >0 forall 8 € L —0}.

Theorem (Masur [11]).The set2 is the maximal open subset on which the handlebody
group I" acts properly discontinuously.

An equivalent definition of elements in the Masur domgiris as follows.

Definition. A setA = {ay, ..., a,} C CS(X) is calledsurface fillingif > ; 7 (x, o) >0
for all x € CS(X). In this case, define theorm induced byA on CS(X) to be|x|s =
nI(x,q).
i=1 l

Lemma 2.1. If A ={as,...,ar} C CS(X) is surface filling, then for anw, 8 € CS(X),
we havel (o, ) < |a|alBla-

Proof. Choose representatives € «;, a € « andb € 8 as curve systems so that their
pairwise intersection numbers are minimal within the isotopy classes and there are no
triple intersection points. Sincd is surface filling, each component & — |J7_; a;

is contractible. SayRy, ..., R,, are these components. Let (respectivelyy;) be the
number of connected componentsaofrespectivelyb) in R;. Since there are no bi-gons

in a U b inside R;, the number of intersection poirds) b inside R; is at mosty; y;. Thus,

I(a,b) <Y 7Lqxiyi < Qi x) Qi vi) = lelalBla. O
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Remark 2.1. The above lemma still holds if one replaces the surface fillingdsey a
surface filling graplG, i.e., the components & — G are contractible and define the norm
of « to be mir{|la N G|: a € « anda does not pass through the vertice<zjf

2.2. Afinite subsetA c CS is surface filling if and only ifly € Mod(X): y(A) = A}is
a finite group.

Corollary 2.2. Any two norms arising in this way are Lipschitz related.

Indeed, saya| = |x|4 and||«|| = |a|p for two surface filling setst andB. Then
n n n
el =) T ) < Y llelllle; || = (Z ot ||> el
i=1 i=1 i=1

Remark 2.3. Fix a hyperbolic metric on the surface and lét) be the length of the
geodesic inx € CS. Then for any normx| on CS(X), there is a constank; so that
Ki1|x| < I(x) < Ki|x| for all x € CS(X). Thus, the lemma above is a combinatorial
analogous to Thurston’s inequality thatx, y) < Kal(x)I(y) for all x,y € CS(X) [3,
Lemma 2, p. 58].

2.4. Fix a norm|x| onCS(X). For eachr € Z, let N(r) be the number of elements in
CS(X) of normr. It can be shown easily that(r) has polynomial growth im. Thus the
function)_°2, N(r)¢" is convergent fofz| < 1. Is the function rational?

2.5. Using Lemma 2.1, one can give a proof of Thurston’s result that the projective
measured lamination spadeML(X) is compact. Indeed, given a sequerfag} in
CS(X) — 0, then for anyB € S, the sequencd (x,/|x,|, B) is bounded by|8| by
Lemma 2.1. By the standard Cantor diagonal process, we find a subsequence, still denoted
by x, so that/(x,/|x,|, 8) converges to a functioff(g) for all 8 € S. To show that the
function f is not identically zero, consider the sum of the valueg an the elements;
in the set defining the norm. The sum is 1 by definition.

Fix a norm|x| on CS(X). Then an element € ML(X) satisfies/(x,y) > 0 for
all ye L —0if and only if I(x,y) > K|y| for all y € L by the compactness dfL =
{t/|t]: t € L — 0} in the projective measured lamination spat# L(X'). Thus an element
x € ML(X) is in the Masur domain2 if and only if the restriction of the intersection
number function/ (x, .) on the limit setL is Lipschitz equivalent to a norm. We may
rephrase the part (a) of Theorem 1 as follows.

Theorem 2.3. Supposer = a1 U --- Ll age—3 € FN(X) so thatl («;, 8) > 0 for all i and
all B € S;. Then there is a constaikt > 0 so that/ («, 8) > K|B| forall 8 € S;.

The following lemma was known to many mathematicians [12].

Lemma2.4. If « € S(X) so that/ (a, ') = 0 for some meridian dise’ € S;, thena is in
the limit setL.
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Proof. We need to consider two cases: eithéis non-separating ar’ is separating.
Casel. If o’ is non-separating, choogee S so that/ (o', 8) = 1 and I (a, B) # O.
Then 8, = D (B), where D, is the positive Dehn twist o, converges projectively
to o in ML(X) and I (B,,a') = 1. Leta, = dN(a’ U B,) be the isotopy class of a
regular neighborhood of a 1-holed torus which contains hdthnd g8,,. Sincea’ € S;
and/(B,,a’) =1, a, is in S;. Furthermorey,, converges projectively ta. It follows that

« is in the limit setL.

Case 2. If o’ is non-separating, then the meridian disc boundeduabycuts the
handlebody into two handlebodies. Choeseto be a non-separating meridian disc in
one of the handlebody which does not containThen« is in L by case 1 applied to
{a, 0"}, O

The following lemma shows the main advantage of using pants-decompositions as
Heegaard diagrams. The proofs are evident except part (c).

Lemma 2.5. (a) If 2 is a homeomorphism leaving a Heegaard diagram invariant, then
h3=3" is a composition of Dehn twists on the components of the Heegaard diagram.
(b)If ¢ =1 - - - Llaze—3 is a Heegaard diagram anfl e ML(X) so that/ («, 8) =0,
thenpg = kyog U - - - U k3g_303,_3 Wherek; € Rxo.
(c) Given any integem, there are only finitely many pairs of Heegaard diagrams
(o, B) € FN(X) x FN(X) up to homeomorphisms of the surface so that, ) < n.
Furthermore, these finitely many pairs can be listed algorithmically.

To show (c), we first note that there are only finitely many Heegaard diagrams up to
homeomorphisms of the surface. Thus, it suffices to count thggsetF N | I (a, B) < n}
modulo Dehn twists om for a fixeda € FN. Consider the Dehn—Thurston coordinate
of B with respect to the pants-decomposition basedrxofsee [16] and [10] for more
details on Dehn-Thurston coordinate). Then egclnas the coordinate of the form
(x1,11,...,x3¢-3, 3,—3) Wherex; <n is the intersection number coordinate ane the
twisting coordinate. Ifz;| > n, then we may use the Dehn twist on ttle component of
to changes so that the new twisting number is within the intery@)n]. Thus the result
follows.

Remark 2.6. A stronger form of Lemma 2.5(c) holds. Namely, for anthe set{(«, ) €
S xSt I(a, B) < n}/Mod(X) is finite.

We end this section by giving a proof of Masur’s theorem in terms of norms. The basic
ideas are due to Masur. We begin with a lemma characterizing compact sets in the Masur
domaing? in terms of norms. Fix a norrx| = |x|4 whereA = {«, B} C CS; is surface
filling.

Lemma 2.6. If K is a compact subset if2, then there is a constamt> 0 so that for all
x € K andr € L, we havel |t < I(x,1) <clt].
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The proof uses the standard compactness argument. For instance, if the left-hand-side
inequality fails, then there are, € K andz, € L — 0 so that%|tn| > I(xy,t,) for all
integern. Then by choosing a subsequence (still denoted by the same index), we may
assume that, convergesta € K andt,/|t,| converges te € L — 0. By the continuity of
the intersection number functiadi., .), we obtain that (x, r) = 0. But this contradicts the
assumption that € £2 andA C CS;.

Now to prove Masur’s theorem, take a compactkeh 2. We shall prove that there
are only finitely many elementg € I so thaty(K) N K # (. By Lemma 2.6, there is a
constant > 0 so that1|t| <I(x,t)<clt|forallx € K andr € L. Suppose(K)NK # .

Then there isx € K so thaty (x) € K. Thus we havesl st < I(x, 1) <cltf, and%|t| <
I(y(x),t) <clt]| forall t € L. By the choice of the surface filling sét= {«, B} C L, we
have,

1
E(|V(0l)| +lyBl)

I(y(x).y@)+1(yx).y(B)
=1I(x,0)+ I(x, B) < c(a|+[BD.
This shows that the norm of(A) is bounded by a constant independentofThere
are only finitely many elements S of norm at most a given number and also the set

{y e I': y(A) = A} is finite due to the surface filling property df. Therefore, we see that
there are only finitely many € I with y (K) N K # 0.

1
=y (A)]
c

N

3. A proof of Starr’stheorem

We begin by introducing some notations. Let
={(r1.x2.x3) R g xi+x; >xp, i £ j A k£ };
= {(xl,xg,x:g) € Rio: Xi+Xj>xp, £ ] ;ék;éi};
W = {(x1,x2,x3) € R;O: there is an index so thaty; > x; +x¢ };
Wt ={(x1,x2,x3) € Rio: there is an index so thaty; > x; + x.

Evidently we haveAN Wt =AtNnW =gandAUWT =ATUW = R3>o We say
that three elements, 8, y € S bounda 3-holed sphere, denoted by, 8, y) € P, if there
are representatives b, c in «, 8, y respectively so that, b, c bound a 3-holed sphere in
the surface. Note that two of the elemefits, y} may be the same. See Fig. 1.

Definition. (a) An elementx € CS is called irreducible with respect to the handlebody if
I(a, B) > Oforall g € S,. LetCST(X) be the set of all isotopy classes of irreducible curve
systems.

(b) Given a Heegaard diagram= o1 Ll --- Ll agg—3 € FN(X), we associate to
the following sets:A(a) = {8 € ML(X): if (o, aj,ar) € P, then(I(«;, B), I (e}, B),
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as O Ce

N
O
be B ‘\'
(a,By)e P L
wt

Fig. 1.

I(ak, B)) € A}; defineA™ («) similarly. DefineW (a) = {8 € ML(X): thereis(a;, o},
ax) € P so that(I (i, B), I (aj, B), I (ak, B)) € W}; defineW ™ («) similarly.

The goal of this section is to show the following theorem.
Theorem 3.1 (Starr [18]).CST(X) = Uyezn, (AT (@) NCS(X)).

A similar result thaC S(X) = Uaem (A(x) NCS(X)) was proved in [9].

One may interpret the theorem as follows. Given two curve systesvith |[a N b| =
I(a, b), we say that (respectivelyfa]) contains avavewith respect tab (respectively
[b]) if there exists an are in a and a componert’ of b so that (1)dx C ' and (2)
xNb=xNb"=0x andx approaches its end points from the same sidé'ofor a
3-holed spheré with d P = a; LlapLiaz and a curve systemon P, thenb contains a wave
with respect td P means that! (a1, b), I (az, b), I (a3, b)) € W. The curve systerh has
components joining each of the three pairs of boundary compofents;} if and only
if (I(a1,b), I(az,b),I(as, b)) € AT. Thus Starr’s theorem states that for each irreducible
curve systenp, there is a pants-decompositianof the handlebody so that in each of
the 3-holed sphere determinedhere are arcs i which join any pair of the boundary
components.

Proof of Theorem 3.1 that | J, .y, (AT (@) NCS) C CS*. This follows from the parts
(b) and (c) of the following lemma.

Lemma 3.2. Suppose € FN. Then
(@) Al@) N WH) = At(@) N W) =¥ and A(e) U WH () = At (@) U W) =
CS(2)). Furthermore,A(a) and W («) are closed subsets ML (X).



118 F. Luo / Topology and its Applications 129 (2003) 111-127

(b)If B e AT (@) andy € WT (), thenl (B, y) > 0.
(©) If a € FN; and B € CS;(X), thenB € W(«). Furthermore, ifl («, 8) > 0, then
B € WH(a). In particular, the limit setL is in W («) for eacha € FN;.

Proof. Part (a) follows from the definition. Part (b) follows from the fact thab,it are
curve systems on a 3-holed sph@evith 9 P = a1 Llaz Liaz SO thaic contains a wave with
respect tod P and (I (a1, b), I (az, b), I (a3, b)) € AT, thenI(b,c) > 0. Part (c) follows
from the outmost disc argument applied to the meridian discs boundedhbgs. To see
the last statement, we ha® C (,czy, W(@). ThusQ=o x S; C (\yexry, W(e). But
Nacrn, W(@) is closed. Thus the limit sdt C (), zy, W ().

Proof of Theorem 3.1 that CS™ C U,cxy, AT (). Take an elemeng € CS* and
takea = a1 U --- U agg—3 € FN;. Define the complexity ofr with respect tog to be
C(@) =Y jpyep 2/ C-PH @ PH @B where(i, j, k) € P meansw, aj, ax) € P. We
use induction on the complexity to prove the theorem.

Suppose for somg, j, k) € P, (I (o4, B), I (e, B), I (e, B) is not inA™T, sayI («;, B)
is at leastl(«;,B) + I(o,pB). Let o; be the component ok so that/(«;, ) is
the largest among all triple§, j, k) € P so thatI(«;, B) = I(«;, B) + I(a, B). To
simplify notations, let us assume th@t j, k) = (5, 1, 2). Sinceg e CS™, I(a,,B) >0
for all r. Thus!(as, 8) > max(I (a1, B), I(az, B)). In particular,as # a1, 2. Choose a
representative =ai Ll - -- Uagg_3 € @ andb € g so thatla N b| = I(a, b). Let P; be the
3-holed sphere components bf— int(N(a)). Then sincexs # a1, a2, N(as) is adjacent
to two distinct 3-holed spheres, s&y and P,. Let Xp 4 = P1 U N(as) U P, be the 4-holed
sphere and’ = §’(X0 4) be the set of isotopy classes of essential non-boundary parallel
simple loops onXp 4. We claim that there exits an elemerif € S’ so that for the new
Heegaard diagram’ = a1 U--- UagUagUagl--- LUagg—3€ FN;, Ca) < C(a).

To see this, let the boundary componentsXpfs correspond tari, 2, a3, 4. Since
I (as, B) is maximal, we have eitheil (as, B), I (a3, B), I (a4, B)) € AT or I(as, B) >
I (a3, B) + I(ag, B). Thus the claim follows from the lemma below by takimg—= y; and
ag=1y.

Lemma 3.3. Suppose) Yo 4 = a1 LUap LazUag, y1 € S'(Xo.4) SO that(yr, a1, a2) € P,
and f(x) = 1(x, B) :S(Xo,4) — Z>0 is the geometric intersection function associated to
B € CS(Zp,4) sothatf (e;) > 0. If either(a) f (y1) = max(f(a1) + f(@2), f(e3)+ f(aa))

or (b) f(y1) = f(e1) + f(a2) and (f(y1), f(a), f(as)) € AT, then there existy €
S'(Xo.4) so that

max (f()/) + floy) + f(as)) < max (f(yl) + flar) + f(as))

(y.0r,05)€P (y1.0r,05)€P

Proof. The proof is based on a theorem proved in [8] which characterizes geometric
intersection number functions. We shall recall the relevant result.
Three elements/, y2,y3 € 8’ = §'(Xo4) are said to form arideal triangle if
I(y;, yj)=2fori # j. Given two elementg, y’ € S’ with I (y, y’) = 2, there are exactly
two distinct ideal triangles of the forrty, y’, y”). The following theorem was proved
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in [8]. As a convention, we usg, r, s) € P to denotdy;, o, ag) € P, and unless indicated
otherwise, the indekruns from 1 to 3, and indicess run from 1 to 4.

Theorem 3.4. For surfaceX 4 with 9 X 4 = a1 Uap Loz Lleva, @ functionf () : S(Xo.4) —
Z is a function of the fornd (8, §) for some fixegs € CS(Xg.4) if and only if the following
three conditions hold

(1) If (31, y2, v3) forms an ideal triangle, then
4
Do
i=1

4
= mgp(Zf(yi), 2f (@), Y f@) f )+ flan) + f(ots)); (1)

r=1
(2) If (1. y2. ¥3) and(y1, y2, y5) both form ideal triangles withys # y;, then

Fa) + f(v3)

4
= max <2f(yz->,2f(ar>,2f(ar),f(y,->+f<ar>+f(as>>; 2)

T i=1.2:(i.r5)eP
r=1

®3) fW) + flar) + flas) €22 when(,r,s) € P. ®3)

Applying the theorem to our situation, we hay&s) = I(8, §) takes positive values
ong; andys. Let (y1, y2, y3) be the ideal triangle so that(y», y3) is the smallest among
all ideal triangles of the forniys, ', y”). For simplicity, letx; = f(y;), a, = f () and
x{ =max; , sep(x; + ar 4+ as). Then Eq. (1) in Theorem 3.4 becomes

3 4
Zixi = rr)frix(Zx,x,’ 2a,, Zlar>. 4)
i= r=

Due to the minimality ofc2 + x3, we claim that Eq. (5) holds.

3 4
Z;x,- = rrlfr;lx(le,xi’, 2a,, X;ar). (5)
i= r=

Indeed, if otherwise, by Eq. (4} >, x; = max2xz, 2x3), say, Y - ; x; = 2x3 and
2x3 > max, , (2x1, x/, 2a,, Y +_, a,). Since eachy; > 0, we obtainxz = x1 + x2 > x2.
Consider a new ideal trianglg1. y2, y3) Wherey; # y3 and letys = f(y3). Then Eq. (2)
in Theorem 3.4 showsz + y3 = max(2x1, 2x2, x1, x5, 2ay, Zle a,). By the assumption
max(2x1, 2x2, x1, x5, 2ay, Zle ay) < 2x3. Thusys < x3 which contradicts the minimality

of (y1, 2, v3).
To finish the proof of the lemma, we claim that foto be one o/, or y3, the conclusion

of the lemma holds. If otherwise, we would have

min(x5, x3) > x7. (6)



120 F. Luo / Topology and its Applications 129 (2003) 111-127

We shall derive a contradiction that mia,) = 0 from (6) by considering two separate
cases: case k3 > maxay + az, a3 + as) and case 2x1 > ay + ap and(x1, az, as) € A™T.

Casel. x1 > maxay + az, as, +as). Then X1 > max. (x}, 2a,, Yo_; a,). Thus Eq. (5)

becomes >, x; = max(2x1, x5, x3).

Subcasd.l.Z?zlx,- =2x1,1.e.,x2+ x3 = x1. By Eq. (6), we may write
x2+ar+as=x; (2,r,5)€P. )
x3+ar+ay=x; Brs)eP. (8)

We have(l, s, s") € P. The sum of (7) and (8) gives
x2 4+ x3+ 2a, + a; + ay > 2x]. 9)

But x2 +x3=x1 and &} > 2x3 + Zle ar. Thus (9) implies that@ + a5 + ay > x1 +
>4 | a;. This shows:, > x1+a, where(1, r, r') € P. Due tox; > maxay +az, az+aa),
we obtain that mina,) = 0.
Subcasdl.2. Z,-s=1xi = max(x, x3), sayZ?zlxi = x2 + a, + a; with (2,r,s) € P.
Then we have
X1 +x3=a,+as. (10)
By (6), we have
x3tar+as=x; (3r,s)eP. (11)
Adding x1 to both sides of (11) and using (10), we obtain
ar+ay+2a3>x1+x; (Lrr)eP. (12)
But x1 + x7 > x1 + x1 + ar + a,. Thus by (12), we obtaind, > 2x;. Due tox; >
max(ay + az, az + ag), this implies min(a;) = 0.
Case2. x1 = a1 + a2 and (x1, az, as) € AT. Thenxy + az + as > max(2x, x’l, 2a,,
>4 _1ay). Thus Eq. (5) becomes s ; x; = max(x1 + a3 + aa, x5, x3).
Subcase.1. Z?zlx,- = max(x5, x3), sayzl-s:lx,- =x2 +a, +a; where(2,r,s) € P.
Then
X1 +x3=a,+ as. (13)
By Eqg. (6), we may assume that
x3+a, +ay > x1+ az+ aa. (14)
Adding x1 to both sides of (14) and using (13), we obtain
2a, + ag + ay > 2x1 + a3z + aq. (15)

Note that{s, s’} = {1, 2} or {3,4}. If {s,s'} = {3, 4}, then Eq. (15) becomesi2> 2x;
wherer ¢ {1,2}. Due to x1 > a1 + a2, we have miag, az) = 0. If {s,s'} = {1, 2},
thenx1 > a; + ay andr € {3,4}. Thus (15) implies @ + x1 > 2x1 + a3 + ag, i.e.,
2a, > x1+ a3z + aa. This contradictgxy, az, as) € AT,

SubcasQ.Z.Zle X; = x1 + a3 + aq. Thenxz + x3 = az + a4. By (6), we have
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x2+ar+ag>x1+az+as (2,r,5)€P. (16)
x3+ar+ay =>x1+az3+as @B,r,s)eP. a7

Adding (16) to (17) givesz + x3 + 2a, + as + ay > 2x1 + 2a3 + 2a4. Usingxz + x3 =
as + aa, we obtain

2a, +as+ay >2x1+az+as (1,s,5)eP. (18)

Inequality (18) is the same as (15). By the same argument as above, we obtain a contradic-
tion again.

Remarks 3.1. One can give a new proof of the main theorem in [9] tH&(Y) =
Ugern, A@) NCS using the same argument as above. Indeed, the goal in this case
is to eliminate the waves o with respect toa € FN,;. Suppose there are waves.
Then as in the proof above, we choosg so that/(«;, ) > I(aj,B) + I(ax, B)
where (i, j, k) € P and I («;, B) is the largest. Assume again thdt j, k) = (5, 1, 2).

Then (I (as, B), I(as, B), I(ag, B)) € A as in the proof above. To construct the move
on «, we prove a lemma similar to Lemma 3.3 where the conditions (a) and (b) are
replaced by(a’) f(y1) > f(a1) + f(a2) and f(y1) > f(az) + f(aa) Or (') f(y1) >

f(a1) + f(a2) and (f(y1), f(a3), f(ag)) € A. The proof of the lemma is the same as
above.

3.2. Adifferent proof of Starr’s theorem usi@s (X) = Uaeﬂ,, A(a)NCS and diagram
chasing is given in Appendix A.

3.3. One may quantify the part (b) of Lemma 3.2 as follows. kot O, let A, =
{(x1,x2,x3) € R xi +x; > (L+ &)xk,i # j #k #1i}. Evidently, AT = J,_o A,. For
a € FN, we define the sef\.(«) in the same way as in the definition @f(e). Then
we have the following stronger version of part (b) of Lemma 3.2. Namef§,dfA, and
y € WH(a), thenI(B,y) > ?1_3(5)2g—1W(y,a)1(a,ﬁ) where W (y, «) is the number

of waves ofy with respect tox and is explicitly given byz(al_’ol/_w)€7> %(I(oe,-, y) —

4. Proofsof Theorem 1 and Corollary 2

Proof of part (a) of Theorem 1. To see the necessity, take= a3 L --- U ag,_3 €
FN; N 2. We claim that eacly; intersects all elements i§;. Indeed, if otherwise, say
I(a;, B) = 0 for somep € S;, then by Lemma 2.4y; is in the limit setL. But we also
havel («, ;) = 0. This implies thatx is not in 2 which contradicts the assumption.

To see the sufficiency part of part (a), take= a1 U - - - LUzg—3 € FN which is strongly
irreducible,i.e.] («;, B) > Oforall 8 € S; and alli. If « isnoting2, thenthereig e L -0
so that/(«, ) = 0. Buta € FN, thus = ki U - - - Ll k3g_303,—3 for some numbers
ki € R>p and one of them, sak; > 0. By Starr’s theorem, there existse FN; so that
a1 € AT(y). Thuskiay € AT (y). This impliesg € AT(y). But g € L ¢ W(y) which is
the complement ofA* (y). This is a contradiction.
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Proof of part (b) of Theorem 1. We now show thaf («, x) > K|x| for all [x] € S; for
some computable constakit> 0 and some fixed norr|.

Take o = a3 U --- U ag,—3 € FN which is strongly irreducible. For each indéx
by Starr’s theorem, we find (algorithmicallyj; € FN; so thata; € AT(B;). Since
I (o, aj) =0, we also have € AT (B;). Evidently{«, g;} is a surface filling system. Take
the norm to be the one associatedd0 81}, i.e., |x| = I (a, x) + 1(B1, x). We claim the
following holds.

Claim. There is a computable constait > 0 depending onw; and g; so that for
[xle NS W),
I(x,@) > KI(x,B1).

As a consequence, for dt] € ﬂfﬁf Wt (8;) we have,

I(x,0) > an 1|x|.
But only the other handQ-o x S;) N ﬂ ) W+(ﬂ,) is dense in the limit set. Thus the
above inequality still holds for aflx] € L.

To prove the claim, take; € o;, bj € B; andx so that their pairwise intersection
numbers are minimal within the isotopy classes, and there are no triple intersection points.
For each index, due to[x] € W (8;), the curve system contains a wave with respect
to b;. But [a;] € AT (B;), thusx Na; # @. Let x; be an arc inx with end points oru so
that int(x;) Na; # @ and|x; Na| < 3. Letx’ = U3gl x;. We note that: U x’ is a surface
filling 1-dimensional cell complex (i.e., each componengbf- (a U x’) is contractible).

To see this, it suffices to show that for each 3-holed sphere comp@rant — int(N (a))
the components aP — x’ are contractible. This is equivalent to show that each component
of 3 P intersectsc’. But the last statement follows from the constructionof

For the surface filling 1-dimensional complexU x’, we introduce a norm|y || =
min{laNy|+ |x'Nyl|: y € y}. By Lemma 2.1, we have

3g-3
I(x, B1) < llxNIBell < I(x, e) (1(,31»0() + Z |xi ﬂbll)- (19)
i=1
It remains to show that for each indeéx |x; N b1| is bounded by a computable
constant. To this end, we prove a stronger statement that for each inaleoc for all
[x] e ﬂ3g 3 WT(B;), there are only finitely many constructible isotopy classes ofarc
under isotopies leaving invariant and fixing each point of intersectiam (U 21 3bi).

Indeed, take the closurB of a component oY — a. It suffices to prove there are only
finitely many constructible isotopy classes of ar(;& x; N P under isotopies leaving each

component ob P invariant and fixingd P N (U °1 b ). By construction)x; N 9P| <
Thus there are at most eighteen isotopy classes of/d@rcP under isotopies Ieavm@P
invariant. The only possibility to have infinitely many isotopy classes ainder isotopies

of P fixing each point iR P N (U 21 3bi)is thatx/ spirals toward its end points dhP,
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sayx; spirals toward:;. Then each arc ona; with end points inb; is isotopic to an arc

¢ in x] so that the isotopy preserves the curve syskem P. Since[a;] € At (B)), e,

any two components df; which are the boundary of a pants is joint by anatca; so

that the interior of is disjoint fromb;, this implies thafx;] € A+(ﬁj) which contradicts

the assumption. In terms of the Dehn—Thurston coordinate;fevith respect tax, one

can constructively estimate the twisting coordinater,0at «; (see [10,16] for details on

the Dehn—Thurston coordinate). Thus, we obtain a computable upper bound on the term
|x; N b1] in (19). This ends the constructive proof.

Proof of Corollary 2. Supposex, o’ € FN so thata is strongly irreducible. Tak@’ €
FN; and letC = I(a/, B/). By the constructive proof above, we havéx, x) > K |x|
for all x € CS, for some computable constakit and a fixed norm.|. Find all elements
B1, ..., Br € FN; so that|g;| < C/K (this can be done algorithmically). Now given two
pairs of Heegaard diagranis, ») and(a’, b’), there is an algorithm to check if they are
related by an element in the mapping class group of the surface (one may use Dehn—
Thurston coordinate to do this). Check(if, ;) is related to(’, /) by an element in
the mapping class group. If they are related by an elemeatMod(X), theny € I
sinceB;, B’ € FN;. Thusa anda’ are related by an element ifi. If none of the pair
(o, B;) is related to(a’, B’) by an element in Mo@¥), thena anda’ are not related by
any element inl". Indeed, if there weres € I' so thaty («) = «’. Theny(B8’) € FN;.
Furthermorey (8')] < %I(a, v(B)) =1, B’y =C/K. This showsy (8’) must be one
of the element®; by construction.

Remark 4.1. If a pair («, 8) € FN x F N, satisfies Casson—-Gordon’s rectangle condition

(see [4,7]), then the inequality in (19) beconiés, x) > 7£=3 for all [x] € W*(B).

Corollary 4.1. If @« =1 L --- Llzg_3 € F N is strongly irreducible, then any non-trivial
Dehn twisth = Dft - -- D,’igij with one ofk; # 0 is not in the handlebody group.

Indeed, ifh € I, there would be infinitely many distinct elements of the farhig) in
JF N; whose intersection number withis bounded. This contracts the fact that 2.

Remark 4.2. The related result to Corollary 4.1 is Corollary 2 in [9] which was mistakenly
stated. The correct statement is thatdee a1 U - - - Lo € CS, thena € CS; if and only if
Dy, --- Dy, €I (i.e., the condition;; > 0 is needed in the Corollary 2).

5. Some questions

We begin with some terminologies. Given two Heegaard diagranasd 8 on the
boundaryX of a handlebodyH, we say they determine the same handlebody structure
if in the handlebodyX («) obtained by attaching 2-handles aloagto X~ and then
3-handles, each component@fs null homotopic, i.e. X (o) = X' (8). This is equivalent
to the existence of a homeomorphism betweeg@) and X' (8) which is the identity
map on the boundary. For a Heegaard diagwarm a handlebody, let gp) be the
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set of all Heegaard diagrams which determine the same handlebody structur&Vas
call the pair &' («), H) a Heegaard splitting Casson and Gordon’s strongly irreducible
condition on Heegaard splittin@> («), H) says that each meridian iB(«) intersects
each meridian inH. Thus by Theorem 1, a Heegaard splittiog («), H) is strongly
irreducible if and only if spx) is a subset of the Masur domaih Call a Heegaard splitting
(X (a), H) hyperbolicif the closure ofQ.g x sp(@) in the measured lamination space
ML(X) is in £2. Equivalently,(¥(«), H) is hyperbolic if and only if there is a positive
constantk so thatl (x, y) > K|x||y| for all meridian discx in H and meridian disoy

in X (a). For a hyperbolic Heegaard splitting’ («), H) with a computable constari,

the homeomorphism problem for the manifatl= H Uiq X' () is always solvable (using
the work of Rubinstein [17] on the algorithmic construction of all strongly irreducible
Heegaard splittings of a given genus and the same argument used in the proof of Corollary 2
in Section 4).

Lemma 5.1. Suppose(X(«), H) is a hyperbolic Heegaard splitting. Let, y be two
meridians in different handlebodies in the Heegaard splitting. Tt{em, [y]) forms a
surface filling pair. In particular, this implies that the clos8emanifoldM® = o (&) Uiq H
is irreducible and atoroidal.

Proof. Suppose otherwise that there is a simple loam the surfaceZ which is disjoint
from bothx ¢ H andy C ¥ («). Then by Lemma 2.4¢ is in the limit setL. Thus
I([y], [c]) = 0 for some[c] € L. This contradicts the assumption tlhat € £2.

Evidently the 3-manifoldM? is irreducible since the Heegaard splitting is strongly
irreducible. To see that it is atoroidal, we use an argument by Hempel. Suppose otherwise
that M3 contains an incompressible tori#s Then due to the strongly irreducibility of
the Heegaard splitting, we may find an incompressible tdruso that7’ in each of
the handlebody consists of annuli which are incompressible in the handlebodybket
a component of the curve systefit N X in the surface. Ther is disjoint from some
merdiansc andy from each handlebody. Thus we produce a meridian(aiy) which is
not surface filling.

A related notion on Heegaard diagrams was introduced by Hempel [4] as follows.
Call a Heegaard splitting $@) a distance at least thresplitting if for each meridianx
in H and meridiany in the handlebody («), the pair(x, y) is surface filling. Evidently,
by the above lemma, if a Heegaard splitting is hyperbolic than it is of distance at least
three. Using the work [14], Hempel showed that a 3-manifold with Heegaard splitting
of distance at least three contains no incompressible tori and is not a Seifert fibered
space. Thus according to Thurston’s geometrization conjecture, the mamfaldould
be hyperbolic. Following this line one may ask if each hyperbolic 3-manifold supports
a hyperbolic Heegaard splittings. Note that Hempel [4] has constructed many strongly
irreducible Heegaard splittings of hyperbolic manifolds which are of distance at most two.
A less ambitious question is the following.

Question. Is the fundamental group of a closed 3-manifold with a hyperbolic Heegaard
splitting infinite?
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Finally one may ask if Hempel’'s notion of distance at least three is the same as the
hyperbolicity.
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Appendix A. A diagram chasing proof of Starr’stheorem

We give a different proof of the fact thés* c |, ry, A™ (@) using the main theorem
of [9] thatCS C U, xy, A(@) and the diagram chasing argument.

Let B e CST. Takea € FN; so thatB € A(a). We now follow the same reduction as
in the first two paragraphs in the proof of Theorem 3.1 to construct ., as, P1, P2, and
20,4

Recall that arideal triangulationof a compact surface with boundary is a maximal
collection of disjoint pairwise non-parallel essential arcs on the surface. It can be shown
easily the following.

Lemma Al. Any ideal triangulation of th&-holed sphere is homeomorphic to one of the
following six ideal triangulations.

Now for the curve syste’ = b N X 4, there is an ideal triangulatich=1# L --- U g
of Xo,4 so thatb’ is isotopic tokyty LI - - - U kets fOr somek; € Z>o. Let T’ be the subset
of T consisting of thosé's so thatk; > 0. Sinceg is irreducible, T’ contains at least three
components. By the diagram chasing argument, one shows the following lemma.

Lemma A2. There is a homeomorphisin of the 4-holed sphereXy 4 preserving two
3-holed sphere®; and P, so thati(T”) is one of the following seven curve systems.

Now for each of the seven cases, choageas indicated. One see from Fig. 3 that
C() < C(a).

The set of all ideal triangulations of the 4-holed sphere

Fig. 2.
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The moves on a5 which produce a new Heegaard diagram of smaller complexity

Fig. 3.

Remark. The complexity for the induction argument was suggested by the equations in
Theorem 3.4.

References

[1] F. Bonahon, Bouts des varitis hyperboliques de dimension 3, Ann. of Math. (2) 124 (1) (1986) 71-158.
[2] A.J. Casson, C.McA. Gordon, Reducing Heegaard splittings, Topology Appl. 27 (3) (1987) 275-283.
[3] A. Fathi, F. Laudenbach, V. Poenaru, Travaux de Thurston sur les surfaces, in: Astérisque 66-67, Société
Mathématique de France, 1979.
[4] J. Hempel, 3-manifolds as viewed from the curve complex, Preprint.
[5] K. Johannson, Topology and Combinatorics of 3-Manifolds, in: Lecture Notes in Math., Vol. 1599, Springer-
Verlag, Berlin, 1995.
[6] S. Kerckhoff, The measure of the limit set of the handlebody group, Topology 29 (1) (1990) 27—40.
[7] T. Kobayashi, Casson-Gordon’s rectangle condition of Heegaard diagrams and incompressible tori in
3-manifolds, Osaka J. Math. 25 (3) (1988) 553-573.
[8] F. Luo, Simple loops on surfaces and their intersection numbers, Math. Res. Lett. 5 (1998) 47-56.
[9] F. Luo, On Heegaard diagrams, Math. Res. Lett. 4 (1997) 365-373.
[10] F. Luo, R. Stong, Dehn—Thurston coordinates for curves on surfaces, Preprint, 2002.
[11] H. Masur, Measured foliations and handlebodies, Ergodic Theory Dynamical Systems 6 (1) (1986) 99-116.
[12] H. Masur, Private communication.
[13] J. McCarthy, A. Papadopoulos, Dynamics on Thurston’s sphere of projective measured foliations, Comment.
Math. Helv. 64 (1) (1989) 133-166.
[14] Y. Moriah, J. Schultens, Irreducible Heegaard splittings of Seifert fibered spaces are either vertical or
horizontal, Topology 37 (5) (1998) 1089-1112.
[15] J.-P. Otal, Courants géodésiges de surfaces, These de Doctorat d’Etat, Université de Paris-Sud, Centre
d’'Orsay, 1989.
[16] R.C. Penner, J.L. Harer, Combinatorics of Train Tracks, in: Ann. of Math. Stud., Vol. 125, Princeton
University Press, Princeton, NJ, 1992.



F. Luo / Topology and its Applications 129 (2003) 111-127 127

[17] J.H. Rubinstein, Polyhedral minimal surfaces, Heegaard splittings and decision problems for 3-dimensional
manifolds, in: Geometric Topology, Athens, GA, 1993, in: AMS/IP Stud. Adv. Math., Vol. 2.1, American
Mathematical Society, Providence, RI, 1997, pp. 1-20.

[18] E. Starr, Curves in handlebodies, Thesis, UC Berkeley, 1992.

[19] W. Thurston, On the geometry and dynamics of diffeomorphisms of surfaces, Bull. Amer. Math. Soc.
(N.S.) 19 (2) (1988) 417-431.

[20] Y.-Q. Wu, Incompressible surfaces and Dehn surgery on 1-bridge knots in handlebodies, Math. Proc.
Cambridge Philos. Soc. 120 (1996) 687—696.



