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Front Propagation in
Heterogeneous Media∗

Jack Xin†

Abstract. A review is presented of recent results on front propagation in reaction-diffusion-advection
equations in homogeneous and heterogeneous media. Formal asymptotic expansions and
heuristic ideas are used to motivate the results wherever possible. The fronts include
constant-speed monotone traveling fronts in homogeneous media, periodically varying trav-
eling fronts in periodic media, and fluctuating and fractal fronts in random media. These
fronts arise in a wide range of applications such as chemical kinetics, combustion, biology,
transport in porous media, and industrial deposition processes. Open problems are briefly
discussed along the way.
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1. Introduction. Front propagation and interface motion occur in many scientific
areas such as chemical kinetics, combustion, biology, transport in porous media, and
industrial deposition processes. In spite of these different applications, the basic
phenomena can all be modeled using nonlinear parabolic partial differential equations
(PDEs) or systems of such equations. Since the pioneering work of Kolmogorov,
Petrovsky, and Piskunov (KPP) [100] and Fisher [62] in 1937 on traveling fronts in
reaction-diffusion (R-D) equations, the field has gone through enormous growth and
development. However, studies of fronts in heterogeneous media have been more
recent. Heterogeneities are always present in natural environments, such as fluid
convection effects in combustion, inhomogeneous porous structures in transport of
solutes, noise effects in biology, and deposition processes. It is a fundamental problem
to understand how heterogeneities influence the characteristics of front propagation
such as front speeds, front profiles, and front locations. Our goal here is to give a
review of recent results on front propagation in heterogeneous media in a coherent
and motivating manner. It is not our intention to give a complete survey, and so our
references will cover only a portion of the literature.

We begin in section 2 with the well-studied scalar homogeneous R-D equations
and explain the basic properties of front solutions, such as front existence and stability,
front speed selection, and variational characterization. Many of these properties carry
over to heterogeneous fronts.
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A new theme associated with fronts in heterogeneous media is the understand-
ing of multiple scales and their interaction. In section 3 we illustrate how to apply
homogenization ideas to front problems for the case of periodic media (Figure 1).
Basic ideas of homogenization theory explained through concrete examples serve as
useful guides. Periodically varying traveling waves then come up naturally as robust
solutions. Depending on the form of the nonlinearity, the homogenization procedure
for the heterogeneous medium varies. Several regimes also arise according to whether
the front width is smaller than, comparable to, or larger than the wavelength of the
oscillating medium. In the large space and time limit, fronts move with averaged
speeds depending on the structures of the medium. The front location evolves ac-
cording to Hamilton–Jacobi (H-J) equations under suitable conditions. It turns out
that the homogenization of H-J equations is intimately related to the large-time front
speed of heterogeneous KPP equations.

In section 4 we turn to fronts in random media (Figure 2), which are are much
less well understood, partially because homogenization is more difficult to carry out in
the random setting. Handling both nonlinearity and randomness is a great challenge,
and mathematical results are far fewer. We present recent rigorous results on two
noisy Burgers equations and three noisy KPP equations. A new phenomenon is that
in addition to the averaged front speed provided by a successful extension of homog-
enization into the random setting, front locations are random and undergo diffusion
about the mean positions. Another new phenomenon is that of front acceleration
through a rough (on the large scale) turbulent velocity field and the resulting anoma-
lous scaling limits. We describe the related modeling activities in studying premixed
turbulent flames as well as other noisy dynamics involving fronts.

Most of the results that we discuss in detail concern scalar equations. In the final
subsection of each main section, we mention briefly (1) open problems, (2) extensions
of results discussed, for example, to systems of equations, and (3) modeling activities
in the physics literature. Modeling results are selected only to complement the existing
rigorous works and to introduce physical phenomena. We do not discuss numerical
methods.

2. Fronts in Homogeneous Media. We review the classical existence and sta-
bility results for traveling fronts for R-D equations of the KPP, Zeldovich, bistable,
and combustion types. We then discuss front stability, front selection, and variational
principles for front speeds.

2.1. Traveling Fronts in Scalar R-D Equations. One-dimensional scalar R-D
equations of the form

ut = uxx + f(u),(2.1.1)

with x ∈ R, arise in many scientific areas, such as chemical kinetics, population
genetics, and combustion. The unknown u may accordingly stand for concentration
of a chemical reactant, population density of a biological species, or temperature of a
reacting mixture. The functional form of f also varies. To be specific for the study of
traveling fronts, we will be concerned throughout this article with the following five
types of nonlinearity:

1. f(u) = u(1− u): the KPP [100] or Fisher nonlinearity [62];
2. f(u) = um(1−u), m an integer ≥ 2: the mth-order Fisher nonlinearity (called

the Zeldovich nonlinearity if m = 2);
3. f(u) = u(1− u)(u− µ), µ ∈ (0, 1): the bistable nonlinearity;
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Fig. 1 Example of fronts in periodic media. Numerically simulated propagating fronts of the
reaction-advection-diffusion equation ut+�v(x, y)·∇x,yu = ε(1+δ sin(100x))∆x,yu+ε−1u(1−
u)(u − µ), where ε = 0.05, δ = 0.98, µ = 0.365. The advection velocity �v is a mean-zero
divergence-free field generated by a periodic array of counter-rotating vortices with vortex
length scale λ = 0.3873. The strength of the advection is measured by the rms velocity
〈|v|2 〉1/2, where the bracket denotes the period average. The values are 〈|v|2 〉1/2 = 0.125
for the left column and 〈|v|2 〉1/2 = 0.25 for the right column. The spatial domain is
(x, y) ∈ [−2, 2] × [0, 1], with 512 × 128 uniform grid points. Simulations are performed
with a second-order upwind method. We observe front wrinkling due to spatially periodic
diffusion and advection. Comparing the two columns, we also see the speedup of the front
with increasing values of 〈|v|2 〉1/2. Intuitively, a wrinkled front region increases the effective
area for the reaction and results in a higher front speed. Reprinted from Physica D, 81,
J. X. Xin and J. Zhu, Quenching and Propagation of Bistable Reaction-Diffusion Fronts in
Multidimensional Periodic Media, pp. 94–110, 1995, with permission from Elsevier Science.
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Fig. 2 Example of front in random medium. Planar laser-induced fluorescence light sheet image
of an experimental arsenous-acid/iodate autocatalytic front in random capillary wave flow
of broad scales. Field view 14 cm × 14 cm, with the ratio U of rms flow velocity u′ and
laminar front speed SL (e.g., front speed when no flow is present) equal to 650. The arsenous-
acid/iodate reaction takes place in an aqueous solution and has two advantages over gas
reactions: (1) it allows small density changes across the reaction front, (2) it permits large
rms values of u′ where front normal velocity still depends on local flow and curvature. Both
properties are helpful for comparing experimental findings with predictions from the H-J-type
front models such as the G-equation (see section 4.4). The capillary wave flow is achieved in
a thin layer of liquid in a vertically vibrated tray (20 cm each side). At large amplitude, the
flow field becomes random and develops a broad range of spatial and temporal scales. In the
experiment, the flow has zero ensemble mean and is isotropic and quasi-two-dimensional.
For details of the experimental set-up, see [82]. We observe the resulting fractal nature of
the front due to the rough flow velocity. Image used with the permission of Paul Ronney.

4. f(u) = e−E/u(1 − u), E > 0: the Arrhenius combustion nonlinearity or
combustion nonlinearity with activation energy E but no ignition temperature cutoff;

5. f(u) = 0 ∀u ∈ [0, θ] ∪ {1}, f(u) > 0 ∀u ∈ (θ, 1), f(u) Lipschitz continuous:
the combustion nonlinearity with ignition temperature θ.

Types 1 and 2 come from chemical kinetics (for example, from autocatalytic
reactions, as we shall discuss later), with type 2 being the high-order generalization of
type 1. Type 3 comes from biological applications (such as FitzHugh–Nagumo (FHN)
systems) and also more recently from phase field models of solidification. Types 4
and 5 appear in the study of premixed flames in combustion science, and type 4 can
be regarded as a limit of type 5 as θ tends to zero.

If we look at the graphs of f(u) for the five types of nonlinearity, sketched in
Figure 3, we see that they differ near u = 0 and behave similarly near u = 1. The
type 1 nonlinearity has a positive slope at u = 0. The type 2 nonlinearity has
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Fig. 3 Five types of nonlinearities f(u) considered throughout this article. If we gradually deform
the curve of f = f(u) near u = 0 from above the u-axis (type 1) to below it (type 3), we can
experience all five types of nonlinearities.

zero slope (and derivatives up to order m − 1 for m ≥ 2). The type 4 nonlinearity
has an exponentially small tail near zero, so all derivatives at zero vanish. Type 5
is identically zero for an interval u ∈ [0, θ], i.e., there is no reaction below ignition
temperature. Type 3 has a negative slope at u = 0, goes down to a negative minimum,
goes up and through an intermediate zero µ, goes up to its positive maximum, and
finally comes back to its third zero at u = 1. Type 3 is the only one that changes
sign. Its total area

∫ 1
0 f(u)du is positive if µ ∈ (0, 1

2 ), zero if µ = 1
2 , and negative if

µ > 1
2 .
The simplest nontrivial solution of (2.1.1), which models the steady motion of a

flame or a transition layer between two chemical species, is the traveling front solution
of the form u = U(x−ct) ≡ U(ξ), where c is the wave speed and U is the wave profile
that connects 0 and 1. Substituting this form into (2.1.1), we obtain

Uξξ + cUξ + f(U) = 0,(2.1.2)

with boundary conditions limξ→−∞ U(ξ) = 0 and limξ→+∞ U(ξ) = 1. Since u is a
concentration or a temperature, we also impose the physical conditions U(ξ) ≥ 0. The
above problem can be thought of as a nonlinear eigenvalue problem with eigenvalue
c and eigenfunction U . We note that as soon as we have a traveling front solution,
we get another solution moving in the opposite direction at the same speed by the
transform ξ → −ξ, c → −c. However, U will take the values 1 at ξ = −∞ and 0 at
ξ = +∞. We can also get another front moving in the same direction by translating
ξ to ξ + const.

It is convenient to perform a phase plane analysis by writing (2.1.2) as a first-order
system of ODEs,

Uξ = V, Vξ = −cV − f(U).(2.1.3)
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Now we are looking for a trajectory in the phase plane that goes from (0, 0) to (1, 0).
Multiplying both sides of (2.1.2) by Uξ and integrating over ξ ∈ R, we obtain (assum-
ing µ ∈ (0, 1

2 ) in the case of a nonlinearity of type 3)

c = −
∫ 1

0 f(U)dU∫
R
U2
ξ dξ

< 0.

The linearized system about U = 0 is

d

dξ

(
U
V

)
=

(
0 1

−f ′(0) −c
) (

U
V

)
.

The eigenvalues of this 2× 2 matrix are given by

λ1,2 =
−c±

√
c2 − 4f ′(0)
2

.

In the case of a type 1 nonlinearity, if c2 ≥ 4f ′(0) or c ≤ c∗1 ≡ −2
√

f ′(0), (0, 0) is an
unstable node. In the type 3 case, since f ′(0) < 0, (0, 0) is a saddle. In either case, a
similar linearization at (1, 0) shows that (1, 0) is always a saddle, thanks to f ′(1) < 0.
Since there is a family of unstable directions going out of an unstable node, and only
one direction in or out of a saddle, one can show by isolating the flows in a triangular
region in the first quadrant of the U -V plane that there is a connecting trajectory
for each c ≤ c∗1 for type 1 and a unique connecting trajectory for type 3. Moreover,
Uξ > 0 always holds, thanks to the trajectory being in the first quadrant. Since the
ODE system (2.1.3) is autonomous, U is unique only up to a constant translation
of ξ.

We shall call the front solution corresponding to c = c∗1 the critical front. The
critical front moves at the slowest speed in absolute value, and its asymptotic behavior
as |ξ| → ∞ is (see Aronson and Weinberger [1])

U(ξ) = 1− Ce−βξ + O(e−2βξ), ξ → +∞,

U(ξ) = (A−Bξ)e−c
∗
1ξ/2 + O(ξ2e−c

∗
1ξ), ξ → −∞,(2.1.4)

where A, B, and C are positive constants and 2β = −c∗1 −
√

(c∗1)2 − 4f ′(1) > 0. In
contrast, the faster fronts with c < c∗1 have exponential decay O(econst. ξ) as |ξ| → ∞,
because the two roots λ1,2 at (0, 0) are both simple. The faster fronts decay more
slowly than the critical fronts as U → 0.

For the type 3 cubic polynomial, Huxley (see [141]) solved (2.1.2)–(2.1.3) exactly:

U(ξ) =
1

1 + e−ξ/
√

2
, c =

√
2

(
µ− 1

2

)
(2.1.5)

for µ ∈ (0, 1
2 ]. If µ ∈ [ 1

2 , 1], one simply switches c to −c and ξ to −ξ.
For the remaining three types, f ′(0) = 0, and so (0, 0) has an unstable and a

neutral direction. More delicate analysis is required. In the type 2 case, one can show
that there is a center manifold near (0, 0) and a connecting trajectory from the center
manifold to the saddle at (1, 0) for each c < c∗m < 0. If c = c∗m, the connection goes
from the unstable manifold at (0, 0) to the saddle. For a type 2 nonlinearity with
m = 2, the critical front profile approaches zero at the rate O(e−c

∗
2ξ) as ξ → −∞,

while the profiles of faster fronts approach zero at an algebraic rate O(ξ−1) [21].
This is different from the KPP case (2.1.4). The absolute values of c∗m decrease with
increasing m.
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For type 4 and type 5 nonlinearities, a different method using degree theory on
finite intervals to construct approximate solutions, then taking their infinite line limit,
is much more expedient and robust; see Berestycki, Nicolaenko, and Scheurer [17] and
Marion [111]. We will explain this method in detail in the coming sections on fronts
in periodic media. The results of [17] and [111] show in particular that in the case of a
type 4 nonlinearity, a continuum family of traveling front solutions exist, one for each
c ≤ c∗0 < 0, just as for type 1 and type 2. However, type 5 is different from type 4 in
that for each ignition temperature θ > 0, there is a unique c∗θ so that a corresponding
front profile U exists and is unique up to a constant translation in ξ. We see that type
5 is just like type 3. See Fife [59] or Uchiyama [147] for a phase plane justification of
the result.

The isotropic scalar R-D equation in several dimensions is

ut = ∆xu + f(u),(2.1.6)

where x ∈ Rn and ∆x is the n-dimensional Laplacian. For each unit vector �k, the
traveling front in direction �k is U(�k · x− ct), with c and U corresponding to exactly
the same one-dimensional traveling front solution as before. The wave speed c and
profile U are both isotropic (independent of �k).

2.2. Asymptotic Stability and Selection of Fronts. The next step after we know
the existence of traveling fronts is to ask about their dynamic asymptotic stability in
the large time limit. This is important because the fronts should be stable if they
are to be experimentally observed. Stability means that if initial data are prescribed
in the form u0(x) = Uc(x) + ũ(x), where Uc(x) is a front profile corresponding to
the speed c and ũ(x) is a smooth and spatially decaying perturbation, then u(x, t)
converges to Uc(x− ct + ξ0) in a suitably weighted Banach space as t→∞ for some
constant ξ0.

The reason we have a constant translation in the definition can be seen as follows.
Due to spatial translation-invariance of the original equation, we have a family of
traveling fronts Uc(x− ct + x0) for each allowable wave speed c. Let us take ũ(x) =
Uc(x + x0) − Uc(x), which is a perturbation with spatial decay. Now for initial data
u(x, 0) = Uc(x)+ ũ(x) = Uc(x+x0), the solution for later time is just Uc(x− ct+x0),
which does not converge to Uc(x − ct) unless x0 = 0. In the case of a continuum of
speeds, we can also take ũ(x) = Uc′(x)− Uc(x), c′ �= c, and the later time solution is
Uc′(x − c′t), again not converging to Uc(x − ct) as t → ∞ . Even the wave speed is
different.

These simple examples show that it is a subtle problem to establish asymptotic
stability, especially in the case of multiple speeds. A great deal turns out to depend on
the rate of decay of the initial perturbations as |ξ| → ∞. Intuitively, the tiny amount
of perturbation in the far field takes a long time to crawl into a front from its tails;
however, its effect is crucial since asymptotic stability concerns large-time behavior.
Let us show that the bistable (type 3) R-D front under a small initial perturbation ũ is
asymptotically stable. We linearize the problem by writing u = U(x−ct)+ũ(x−ct, t).
In the moving frame ξ = x− ct, ũ = ũ(ξ, t) satisfies

ũt = ũξξ + cũξ + f ′(U)ũ + N(ũ) ≡ Lũ + N(ũ),(2.2.1)

where N(ũ) contains quadratic or higher order nonlinear terms. The location of the
spectrum of L, denoted by σ(L), carries information on the decay of ũ. According to
general theory, σ(L) consists of an essential spectrum and an isolated point spectrum
if L is considered in the space L2(R) of square integrable functions. The essential
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spectrum is included in the union of the essential spectra of the limiting operators
(Henry [86])

L± = lim
ξ→±∞

L = ũξξ + cũξ + f ′(U(±∞))ũ.

Since f ′(U(±∞)) < 0, the essential spectrum of L± is strictly in the left half-plane,
with a gap from the imaginary axis (by Fourier transform). Now we consider the
operator eL, which is a positive bounded linear operator from L2(R) into itself. The
essential spectrum of eL is contained in B(0, r), a disc about 0 of radius r < 1.
The remaining spectrum of eL consists of isolated eigenvalues of finite multiplicities.
The restriction of eL to the space spanned by the eigenfunctions of these isolated
eigenvalues is a finite-dimensional positive linear operator. On the other hand, we
know that LUξ = 0 by differentiating the U equation with respect to ξ, and we know
that 0 < Uξ ∈ L2(R). Thus Uξ is a positive eigenfunction of eL with eigenvalue 1. By
the Krein–Rutman or Perron–Frobenius theorems [146], [52], 1 is a simple eigenvalue,
and the rest of the point spectrum of L lies strictly inside the unit disc. It follows
that if we decompose the perturbation ũ(ξ, t) into the sum of a part along Uξ and
a part orthogonal to it, the orthogonal part decays to zero and the neutral Uξ part
leads to the translation by ξ0. Moreover, since the decay rate is exponential in time
(due to the spectral gap), the nonlinear term N(ũ) is slaved to the linear part.

In case of KPP (type 1) or type 5 nonlinearities, however, the above proof
fails. The limiting operator L− has a continuous spectrum with positive real part
(if f ′(0) > 0) or a continuous spectrum touching the origin (if f ′(0) = 0). The spec-
tral gap disappears. The cure proposed in Sattinger [141] is to restrict attention to
perturbations in a weighted space that specifies a rate of spatial decay. To see how
this works, let us change variables: ũ = eαξv, v ∈ L2, with a constant α > 0, for
ξ ≤ 0. Then v satisfies the equation

vt = vξξ + (c + 2α)vξ + (α2 + cα + f ′(U))v,(2.2.2)

whose advantage is that the coefficient of v at ξ = −∞, α2+cα+f ′(0), can be negative.
In the KPP case, c ≤ c∗1 = −2

√
f ′(0). Hence if c < c∗1, then there is a positive α such

that α2 + cα+f ′(0) = α2 + cα+(c∗1)
2/4 < 0. One choice is α = −c/2. In this way, we

can still apply the argument of the bistable case. For type 5, with f ′(0) = 0, any small
positive number (less than −c∗θ) will do. Technically, one chooses a weight function
w(ξ) = e−αξ + 1 for all ξ ∈ R. The weighted L2 space is {ũ ∈ L2 : wũ ∈ L2}. It was
noted in [141] that this kind of weight causes the solution to converge to the same
Uc with translation ξ0 = 0, since the neighboring solutions are infinitely far away in
the weighted norm. The critical case c = c∗, however, remains uncured by even this
remedy, one reason being that there is no exponential convergence.

The study of the asymptotic stability of critical fronts has been much more re-
cent; see Kirchgässner [99] for KPP nonlinearity, Bricmont and Kupiainen [31] for
Ginzburg–Landau (G-L, that is, f(u) = u(1−u2)) fronts and Gallay [72] for both G-L
and KPP, and Eckmann and Wayne [45] for more general parabolic equations. The key
step of [99] is to write the solution in the moving frame as u(ξ, t) = U(ξ)+U ′(ξ)v(ξ, t),
where U is a shorthand for Uc∗(ξ) and c∗ = c∗1. The equation satisfied by v becomes

vt = vξξ +
(
c∗ + 2

U ′′

U ′

)
vξ − U ′v2,(2.2.3)

or in self-adjoint form,

vt = b(ξ)−2(b(ξ)2vξ)ξ − U ′v2,(2.2.4)
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where b2(ξ) = (U ′)2ec
∗ξ. The stability bound of [99] is based on (2.2.4):

||bv(ξ, t)||L∞(R) ≤
C

1 + t1/4 ||bv(ξ, 0)||L2(R).(2.2.5)

Note that by (2.1.4), b decays to zero exponentially as ξ → +∞ and grows like O(ξ2)
as ξ → −∞, so the convergence of v to zero is not uniform in ξ. Moreover, the spatial
shift ξ0 is again zero.

Using the renormalization method (see [32]), Gallay [72] gives the leading self-
similar asymptotics of v:

v(ξ, t) ∼ t−3/2A∗ψ∗(ξt−1/2),(2.2.6)

where the constant A∗ depends on the initial condition and

ψ∗(ξ) =
1√
4π

{
1, ξ > 0,
e−ξ

2/4, ξ ≤ 0

is universal. To see the decay factor t−3/2, note that the variable coefficient (c∗ +
2U ′′/U ′) of vξ behaves like 2ξ−1 for ξ → −∞ and tends to

√
(c∗)2 − 4f ′(1) as ξ →

+∞. So, near ξ = −∞, the linear part of (2.2.3) is

vt = vξξ +
2
ξ
vξ,

as in the three-dimensional heat equation in radial coordinates, and hence the decay
factor is t−3/2. The other regime, near ξ = ∞, leads to exponential decay in time.
Combining the two contributions and the coupling in the intermediate regime even-
tually produces t−3/2. For details of how to establish self-similarity and the precise
statement of the result, we refer to [72].

We note that all the stability results so far are for small perturbations. To extend
them to order 1 or arbitrary perturbations, a global tool such as a maximum principle
is needed. For the global asymptotic analysis and critical front selection, see Aronson
and Weinberger [1], [2]; Fife [59], [60]; the original paper by KPP [100], with the initial
data being the indicator function of the negative line; the probabilistic analysis of the
scalar KPP equation in Bramson [29], Freidlin [66], McKean [115], and references
therein; and Kanel [93] for the type 5 nonlinearity.

The type 2 and type 4 cases can be handled by the weighted norm idea of [141]
outlined above, thanks to f ′(0) = 0, for local stability. In the KPP (type 1) case, it is
known [1], [66] that if the initial data is of compact support, then the edges of support
develop into a pair of outgoing fronts moving at the critical (minimum) speed ±c∗1. It
appears to be unknown whether the critical speed is also selected in this way for the
type 2 or type 4 nonlinearities. Intuitively, such a result is expected for type 2, since
the faster fronts of type 2 are only generated by perturbations behaving like O(x−1)
as |x| → ∞, and they are not as easy to initiate as in the KPP case.

The asymptotic stability of traveling fronts subject to perturbations in several di-
mensions is an interesting problem, not yet explored as much as in the one-dimensional
case. Let us consider a front moving in the x1 direction and write y = (x2, . . . , xn).
The linearized equation for the perturbation ũ in the moving frame ξ = x1 − ct is

ũt = ũξξ + cũξ + ∆yũ + f ′(U)ũ.(2.2.7)

If the transverse variable y is finite (say, if ũ is periodic in y), then decomposing into
Fourier modes in y reveals that the term ∆yũ contributes a nonpositive spectrum.



170 JACK XIN

Thus the problem can be reduced to one dimension in a straightforward way. The
more interesting case is when the transverse variable y is unbounded. Then the term
∆yũ introduces a continuous spectrum, and the gap near the origin disappears. Just
as in the case of critical KPP with c = c∗, the continuous spectrum cannot be shifted
by introducing weights. The decay of perturbations coming from the far field of the
transverse direction is essentially governed by the heat equation ũt = ∆yũ, and so
the rate of decay is at best algebraic. The higher the dimension of y, the better the
decay of the transverse component of the perturbation. In Xin [158] and Levermore
and Xin [103], it was shown that an initially localized perturbation v of a front for
the bistable (type 3) nonlinearity decays to zero like O(t−(n−1)/4) in a Sobolev space
of high enough order if n ≥ 4 and decays to zero uniformly on any compact set
in (ξ, y) if n ≥ 2. The analysis is based on a Lyapunov functional, the maximum
principle, and the known one-dimensional results. It remains to study the other types
of nonlinearity, in particular, the critical KPP front in several space dimensions.

2.3. Variational Principles for Front Speeds. Since the wave speeds of traveling
fronts are in general unknown in closed form, their variational characterization is an
invaluable way of estimating them. Hadeler and Rothe [81] considered the general
continuously differentiable nonlinearity f(u) such that

f(0) = f(1) = 0, f(u) > 0, u ∈ (0, 1), f ′(0) > 0, f ′(1) < 0.(2.3.1)

They were the first to establish a min-max variational principle for the minimum wave
speed:

|c∗| = inf
ρ

sup
u∈(0,1)

{
ρ′(u) +

f(u)
ρ(u)

}
,(2.3.2)

where ρ is any continuously differentiable function on [0, 1] such that

ρ(u) > 0, u ∈ (0, 1), ρ(0) = 0, ρ′(0) > 0.(2.3.3)

The formula (2.3.2) is based on the phase plane construction of the fronts. Under
(2.3.1), for each allowable c, there is a connection from an unstable node to a saddle,
and the front profile is strictly monotone. Let u = u(x−ct) = u(ξ) connect u = 1 and
u = 0 from left to right, so that c ≥ c∗ > 0. Then uξξ + cuξ + f(u) = 0, u(−∞) = 1,
and u(∞) = 0. Now regard uξ as a function of u by defining p = p(u) = −uξ > 0 at
u = u(ξ). The function p(u) is a solution of

p(u)p′(u)− cp(u) + f(u) = 0,(2.3.4)

with p(0) = 0, p(1) = 0, and p(u) > 0 on (0, 1). The expression inside the supremum
of (2.3.2) is just what we find from (2.3.4) on writing c in terms of u, p, and p′(u). If
p(u) is not a solution of (2.3.4), then (u, p(u)) can represent a curve connecting the
node and the saddle in the phase plane, but with the flow field at the curve pointing
toward the solution curve of (2.3.4). This geometric information translates into the
inequality that c is no less than the supremum in (2.3.2) for some ρ satisfying (2.3.3).
It follows that any allowable c, in particular c∗, is no less than the min-max of (2.3.2).
The equality is attained by ρ = p∗(u) corresponding to the speed c∗.

It follows from (2.3.2) that

2
√

f ′(0) ≤ |c∗| ≤ 2
√
L, L = sup

u∈(0,1)

f(u)
u

,(2.3.5)
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which gives the well-known KPP minimal speed 2
√

f ′(0) if L is achieved at u = 0.
To see (2.3.5), we take ρ(u) = au, a > 0. Then |c∗| ≤ a + L/a. Minimizing over a
establishes the upper bound. The lower bound is easily deduced by restricting the
supremum to those functions u in a small neighborhood of zero. Hadeler and Rothe
[81] further used (2.3.2) to find the exact minimal speed for f(u) = u(1− u)(1 + νu):
|c∗| = 2 if −1 ≤ ν ≤ 2, |c∗| = (ν + 2)/

√
2ν if ν ≥ 2.

Recently, Benguria and Depassier [12] obtained a general variational wave speed
formula for any f such that f(0) = f(1) = 0.

Theorem 2.1. Let f be any of the five types of nonlinearity, and assume that a
monotone front exists. Then the minimum (or unique) speed c∗ is given by

(c∗)2 = sup

(
2

∫ 1
0 fgdu∫ 1

0 (−g2/g′)du

)
,(2.3.6)

where the supremum is over all positive decreasing functions g ∈ (0, 1) for which the
integrals exist. Moreover, the maximizer exists if |c∗| > 2

√
f ′(0).

The above theorem appears to be the first variational result in such generality.
The formula holds for f changing signs in (0, 1). The Huxley formula (2.1.5) is
recovered by putting g(u) = ((1 − u)/u)1−2µ. A similar variational formula for f in
(2.3.1) without the constraint f ′(1) < 0 is established in [11].

The proof of (2.3.6) is elementary, and it uses (2.3.4) again. Let g = g(u) be any
positive function on (0, 1) such that h = −g′(u) > 0. Multiplying (2.3.4) by g(u) and
integrating over u ∈ [0, 1], we have after integration by parts the equality∫ 1

0
fgdu = c

∫ 1

0
pgdu−

∫ 1

0

1
2
hp2du.(2.3.7)

For positive c, g, and h, the function ϕ(p) = cpg− 1
2hp

2 has its maximum at p = cg/h,
and so ϕ(p) ≤ c2g2/2h. It follows that

c2 ≥ 2

∫ 1
0 fgdu∫ 1

0 (g2/h)du
≡ I(g),(2.3.8)

which implies (setting c = c∗ if c is nonunique) that (c∗)2 is no less than the supremum
of (2.3.6). Next, we show that the equality holds for a function ĝ. Notice that the
condition p = cg/h is solvable in g and gives an expression for the maximizer ĝ,

ĝ = exp
(
−

∫ u

u0

cp−1du

)
,(2.3.9)

with u0 ∈ (0, 1). Clearly, ĝ is positive and decreasing, with ĝ(1) = 0 since p ∼
O((1− u)) for u ∼ 1. At u = 0, however, ĝ diverges since the exponent goes to +∞.
A natural choice for ĝ now is p = p∗(u), if we verify that the two integrals are finite
in I(ĝ).

For nonlinearities of types 2, 3, 4, and 5, p∗ approaches zero exponentially and

p∗ ∼
c +

√
c2 − 4f ′(0)

2
u ≡ mu.

Thus, near u = 0, ĝ ∼ u−c/m and fĝ and ĝ2/ĥ diverge at most like u1−c/m. The
integrals of I(ĝ) are finite if m/c > 1/2. This condition holds if f ′(0) ≤ 0, which is
indeed true for types 2, 3, 4, and 5, and also for f in (2.3.1) if (c∗)2 > 4f ′(0). If (c∗)2 =
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4f ′(0), which is the case for type 1, the maximizer does not exist. However, choosing
the test function g(u) = a(2 − a)ua−2 with a ∈ (0, 1), we calculate

∫ 1
0 (g2/h)du = 1.

Integration by parts twice shows that as a→ 0, I(g) = 2(2−a)a ∫ 1
0 fua−2du→ 4f ′(0).

The proof is complete.

2.4. Further Remarks. Let us comment on a few systems of R-D equations from
which the various types of scalar equation of this section came and briefly explain the
new phenomena that arise with systems.

Scalar R-D equations with nonlinearities of types 1, 2, 4, and 5 come from systems
of the form

ut = d∆xu + vf(u), x ∈ Rn,
vt = ∆xv − vf(u),(2.4.1)

where d > 0. If (2.4.1) models premixed flame fronts in a one-step exothermic chemical
reaction of the form A → B, then u is the temperature of the reacting mixture, v is
the mass fraction of the reactant A, and d is called the Lewis number. The function
f takes the Arrhenius form e−E/T with activation energy constant E > 0.

If d = 1, then adding the two equations shows that u+v satisfies the heat equation
and hence is forever equal to 1 if this is so arranged at t = 0. Replacing v by 1 − u
in the first equation of (2.4.1), we find a scalar R-D equation of type 4, and type 5
then arises as we introduce a temperature cutoff θ. For existence and uniqueness of
fronts, see [17], [26], and [111]. It is well known that if d is much larger or smaller
than 1, fronts are unstable; see [7], [14], [91], [144], and references therein. Intuitively,
the very distinct diffusion constants cause the front to develop spatial-temporal scales
as a way of keeping balance. With d > 1, fronts oscillate in time, and with d < 1,
they generate transverse spatial oscillations in two or three dimensions. The scales
continue to grow with d, and eventually the solutions are chaotic.

When (2.4.1) models isothermal autocatalytic reactions of the form A + mB →
(m+ 1)B, m ≥ 1, with rate law proportional to vum, v and u are the concentrations
of the reactant A and the catalyst B. The function f is now f(u) = vum. Again,
when d = 1, we recover a scalar R-D equation of type 1 if m = 1 and of type 2 if
m ≥ 2. Existence and dynamics of fronts are discussed in [22], [23], [24], and [64].
Similarly, if d is sufficiently far from 1, fronts are unstable and can be chaotic; see
[87], [108], and [116].

For (2.4.1) in either application above and general bounded continuous initial
data, the maximum of u is uniformly bounded in time if d ≤ 1 [114] and can grow
at most like O(log log t) if d > 1 [37]. Due to the lack of a maximum principle for
the u equation, the upper bound of the maximum of u is delicate to obtain. In
general, the maximum of u will go above 1 for large t even if the initial data of u is
bounded between 0 and 1. This is in clear contrast with scalar equations. Although
a neat argument of comparison of heat kernels leads to a uniform maximum norm
bound in time when d ≤ 1 [114], in general one has to use nonlinear functionals
(generalized Lyapunov functionals for a nongradient system like (2.4.1)) to control
the growth of u [37]. Mathematically speaking, the absence of a maximum principle
and a classical Lyapunov functional (nonincreasing in time) is responsible for the
appearance of complex dynamics such as chaos.

On the other hand, there is still order and pattern in (2.4.1). For spatially decay-
ing initial data, solutions will eventually decay to zero. This can be seen as follows.
Intuitively, u tends to grow and v tends to decay when they meet each other because
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of the plus and minus signs in front of the nonlinear terms. One can think of u as
a predator and v as a prey. If the initial amount of prey v is finite (the case of de-
caying data), sooner or later the predator will consume the prey, then die of hunger.
What is interesting is that when vf(u) = vu2, the decay of v is O(t−p) with p > 1/2
in one space dimension. This anomalous scaling has been proved for initial data of
any size [33] and is a consequence of competition between plus and minus nonlinear
terms, with the cubic nonlinearity being critical. The nonlinearity in the u equation
drops out to leading order as t → ∞, and the reduced system (that is, (2.4.1) with
ut = duxx in place of the u equation) has a family of self-similar solutions giving the
desired anomalous scaling.

Scalar R-D equations of type 3 come from the FHN system in mathematical
biology,

ut = uxx + u− u3 − v, x ∈ R,
vt = ε(u− γv),(2.4.2)

where γ > 0 and ε > 0 is a small parameter. In the limit ε → 0, (2.4.2) reduces to a
bistable scalar R-D equation. See [59], [90], [119], [121], and [140].

A type 1 (KPP) or type 3 (bistable) scalar equation can also be treated as a
special case of a vector equation of the same type with vector field �f . For type 1, see
[8], where �f is a vector field pointing inside the first quadrant with flow trajectories
all converging to a stable equilibrium point. Such a system has a maximum principle
(or an invariance region of solutions), and so the maximum norm is bounded in time.
For type 3 [139], one can simply take �f = −∇uV (u), where V is a potential with
multiple minima and u = �u = (u1, . . . , un). Such a system is a gradient system,
and the natural Lyapunov functional exists and is nonincreasing in time. Due to the
presence of either the maximum principle or variational structure, front solutions to
these two types of systems are stable [138], [153], [154].

The fact that the minimal front speeds of KPP equations can be determined
by linearization at the unstable steady state is also known as the marginal stability
criterion (MSC). The validity of MSC in models different from the classical KPP
equations (see [2]) has been a central theme of many studies in the physics literature.
See [10], [40], [78], [34], [35], and [124], among others. It is an interesting problem to
prove or disprove MSC for non-KPP equations [78].

3. Fronts in Periodic and Slowly Varying Media. We discuss a classical homog-
enization result for a scalar elliptic equation and use that to motivate the analytical
form of traveling fronts in periodic media. Existence, stability, and propagation of
fronts come next, with explanations of the PDE techniques involved. We also de-
scribe the large deviation approach and viscosity solution method for the KPP-type
R-D equation. The large deviation approach extends to analyzing the speeds of the
one-dimensional KPP fronts in random media. Open problems are mentioned.

3.1. Periodic Media and Homogenization. Multiscale problems are common in
applications, such as finding the effective conductivity of a composite material or the
effective permeability for flows in porous media, where one has at least two scales,
the large scale of the sample and the small scale of the imbedded inclusions or pores.
These two scales normally differ significantly and render the full resolution of the
problem difficult. Therefore, it is of great theoretical and practical interest to find
out how to upscale the collective effect of the small scale into the large scale, and so
simplify the problem. When the small scale possesses a periodic structure, the upscale
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problem has a well-developed theory called homogenization. See Bensoussan, Lions,
and Papanicolaou [13] for a systematic account of the foundational works.

We give here an example of homogenization and use formal asymptotic analysis to
illustrate the ideas. Consider a two-point boundary value problem for a second-order
ODE with rapidly oscillating periodic coefficients,

(a(ε−1x)uεx)x = f(x), x ∈ [0, 1],(3.1.1)

with boundary condition uε(0) = uε(1) = 0. Here a is a positive smooth function
with period 1 in y ≡ ε−1x and f(x) is a bounded continuous function in x. We are
going to examine the limit of uε as ε→ 0, where the large scale x and the small scale
ε−1x are separated. Since there are two separate scales in the problem, it is natural
to search for a two-scale expansion of the solution in the form

uε ∼ u0(ε−1x) + εu1(x, ε−1x) + ε2u2(x, ε−1x) + · · · ,(3.1.2)

where the y = ε−1x dependence has period 1 also. Substituting the ansatz (3.1.2)
into (3.1.1) and regarding x and y as independent variables, we have (noting that the
x derivative is replaced by the operator ∂x + ε−1∂y)

(∂x + ε−1∂y)(a(y)(∂x + ε−1∂y)(u0 + εu1 + ε2u2 + · · ·)) = f.(3.1.3)

At the highest order O(ε−2), we have

∂y(a(y)∂yu0) = 0,(3.1.4)

which has only a y-independent periodic solution. Thus u0 = u0(x). At the next
highest order O(ε−1), we have

∂y(a(y)(∂xu0 + ∂yu1)) = 0,(3.1.5)

which implies

a(y)(∂xu0 + ∂yu1) = c(x)(3.1.6)

for some function c(x). Dividing (3.1.6) by a and integrating the resulting equation
over y ∈ [0, 1] yields

d

dx
u0 = c(x)〈a−1 〉,(3.1.7)

where 〈 · 〉 denotes the integral or average over y ∈ [0, 1]. At the next order O(1), we
have

∂x(a(y)(∂xu0 + ∂yu1)) + ∂y(a(y)(∂xu1 + ∂yu2)) = f.(3.1.8)

Averaging (3.1.8) over y ∈ [0, 1] gives

∂x〈 a(y)(∂xu0 + ∂yu1) 〉 = f,

which in view of (3.1.6) is just dc/dx = f . This then becomes, as we insert (3.1.7),

d

dx

(
a∗

d

dx
u0

)
= f,(3.1.9)

where a∗ = 〈a−1 〉−1, the harmonic mean of a. Equation (3.1.9) is the homogenized
equation and is the same type of equation as that from which we started; however,
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its coefficient has been changed to the harmonic mean of the original one in the fast
oscillating variable y = ε−1x. Now we only need to solve the large-scale equation
(3.1.9) subject to the same boundary condition, and the small-scale effect has been
built in already.

Rigorous justifications of the above formal asymptotics in any number of dimen-
sions were presented in [13] using the energy method and in Evans [49] using the weak
convergence method. For the first homogenization result in random media, see Pa-
panicolaou and Varadhan [125]. The equation (3.1.5) is posed on the periodic domain
in terms of the y variable and is called the cell problem. Only in one dimension can
it be solved in closed form; as a result, we know the homogenized coefficient explic-
itly. In several dimensions, the corresponding elliptic boundary value problem can be
homogenized, but the homogenized coefficients are not known explicitly in general.
The formulation of the cell problem and the formula for a∗ in several dimensions are
given in subsection 3.5.

3.2. Traveling R-D Fronts in Periodic Media. Now let us consider what happens
if we let the R-D fronts discussed in section 2 pass through a medium with periodic
structure. If we model the medium with a periodic coefficient as we did above, then
a model equation for R-D fronts is

ut = (a(x)ux)x + f(u),(3.2.1)

where a(x) is a positive 1-periodic smooth function and f(u) is a nonlinear function
of one of the five types. Since we expect solutions to behave like fronts, we should
look at them in the large-space and large-time scaling limit. That is, let us consider
(3.2.1) under the change of variables x → ε−1x, t → ε−1t for ε small. The rescaled
equation is

uεt = ε(a(ε−1x)uεx)x + ε−1f(uε),(3.2.2)

which resembles a homogenization problem except that there is also a singular pre-
factor ε−1 in front of the nonlinear term. We realize that there are two scales present
in this problem. One is the width of the front, and the other is the wavelength of
the periodic medium. The first is easy to capture if we look at the rescaled form of
a traveling front in a homogeneous medium, or U(ε−1(x − ct)). The second can be
built in as in the homogenization ansatz (3.1.2). Combining the two ideas, we come
up with the following two-scale ansatz for R-D fronts in periodic media:

uε ∼ U(ε−1(x− c∗t), ε−1x) + · · · ,(3.2.3)

where c∗, the average wave speed, plays the role of a∗ in the homogenization example
shown before. Certainly, we impose periodicity in y = ε−1x and a 0 or 1 far-field
boundary condition in s = (x− c∗t)/ε.

Substituting (3.2.3) into (3.2.2), we find that U(s, y) satisfies the PDE

(∂s + ∂y)(a(y)(∂s + ∂y)U) + c∗Us + f(U) = 0.(3.2.4)

If (3.2.4) has a solution under the boundary conditions

U(s, ·) has period 1, U(+∞, y) = 1, U(−∞, y) = 0,(3.2.5)

the leading term of (3.2.3) is actually an exact solution! Recalling that the scaling
was just to motivate ourselves, we see that we could have worked with the original
equation (3.2.1) to begin with. The exact traveling front then has the functional form
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U(x − ct, x), which was first found and constructed by Xin [157]. It is also called a
periodically varying wavefront in [88].

Comparing (3.1.2) and (3.2.3), we see that the two scales of (3.2.3) are not nec-
essarily separate. In fact, they can be arbitrary, while in (3.1.2) the two scales are
vastly separate. In this sense, (3.2.3) is a general two-scale representation. Also for
this reason, we end up with a PDE cell problem to solve instead of an ODE cell
problem. We will see that what makes (3.2.3) possible is the nonlinearity f(U) and
that the extreme cases when the front width is either much larger or much smaller
than the wavelength of the medium are simpler.

It is easy to generalize the above form of traveling front to several space dimen-
sions. Let us consider an R-D equation of the form

ut = ∇x · (a(x)∇xu) + b(x) · ∇xu + f(u),
u|t=0 = u0(x),(3.2.6)

where
(A1) a(x) = (aij(x)), x = (x1, x2, . . . , xn) ∈ Rn is a smooth positive-definite

matrix on Rn, 1-periodic in each coordinate xi;
(A2) b(x) = (bj(x)) is a smooth divergence-free vector field, 1-periodic in each

coordinate xi, with mean zero.
Equations of the form (3.2.6) appear in the study of premixed flame propagation

through turbulent media [36], where u is the temperature of the combustible gas,
b(x) is the prescribed turbulent incompressible fluid velocity field with zero ensemble
mean, f(u) is the Arrhenius reaction term, and a(x) is taken to be a constant matrix.
Since the fluid velocity b is given as we solve for the temperature u, the above problem
is called passive, and the traveling fronts are called passive fronts. In [36], based on
their formal asymptotic analysis in the large activation temperature limit, Clavin
and Williams found that the temperature profile of u propagates with the effective
turbulent flame speed. To make progress and to avoid the difficulty of dealing with
complex flows involving a wide range of spatial and temporal scales such as turbulence,
we consider here the special periodic case, hoping to achieve a better understanding
of the concept of effective flame speed. It appears to be unknown under what general
conditions such a speed is well defined in turbulent media, but interesting findings
recently have given an indication of what is going on, as we shall see.

Let us fix a unit vector �k and look for a traveling front moving in this direction
with speed c = c(�k). The traveling front is of the form u(x, t) = U(�k ·x−ct, x), where
the wave speed c is an unknown constant depending on �k, and U , the wave profile, as
a function of s = �k ·x− ct and y = x, satisfies the boundary conditions U(−∞, y) = 0
and U(+∞, y) = 1, and U(s, ·) has period 1. Upon substitution of u(x, t) into (3.2.6),
we obtain the following traveling front equation for U = U(s, y) and c :

(�k∂s +∇y)(a(y)(�k∂s +∇y)U) + b(y) · (�k∂s +∇y)U + cUs + f(U) = 0.(3.2.7)

Solutions of (3.2.7) have been systematically studied by Xin in a series of works
[157], [159], [160], [161], [162]. The main results on traveling fronts are summarized
in the following theorem.

Theorem 3.1 (existence and uniqueness). Let Tn be the n-dimensional unit
torus, define a =

∫
Tn

a(x)dx, and assume that conditions (A1) and (A2) hold.
(1) If the nonlinearity f(U) is of type 3 (the bistable nonlinearity) with µ ∈ (0, 1

2 ),
there is a positive number δcr such that if ||a(x)−a||Hs(Tn) < δcr and ||b(x)||Hs(Tn) <
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δcr, s = s(n) > n+ 1, (3.2.7) has a unique classical front (U, c) such that 0 < U < 1,
Us > 0 for all (s, y) ∈ R× Tn, and c < 0.

(2) If the nonlinearity f(U) is of type 5 (the combustion nonlinearity with ignition
temperature cutoff), then for all a and b, (3.2.7) has a unique classical front (U, c)
satisfying the same properties.

Here uniqueness means that c is uniquely determined by the coefficients (a, b)
and the nonlinearity f(U), and U is unique up to a constant translation in s due to
the translation-invariance of (3.2.7). We see that there is a threshold phenomenon
in the bistable case. Intuitively, this is because the unequal potential wells of the
antiderivative of f(u) (which are essentially the driving force behind front motion) can
have effectively the same depth due to the effects of periodic media. As a result, front
propagation is suppressed or quenched. A similar situation occurs in the homogeneous
case when the intermediate zero of f(u) is equal to 1

2 . In other words, traveling fronts
of the form we seek may cease to exist in the bistable case when the spatial variation
of the coefficients is large enough. Standing waves with zero wave speed exist instead.
We will illustrate this point further.

For the other types of nonlinearity (types 1, 2, and 4), f(u) ≥ 0, and so fronts
always move and there is no quenching issue as long as b has mean zero and thus has
no bias towards positive or negative speeds. However, as we saw in section 1, fronts
are no longer unique and, in particular, there is a continuum of wave speeds above
a minimal number. Such a wave speed spectrum is expected in the periodic case.
Historically, the type 1 (KPP or Fisher) case was studied first [75], [66], using the
probabilistic large deviation method, which deals with compactly supported data and
the resulting minimal speed. In such an approach, one does not need to worry about
other wave speeds and wave profiles. We will come back to this KPP property later.
In the theoretical biology literature, Shigesada, Kawasaki, and Teramoto [142] studied
the KPP critical fronts in one-dimensional periodic media, using formal arguments
and linearization to find the approximate speeds.

The mathematical study of periodically varying traveling waves in equations of
the three types 1, 2, and 4 is limited to one space dimension, but it already reveals the
picture of a continuum of wave speeds and the appearance of a minimal wave speed.
Hudson and Zinner [88] considered a one-dimensional generalized Fisher (KPP) R-D
equation

ut = uxx + f(u, x),(3.2.8)

where f is jointly continuous in u and x, Lipschitz continuous in u, and periodic in
x with period 1. Moreover, f satisfies the property that there exists a 1-periodic
continuous function ū(x) > 0 such that f(u, x) > 0 for u ∈ (0, ū(x)) and f(u, x) ≤ 0
for u > ū(x). They found that there is a minimal speed c̃∗ given by

c̃∗ = inf
r,y

sup
x∈[0,1]

y′′(x) + µ(x)y(x)
ry(x)

,(3.2.9)

where the infimum is taken over all r > 0 and y(x) ∈ C2(R) for which y(x) > 0 for
all x, y(x)e−rx is periodic with period 1, and

µ(x) = sup
u∈(0,ū(x))

f(u, x)
u

.

Their result can be stated as follows.



178 JACK XIN

Theorem 3.2. For all c ≥ c̃∗, there exists a function u(t, x) that is a solution
of (3.2.8) in the distribution sense. The solution can be written in terms of a wave
profile U , namely, u(t, x) = U(x + ct, x), (t, x) ∈ R2, where U(x + ct, ·) is periodic
with period 1. Furthermore, U(·, x) is nondecreasing for each x and u(t, ·) is uniformly
Lipschitz continuous with limx→−∞ u(t, x) = 0, lim infx→+∞ u(t, x) ≥ min ū(x), and
lim supx→+∞ u(t, x) ≤ max ū(x) for all x ∈ R.

In the KPP case (type 1), (3.2.9) agrees with the variational formula of [75],
c̃∗ = |c∗|, as we shall see later. In general, (3.2.9) is only an upper bound on the
minimal wave speed; in fact, c̃∗ > |c∗| in the case f(u, x) = u2(1− u).

Let us mention that [157] and [159], [160], [161], [162] work directly with the
nonlinear eigenvalue problem (3.2.7), while [88] works with a time-dependent spatially
discretized system first, then takes a continuum limit to recover the traveling front
from the limiting solutions. The two different approaches yield the same functional
form of the traveling fronts that we motivated using homogenization at the beginning
of this subsection.

3.3. Constructing Traveling Fronts in Periodic Media. When constructing one-
dimensional traveling fronts, one often relies on the dynamical systems approach (as
in section 2) by establishing a desired connection orbit in phase space; see Smoller
[146]. Although in [73] Gardner successfully extended the approach to analyzing
multidimensional traveling fronts in a model problem, this is, in general, a difficult
task, especially for variable coefficient equations. Here we would like to introduce two
other methods that work in any number of dimensions and rely more on functional
analytical tools. Since one works directly with the boundary value problem of the
traveling wave equations and PDE tools can be applied, the results are much more
general and robust.

The idea of the first method (the degree approach) typically divides into two steps.
In step 1, we pose the same boundary value problem on a truncated finite domain. If
the original equation is elliptic, then existence of solutions reduces to finding a fixed
point of a nonlinear map, which follows from the standard Leray–Schauder degree
theory [77], [166]. This is a more or less abstract step. In step 2, we derive bounds
on the solutions of step 1 independently of the size of the truncated domain and pass
to the (original) infinite domain limit. In addition, we also estimate the asymptotic
behavior of the limiting solution at ±∞ to make sure that the limit is the desired
traveling front. The second step is concrete, and specifics of the problem (such as
types of nonlinearity) play a key role. Such a degree approach was first developed in
Berestycki, Nicolaenko, and Scheurer [16] for systems of one-dimensional fronts and
was later extended to multidimensional fronts [15].

Now let us see how the method works for fronts in periodic media. Consider
(3.2.7) with a type 5 nonlinearity. Our first observation is that the three linear terms
do not form a strongly elliptic operator (such as the Laplacian ∆s,y), since the second
derivatives are along directions (ki, 0, . . . , 0, yi, 0, . . . , 0) ∈ Rn+1, i = 1, . . . , n, that do
not cover all n+1 directions. The other derivative along direction (1, 0, . . . , 0) ∈ Rn+1

is the s derivative of U . Hence if c is not equal to zero, we have a parabolic operator
(similar to the heat operator ∂t − ∆x). This may sound like trouble, since for the
standard heat equation, we cannot pose a boundary value problem in t. However,
what saves us is that the s direction of the infinite cylinder is not characteristic,
since it is not orthogonal to all the directions (ki, 0, . . . , 0, yi, 0, . . . , 0). The other
observation is that (3.2.7) is translation-invariant in s.

There are, however, special cases of (3.2.7) where the leading term becomes el-
liptic. For example, if a is the identity, b = (b1(y′), 0, . . . , 0) (called shear flow), and
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�k = (1, 0, . . . , 0), then U = U(x1 − ct, y′) satisfies the equation

∆s,y′U + (b1(y′) + c)Us + f(U) = 0,(3.3.1)

which has been extensively studied by Berestycki, Larrouturou, Lions, and Nirenberg
[15], [18], [19], [20], with Neumann boundary conditions on the boundary of a general
bounded domain of y′.

Due to the translation-invariance in s and the strong maximum principle, solu-
tions of (3.3.1) satisfying the boundary conditions U(−∞, y) = 0, U(+∞, 0) = 1 enjoy
a nice monotonicity property: Us(s, y) > 0 for any (s, y). Monotonicity immediately
implies that limits of solutions exist as |s| → ∞, and later on we will see that it also
leads to front stability.

Do we have a strong maximum principle for the linear operator in (3.2.7),

Lu = (∇y + k∂s)(a(y)(∇y + k∂s)u) + b(y)T · (∇y + k∂s)u + cus,(3.3.2)

even though it is not strongly elliptic? As long as c �= 0, the answer is yes, thanks
to the parabolic maximum principle and the periodicity in y. Periodicity helps to
overcome the degeneracy! For classical maximum principles, we refer to Protter and
Weinberger [130]. Now let us take c = −1 for convenience and show the following
proposition.

Proposition 3.1. Let u be a classical solution of the differential inequality Lu ≤
0 (Lu ≥ 0) on R × Tn. If u achieves its minimum (maximum) at (s0, y0) with s0
finite, then u ≡ constant.

Proof. We first treat the special case n = 1, k = 1, in which case L is given by

Lu = (∂s + ∂y)(a(y)(∂s + ∂y)u) + b(y)(∂s + ∂y)u− us.

For the time being, unfold T into R and regard L as an operator on R2. If we make
the change of variables

s′ =
1√
2
(s− y), y′ =

1√
2
(s + y),

then

∂s =
1√
2
(∂s′ + ∂y′), ∂y =

1√
2
(−∂s′ + ∂y′), ∂s + ∂y =

√
2∂y′ .

In terms of (s′, y′), Lu becomes

Lu = 2(auy′)y′ −
1√
2
us′ +

(√
2b− 1√

2

)
uy′ .

L is a standard parabolic operator in (s′, y′), elliptic in y′ and parabolic in s′. By
the strong maximum principle for parabolic operators, we see that if u attains its
minimum at some finite point (s′0, y

′
0), then

u ≡ constant if s′ ≤ s′0
or

u ≡ constant if s− y ≤ s0 − y0.

By the periodicity of u in y, we see that u ≡ constant for all s and y. If n ≥ 2, we
can always subject y to an orthogonal transform, i.e., y = Qy′, and then Lu becomes

Lu = (k∂s + QT∇y′)Ta(k∂s + QT∇y′)u + bT · (k∂s + QT∇y′)u− us

= (Qk∂s +∇y′)TQaQT (Qk∂s +∇y′)u + bT ·QT (Qk∂s +∇y′)u− us.

Choosing Q such that Qk = e1 = (1, 0, . . . , 0), and setting a1 = QaQT and b1 = Qb,
we have

Lu = (e1∂s +∇y′)Ta1(e1∂s +∇y′)u + bT1 · (e1∂s +∇y′)u− us.(3.3.3)
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If we make the change of variables

s′ =
1√
2
(s− y′1), z1 =

1√
2
(s + y′1), zi =

1√
2
y′i, i ≥ 2,

then just as in the case n = 1, we have

Lu = 2∇T
z (a1∇zu)−

1√
2
us′ +

√
2bT1 · ∇zu−

1√
2
uz1 .(3.3.4)

By the strong maximum principle for parabolic operators, if u attains its minimum
at some finite point P0 = (s′0, z0), then

u = constant if s′ ≤ s′0
or

u = constant if s− y′1 ≤ s0 − y′1,0.

In terms of (s, y), this asserts that u is a constant under some hyperplane that is not
orthogonal to the s-axis. The periodicity of u in y implies that u ≡ constant for all s
and y. The proof is complete.

Let us outline the main ingredients of the two steps of the method. In step 1, we
consider a family of elliptically regularized problems (ε > 0, τ ∈ [0, 1]),

εUss + LτU + τf(U) = 0, (s, y) ∈ Ωa = [−a, a]× Tn,(3.3.5)

subject to the boundary conditions U(−a, y) = 0, U(+a, y) = 1. The operator Lτ

is L with a replaced by 〈a〉(1 − τ) + τa and b replaced by τb, 〈 · 〉 being the period
average. To remove the translation-invariance of solutions, we must also impose a
normalization condition: maxy∈Tn U(0, y) = θ. By the elliptic maximum principle,
we know that U is bounded between 0 and 1 and that Us > 0. Elliptic regularity
also tells us that the maximum of ∇U is bounded independently of a and τ . The
parameter τ links the linear problem, τ = 0, with the problem of interest, τ = 1.
Consider the space E = C1(Ωa)×R. For (v, c) ∈ E, τ ∈ [0, 1], let u = ϕτ (v, c) be the
unique solution of the elliptic boundary value problem

εuss + Lτu + τf(v) = 0

under the same 0 and 1 boundary conditions. Define

hτ (v, c) = max
y∈Tn,s=0

ϕτ (v, c).

Then the solution of (3.3.5) satisfies

u = ϕ1(u, c), h1(u, c) = θ.(3.3.6)

Define Fτ (u, c) = (ϕτ (u, c), c − hτ (u, c) + θ), τ ∈ [0, 1]. Now the existence of the
solution is the same as that for the fixed point problem

F1(u, c) = (u, c).

Notice that the mapping (τ, (u, c)) → Fτ (u, c) from [0, 1] × E to E is continuous
and compact. Due to the a priori bounds on the solutions and their derivatives, the
Leray–Schauder degree of the mapping Id−F is well defined on a bounded closed set
of the form

D ≡ {(u, c) ∈ E, ‖u‖C1(Ra) ≤ K, |c| ≤ K},
where K is some constant larger than the bounds of the solutions. This is because the
zeros of Id−F cannot occur on the boundary of the set D. The degree is a measure of
the number of zeros, counting multiplicity, and is invariant under a change of τ ∈ [0, 1];
see Zeidler [166] for details. If the degree is nonzero, then we have a fixed point. This
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is easily checked when τ = 0, since (3.3.6) is explicitly solvable, and we find that the
degree is equal to 1.

In step 2, we pass first to the limit a → ∞ and then to the limit ε → 0. To
this end, the main technical work is to bound the wave speed c away from 0 and
∞ independently of both parameters. This can be achieved with the help of com-
parison principles of wave speeds for the a → ∞ limit (see [159]) and the identity
c = − ∫

R×Tn f(U) for the ε→ 0 limit (see [160] and [84]). Thanks to the the normal-
ization condition and Us ≥ 0, U ≤ θ if s ≤ 0. Hence we have a linear equation for
U on s ≤ 0. We can now look for a special decay solution of the form Ū = eµsψ(y)
with ψ(y) > 0 and µ > 0. This decay solution has a continuous limit as ε→ 0 along
a subsequence, and lim infε→0 µ > 0. It follows that the limiting solution must decay
to zero as s→ −∞. As s→ +∞, monotonicity implies U(s, y)→ U+. It is not hard
to show that U+ satisfies the elliptic equation (dropping s derivatives from (3.2.7))

∇y · (a(y)∇yU) + b(y) · ∇yU + f(U) = 0(3.3.7)

under periodic boundary conditions. Since f(U) ≥ 0, the maximum principle implies
that (3.3.7) has only constant nonnegative solutions. Thus U+ equals either θ or 1.
In the former case, U ≤ θ, and hence f(U) ≡ 0 for any (s, y). So LU = 0 for all (s, y),
and thus U attains its maximum θ at a finite point (0, y∗) as a result of imposing the
normalization condition at s = 0. By the strong maximum principle property of the
operator L that we just established, U must be identically equal to a constant, which
is impossible since it has a zero limit at s = −∞. We have constructed a desired
traveling front solution with the property Us > 0 (strict inequality again follows from
the strong maximum principle for L).

The other bonus of the strong maximum principle for L is that by applying the
sliding domain method [19], [104], we can show that traveling front solutions to (3.2.7)
must be unique. The uniqueness means that there is only one value of the wave speed
c for any given coefficients (a, b) and nonlinearity f of type 5. Moreover, the profile
U is unique up to a constant translation in s, and it is strictly monotone in s. The
basic argument for showing monotonicity is as follows. First, we compare U(s, y) and
its translate Uλ = U(s+ λ, y). For large λ, Uλ is larger than U for those points (s, y)
in a bounded cylinder. The bounded cylinder is large enough so that U(s, y) is close
to either 0 or 1 outside of it. Then wλ ≡ U(s, y)−U(s+λ, y) satisfies the differential
inequality Lwλ ≤ 0 outside of the finite cylinder. The strong maximum principle for
L implies that wλ > 0 holds at any point. Then we decrease λ to the infimum value λ0
at which Uλ is no less than U . Now wλ0 ≥ 0. Again, the strong maximum principle
implies that at λ0, U and Uλ must be identical, which is possible only if λ0 = 0,
due to the front boundary conditions. We conclude that U is strictly monotone and
actually has positive derivative everywhere (by invoking the minimum principle on
the derivative). A similar argument can be carried out for any two profiles to show
that they agree up to a constant translation; for the uniqueness of c, see [159].

What about other types of nonlinearity f? The new issues come up in step 2. If
f is of type 3, there can be many nontrivial periodic states of (3.3.7), which presents a
difficulty. As we know, traveling fronts may not exist for all a(y) due to the existence
of steady states. The convenient method for establishing traveling waves in type 3
(the bistable case) is to use the method of continuation (Xin [160], [162]) and treat a
family of problems where a(y) is replaced by (1−δ)〈a〉+δa(y). We start with δ small
and obtain solutions by perturbing the known one-dimensional front. The linearized
operator has a simple eigenvalue at zero, and the rest of the spectrum is isolated away
from zero. The monotonicity of the perturbed solutions guarantees that the same
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spectral property of the linearized operator remains, and so perturbation continues
on δ. Since each perturbative step relies on the contraction mapping principle, there
is no difficulty as |s| → ∞. Of course, the same problem arises if we want to show that
the continuation goes to any value δ ∈ [0, 1], which we know is false in general. The
continuation method is convenient in that it deals with the problem on the infinite
domain, where estimates of solutions are usually simpler. However, it relies on good
spectral properties of the linearized operators. It works for nonlinearities of both
types 3 and 5, as well as other conservative-type problems [162]. To summarize, the
degree method and the continuation method combined allow us to show the existence
of traveling fronts as stated in Theorem 3.1.

In the special elliptic case (3.3.1), with f of type 3, whether c is zero or not makes
no difference. Berestycki and Nirenberg [20] proved the following theorem.

Theorem 3.3. Consider (3.3.1) on the cylindrical domain Ω = R × ω, where
ω is a bounded domain in Rn−1. Then if f is bistable, there is a solution (c, U) of
(3.3.1) satisfying U(−∞, y′) = 0, U(+∞, y′) = ψ(y′), and a zero Neumann boundary
condition on R× ∂ω. Here ψ(y′) is a solution of

∆y′ψ + f(ψ) = 0

with zero Neumann boundary condition on ∂ω. The function ψ satisfies either ψ ≡ 1
or 0 < ψ < 1. Moreover, Us > 0. If ω is a convex domain, then ψ = 1 and the
solution (c, U) is unique.

It is interesting that in the bistable case, the geometry of the domain plays a role.
If f is of type 1, 2, or 4, only the elliptic case has been worked out by Berestycki

and Nirenberg [20] in dimensions above 1. Their result is as follows.
Theorem 3.4. Suppose f(u) > 0 on u ∈ (0, 1). Then there exists a critical speed

c∗ > 0 such that solutions to (3.3.1) exist, satisfying U(−∞, y′) = 0, U(+∞, y′) = 1,
and a zero Neumann boundary condition on R × ∂ω if and only if −c ≥ c∗. For
every −c ≥ c∗, there is a solution with Us > 0. The solution is unique up to constant
translation in s if f ′(0) > 0. Furthermore, if f ′(0) = supx∈[0,1] u

−1f(u), or if f is of
type 1, then c∗ is determined by the coefficient b1, the domain ω, and f ′(0).

The critical fronts (U∗, c∗) are constructed by truncating f into fθ of type 5. Let
χθ (θ < 0.5) be a smooth compactly supported function such that χθ(u) = 0 if u ≤ θ,
and χθ(u) = 1 if u ≥ 2θ. Then fθ = χθf . Berestycki and Nirenberg [20] showed
that the corresponding solutions (Uθ, cθ) converge to (U∗, c∗). The faster fronts with
−c > c∗ are constructed using U∗ as upper solutions.

The type 1 case is particularly interesting. Whether −c > c∗, −c = c∗, or −c < c∗

is related to the existence of a positive decay solution of the form eλsψ(y′) at s = −∞
with λ > 0. The related eigenvalue problem is

−∆y′ψ − f ′(0)ψ = (λ2 + λ(b1(y′) + c))ψ, ψv|∂Ω = 0.(3.3.8)

Due to the condition f ′(0) > 0, it was shown in [20] that there exists a unique
value equal to c∗ such that (3.3.8) has zero, one, or two principal positive eigenvalues
according to −c < c∗, −c = c∗, or −c > c∗. We note that the occurrence of two
positive principal eigenvalues is very much related to zero being the unstable node for
the one-dimensional homogeneous KPP supercritical fronts discussed in section 2.

Now let us draw a connection between the above characterization of the KPP
critical wave speed based on the linearization of the traveling front equation and the
variational formula (3.2.9) of [88]. We consider the one-dimensional KPP equation

ut = uxx + f(u, x),
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with µ(x) = fu(0, x) = supx∈[0,ū(x)] u
−1f(u, x), 1-periodic in x. Formula (3.2.9) can

be rewritten as

c∗ = inf
r,ψ

sup
x∈[0,1]

(ψ(x)erx)′′ + µ(x)ψ(x)erx

rψerx

= inf
r,ψ

sup
x∈[0,1]

ψ′′ + 2rψ′ + (r2 + µ(x))ψ
rψ

(3.3.9)

for any positive 1-periodic function ψ and any number r > 0. The supremum inside
(3.3.9) is just the principal eigenvalue, call it Λ = Λ(r), of the operator

Lrψ = ψ′′ + 2rψ′ + (µ(x) + r2)ψ(3.3.10)

on the unit one-dimensional torus T . To see this, let us recall that the principal
eigenvalue of a general second-order elliptic operator of the form

Le =
n∑

i,j=1

aij(x)uxi,xj +
n∑
i=1

bi(x)uxi + h(x)u(3.3.11)

always has a simple real principal eigenvalue λ1 on the torus Tn as a consequence of
the Krein–Rutman or Perron–Frobenius theorems [146]. By Theorem 17 in chapter
2.8 of Protter and Weinberger [130], λ1 has the upper bound (changing the sign of λ
in [130] and setting their k(x) = 1)

λ1 ≤ inf
w(x)∈C2(Tn),w>0

sup
x∈Tn

Lew

w
,(3.3.12)

which is easily seen to be an equality since λ1 is attained by inserting the principal
eigenfunction for w. Hence we have from (3.3.9)

c∗ = inf
r>0

Λ(r)
r

,(3.3.13)

which will be shown in section 3.7 to agree with the formula obtained from the ho-
mogenization theory of the H-J equation or the large deviation method.

On the other hand, the equation for the traveling front (u = U(x−ct, x), s = x+ct,
y = x, U(−∞, y) = 0, U(+∞, y) = 1) is

(∂s + ∂y)2U − cUs + f(U, y) = 0,

which gives, upon linearizing at U = 0 and plugging in ersψ, the eigenvalue problem
at s = −∞

ψ′′ + 2rψ′ + (r2 − rc + µ(y))ψ = 0,(3.3.14)

where r > 0, ψ > 0. Let us suppose for now that (3.3.14) has two positive principal
eigenvalues for r if c > c∗, one if c = c∗, and none if c < c∗. We can regard rc as a
principal eigenvalue of the operator

ψ′′ + 2rψ′ + (r2 + µ(y))ψ.

Hence for each c > c∗ (for a positive principal eigenvalue r of (3.3.14)), we have

cr = sup
x∈[0,1]

ψ′′ + 2rψ′ + (r2 + µ(x))ψ
ψ

.(3.3.15)
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Finally, to reach c∗, we divide (3.3.15) by r and take the infimum over r > 0, ψ > 0,
which recovers formula (3.3.9) or (3.2.9).

Before ending this subsection, we also mention two other methods in the literature.
The first is the constraint variational method. Heinze [83] considered the traveling
front problem ∆x′,yu − cux′ + f(u) = 0, (x′, y) ∈ R × Ω, u = 0 on R × ∂Ω, where
f ∈ C1[0, 1], f = 0 if u �∈ [0, 1], and f ′(0) < µ, µ being the lowest eigenvalue of −∆y

on Ω with zero Dirichlet boundary condition. By the scaling x = x′c, λ = c−2, the
problem becomes

uxx − ux + λ(∆yu + f(u)) = 0, R× Ω,

u = 0, R× ∂Ω,(3.3.16)

whose solution is the minimizer of the functional

I(u) =
1
2

∫
R×Ω

(ux)2e−x

in the weighted Hilbert space H1
0 (R× Ω, e−x) under the constraint

−1 = J(u) =
∫
R×Ω

(
1
2
|∇yu|2 − F (u)

)
e−x.

The unknown λ appears as the Lagrange multiplier. Existence of a unique monotone
(in x) solution in H1

0 (R × Ω, e−x) is proved in [83]. The front connects zero with a
steady-state solution of the elliptic problem ∆yv+ f(v) = 0, u = 0 on ∂Ω. Moreover,
the wave velocity has a monotone dependence on the domain size, the nonlinearity,
and the boundary conditions, as a byproduct of the variational approach. It remains
to find out how to apply the variational method to variable coefficient problems.

The second additional method in the literature is the discrete front approximation
method of Hudson and Zinner [88], which is interesting in that it provides a min-max
variational formula for the wave speed. It remains to find out how to make their min-
max formula optimal for the minimum speeds in the case of nonlinearities of types 1, 2,
and 4. One feature of this method is that it starts from a spatial semidiscretization of
the time-dependent R-D equation and works with time-dependent solutions. Then as
the discretization limit is taken, identification of the limiting time-dependent solutions
follows. This is different from any of the other methods, which work with time-
independent problems.

3.4. Stability and Propagation of Fronts in Periodic Media. When traveling
fronts are constructed, the next question, as always, is whether they are dynamically
stable with respect to initial perturbations. Let us look at a simple case, the asymp-
totic stability of bistable fronts in one space dimension. We consider (3.2.1) with
initial data equal to a perturbed traveling front,

ut = (a(x)ux)x + f(u), u|t=0 = U(x, x) + u0(x).(3.4.1)

Let us write u = U(x − ct, x) + v, which in the moving frame ξ = x − ct becomes
u = u(ξ, t) = U(ξ, ξ + ct) + v(ξ, t). We can substitute this into (3.4.1) written in the
moving frame variables (ξ, t) and use (3.2.7) to find the equation for v:

vt = Lv + N(v) = (a(ξ + ct)vξ)ξ + cvξ + f
′
(U)v + N(v),(3.4.2)

where the nonlinear part is N(v) = f(U + v)− f(U)− f
′
(U)v.
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As described earlier, a traditional way of analyzing stability is to examine the
spectral properties of the linearized operator L. Now L depends on time periodically
with period p = c−1, so it is natural to analyze the spectrum of the period map
defined as epL on the space L2(R) or Cunif(R). This is similar to analyzing stability
of a periodic orbit in ODEs. The traveling front in the moving frame U(ξ, ξ + ct) is
a periodic orbit with period p.

The essential spectrum depends only on the large-distance behavior of L. Specif-
ically, the essential spectrum of epL is the same as that of the operator epL∞ , where
L∞ = (a(ξ + ct)vξ)ξ + cvξ + (χR−f

′
(0) + χR+f

′
(1))v. Since both f

′
(0) and f

′
(1) are

negative, it is clear that epL∞ is a contraction mapping from the unit ball to its in-
terior. Hence the essential spectrum of epL stays strictly inside the unit disc. The
remaining spectrum consists of isolated eigenvalues of finite multiplicity, and there are
only finitely many of them outside of the radius of the essential spectrum. A general
spectral decomposition theorem of Kato [95] allows us to look at the restriction of epL

(denoted by R) onto the subspace spanned by the eigenfunctions corresponding to the
finitely many eigenvalues outside of the essential spectrum. Since epL is a positive op-
erator (mapping nonnegative data into strictly positive functions), so is its restriction
R. On the other hand, it is easy to check that Us(ξ, ξ + ct) > 0 is an eigenfunction of
epL corresponding to eigenvalue 1. By the Perron–Frobenius theorem, 1 is the simple
principal eigenvalue of R, and the other eigenvalues are less than 1 in absolute value.
The eigenvalue 1 is due to the invariance of (3.4.2) under the transform ξ → ξ − ch,
t → t + h for any h. This is analogous to the spatial translation-invariance in the
case of the homogeneous media. The above spectral property of epL implies that if
the initial perturbation is small enough, the solution u converges to a traveling front
solution U(x − ct + s0, x) in the (x, t) variables as t → ∞ for some s0 depending on
the initial perturbation. As we have seen, the strict monotonicity of the wave profile
Us > 0 is a crucial condition for the above stability argument.

For type 5 nonlinearity, a weighted space (as before, requiring functions to decay
to zero at a certain exponential rate as |x| → ∞) is necessary to isolate the essential
spectrum in a disc inside the unit circle. The remaining argument is the same. In
the case of the other types of nonlinearity (types 1, 2, and 4), the faster waves (faster
than the minimal speeds) may be analyzed in the same manner. The dynamics of
the slow waves moving at the minimal speeds requires a more delicate argument and
awaits further investigation.

The stability analysis of traveling fronts is much more difficult in multidimensional
periodic media. However, if we are concerned only with the large-time wave speed
and not with the profile of solutions, it suffices to find good upper and lower bounds
of solutions so that they exhibit the same wave speed. This idea was originally
developed in Aronson and Weinberger [1] for fronts in multidimensional homogeneous
media. Later on, Gärtner and Freidlin [75], [66] analyzed KPP fronts with minimal
speeds for compactly supported initial data in the same spirit. Let us first look at
nonlinearities of types 3 and 5, and the KPP results will come a little later.

Theorem 3.5 (front propagation). Consider the initial value problem for (3.2.6)
with initial data 0 ≤ u0(x) ≤ 1. Let f be of type 3 with µ ∈ (0, 1

2 ) or of type 5 with
f ′(1) < 0. Assume in the context of type 3 nonlinearity that a traveling wave solution
U(k · x − c(k)t, x) exists for any unit vector k ∈ Rn. Let s ∈ R and let the plane
orthogonal to k be S = {y ∈ Rn|y = x− (k · x)k ∀x ∈ Rn}.

(I) Suppose the initial data are frontlike: u0(x)→ 0 sufficiently fast as k ·x→ −∞
and u0(x)→ 1 sufficiently fast as k · x→ +∞, uniformly in S(k), for some k ∈ Rn.
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Then

lim
t→∞

u(t, skt) =

{
1, s > c(k),
0, s < c(k).

(II) Suppose the initial data are pulselike: for some unit vector k, u0(x) → 0
sufficiently fast as k ·x→ −∞; u0(x) > µ+ η, |k ·x| < L, for some positive constants
η and L (θ replacing µ for f of type 5). Then there is a positive number L0(η) > 0
such that if L ≥ L0,

lim
t→∞

u(t, skt) =

{
1, c(k) < s < −c(−k),
0, s < c(k) or s > −c(−k).

Let us sketch the proof of statement (I) in the case of a nonlinearity f of type 5,
and refer to Xin [161] for the complete proof of the theorem. The idea is to construct
sub- (super-) solutions using the maximum principle and the traveling wave solutions.
These sub- (super-) solutions extend those in Fife and McLeod [61], and their long-
time asymptotics rely on the decay property of solutions of variable coefficient linear
parabolic equations of the form

ut = ∇ · (a(x)∇u) + b(x) · ∇u, ∇ · b(x) = 0.(3.4.3)

The fundamental solution of (3.4.3) has pointwise lower and upper bounds in terms
of heat kernels; see Nash [120], Fabes and Stroock [54], and especially Osada [122].
To begin, let us note that due to the fast convergence of u0 to 1 as k · x → ∞, we
can find a number ξ0 > 0 large enough and a positive spatially decaying function
q0 = q0(k · x) < (1− θ)/2 such that

U(k · x− ξ0, x)− q0(k · x) ≤ u0(x)

on Rn. Now consider the function

ul ≡ U(k · x− c(k)t− ξ1(t), x)− q1(t, x),

where ξ1 and q1 will be chosen to satisfy

ξ′1(t) > 0, ξ1(t) > 0, ξ1(t) = o(t), t→∞.

We calculate

N [ul] = ul,t −∇x · (a(x)∇xul)− b(x) · ∇xul − f(ul)

= −ξ′1(t)Us − q1,t +∇x · (a(x)∇xq1)
+ b(x) · ∇xq1 + f(U)− f(U − q1).(3.4.4)

There exists δ ∈ (0, θ) small enough so that if q ∈ [0, (1 − θ)/2] and U ∈ [1 − δ, 1],
then

f(U) ≤ f(U − q).

Since 0 ≤ q ≤ q0 < (1− θ)/2, we have for U ∈ [1− δ, 1],

N [ul] ≤ −ξ′1(t)Us − q1,t +∇x · (a(x)∇xq1) + b(x) · ∇xq1.(3.4.5)

If U ∈ [0, δ], f(U) = f(U − q1) = 0, so (3.4.5) holds with an equality sign. If
U ∈ (δ, 1−δ), then there exists β > 0 such that Us ≥ β and |f(U)−f(U−q1)| ≤ Kq1
for some K > 0. It follows that

N [ul] ≤ −ξ′1β − q1,t +∇x · (a(x)∇xq1) + b(x) · ∇xq1 + Kq1.(3.4.6)
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Let us choose q1 to satisfy the equation

q1,t = ∇x · (a(x)∇xq1) + b(x) · ∇xq1, q1|t=0 = q0(k · x).(3.4.7)

To make ul a subsolution, we just need to impose the condition

−ξ′1β + Kq1 ≤ 0, or − ξ′1β + K||q1||L∞(Rn) = 0,

or

ξ′1 =
K||q1||L∞(Rn)

β
> 0,(3.4.8)

with ξ1(0) = ξ0 > 0. By our early comments on the fundamental solution of (3.4.7),
||q1||L∞ = o(1) as t → ∞. Therefore ξ1(t) = o(t). We have shown that ul is a
subsolution, and a supersolution can be constructed in a similar way. Combining
these two solutions, we have (I).

For the type 3 (bistable) nonlinearity, fronts may be blocked (quenched) by the
existence of steady-state solutions of (3.2.6). Let us look at the one-dimensional
case. We are concerned with the solutions of the following boundary value problem
(assuming µ ∈ (0, 1

2 )):

(a(x)ux)x + f(u) = 0, u(−∞) = 0, u(+∞) = 1.(3.4.9)

If a ≡ 1, then multiplying (3.4.9) by ux and integrating over R yields
∫ 1

0 f(u)du = 0,
a contradiction. For periodically varying a, we can multiply both sides of (3.4.9)
by a(x)ux and integrate to get

∫
R
a(x)uxf(u)du = 0. However, this need not be a

contradiction. Actually, there is a competition between the closeness of the middle
zero µ to 1

2 and the variation of a from its mean value. The existence of a steady-state
solution depends on the result of this competition. We refer to [161] for an analytical
quenching example in a perturbative regime of (3.4.9), where the middle zero µ is near
1
2 . Front quenching examples in two space dimensions have been illustrated in Xin
and Zhu [163] by numerically simulating (3.2.6). Existence of nontrivial steady states
for variable R-D equations is known in cases of KPP–Fisher nonlinearity. Keller [96]
showed this for the steady-state equation Duxx + s(x)u(1−u) = 0, x ∈ R, where s(x)
is the sign of x, with 0 and 1 far-field boundary conditions. He used this property
to explain the polymorphism of a dialetic population resulting from the geological
inhomogeneities of the habitats. The alleles are selectively favored (via the sign of S)
in different places. The steady state formation for the inhomogeneous bistable case
was studied in Pauwelussen [127] using a step function for the diffusion coefficient.
For related works on the stability of steady states on bounded domains, see Fusco and
Hale [71] and references therein.

3.5. Fast Oscillating and Slowly Varying Fronts. When the periodic media vary
on a much faster scale than the width of the traveling fronts, one can upscale the faster
small scale to obtain an effective front by solving a homogenization problem. Heinze
[84] considered (3.2.6) with fast oscillating periodic coefficients,

ut = ∇x · (a(ε−1x)∇xu) + ε−1b(ε−1x) · ∇xu + f(u),(3.5.1)

where a(·) and b(·) are the same as in (3.2.6) and ε → 0. Since b is divergence-free
and has mean zero, there is a skew-symmetric 1-periodic matrix B = B(x) such that

∇ · (B(ε−1x)∇u) = ε−1b(ε−1x)∇u.
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If we write A(ε−1x) = a(ε−1x) + B(ε−1x), a being symmetric and B being skew-
symmetric, then (3.5.1) becomes

ut = ∇x · (A(ε−1x)∇xu) + f(u).(3.5.2)

Now let us look at traveling front solutions of the form u = U(k ·x− cεt, ε−1x), where
cε is the wave speed, which depends on ε. If we let s = �k · x− cεt and y = ε−1x, then
U = Uε = U(s, y, ε) satisfies

(�k∂s + ε−1∇y)(a(y)(�k∂s + ε−1∇y)Uε) + b(y) · (�k∂s + ε−1∇y)Uε

+ cεUε
s + f(Uε) = 0(3.5.3)

with Uε(−∞, y) = 0, Uε(+∞, y) = 1, and U(s, ·) 1-periodic.
We are interested in the limit of traveling front solutions as ε → 0. Intuitively,

we see from (3.5.2) that the oscillation wavelength is much smaller than the width of
fronts determined by the magnitude of A and f(u). This separation of scale means
that the periodic medium can be regarded as a homogeneous medium obtained by
averaging the linear part as in subsection 3.1. Let us recall the cell problem on the
n-dimensional unit torus Tn,

∇ · (A(y)(∇χ + �k)) = 0,(3.5.4)

where �k is a given direction. Problem (3.5.4) has a unique smooth periodic solution
χ up to an additive constant. Define the constant diffusion matrix

Ah�k = 〈A(∇χ + �k)〉.(3.5.5)

It follows from (3.5.4) and (3.5.5) that

a∗(�k) ≡ �kTAh�k = 〈�kTA(∇χ + �k)〉 = 〈(∇χ + �k)TA(∇χ + �k)〉
= 〈(∇χ + �k)Ta(∇χ + �k)〉 > 0.(3.5.6)

The main result of [84] is the following.
Theorem 3.6. Let f be of type 5, and let (Uε, cε) be the unique solution of

(3.5.3) satisfying the normalization condition maxy∈Tn Uε(0, y) = θ. Then as ε→ 0,
cε → c < 0, and uε converges to a function u = u(s) weakly in H1(R×Tn) and strongly
in L2(R × Tn). The pair (u, c) is the traveling wave solution of the homogenized
problem a∗(�k)u′′+cu′+f(u) = 0, u(−∞) = 0, u(+∞) = 1 subject to the normalization
condition u(0) = θ.

A key ingredient of [84] is uniform upper and lower bounds on cε, independent of ε.
For nonlinearities of types 1, 2, and 4, the wave speeds form a continuum and there
is no upper bound. However, a similar result may hold for the wave with minimal
speed. For real numbers of type 3, due to a possible quenching mechanism, there is
no lower bound in general, and so the result is only possible under subtle conditions
on a and b. It is also interesting to investigate the case when the mean drift 〈b〉 is
not zero.

Let us turn to fronts in slowly varying media by considering the equation paramet-
rized by a small parameter ε→ 0,

uεt = ∇ · (a(εx)∇uε) + f(uε), x ∈ Rn,(3.5.7)

where a(·) is a twice continuously differentiable and positive-definite matrix and f(u)
is bistable (type 3). To feel the effects of slowly varying media, we have to look at
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a long time scale on the order O(ε−1). Let us introduce this scaling, replacing x by
ε−1x and t by ε−1t. The equation (3.5.7) then reads

uεt = ε∇ · (a(x)∇uε) + ε−1f(uε).(3.5.8)

Let the initial data uε(0, x) = g(x) be a compactly supported continuous function
such that

G0 = {x : g(x) < µ}, G1 = {x : g(x) > µ}(3.5.9)

are nonempty open sets, where µ is the middle zero of f(u). Since the front width is
of order O(ε) and is much smaller than the scale of variation of a(x), the effect of a(x)
is to slowly modulate the front speed, and the effect can be analyzed by freezing a(x)
as a constant matrix. Due to small diffusion of order O(ε) and fast reaction O(ε−1),
in a short time the reaction term dominates, and uε quickly develops into transition
layers or fronts connecting two stable states 0 and 1. Subsequently, the fronts move
outward, that is, G1 grows into G0.

It is helpful to figure out the front speeds when a is a constant matrix, and
the solutions behave like outward spreading fronts starting at the boundary of the
support of g. If a is the identity, then for x along any direction �k, uε is to leading
order approximated by

U

(
�k · x− c0|�k|t

ε

)
,(3.5.10)

where (U, c0) is a traveling wave solution satisfying the ODE

U ′′ + c0U
′ + f(U) = 0, U(−∞) = 1, U(+∞) = 0,(3.5.11)

with U ′ < 0, c0 > 0. The sign of c0 is the same as that of
∫ 1

0 f(u)du. Now for general
positive-definite a, we make the change of variable x′ = a−1/2x. In terms of (x′, t),
the diffusion matrix becomes the identity. If x is along a vector �k, then x′ is along
a−1/2�k, so by (3.5.10),

uε ∼ U

(
�kTa−1/2x′ − c0|a−1/2�k|t

ε

)
+ · · ·

= U

(
�kTa−1x− c0|a−1/2�k|t

ε

)
+ · · · .(3.5.12)

Letting x = s�k, we see at once that the wave speed along direction �k is

c(�k) =
c0|a−1/2�k|
�kTa−1�k

= c0(�kTa−1�k)−1/2.(3.5.13)

Hence for slowly varying fronts, the wave speed in the direction of �k at point x is
given by

c(�k, x) = c0(�kTa−1(x)�k)−1/2.(3.5.14)

The above heuristic argument has been rigorously validated by Gärtner [76]. In
fact, the reaction term in [76] can be a general Hölder continuous function f(u, x) with
two stable equilibria µ1(x), µ2(x) and one unstable equilibrium µ(x). The wave speed
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c0 = c0(x) is given by replacing f(U) by f(U, x) in (3.5.11), and so c0(x) may change
sign. Formula (3.5.14) is used to define distances in [76]. For ease of presentation, we
consider only f = f(u) and µ0 = 0, µ1 = 1. We introduce the distance function for
two points x, y ∈ Rn,

ρ(x, y) ≡ inf
∫ t2

t1

(c∗)−1(ϕTt · a−1(ϕ(t))ϕt)
1/2dt,(3.5.15)

where the infimum is taken over all t1 < t2 and all absolutely continuous curves
ϕ(t) : [t1, t2]→ R

n joining x and y. Note that the speed formula (3.5.14) is built into
the definition of ρ. For any open set G ⊆ Rn, define the sets

Q0(G) = {(x, t) ∈ Rn × (0,+∞) : ρ(x,Gc) > t}
and

Q1(G) = {(x, t) ∈ Rn × (0,+∞) : ρ(x,G) < t}.
Here is a particular but illuminating version of the main result in [76].

Theorem 3.7. Let uε be a classical solution of the initial value problem of (3.5.8)
with initial data g(x). Then uε converges to 0 uniformly on each compact subset of
Q0(G0) and to 1 uniformly on each compact subset of Q1(G1).

This theorem holds when g(x) is a bounded continuous function on Rn. Similar
results hold for the KPP (type 1) nonlinearity [65], [66], [67] if c0 above is replaced
by the minimal speed and fu(0, x) = constant. If the latter condition fails, then
the motion of the KPP front can have jumps or non-Markovian (history-dependent)
behavior. When this happens, one cannot just freeze coefficients to find the wave
speed. New sources of propagation may arise spontaneously, say, at some distance
ahead of the existing front. Such a phenomenon may be attributed to the facts that
the KPP traveling front with minimal speed is not as stable as the bistable front and
that there exists a continuum of wave speeds. We will describe more KPP fronts with
minimal speeds in the next subsection.

3.6. KPP Fronts in Slowly Varying Media. It is well known that for the KPP
equation,

ut =
1
2
auxx + f(u), a > 0, x ∈ R,

if the initial condition is compactly supported or is the indicator function of the
negative axis, the front solution propagates at the minimum speed, equal to

√
2af ′(0)

for large times [100], [1], [67]. The KPP minimal speed has a linear feature in that
it depends only on the derivative of f at zero, its unstable equilibrium point. This
fact makes it possible to find the wave speed without knowing the wave profile under
the large-time and large-space hyperbolic scaling, t → ε−1t, x → ε−1x. The rescaled
equation reads

ut =
ε

2
auxx + ε−1f(u),(3.6.1)

and the problem is to examine the solutions in the limit ε → 0. Similarly, fronts in
slowly varying media can be considered as in (3.5.8).

Freidlin [65], [66] first treated the KPP minimal speed for slowly varying media
using a probabilistic approach. In fact, a more general case than (3.5.8) is analyzed
in [66], where f can be a function of (u, x), and a first-order advection term b(x) · ∇u
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can be added as well. For simplicity, let us set b = 0 and write the equation in the
form

uεt = Lεuε + ε−1f(x, u),(3.6.2)

where Lε = ε
2∇ · (a(x)∇uε) and f is KPP for each x: f(x, u) > 0 for u ∈ (0, 1),

f(u, x) < 0 for u < 0 and u > 1, and fu(x, 0) = sup0<u≤1 u
−1f(u, x). The initial data

u(x, 0) = g(x) is nonnegative, piecewise continuous, and bounded above by 1. Let G0
be the support of g, and G0 its closure. The operator Lε generates a diffusion process
denoted by (Xε

t , Px) [67], [150]. The trajectory of this process Xε
t can be defined as

a solution of the stochastic differential equation

dXε
t =
√
εσ(Xε

t )dWt + b̃(Xε
t )dt, Xε

0 = x,(3.6.3)

where σ(x)σT (x) = a(x), Wt is the Wiener process, and b̃ = ε∇ · a.
Let c(x, u) = u−1f(x, u). The Feynman–Kac formula then gives an implicit rep-

resentation of the solution [67], [150]:

uε(x, t) = Exg(Xε
t ) exp

(
ε−1

∫ t

0
c(Xε

s , u(t− s,Xε
s ))ds

)
.(3.6.4)

Since 0 < uε ≤ 1, it follows from the KPP assumption that

uε(x, t) ≤ Exg(Xε
t ) exp

(
ε−1

∫ t

0
c(Xε

s , 0)ds
)
.(3.6.5)

The expectation in (3.6.5) is well studied in the theory of large deviations (Freidlin
and Wentzell [70], Varadhan [151]), and its logarithmic limit is

lim
ε→0

ε logExg(Xε
t ) exp

(
ε−1

∫ t

0
c(Xε

s , 0)ds
)

= sup
{∫ t

0
c(ϕs)ds− S0t(ϕ) : ϕ0 = x, ϕt ∈ G0

}
≡ V,(3.6.6)

where S0t(ϕ) is called the action functional for the processes (Xε
t , Px) as ε → 0 and

is defined as

S0t(ϕ) =
1
2

∫ t

0
ϕ̇Ts a(ϕs)ϕ̇sds(3.6.7)

for absolutely continuous functions ϕs : [0, t]→ R
n. It follows from (3.6.5) and (3.6.6)

that

lim
ε→0

uε(x, t) = 0 ∀ (x, t) ∈ N ≡ {(x, t) : V (x, t) < 0}.(3.6.8)

The function V (x, t) is continuous, and the convergence is uniform on compact subsets.
To show that uε converges to 1 on any compact subset of P = {(x, t) : V (x, t) > 0},
an additional assumption (N) is needed that V (x, t) is equal to

sup
{∫ t

0
c(ϕs)ds− S0t(ϕ) : ϕ0 = x, ϕt ∈ G0, (t− s, ϕs) ∈ N, s ∈ (0, t)

}

for any t > 0, (x, t) ∈ ∂N . The assumption (N) asserts that V (x, t) is the supremum
of the functional above over the paths where uε is nearly zero, implying that the
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upper bound in (3.6.5) is quite a good approximation of uε. The main result in [66]
is given as the following theorem.

Theorem 3.8. Suppose that f is of KPP type and condition (N) holds. Then

lim
ε→0

uε(x, t) =

{
1, V (x, t) > 0,
0, V (x, t) < 0,

and the convergence is uniform on compact subsets. Assumption (N) holds in partic-
ular when f = f(u).

When f = f(u), the function V (x, t) is explicit:

V (x, t) = ct− d2(x,G0)
2t

,

where c = f ′(0) and d(x,G0) is the Riemannian distance in terms of the metric
ds2 =

∑n
i,j=1 aij(x)dxidxj .

When f depends on x, even if (N) holds, the front speed may depend on the
initial data and the front location may have jumps at certain times, violating the
conventional picture (Huygens’s principle) where an interface separates the reacted
(uε ≈ 1) and unreacted (uε ≈ 0) regions and propagates continuously at the initial
data-independent minimum speed. These interesting phenomena are related to how
fast c(x) = fu(x, 0) increases in x and are illustrated in [66] by one-dimensional
examples (see Examples 2 and 3 in [66]), with the initial data taken as the indicator
function of the left half-line.

The large deviation method of Freidlin motivates the ansatz

uε ∼ exp e−ε
−1I(x,t)(3.6.9)

and the later PDE approach developed by Evans and Souganidis [51], [52], [53]. The
PDE approach is based on the logarithmic change of variable vε = −ε lnuε, due
to Fleming [63], [52]. Let us look at a special case f(x, u) = c(x)u − bu2, where b
is a positive constant and c(x) is positive, bounded, and Lipschitz continuous. For
simplicity, let us further take a = (aij) to be a constant positive-definite matrix.
Assume also that the initial condition g(x) is continuous and compactly supported in
G0. The function vε then satisfies the equation

vεt =
ε

2
aijv

ε
xixj −

1
2
aijv

ε
xiv

ε
xj + b exp

{
−vε

ε

}
− c,

vε(x, 0) = −ε ln g, x ∈ G0, vε(x, 0)→ +∞, t→ 0, x ∈ Gc
0.(3.6.10)

The next step is to pass to the limit ε→ 0 for vε. Comparison functions and maximum
principles imply that the supremum norm and the Hölder norms (with exponent
α ∈ (0, 1)) of vε are bounded in any space-time compact set. Hence vε has a uniformly
convergent subsequence with limiting function v.

The function v is a viscosity solution of the variational inequality

min
[
vt +

1
2
aijvxivxj + c, v

]
= 0, x ∈ Rn, t > 0.(3.6.11)

This can be understood as follows. Fix any T > 0. If v ≥ 0, then

vt +
1
2
aijvxivxj + c ≥ 0, (x, t) ∈ Rn × (0, T ](3.6.12)
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in the viscosity sense, and on the set {v > 0} ∩ Rn × (0, T ],

vt +
1
2
aijvxivxj + c = 0(3.6.13)

holds in the viscosity sense. The viscosity sense in (3.6.12) means that for each smooth
function ϕ, if u− ϕ has a local minimum at (x0, t0) ∈ Rn × (0, T ], then

ϕt(x0, t0) +
1
2
aijϕxiϕxj (x0, t0) + c ≥ 0.(3.6.14)

In (3.6.13), we have in addition that if v − ϕ has a local maximum at (x1, t1) ∈
R
n × (0, T ] and if v(x1, t1) > 0, then

ϕt(x1, t1) +
1
2
aijϕxiϕxj (x1, t1) + c ≤ 0.(3.6.15)

We refer to Crandall, Evans, Lions, and Ishii [39], [38] for more details on the prop-
erties and applications of viscosity solutions.

To see (3.6.11), we know that v ≥ 0 by the maximum principle. Equation (3.6.10)
implies the inequality

vεt −
ε

2
aijv

ε
xixj +

1
2
aijv

ε
xiv

ε
xj + c ≥ 0,

which yields (3.6.12) as ε → 0 in the viscosity sense. Also, on any compact subset
of {v > 0}, b exp{−ε−1vε} → 0, implying (3.6.13) in the viscosity sense. Exploiting
more properties of viscosity solutions and available bounds shows that v is Lipschitz
in (x, t) and v = 0 on G0 × {t = 0}.

The variational inequality (3.6.11) with initial condition v = 0 on G0, v = +∞ on
Gc

0 has a nice interpretation in terms of the value function of a two-player, zero-sum
differential game with stopping times; see Fleming and Soner [63] as well as [53]. The
conclusion is that v is equal to

I(x, t) ≡ sup
θ

inf
ϕ

{
−

∫ τ

0
c(ϕs)ds + S0τ (ϕ) : ϕ0 = x, ϕt ∈ G0

}
,(3.6.16)

where τ = min(t, θ[ϕ]) and θ is a stopping time. It follows from (3.6.16) that I ≥ 0.
Comparing (3.6.16) with (3.6.6), we see that except for the stopping time θ, I is
almost −V . The condition (N) implies I = max(−V, 0). Hence the theorem of
Freidlin above can be rephrased as limε→0 u

ε = 0 uniformly on compact subsets of
I > 0 and limε→0 u

ε = 1 uniformly on compact subsets of the interior points of
I = 0. However, the PDE approach of [51] yields this result without resorting to
condition (N). In other words, the function I(x, t) characterizes the limit of uε under
more general circumstances. This is an advantage of the PDE approach. The large
deviation approach, on the other hand, is more refined and can identify delicate front
phenomena.

3.7. KPP Fronts in Periodic Media and Homogenization of H-J Equations.
Let us turn to KPP fronts with minimal speed in periodic media by considering the
equation

ut =
1
2

n∑
i,j=1

aij(x)uxi,xj +
n∑
i=1

bi(x)uxi + f(x, u)(3.7.1)
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with KPP nonlinearity f(x, u) and initial data g(x) of compact support G0. Gärtner
and Freidlin [75], [67] solved this problem using the large deviation method and a
path integral representation of solutions. Again, the nonlinearity f(x, u) can be ap-
proximated by c(x) = fu(x, 0) times u, so that the implicit solution formula becomes
explicit, and the method of large deviations yields the long-time front speed. Here is
their result.

Theorem 3.9. Let z ∈ Rn. Define the operator

Lz =
1
2

n∑
i,j=1

aij(y)(∂yi − zi)(∂yj − zj) +
n∑
i=1

bi(∂yi − zi) + c(y)(3.7.2)

on 1-periodic functions in y ∈ Tn, the n-dimensional unit torus. Let λ = λ(z) be the
principal eigenvalue of Lz, which can be shown to be convex and differentiable in z.
Let H(y) be the Legendre transform of λ,

H(y) = sup
z∈Rn

[(y, z)− λ(z)],

y ∈ Rn. The function H(y) is also convex and differentiable. Then for any closed
F ⊆ {y : H(y) > 0}, limt→∞ u(t, ty) = 0 uniformly for y ∈ F , and for any compact
K ⊆ {y : H(y) < 0}, limt→∞ u(t, ty) = 1 uniformly for y ∈ K.

It follows that the asymptotic front speed v = v(e) along the unit direction e
satisfies H(ve) = 0. If minRn λ(z) > 0, the H equation can be solved to yield

v = v(e) = inf
(e,z)>0

λ(z)
(e, z)

.(3.7.3)

In fact, λ(z) grows quadratically in z, and so the supremum in the definition of H(y)
is achieved. There exists z∗ such that

0 = H(ve) = v(e, z∗)− λ(z∗),

so v(e, z∗) > 0, due to λ(z∗) > 0. It follows from the inequality λ(z)(v(e, z∗)−λ(z∗)) =
0 ≥ λ(z∗)(v(e, z)− λ(z)) that for any z satisfying (e, z) > 0,

λ(z)
(e, z)

≥ λ(z∗)
(e, z∗)

.

This implies formula (3.7.3). The assumption minRn λ(z) > 0 holds if the operator L
is self-adjoint or of the form L = ∇ · (a(x)∇) + b(x) · ∇, where b is an incompressible
velocity field of mean zero.

Instead of going through the large deviation method, let us follow the spirit of
the logarithmic transform in the PDE approach and derive the same result. First
consider (3.7.1) under the scaling x→ ε−1x, t→ ε−1t. The rescaled equation reads

uεt =
1
2
ε

n∑
i,j=1

aij(ε−1x)uεxi,xj +
n∑
i=1

bi(ε−1x)uεxi + ε−1f(ε−1x, uε),(3.7.4)

for which we make the change of variable

uε = exp(ε−1vε).(3.7.5)

Then vε satisfies the equation

vεt =
ε

2

n∑
i,j=1

aij(ε−1x)vεxi,xj +
1
2

n∑
i,j=1

aij(ε−1x)vεxiv
ε
xj

+
n∑
i=1

bi(ε−1x)vεxi +
f(ε−1x, uε)

uε
.(3.7.6)
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The last term is bounded from above by c(ε−1x) = fu(ε−1x, 0), which also happens
to be the right approximation of the nonlinearity for small values of uε. For locating
the front or the region where uε is near zero, one can replace the nonlinear term by
its linearization at uε = 0 as we approach the front from the interior where vε < 0.
Then (3.7.6) looks like a homogenization problem of a viscous H-J equation, which
we recall next.

The homogenization of the inviscid H-J equation was first studied by Lions, Pa-
panicolaou, and Varadhan in [105]. They considered solutions vε of

vεt + H(∇vε, ε−1x) = 0, x ∈ Rn × (0,+∞),(3.7.7)

with initial data vε(x, 0) = v0, where H is periodic in the second variable, say, with
period 1. Under the conditions that H is locally Lipschitz in all variables, H(p, x)→
+∞ as |p| → +∞ uniformly in x ∈ Rn, u0 is bounded and uniformly continuous,
and ∇v0 ∈ L∞(Rn), they showed that vε converges uniformly on compact sets to the
viscosity solution v of the homogenized H-J equation

vt + H(∇v) = 0, x ∈ Rn × (0,+∞),(3.7.8)

where the homogenized Hamiltonian is defined through solving the cell problem. Here
is their result.

Theorem 3.10. For each p ∈ Rn, there exists a unique real number H(p) such
that the equation H(p +∇w, y) = H(p) has a 1-periodic solution w = w(y).

For a proof, see [105] and Evans [50]. The homogenized Hamiltonian H is convex
if H is in p, but it may lose strict convexity. One example in [105] is that the H of
the strictly convex function H(p, x) = p2

2 + V (x), x ∈ R, is flat near p = 0. In fact,
let us assume V ≤ 0 and maxV = 0 for convenience. The cell problem reads

1
2
(p + wy)2 + V (y) = H̄, y ∈ T,

which is completely solvable and gives H̄ ≥ 0 such that

H̄ = 0 if |p| ≤ 〈
√
−2V 〉 ;

|p| = 〈
√

2H̄ − 2V (y)〉 if |p| > 〈
√
−2V 〉,(3.7.9)

where 〈·〉 denotes the average over one period.
The above cell problem can be derived using the ansatz

vε ∼ v0(x, t) + εv1(x, ε−1x, t) + · · · .(3.7.10)

The same ansatz is also utilized in the convergence proof of [105]. For generalizations
to fully nonlinear first- and second-order equations, see [50], where a weak conver-
gence method called the perturbed test function method is employed. Such a method
incorporates the above ansatz in the structures of the test functions instead and can
handle equations of first and second order in a unified way.

Now we go back to (3.7.6) with c(ε−1x) in place of the last nonlinear term. Using
the homogenization ansatz (3.7.10), it is straightforward to derive the cell problem

H =
1
2

n∑
i,j=1

aij(y)wyiyj +
1
2

n∑
i,j=1

aij(y)(pi + wyi)(pj + wyj )

+
n∑
i=1

bi(pi + wyi) + c(y),(3.7.11)
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where we solve for a periodic function w and a real constant H for given p. The ho-
mogenized equation is vt−H(∇v) = 0. The cell problem (3.7.11) can be transformed
into an eigenvalue problem with H being the principal eigenvalue. To see this, let
w̄ = ew > 0. Then (3.7.11) in terms of w̄ reads

Hw̄ =
1
2

n∑
i,j=1

aijw̄yiyj +
n∑

i,j=1

aijpiw̄yj

+
n∑

i,j=1

bi(piw̄ + w̄yi) +
1
2

n∑
i,j=1

aijpipjw̄ + c(y)w̄.(3.7.12)

The right-hand side operator in (3.7.12) is just L−p, in view of (3.7.2). Hence H(−z) =
λ(z). To derive the front speed formula (3.7.3), consider the H-J equation

vt −H(∇v) = 0,

with initial condition v0(x) = 0 if x ∈ G0, v0(x) = −∞ otherwise. The variational
Hopf formula (see Evans [48]) of the solution is

v(x, t) = − inf
y∈G0

H
∗
(
y − x

t

)
,(3.7.13)

where H
∗

is the Legendre transform of H. The function H(y) in the large deviation
approach is related to H

∗
by

H(y) = sup
−z∈Rn

[(y,−z)− λ(−z)] = sup
z∈Rn

[(−y, z)−H(z)] = H
∗
(−y).

The points (x, t) where v < 0 or limε→0 u
ε = 0 then satisfy

H
∗
(
y − x

t

)
> 0 ∀ y ∈ G0.

Since G0 is compact, we can take both x and t large compared with the size of G0.
Then we drop y to get the condition

H
∗ (
−x

t

)
= H

(x

t

)
> 0,

implying that the front speed v(e) along direction e satisfies H(v(e)e) = 0.
Now we can also derive the earlier variational formulas (3.2.9), (3.3.9), and

(3.3.13). Except for the factor 1
2 (due to the 1

2 in (3.7.1)) we see that (3.3.10) and
(3.7.12) are the same (r becomes p). Hence the Λ of (3.3.10) is identical to the effec-
tive Hamiltonian H̄, or Λ(r) = λ(−r). Since the front described by (3.2.9) moves to
the left, (3.7.3) yields (with e = −1)

c∗ = inf
z<0

λ(z)
−z = inf

r>0

λ(−r)
r

= inf
r>0

Λ(r)
r

,

which is just (3.3.13)!
Finally, putting the homogenization ansatz (3.7.10) into (3.7.5) shows that for

KPP fronts in periodic media, the solution uε behaves like

uε(t, x) = e−ε
−1I(t,x,ε) + · · · ,

I(t, x, ε) = I0(t, x) + εI1(t, x, ε−1x) + · · · ,(3.7.14)
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where I can be regarded as a phase function as in a geometric optics (Wentzel–
Kramers–Brillouin (WKB)) ansatz. However, for fronts of type 3 and type 5, the
ansatz for uε in the same scaling (x→ ε−1x, t→ ε−1t) is

uε(t, x) = U(ε−1ϕ(t, x, ε), ε−1x) + · · · ,
ϕ(t, x, ε) = ϕ0(t, x) + εϕ1(t, x) + · · · ,(3.7.15)

where ϕ(t, x, ε) is the phase variable. Plugging (3.7.15) into (3.7.1), we have

1
2
(∇xϕ0∂s +∇y)(a(y)(∇xϕ0∂s +∇y)U) + b(y) · (∇xϕ0∂s +∇y)U

− ϕ0,tUs + f(U) = 0,(3.7.16)

where U = U(s, y), s = ϕ(t,x,ε)
ε , y = x

ε . We see that (3.7.16) is just the traveling
front equation (3.2.7) with k = ∇xϕ0, and c(k) = −ϕ0,t. Relating them gives the H-J
equation,

ϕ0,t + c(∇xϕ0) = 0,(3.7.17)

for the general front evolution. It is easy to see from (3.2.7) that c = c(�k) is homoge-
neous of degree 1 in �k.

3.8. KPP Fronts in Media of Separated Scales. Combining the above results
on slowly and fast varying media, one can inquire about the effective fronts when
the coefficients depend on both x and ε−1x. In the study of premixed flames in
convecting turbulent velocity fields, one is concerned with front propagation in media
with several spatial-temporal scales. When these scales are separate, the effective
front can be studied using the KPP methodology discussed in the last two sections.

Majda and Souganidis [106] considered the KPP equation for the temperature
field of a reacting passive scalar,

Tεt + V (x, t, ε−αx, ε−αt) · ∇Tε = εκ∆Tε + ε−1f(Tε),(3.8.1)

with compactly supported (in G0) nonnegative initial data, a nonlinearity f of KPP
type, and α ∈ (0, 1]. The velocity V is bounded and Lipschitz continuous and has
periodic dependence on the fast oscillating scales y ≡ ε−αx, τ ≡ ε−αt. The small
parameter ε measures the ratio of the front thickness and large scale (dependence on
(x, t)) of the velocity field, say of O(1). The effective Hamiltonian H(p, x, t) is defined
as a solution of the following cell problem: for each (p, x, t) ∈ Rn × Rn × (0,+∞)
there is a unique constant H(p, x, t) and a w(y, τ) ∈ C0,1(Rn × (0,+∞)) periodic in
both (y, τ) such that

wτ − a(α)κ∆w − κ|p +∇w|2 + V (x, t, y, τ) · (p +∇w) = −H(p, x, t),(3.8.2)

where a(α) = 0, if α ∈ (0, 1), a(α = 1) = 1. The case α = 1 can be derived using an
exponential change of variable and an H-J equation as in the last subsection, except
that due to the time dependence, the wτ term is added. The condition a(α) = 0 in
the case α ∈ (0, 1) can be understood as follows. Ignore the slow variable (x, t) for
now and change the scaling to x = ε−1+αx′. Then the velocity V is V (ε−1x′, ε−1t′)
and the diffusion coefficient becomes ε3−2ακ � εκ. Hence the diffusion term is too
small to be seen at the order of the cell problem.

The function H is locally Lipschitz continuous, convex in p, and grows quadrat-
ically in |p| as |p| → ∞ uniformly in (x, t). The asymptotics of Tε as ε → 0 is given
by the following theorem.
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Theorem 3.11. Let Tε be a solution of (3.8.1) under the above assumptions.
Then as ε → 0, Tε → 0 locally uniformly in {(x, t) : Z < 0} and Tε → 1 locally
uniformly in the interior of {(x, t) : Z = 0}, where Z ∈ C(Rn× [0,+∞)) is the unique
viscosity solution of the variational inequality

max(Zt −H(∇Z, x, t)− f ′(0), Z) = 0, (x, t) ∈ Rn × (0,+∞),

with initial data Z(x, 0) = 0 in G0 and Z(x, 0) = −∞ otherwise. The set Γt = ∂{x ∈
R
n : Z(x, t) < 0} can be regarded as a front.

The authors of [106] further showed that Γt is a Lipschitz continuous surface
and that when V is independent of (x, t) the resulting front evolves according to an
H-J-type (geometric) PDE (Huygens’s principle applies),

ut = F (∇u),(3.8.3)

with initial data u(x, 0) = g(x) for x ∈ Rn, where g(x) is uniformly continuous and
positive on G0 and negative on G

c

0. The function F = F (e) is the minimum speed of
KPP fronts along the direction e, or the v(e) in the last subsection. In general, Γt is
shown to be bounded by surfaces defined by similar geometric PDEs.

A popular model H-J equation, the so-called G-equation, is often used in the
combustion community for the study of premixed flames in turbulent media. It reads

Gt + V · ∇G = SL|∇G|,(3.8.4)

where SL is the constant laminar speed, V is the incompressible fluid velocity, and the
flame front is where G = 0. The G-equation is derived (see [97]) for combustion fronts
of unit Lewis number under the assumption that the flame thickness lF is much smaller
than the integral length scale of the velocity field LF and that thermal expansion due
to heat release can be ignored. As a result, the velocity field V varies only on large
integral scale. However, the G-equation has also been used for V involving several
length scales much smaller than the integral scale for the purpose of averaging and
for closure procedures regarding the small scales [97], [98], [128], [145], [165].

Embid, Majda, and Souganidis [46], [47] compared the results of complete av-
eraging of the KPP equation and the averaging of the G-equation in the case of a
two-scale shear velocity field of the form

V = λ̄ū + λ(v(ε−αx2), 0).(3.8.5)

Here ū = (cos θ̄, sin θ̄) and v(x2) is a 1-periodic function with unit amplitude rep-
resenting a small-scale shear flow aligned with the x1-axis. The parameter λ is the
mean flow intensity, and θ̄ represents the angle between the mean flow and the shear.
The small parameter is ε = lF /LF and α ∈ (0, 1). Therefore, the velocity small scale
is much smaller than the integral scale and much larger than the front thickness of
order O(ε). The complete averaging is as we just described, and the averaging of the
G-equation follows the homogenization theory of [105]. Since V is independent of the
slow variables (x, t), the effective fronts can be described by the H-J equation (3.8.3).
For the shear flow (3.8.5), both averagings can be calculated with exact formulas. The
results of comparisons are as follows. For all values of the flow-field parameters, the
enhanced flame speed predicted from the averaged G-equation always underestimates
the enhanced flame speed computed from the KPP averaging. The significance of the
error depends on the transverse magnitude of the mean flow λ̄ sin θ̄. For λ̄ sin θ̄ < 1,
there is excellent agreement between the two different averagings, while if λ̄ sin θ̄ > 1,
the error can be an order of magnitude larger.
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3.9. Conservative Fronts in PeriodicMedia. Another class of problems concern-
ing fronts in heterogeneous media arises in transport through porous media. When
solutes (ions) migrate inside porous media, some of them tend to attach onto the
surface of minerals or colloids due to the existence of nonneutralized electric charges
at the surface or inside these minerals [113]. This surface effect is called adsorp-
tion, which often creates a retardation on the movement of solute substance. The
transport equation for the concentration of a one-species solute is based on the con-
servation of mass. When the adsorption reaches equilibrium, which often happens
in a much shorter time than the time scale of solute migration, one arrives at the
following conservative equation for the concentration C:

(ωC + ρψ(C))t = ∇ · (θD∇C − vC),(3.9.1)

where D is the pore-scale dispersion matrix, v is the incompressible water flow velocity,
ω is the total porosity, and ρ = (1 − ω)ρs, ρs being the density of solid particles
(minerals and colloids). The function ψ = ψ(C) is called the sorption isotherm. For
example, the Fruendlich isotherm is of the form ψ(C) = κCp, p ∈ (0, 1), where κ
represents the spatial distribution of sorption sites.

Due to the heterogeneous nature of the porous medium, both v and κ are functions
of the spatial variable x. The lack of detailed field information on them prompts people
to make statistical assumptions, such as assuming that they are ergodic stationary
random fields; see the works of van der Zee, Bosma, van Duijn, and van Riemsdijk
[148], [27], [28]. In one space dimension, v is a constant, and (3.9.1) simplifies after a
rescaling of constants to

(u + k(x)up)t = (D(x)ux)x − ux,(3.9.2)

where we also make D spatially dependent. We consider the boundary conditions
u(−∞, t) = ul, u(+∞, t) = ur = 0, 0 < ul, representing constant input of solute from
the left end of a solute-free soil column. Solutions of (3.9.2) under such boundary
conditions give rise to front solutions.

If k and D are constants, then by making the change of variable v = u+ kup, we
can write (3.9.2) as a standard conservation law:

vt + (f(v)− ν(g(v))x)x = 0, ν > 0, x ∈ R.(3.9.3)

An example is the well-known Burgers equation if f = v2/2 and g = v. Front solutions
v = v(x − ct) are solvable in closed form, and c = (f(ul) − f(ur))/(ul − ur), the so-
called Rankine–Hugoniot relation. Stability of such scalar fronts is also well studied;
see Il’in and Oleinik [89], Sattinger [141], Osher and Ralston [123], Gardner, Jones,
and Kapitula [74], and Goodman [79], among others.

Let us now consider periodic media by supposing k(x) and D(x) to be 1-periodic
regular functions. In periodic media, as in R-D equations, traveling fronts take the
form u = U(x − ct, x), which turn out to exist also for conservative equations like
(3.9.2) and are asymptotically stable. The following result is obtained in Xin [162],
[164].

Theorem 3.12. Let k(x) and D(x) be smooth positive functions with period 1. If
ur = 0 < ul, (3.9.2) admits a Hölder continuous traveling wave solution of the form
u = U(x − st, x) ≡ U(ξ, y), ξ = x − st, y = x, U(−∞, y) = ul, U(+∞, y) = 0, and
U(ξ, ·) has period 1. Such solutions are unique up to constant translations in ξ and
have wave speeds

s =
ul

ul + 〈k〉f(ul)
> 0,(3.9.4)
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with 〈k〉 being the periodic mean. The wave profile U satisfies 0 ≤ U < ul ∀ (ξ, y);
U(ξ1, y) ≤ U(ξ2, y) ∀ ξ1 ≥ ξ2, ∀y; Uξ < 0 if U(ξ, y) > 0. Assume that the ini-
tial condition u0(x) satisfies 0 ≤ u0(x) ≤ ul, u0 ∈ L1(R+);up0 ∈ L1(R+), u0 − ul ∈
L1(R−), up0−upl ∈ L1(R−). Also let m(u, x) = u+k(x)up. Then there exists a unique
number x0 such that ∫

R

m(u0(x), x)−m(U(x + x0, x), x)dx = 0(3.9.5)

and such that

lim
t→∞

||u(t, x)− U(x− st + x0, x)||1 = 0.(3.9.6)

The construction of traveling waves uses the continuation method, and the ex-
istence result also holds in several space dimensions [162]. The Hölder continuity of
solutions is a consequence of up being nondifferentiable at u = 0. The explicit effective
wave speed (3.9.4) is due to the fact that (3.9.2) is conservative. Only the mean value
of k contributes to the speed; the rest of the information in k influences the wave
profile, however. The stability proof extends that of [123] and uses L1 contraction of
dynamics, as well as a space-time translation-invariance of the traveling fronts in the
moving frame coordinate.

The dynamics of (3.9.2) with constant coefficients and spatially decaying initial
data have been studied by Dawson, van Duijn, and Grundy [41], [80]. Solutions decay
to zero in this regime and are known as N waves. See also [28] for a statistical study
in heterogeneous media. The existence of traveling waves in homogeneous media for
more complicated isotherms and for a solute transport system with kinetic sorption
is carried out in van Duijn and Knabner [149]. The construction of traveling waves
in these studies relies on dynamical systems theory for establishing connection orbits.
For fronts in another conservative equation (the Richards equation of water infiltra-
tion) with more complicated dependence of wave speeds on the periodic medium, see
Fennemore and Xin [58].

3.10. Summary and Further Remarks. We have used the two-scale homoge-
nization ansatz to find the general form of traveling fronts in periodic media, discussed
the construction of these fronts, shown equivalence of various variational characteri-
zations of the front speeds, and analyzed the front stability and propagation. We have
also presented results on fronts in slowly varying media, where the media slowly mod-
ulate the front speeds, in fast oscillating media, where the media homogenize much
faster than the reaction scale, and in media with separated scales, where homoge-
nization and modulation occur simultaneously. The forms of nonlinearity determine
the wave speed spectrum of the fronts and the dynamics. For KPP fronts with mini-
mum speeds, we used the reduced H-J equation and its homogenization to derive the
same results as the large deviation probabilistic approach. Finally, we considered the
similar form of fronts in periodic media of a conservative equation and observed that
fronts are asymptotically stable and their speeds explicit.

For type 2 and type 4 nonlinearities, it remains to study the existence of traveling
waves in several space dimensions and to find out whether, for compactly supported
initial data, the minimum speed c∗ = c∗(k) defines the Hamiltonian for the asymptotic
geometric front equation. This extends the geometric equation (3.8.3) of [106] on KPP
fronts.

For extensions of the KPP methodology to systems of R-D equations in homoge-
neous and slowly varying media, see [8], [68], and [69]. These KPP systems are similar
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to what we described at the end of section 2.4. The solutions are uniformly bounded
in time by the maximum (invariant region) principle [146]. For existence and stability
of traveling fronts in related KPP systems, see also [138], [153], [154]. For a study of
fronts in fast-oscillating periodic media governed by a bistable system, see [85]. For
asymptotic stability of traveling fronts in infinite cylinders, see [16], [110], [136], [137].

4. Fronts in RandomMedia. Front propagation in random media is a very chal-
lenging and as yet largely open area. Randomness is a more physical and practical
assumption in modeling heterogeneous porous structures and turbulent flows than
periodicity. Since collecting field data on porosity is expensive, people can only afford
to drill a limited number of wells and consequently must adopt a statistical approach
to model the uncertainties [113]. Turbulent flows are well known to be intrinsically
random, and it only makes sense to look at statistical quantities, such as the energy
spectrum, two-point fluid velocity correlation function, and other structure functions;
see Batchelor [9], among others.

Natural questions arise. How do fronts move in random media? What can we say
about the front speeds, front locations, and other front characteristics? How much
of what we know from periodic media generalizes to the random case? What are the
new phenomena? Do fronts spread or not as a result of the competing focusing effect
of nonlinearity and the spreading effect of random media?

Before answering these questions, let us first understand something about random
media. We will see two large categories of random media, the tame and the wild. A
tame random medium is a stochastic process X(x, ω) with finite moments (at least
first and second) and short range correlations. An example is X(x, ω) = ξn(ω) for x ∈
[n− 1, n), n = 1, 2, 3, . . ., where the ξn are independent identically distributed (i.i.d.)
random variables with finite first and second moments, E[ξn] = µ, E[ξ2

n] = σ2 + µ2.
Here the positive constant σ2 is the variance and σ is the standard deviation. The
classical central limit theorem asserts that the sum Sn = ξ1 + · · ·+ ξn obeys

Sn − nµ

σn1/2 →W1(4.0.1)

as n→∞ in law, where W1 is a unit Gaussian (standard normal distributed) random
variable. The central limit theorem is a robust result and can be extended to cases with
short correlations. In general, the product expectation E[(X(s) − E[X(s)])(X(t) −
E[X(t)])] is called the covariance function, and the correlation is the ratio of the
covariance to σsσt, where σ2

s = E[X(s)2] − (E[Xs])2. The covariance or correlation
is a measure of the degree of independence. For a stationary random process, the
distribution of X is invariant under translation in x, so σs is a constant, and we may
just use covariance for correlation if the variance is finite.

Now let us consider fronts moving in these tame random media. Intuitively, let
us imagine that we are driving on a very bumpy road, with a certain distribution of
endless bumps and dips. At the beginning stage, it is hard to maintain a constant
speed since we always encounter something new or unexpected. However, if time is
sufficiently long, we may hope that we have almost seen it all and got used to the
road conditions, and are able to adjust more or less to a constant speed motion. If
this is the case, then front behavior in random media is like that in periodic media,
except that one has to wait much longer to reach an average speed and there will be
occasional excursions from this speed due to uncertainties in the road conditions.

Motivated by this example, we can regard the location of a one-dimensional ran-
dom front (defined as where the value of the solution is equal to a fixed number, say
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1
2 ) as a time-dependent random process S(t, ω). We expect S(t) ∼ c∗t+noise for large
t, where c∗ is the average constant speed. This starts to have the flavor of (4.0.1),
although it is not at all clear how the short correlation and finite second moment con-
dition are valid for S. However, the amazing thing is that the central limit theorem
in fact holds for S(t) in the case of one-dimensional Burgers fronts. That is,

S(t)− c∗t

σ
√
t

→W1(4.0.2)

as t→∞ in law for some constant σ > 0. Since front problems in random media are
both nonlinear and random, the robustness of the central limit theorem is remarkable.
We believe that such a result holds for a much more general class of equations than
the conservative PDEs of Burgers type that we are going to illustrate in section 4.1
with results obtained by the author and coworkers [155], [156], [129]. The conservative
PDEs do, however, allow us to give a clean interpretation of (4.0.2) using an argu-
ment of conservation of mass. In addition, the Burgers fronts have tight widths for
large times (bounded with probability arbitrarily close to 1), and so the nonlinearity
overcomes the spreading effect of the random media.

Equation (4.0.2) implies that S(t) ∼ c∗t+
√
tW1, which is a natural generalization

of the related formula Sp(t) ∼ c∗pt+ c0 for front locations in periodic media. Here the
subscript p denotes the corresponding quantities in the periodic case, and c0 is the
constant phase shift. It is very interesting that the asymptotic expression for sums of
i.i.d. random variables corresponds to the asymptotic formula for front location.

Recall that homogenization theory helped us determine the average wave speed c∗p
in the periodic case, in particular the homogenization results of the linear advection-
diffusion problem and the H-J equation. We will see that their natural extensions to
the random case can also help us find or interpret the speed c∗. In this sense, what
we learned about fronts in periodic media carries over to the random setting. Thus a
tame random medium can be thought of as being approachable from periodic media.
A standard way of carrying out such an approximation is to truncate a random process
and periodize it with larger and larger periods.

The homogenization process of determining the average front speed corresponds
to the law of large numbers for a sum of i.i.d. random variables. However, even for
tame random media, there is a new phenomenon—front fluctuation, manifested in the
next order term

√
tW1, which has no analogue in deterministic front problems. In

principle, one has to understand both the mean field phenomenon (a homogenization
result on the average front speed) and the statistics of the front fluctuation (Gaussian
or otherwise) in order to completely describe a random front. This is certainly a more
challenging task.

For R-D PDEs in tame random media, we present in section 4.2 results by Freidlin
[67] and Lee and Torcaso [102] on the KPP fronts, where average front speeds were
found using large deviation techniques. We derive the same results using homogeniza-
tion of the related H-J equations just as in periodic media. The Donsker–Varadhan
large deviation results [43], [151], [152], are used to draw the connection. We also
state results by Mueller and Sowers [118] on a class of KPP equations under space-
time white noise perturbations, where front speeds, finite front width, and the law of
front shapes are characterized in the large-time limit. These features are consistent
with the findings of the Burgers fronts.

Then there is the matter of wild random media. A wild random medium is one
in which the second or first moment is infinite. In the case of Sn = ξ1 + · · · + ξn, a
sum of i.i.d. random variables, one encounters non-Gaussian stable laws; see Breiman
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[30]. If the first moment is still finite, then

Sn − E[ξ1]n
An

→ Y(4.0.3)

in law, where An/
√
n → +∞ as n → ∞. The random variable Y has a stable law

of exponent α ∈ (1, 2) whose characteristic function is explicit; see Theorem 9.32 of
[30]. Such a random variable can be viewed as having a fractional moment α. One
still has a law of large numbers, but the scaling of the fluctuation (if it exists) is a
power larger than 1

2 , and so is anomalous.
If the probability density function has an even slower tail, so that the first moment

is infinite but a fractional moment α ∈ (0, 1) is finite, then

Sn
An
→ Z,(4.0.4)

where Z is a stable law with exponent α ∈ (0, 1). In the fair coin-tossing example
of [30], let Sn be the time of the nth return to equilibrium. Then (4.0.4) holds with
An = n2. If (4.0.4) with such an Sn were to represent front locations, there would be
front acceleration to leading order!

Another class of wild random media is turbulent advection. The time-independent
turbulent advection field is often assumed to be an incompressible stationary Gaussian
random field v(r, ω) = (v1, v2, v3)(r, ω) ∈ R3 with mean equal to zero and covariance
(see Kraichnan [101])

E[vi(r)vj(r′)] = Vij(r − r′),

Vij(r) = D0

∫
dk (2π)−3|k|−(3+ζ)ψ0(|k|)ψ∞(|k|)P⊥ij (k)eikr,(4.0.5)

where ζ ∈ (0, 2), ψ0 and ψ∞ are infrared and ultraviolet cutoff functions so that 0 <
λ ≤ |k| ≤ |k∞| <∞, and P⊥ij (k) is the projection onto the subspace perpendicular to
k ∈ R3. The projection imposes incompressibility. The energy spectrum is the radial
part of the integral (4.0.5) along |k| after averaging out the angular contributions,
and hence is const. |k|−(1+ζ) ≡ E(k) for any dimension.

Since we are interested in large-scale phenomena, the small-k behavior is our
concern. Taking λ→ 0, we see that the integral tending to∫

|k|≤|k∞|
|k|−1−ζd|k|

is divergent at k ∼ 0 for ζ ∈ (0, 2). This means in particular that the second velocity
moment 〈|v(r)|2 〉 is infinite. It is not hard to check that the velocity difference for
large separation (|r| � 1) satisfies

lim
λ→0
〈|v(r + r′)− v(r′)|2 〉 ∼ const.|r|ζ ,(4.0.6)

which shows that the velocity field viewed at large scales is Hölder continuous with
exponent ζ/2, called the Hurst exponent and denoted by H hereafter. Such a velocity
field is known as fractal on the large scale.

When such a random field is considered in the advection-diffusion equation

ut + v · ∇u = D∆u,(4.0.7)
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its effect is known to cause enhanced diffusion (eddy diffusivity) due to the increased
area of the level surface of the scalar function u. In fact, the enhanced diffusion is so
large that the associated space-time scaling is x ∼ D∗tp, with p > 1 the anomalous
scaling. In atmospheric science, Richardson [132] discovered the anomalous diffusion
law 〈x2 〉 ∼ O(t3) in 1926. Here x can be thought of as the difference in position of
two smoke particles in an advecting air flow. Similar anomalous behavior was also
found in 1980 on transport through porous media; see Matheron and de Marsily [112]
where x ∼ t3/4 for a milder random media. Systematic and in-depth mathematical
studies have been undertaken in a series of works by Avellaneda and Majda [4], [5]
and Fannjiang and Papanicolaou [56], [57], among others.

The anomalous behavior with ζ ∈ (0, 2) as well as the Richardson scaling law
〈x2 〉 ∼ O(t3) can be seen from the energy spectrum and a dimensional analysis. Let
us write the energy spectrum as E(k) = Dk−(1+ζ). The dimension of the energy
spectrum is

v2/|k| = (L/T )2L = L3/T 2,

which is equal to DL1+ζ in dimension. Hence the dimension of D, denoted by [D], is
L2−ζ/T 2

, implying

L2 = ([D]T 2)2/(2−ζ) = [D]2/(2−ζ)T 4/(2−ζ).

The Richardson law follows on setting ζ = 2/3, the Kolmogorov exponent.
For front propagation through a steady turbulent medium, a very useful model is

the advection-diffusion-reaction equation

ut + v · ∇u = D∆u + f(u),(4.0.8)

where f is the reaction term, of types 1 to 5. When v is absent, we note by a
simple scaling argument applied to the traveling front equation Du′′ + cu′ + f(u) =
0 that the larger the diffusion constant D, the larger the speed c. Intuitively, v
causes the wrinkling of front surfaces, so much that the induced eddy diffusivity
already influences the solutions on the scale x ∼ tp, with p > 1 if ζ ∈ (0, 2). It
is then conceivable that even the leading-order front asymptotics will be altered to
an anomalous expression X ∼ O(tq) with q > 1, in analogy to the fair coin-tossing
example described above.

In section 4.3, we describe the recent work of Majda and Souganidis [107] on
upper bounds of KPP front speeds. The upper bounds suggest that in the turbulent
(fractal) velocity regime (H ∈ (0, 1) or ζ ∈ (0, 2)) the front location is X ∼ O(tq),
with q ∈ (1, 1 + H] to leading order. In section 4.4, we briefly describe the modeling
aspect of front speeds in turbulent combustion and of front surface scaling in industrial
deposition processes. In both areas, the stochastic H-J equations are used as prototype
models. Summary and concluding remarks are in subsection 4.5, where we also show
figures of fronts in one-dimensional random media.

4.1. Fronts in Random Burgers-Type Equations. The Burgers equation serves
as an ideal candidate for understanding fronts in random media because it is solvable
by the well-known Hopf–Cole formula. We will see that results on the Burgers equation
also guide us in studying other scalar conservative equations with randomness.

Let us consider the celebrated Burgers equation

ut +
(

1
2
u2

)
x

= νuxx, ν > 0,(4.1.1)
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with initial data

u(x, 0) =
(
1 + exp

(
1
2ν

(
x− 1

2
t

)))−1

+ Vx ≡ us + Vx,(4.1.2)

where us is the profile of a traveling front solution moving to the right with speed
1
2 and connecting 1 to 0, and Vx is either white noise (formally the derivative of
Brownian motion Wx) or a Gaussian process (all finite-dimensional distributions are
multivariate Gaussian) with enough decay of correlations.

If Vx is a deterministic function with enough decay as |x| → ∞, a classical result
of Il’in and Oleinik [89] asserts that a solution u(x, t) eventually converges to us(x−
1
2 t + x0) uniformly in x for a constant x0. The constant x0 depends on the integral
(mass) of the initial perturbation Vx. In fact, the Burgers equation conserves the total
mass

∫
R
u(x, t) dx. For a bounded and decaying V , there is a unique value x0 such

that ∫
R

u(x, 0)− us(x + x0) dx = 0,

and hence by conservation of mass,∫
R

[
u(x, t)− us

(
x− 1

2
t + x0

)]
dx = 0 ∀t > 0.

If V is also small, then x0 is small. Taylor expanding the above equality at t = 0
shows ∫

R

[u(x, 0)− us(x)− u′s(x)x0] dx ∼ 0,

implying

x0 ∼
∫
R

[u(x, 0)− us(x)] dx =
∫
R

Vx dx.(4.1.3)

Thus for small perturbations, x0 is approximately the total mass of the initial pertur-
bation.

Now Vx is a stationary random process, and it has no decay as |x| → ∞. It turns
out that at time t, the truncated mass of Vx, or the integral of Vx over the interval
[− 1

2 t,
1
2 t], plays the role of the whole line integral (4.1.3) and causes the deviation of

the front location from the mean position 1
2 t. It is interesting to note that the factor

1
2 comes from the unperturbed front speed, and the interval [− 1

2 t,
1
2 t] resembles the

domain of dependence for the linear wave equation utt − 4−1uxx = 0. The picture
behind this is that the perturbation gets sucked into the front from the left and the
right at speed 1

2 . Let us calculate formally the front deviation for the white noise Vx
as in (4.1.3),

x0 = x0(t, ω) ∼
∫ t/2

−t/2
Vx dx = Wt/2 −Wt/2

law= Wt
law=
√
tW1,(4.1.4)

i.e.,
√
t times the unit Gaussian. Thus the front location is

X = X(t, ω) =
t

2
+ s0(t, ω) law=

t

2
+
√
tW1.(4.1.5)

The above heuristics are made precise in Wehr and Xin [155].
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Theorem 4.1. Let u(x, t) be the solution to the initial value problem of the
Burgers equation (4.1.1)–(4.1.2), and let f be an increasing function of t. Then for
the white noise perturbation Vx:

(1) (probing front) If (f(t)− 1
2 t)/
√
t→ c ∈ R, u(f(t), t) converges in distribution

to a random variable equal to 0 with probability N (c) and equal to 1 with probability
1−N (c), where

N (c) =
1√
2π

∫ c

−∞
e−y

2/2dy,

the unit Gaussian distribution function. Given any ε ∈ (0, 1), define the left and right
endpoints of the interval containing the front by

z−(t) = min{x : u(t, x) = 1− ε}, z+(t) = max{x : u(t, x) = ε},

so that the front width is {z+(t)− z−(t)}. Then
(2) (front width) There exists a constant t0 > 0 such that the random variables

{z+(t) − z−(t)} are tight for t ≥ t0; i.e., for any δ > 0 there exists an M such that
Prob(z+(t)− z−(t) > M) < δ for all t > t0.

(3) (front motion) As s→∞, there is a constant σ depending only on Vx (σ = 1
for white noise) such that

z+(t)− t
2

σ
√
t

law→ W1,

and similarly for z−.
Part (1) is a slightly weaker version of part (3), and both substantiate the formal

calculation. Part (2) asserts that the noise does not spread the front width for large
time, so nonlinearity dominates the randomness and preserves the coherent structure.
The proof uses the Hopf–Cole formula and a Laplace method for stochastic integrals.
We refer to [155] for details.

To understand a front moving in a random medium, let us now consider a Burgers
equation with a spatially random flux,

vt +
(

1
2
a(x, ω)v2

)
x

= 0, x ∈ R,(4.1.6)

with initial data v(x, 0) = IR−(x), the indicator function of the negative real line,
that is, a shock sitting at the origin. The random process a is positive and station-
ary. Equation (4.1.6) resembles the solute transport equation (3.9.2) with a random
coefficient, which is to be discussed at the end this subsection. We are interested in
how the initial shock moves through random media.

To find the leading front speed, an H-J homogenization argument will do. If we
scale x→ ε−1x, t→ ε−1t, then (4.1.6) becomes

vt +
(

1
2
a(ε−1x, ω)v2

)
x

= 0.(4.1.7)

Integrating (4.1.7) in x and setting w =
∫ x

+∞ vdx, we have for w the H-J equation

wt +
1
2
a(ε−1x, ω)w2

x = 0.(4.1.8)
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Proceeding formally with the cell problem as in the periodic case, we need to find a
solution to

1
2
a(y, ω)(p + wy)2 = H̄(p) ≥ 0.(4.1.9)

We solve (4.1.9) as

p + wy =
√

2a−1H̄,

which gives a solution upon integrating once in y. To find a solution with the slowest
(sublinear) growth in y, we must have

〈−p +
√

2a−1H̄ 〉 = 0,(4.1.10)

where the bracket is the ensemble mean. It follows that

H̄ =
p2

2
〈a−1/2 〉−2,(4.1.11)

which means that the homogenized equation for w is wt+ H̄(wx) = 0. Differentiating
this once, we find the homogenized equation for v,

vt + 〈a−1/2 〉−2
(
v2

2

)
x

= 0,(4.1.12)

which yields a shock solution for the same data with speed 1
2 〈a−1/2 〉−2, half of the

root-harmonic mean of a.
The rigorous result on both the front speed and fluctuation is given in Wehr

and Xin [156]. The assumptions on a are that the process a has a mixing property
(or short-range correlation) and finite first moment of a−1/2 and that it obeys an
invariance principle (a functional central limit theorem). Under these conditions, to
make a a tame random medium, we have the following.

Theorem 4.2. Let 2c = E[a−
1
2 ]−2 denote the square root-harmonic mean of the

process a(x). Then as t→∞,

(1) v(αt, t) D→ 0 for α > c,(4.1.13)

(2)
√

a(αt)v(αt, t) D→
√

2c for α < c,(4.1.14)

(3)
√

a(ct + z
√
t)v(ct + z

√
t, t) D→ X,(4.1.15)

where X is a random variable equal to
√

2c with probability N (µ2σ−1z) and equal to
0 with probability 1−N (µ2σ−1z), where N (s) = (2π)−1/2

∫ s

−∞ e−s
′2/2 ds′ is the error

function.
The theorem also validates the homogenization of the random H-J equation

(4.1.8). A general theory of homogenization of random H-J equations is, however,
not yet known.

The idea of the proof is to regularize (4.1.6) with a special viscous term in the
parabolic equation

vt +
(

1
2
a(x)v2

)
x

= ν(
√

a(x)(
√

a(x)v)x)x,(4.1.16)
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where ν > 0. Making the change of variables u =
√

a(x)v, we get an equation for u,
ut/

√
a(x) + ( 1

2u
2)x = ν(

√
a(x)ux)x. If we make the further change of variables

ξ =
∫ x

0

1√
a(x′)

dx′,(4.1.17)

we find that the equation for u in the variables (ξ, t) becomes the standard viscous
Burgers equation

ut +
(

1
2
u2

)
ξ

= νuξξ(4.1.18)

with the new initial condition

u(ξ, 0) =
√

a(x(ξ))IR−(ξ).(4.1.19)

We then work our way back from the Hopf–Cole formula of (4.1.19) to solutions of
(4.1.16) and pass to the limit ν → 0.

Since the speed of a shock front for the Burgers equation is equal to its height
divided by 2 as a consequence of the conservation law, intuitively the asymptotic
speed of the front, arising from our random initial condition in the ξ variable, equals
half of its average height, i.e.,

1
2

lim
L→∞

1
L

∫ 0

−L

√
a(x(ξ)) dξ,

which, after changing the variable of integration to x, gives

1
2

lim
L→∞

−x(−L)
L

=
1
2
E[a−

1
2 ]−1.

To get from this the front speed in the x variable, we divide this value by E[a−
1
2 ]

in view of (4.1.17) and arrive at the speed c = 1
2E[a−

1
2 ]−2, half of the square root-

harmonic mean of the process a(x).
These results for the random Burgers equation help us formulate a front fluctua-

tion theory for the solute transport equation below, which is not integrable. Postel and
Xin [129] numerically simulated the random fronts of the solute transport equation
with Langmuir isotherm:(

u + k(x)
u

1 + u

)
t

= (D(x)ux)x − ux, x ∈ R,(4.1.20)

where k(x) and D(x) are random processes with finite correlation lengths. The bound-
ary conditions are u(t,−∞) = ul > 0 and u(t,+∞) = 0. They found that the front
location X(t) obeys a law

X(t)− st√
t

→ Gaussian(4.1.21)

as t→∞, where s is the constant mean front speed given by the same formula as for
periodic media (see (3.9.4)), simply replacing the cell average there by the ensemble
mean. This suggests that the Gaussian front asymptotics are valid for nonintegrable
one-dimensional scalar conservation laws. Moreover, numerical solutions support the
following theory of front fluctuation based on the random Burgers fronts. First the
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conserved quantity is
∫
R
u + k(x)f(u). With ur = 0, the mass density behind the

front is ul + k(x)f(ul), which can be written as

ul + 〈k〉f(ul) + (k(x)− 〈k〉)f(ul),

i.e., mean plus fluctuation. Let s be the mean front velocity. By analogy with the
Burgers equation, the front deviation is approximately equal to∫ st

−st
(k(x)− 〈k〉)f(ul)dx.(4.1.22)

For a stationary process with enough decay of correlations, the invariance principle
holds (see [25]) and gives ∫ st

−st(k(x)− 〈k〉)dx
σa
√

2st
→W1(4.1.23)

in law as t→ +∞, where W1 is the unit Gaussian and σa is the velocity autocorrela-
tion, defined as

σ2
a =

∫ ∞
−∞

E[(k(0)− 〈k〉)(k(x)− 〈k〉)] dx.(4.1.24)

For the standard deviation we have the formula

σx = f(ul)σa
√

2st(4.1.25)

for large times. Thus the
√
t-normalized front standard deviation σ is

σ = lim
t→∞

σx√
t
= f(ul)σa

√
2s,(4.1.26)

which will be seen to agree very well with the numerically obtained empirical formula.

4.2. KPP Fronts in Random Media. Let us turn to a case of KPP fronts in
one-dimensional random media solved by Freidlin [67]. Consider the KPP equation

ut =
1
2
uxx + ξ(x, ω)u(1− u),(4.2.1)

with deterministic initial data u(x, 0) = g(x) ∈ [0, 1] compactly supported on the
positive x-axis. We are interested in fronts moving to the right. Here the random
function ξ(x, ω) ≥ 0 is stationary and ergodic (short-range correlation) in x, so that
the moment condition

Eetξ(0) < +∞

holds for all t.
The stochastic representation of the solution is

u(x, t) = Ex exp
( ∫ t

0
c(Ws, u(t− s,Ws))ds

)
g(Wt),(4.2.2)

where Wx is the one-dimensional Brownian motion (Wiener process) starting at x.
From here, Freidlin derived upper and lower bounds to show convergence of u to 0
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or 1 almost surely (a.s.; used in the usual probabilistic sense [30]) as t → ∞. To
introduce the result, let us define the function µ(z) by

µ(z) = lim
t→∞

1
t
lnEt exp

( ∫ τ0

0
[ξ(Ws) + z]ds

)
a.s.,(4.2.3)

where τ0 is the first hitting time of the Wiener process to zero and W0 = t. This
function is convex, lower semicontinuous, and monotone nondecreasing. Since ξ(x) is
ergodic, µ(z) is deterministic. In view of (4.2.3), µ = ∞ if z > 0. It can be shown
that there is a number ḡ ≤ 0 such that µ(z) is differentiable and −

√
2|z| ≤ µ(z) ≤ 0

for z ≤ ḡ, while µ(z) = +∞ if z > ḡ.
The asymptotic front speed on the positive x-axis is then given by

v∗ = inf
z≤ḡ

z

µ(z)
,(4.2.4)

which appears in the following front propagation result.
Theorem 4.3. For any v > v∗, limt→+∞ supx≥vt u(x, t) = 0 a.s. If for any

v ∈ R,

lim sup
t→∞

1
t
lnEvt exp

(
−

∫ t

0
ξ(Ws)ds

)
< 0 a.s.,(4.2.5)

then for any v ∈ (0, v∗), limt→+∞ inf0≤x≤vt u(x, t) = 1 a.s.
The strict inequality (4.2.5) is a nondegeneracy condition on ξ, since the left-hand

side is always ≤ 0 due to ξ ≥ 0.
By the Feynman–Kac formula, the expectation

Ex exp
( ∫ τ0

0
[ξ(Ws) + z]ds

)
, x ≥ 0,(4.2.6)

when it is finite (that is, when z < ḡ), satisfies the equation

1
2
d2u

dx2 + [ξ(x) + z]u = 0.(4.2.7)

It is now clear that the function µ(z) is simply the decay rate of a positive solution of
(4.2.7) on the positive real line. In the special case in which ξ(x) is a periodic function,
such a decaying positive solution has the form u(x) ∼ ψ(x)eµx. Substitution of this
form into (4.2.7) gives

1
2
(d/dx + µ)2ψ + ξ(x)u = (−z)u, x ∈ T,(4.2.8)

where −z becomes the unique principal eigenvalue of the left-hand-side elliptic oper-
ator over the unit circle. Comparing with the function λ(z), the principal eigenvalue
of the operator Lz of (3.7.2) with a = Id, b = 0, c = ξ, we see that

λ(−µ) = −z, µ = −λ−1(−z).(4.2.9)

It is easy to see that the seemingly different variational formula (4.2.4) is just

v∗ = inf
z≤ḡ

−z
λ−1(−z) = inf

r≡λ−1(−z)=−µ>0

λ(r)
r

,(4.2.10)

exactly the KPP front speed formula (3.7.3) of section 3!
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Since the KPP results in periodic media can be derived from the periodic ho-
mogenization of the H-J equation, it is natural to ask whether formula (4.2.4) can
be derived from the homogenization of a random H-J equation. We have seen that
in (4.1.7)–(4.1.12), the periodic cell problem can be extended to yield a meaningful
solution if we replace the periodic boundary condition by a slow growth condition.
However, in the case of the principal eigenvalue problem (4.2.8), there is no straight-
forward extension because in the random case there is, generally speaking, no simple
eigenvalue at the edge of the spectrum. In spite of the complexity of the spectrum, the
leading edge can still be characterized for random media with short-range correlation.
This is provided by the Donsker–Varadhan large deviation theory and the resulting
generalized variational formula.

Let us scale space and time by ε and follow the same methodology as in (3.7.4)–
(3.7.6). The H-J approximation of the KPP equation in this scaling limit is

vt −
1
2
v2
x =

ε

2
vxx + ξ(ε−1x)v,(4.2.11)

with initial data tending to zero on the support of u(x, 0) = g(x) and −∞ other-
wise. Let us carry out our calculation for a more general random H-J homogenization
problem,

αt +
|∇α|2

2
+ V (ε−1x) =

ε

2
∆α,(4.2.12)

which becomes a higher dimensional extension of (4.2.11) on setting α = −v, V = ξ.
Since our goal is to find the homogenized Hamiltonian, it is convenient to consider
initial data of the plane wave form

α(x, 0) = p · x.(4.2.13)

We notice that (4.2.12) can be linearized via a logarithmic transform just as in the
Hopf–Cole formula of the Burgers equation. Making the change of variable

α = −ε logw,

we find that w satisfies

wt =
ε

2
∆w + ε−1V (ε−1x)w, w(0, x) = exp(−ε−1p · x).(4.2.14)

By the Feynman–Kac formula,

w(T, x) = Ex

{
exp

(
−p · ξ(ε, T )

ε
+ ε−1

∫ T

0
V

(
ξ(ε, τ)

ε

)
dτ

)}
,(4.2.15)

where ξ(ε, t) = x +
√
εW , W (0) = 0, the n-dimensional Brownian motion. Putting

this expression in (4.2.15) and changing the variable τ to ετ in the integral, we get

w(T, x) = E

{
exp

(
−p · x

ε
− p ·W (T )

ε1/2 +
∫ ε−1T

0
V (W (τ) + ε−1x)dτ

)}
,(4.2.16)

or by Brownian scaling,

w(T, x) = E

{
exp

(
−p · x

ε
− p ·W (ε−1T ) +

∫ ε−1T

0
V (W (τ) + ε−1x)dτ

)}
.(4.2.17)
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Using decay of correlation of the V process, it can be shown for small ε and x �= 0
(x = 0 is obvious) that

αε = p · x− ε logE

{
exp

(
−p ·W (ε−1T ) +

∫ ε−1T

0
V (W (τ))dτ

)}
+ o(1).(4.2.18)

We show that α = αε converges to

p · x− H̄T,

which solves the homogenized H-J equation

αt + H̄(∇α) = 0(4.2.19)

with initial data p · x. To this end, we show that the limit of the second term in
(4.2.18) divided by −T has a well-defined limit H̄ as ε → 0. This gives, in view of
(4.2.18), with t = ε−1T ,

H̄ = lim
t→∞

t−1 logE
{
exp

(
−p ·W (t) +

∫ t

0
V (W (τ))dτ

)}
,(4.2.20)

our first formula for H̄. If we define λ(z) = H̄(−z), then as in section 3, we have the
analogue of formula (3.7.3),

v∗(e) = inf
(e,z)>0

λ(z)
(e, z)

= inf
(e,z)>0

H̄(−z)
(e, z)

.(4.2.21)

The connection between H̄ and µ is µ−1(z) = −H̄(z) or µ(−z) = H̄−1(z). In fact,
formally inverting (4.2.3), we get the negative of the expression in the exponential of
(4.2.20) with V = ξ, except that W (t) replaces t and t replaces τ0. This is easy to
understand because the Wiener process of (4.2.3) starts at t and gets conditioned at
zero, while that of (4.2.20) starts at zero and we look at its position W (t) at time t.
Essentially this is the reason why µ(z) ∼ O(

√
|z| ) and H̄(z) ∼ O(z2) for large z.

One way to justify the inverse relation between µ and H̄ is to work out a formula
for H so that it reduces to the right answer in the periodic case and so that its value
in the random case can be approximated by periodizing the potential V . Let us write

H̄ = lim
t→∞

t−1 logE
{
exp

(
−

∫ t

0
pdW +

∫ t

0
V (W (τ))dτ

)}

and use the Girsanov formula to change the measure from Wiener to P (µ) corre-
sponding to the process

dµ = −pdt + dW.(4.2.22)

Then

H̄ = lim
t→∞

t−1 log Ẽ
{
exp

(
1
2

∫ t

0
|p|2 +

∫ t

0
V (µ(τ))dτ

)}
,(4.2.23)

where Ẽ is the expectation with respect to P (µ).
Thus we have the formula

H̄ =
|p|2
2

+ lim
t→∞

t−1 log Ẽ
{
exp

(∫ t

0
V (µ(τ))dτ

)}
,(4.2.24)
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where µ = −pt+DW (t). This is the type of integral studied extensively by Donsker
and Varadhan [43], [151], [152]. In the periodic case, (4.2.24) asserts that H̄ is |p|2/2
plus the principal eigenvalue of the operator 1

2∆ − p · ∇ + V (y) on the torus Tn.
This is exactly the result of the periodic homogenization! In the random setting,
the limit (4.2.24) has been shown to exist a.s. by Donsker and Varadhan for short-
range potential V using large-deviation techniques. Moreover, a variational formula
is available for H̄ [151], which shows that the periodization approximation converges
in the infinite period limit.

Rigorous justification of the above derivation of the effective Hamiltonian as well
as convergence for general initial data is in progress. In particular, we can show that
the formula (3.7.9) remains true if V is a two-state Markov process, by using (4.2.24)
and taking the inviscid limit. It is interesting to see if the flat piece H̄ persists for
other random potential V .

The extension of Freidlin’s one-dimensional KPP result has been carried out by
Lee and Torcaso [102] to a d-dimensional (d ≥ 2) lattice KPP equation of the form

ut = ∆̃u + ξ(x)u(1− u), t > 0, x ∈ Zd,(4.2.25)

with initial condition u(0, x) = 1 if x = 0, u(0, x) = 0 otherwise. Here

∆̃f(x) =
1
2d

∑
e∈Zd:|e|=1

f(x + e)− f(x),

the discrete Laplacian. The random variables ξ(x) are i.i.d., bounded, and nonnega-
tive. If A is the essential supremum of ξ(0), then they showed that for each vector
e ∈ Zd,

µ(z; e) = lim
t→+∞

1
t
logEtee

∫ τ0
0 (ξ(ηs)+z)ds

is a nonrandom convex function for z < −A. Here ηs is the strong Markov process
on Zd corresponding to the generator ∆̃ starting at te when s = 0, and τ0 is the first
time at which ηs hits zero. The large-time front speed in direction e is

ve = inf
z<−A

z

µ(z; e)
.

Another class of random KPP equations arising from the limit of certain inter-
acting particle systems is of the type

ut = uxx + a(u) + εb(u)Ẇ ,(4.2.26)

where a(u) is a KPP nonlinearity, typically equal to u(1 − u), b(u) is a Lipschitz
continuous function of u, and Ẇ = Ẇ (x, t) is a space-time white noise. Recently,
Mueller and Sowers [118] investigated random traveling fronts in a special form of
(4.2.26),

ut = uxx + u− u2 + ε
√

u(1− u)Ẇ ,(4.2.27)

with the initial data u0 = I(−∞,a).
Equation (4.2.27) is closely related to the so-called historical process ; see Dawson

and Perkins [42] for details. Simply put, the historical process is a measure on the
sets of paths over a time period [0, t0], which represents the past history up to time
t0 of a cloud of infinitesimally small particles whose density at time t is u(x, t). The
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particles move according to independent Brownian motions, and they give birth and
die. There is an excess of births over deaths, which has a size of 1−u. An interesting
property of this process is that a small collection of particles dies out quickly for large
values of x for the given initial density u0, which implies that solution u has a compact
support on the positive x-axis. By symmetry of the solutions, u is also equal to 1
outside a compact interval. Dawson and Perkins then define the location of the wave
front to be

b(t) = sup{x ∈ R : u(x, t) > 0}.(4.2.28)

The main results proved in [118] can be summarized as follows.
Theorem 4.4. Consider a solution u of (4.2.27) with initial data I(−∞,a), a > 0.

With probability 1, 0 ≤ u ≤ 1 for all (x, t). For ε small enough, the solution u behaves
like a moving front with the following properties.

(1) (front speed and shape) With probability 1, limt→∞ b(t)/t exists and lies in
(0,+∞), and this limit depends on ε. The law of the front profile v(x, t) = u(b(t)+x, t)
tends towards a stationary limit as t→∞.

(2) (front width) Let I(t) = [a(t), b(t)] be the smallest closed interval such that
u = 1 for x < a(t) and u = 0 for x > b(t). Then with probability 1, I(t) is a compact
interval for all t ≥ 0.

This theorem seems to be the first on KPP random fronts that provides infor-
mation on front shape and width in addition to front speed. The almost-sure finite
front width property is reminiscent of the viscous Burgers front under white noise
perturbation. It would be interesting to find out if b(t) obeys a central limit theorem
and whether ε-dependent upper and lower bounds on the asymptotic wave speed can
be obtained.

4.3. KPP Fronts in Turbulent Shear Flows. Recently, Majda and Souganidis
[107] studied upper bounds on front speeds in the KPP equation with fractal and
smooth shear flow advection field,

Tt −
κ

2
∆T + vλ(x)Ty + wTx + KT (T − 1) = 0, R

2 × (0,+∞),(4.3.1)

with initial data T (x, y, 0) = T0 = 1 if y < 0, T (x, y, 0) = T0 = 0 if y > 0. Here
T is the temperature of a combustion front, κ > 0 is the diffusion constant, K > 0
is the reaction rate constant, and w > 0 is the constant sweeping velocity. Shear
flow is a special incompressible field depending spatially only on one variable x. The
velocity field vλ(x) is a stationary zero-mean Gaussian random field with the spectral
representation

vλ(x) = (2π)−1/2V0

∫
|k|≥λ

eixkψ1/2(|k|)|k|−1/2−HW (dk),(4.3.2)

where the parameter H, the Hurst exponent, satisfies H < 1, with H ∈ (0, 1) being
the usual turbulence regime. In (4.3.2), W (dk) is a complex Gaussian white noise
with

〈W (dk)W (dk′)〉 = δ(k + k′) dk dk′.

Here 〈·〉 means averaging with respect to velocity statistics. The function ψ is a
nonnegative, continuous, rapidly decreasing function with ψ(0) = 1. It is used to
prevent divergence for large |k|, hence it is called the ultraviolet cutoff. The infrared
cutoff for small |k| is the parameter λ, λ� 1. Majda and Souganidis were interested
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in the limit as λ → 0 of solutions of (4.3.1) to understand how front propagation is
influenced by a fully developed turbulent shear flow.

The behavior of the velocity field vλ as λ → 0 is completely different depending
on whether H satisfies H < 0 or 0 < H < 1. For H < 0, the second velocity moment
or mean energy 〈v2

λ(0)〉 has a finite limit as λ→ 0, while if H ∈ (0, 1), there is infrared
divergence of the mean energy, and the velocity difference satisfies for |x| � 1

lim
λ→0
〈(vλ(x + x′)− vλ(x′))2 〉 = C2

HV 2
0 |x|2H ,(4.3.3)

where CH is a universal constant. Due to (4.3.2) and the scaling properties of W ,
vλ(λ−1x) = λ−HVλ(x) in law, where

Vλ(x) = (2π)−1/2V0

∫
|k|≥1

eixkψ1/2(λ|k|)|k|−1/2−HW (dk),(4.3.4)

whose correlation function is

〈Vλ(x)Vλ(0)〉 =
∫
|k|≥1

eixkψ(λ|k|)|k|−1−2Hdk,(4.3.5)

where |k|−1−2H is the energy spectrum (H = 1
3 is the Kolmogorov exponent). It

follows from (4.3.5) that if H ∈ (0, 1), Vλ converges to V locally uniformly with
probability 1, and V is Hölder continuous with exponent arbitrarily close to H. As
a consequence, one expects that there is anomalous enhancement of the front speeds
due to front wrinkling at all scales by the shear flow field. On the other hand, if
H < 0, the velocity field has finite mean energy and its sample paths are smooth (due
to the cutoff ψ, the correlation function of vλ is smooth). The authors illustrated this
transitional phenomenon through the behavior of upper bounds of front speeds in the
y direction. The following scaling of solutions is introduced:

Tλ(x, y, t) = T (λ−1x, α(λ)−1y, β(λ)−1t).(4.3.6)

The results of [107] can be summarized as follows.
Theorem 4.5. (1) (fractal case, H ∈ (0, 1)) Choose α(λ) = λ1+H and β(λ) = λ

in (4.3.6). There is a universal constant C̃H depending on |x| + t and CH in (4.3.3)
such that as λ→ 0, Tλ → 0 a.s. for large t, provided

y > V0C̃H(2κK)H/2t1+H .(4.3.7)

For the ensemble-averaged solutions, choose β(λ) = α(λ)2/3λ−2H/3, so that λβ−1(λ)→
0 as λ→ 0. Then as λ→ 0, 〈Tλ 〉 → 0 for

y > (2κKC0)1/2t3/2,(4.3.8)

with C0 = V 2
0

∫
|k|≥1 |k|−1−2Hdk.

(2) (smooth case, H < 0) Choose α(λ) = λ| lnλ|1/2 and β(λ) = λ. Then for
almost every realization of the velocity field, there is a constant C depending on that
realization and an absolute constant c0 such that as λ → 0, Tλ(x, y, t) → 0 for large
t, provided

y > CV0c0(ln(|x|+ t))1/2t.(4.3.9)

For ensemble-averaged solutions, choose α(λ) = λ and β(λ) = λ. Then as λ → 0,
〈Tλ 〉 → 0 for

y > (2κK)1/2t.(4.3.10)
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The upper bound (4.3.7) suggests that in the fractal regime, turbulent fronts
accelerate with the anomalous propagation law y = O(tp), p ∈ (1, 1 + H]. We see
from (4.3.7) and (4.3.8) that in the fractal regime, the front speed scaling in the
averaged front is very different from that of individual realization, which is called
non-self-averaging and is attributed to strong intermittency of the flow field.

To find the above upper bounds, the authors worked with the upper solution T̄λ

of Tλ. In the fractal regime and the related scaling, Tλ satisfies

Tλ − κ

2
(λTλ

xx + λ1+2HTλ
yy) + Vλ(x)Tλ

y + wTλ
x +

K

λ
Tλ(Tλ − 1) = 0.(4.3.11)

The upper solution T̄λ solves the linear advection-diffusion equation

T̄λ − κ

2
(λT̄λ

xx + λ1+2H T̄λ
yy) + Vλ(x)T̄λ

y + wT̄λ
x −

K

λ
T̄λ = 0(4.3.12)

with the same initial data. Equation (4.3.12) can be analyzed via the Feynman–Kac
path integral representation of solutions and the almost sure regularity and growth
estimates of velocity field. The other upper bounds are obtained in the same manner.

Certainly, finding the same type of lower bounds will be delicate and quite nec-
essary for confirming the front acceleration in the fractal regime. Note also that the
above upper bounds hold for all the other non-KPP nonlinearities as well.

We mention in passing that Malham and Xin [109] recently studied the front
solutions to the coupled Navier–Stokes and R-D system (Boussinesq system)

ψt + u · ∇ψ = ∆ψ − ψθm, ∇ · u = 0,

θt + u · ∇θ = d∆θ + ψθm,

ut + u · ∇u = ν∆u−∇p + σθez(4.3.13)

on the infinite tube Ω = {(x, y) ∈ Ω′ × R}, with Ω′ a bounded domain in Rn−1,
n = 2, 3, with front initial data. For all m ≥ 1 if n = 2, and for m = 1, 2, 3 if n = 3,
the front speeds are bounded from above by O(ect), c = c(d, ν, σ) > 0. Here d > 0 is
the Lewis number, ν > 0 is the fluid viscosity, and σ > 0 is the Rayleigh number. In
the laminar regime, when ν is suitably bounded away from zero, under the additional
assumptions of small coupling σ and d = 1, they showed that front speeds are O(1).
These are complementary deterministic results.

4.4. Modeling Fronts in Random Media. There is a rich literature of modeling
activities in the combustion community on premixed turbulent flame fronts. We
refer the readers to the excellent recent review article by Ronney [134]. Some of the
fundamental questions are the existence of a turbulent burning velocity (ST ), the
role of the velocity spectrum on ST , and quenching of flames by turbulence. These
questions can be asked also for the passive reaction-diffusion-advection equation

ut + v · ∇u = ν∆u + f(u),(4.4.1)

where the incompressible random velocity v is assumed to have the turbulent spectrum
and ensemble mean zero; f is the reaction term of interest, and ν > 0 is the viscosity
coefficient. For applications, the number of space dimensions is two or three. Can one
find conditions on v so that an effective front speed ST is well defined for large-time
front propagation? If so, how does it depend on the spectrum of v?

A “folklore” result for ST in the regime of small flame thickness is

ST /SL = AT /AL,(4.4.2)
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where AT is the surface area of the wrinkled front due to turbulent velocity v, AL

is the cross-sectional area with respect to the direction of front propagation, and SL
is the laminar velocity (say, the natural chemical front speed when v = 0). When
the flame thickness is small, a flame front can be approximated by a surface that is
wrinkled by the turbulent velocity. The problem is reduced to determining the surface
area increase due to wrinkling. Yet it is highly nontrivial how AT depends on v. Let
U be the ratio of the rms’s of v and SL. The Clavin–Williams [36] relation for small
U is

ST /SL ∼ 1 + U2,(4.4.3)

which has been confirmed in the case of a periodic flow field by Papanicolaou and
Xin [126]. Recently, Kerstein and Ashurst [98] suggested that the Clavin–Williams
relation may be applicable only to periodic flows (see also [3]). They proposed instead

ST /SL ∼ 1 + U4/3(4.4.4)

for random flows. Their simulation also showed that the front has to propagate a
long distance, on the order of O(U−2/3LI), before reaching the steady flame speed in
(4.4.4). Here LI is the integral scale of the turbulent velocity v. For small U , this
time scale is very large for computation as well as experiments. It will be extremely
interesting to establish (4.4.4) in a rigorous way. For large values of U , the enhance-
ment of propagation speed is shown experimentally to level off, as seen in Figure 3 of
[134].

Another feature of the combustion modeling is that instead of simulating a reac-
tion-diffusion-advection equation like (4.4.1), a popular H-J (so-called) G-equation

Gt + v · ∇G = SL|∇G|(4.4.5)

is used. The G-equation was proposed by Kerstein, Ashurst, and Williams [97] so
that the level set of G represents a flame surface under the wrinkling of turbulent
velocity v. Direct numerical simulations have been performed for small values of U
where SL is not too small compared with v. In the context of the G-equation, ST
is defined as SL〈|∇G|〉. Yakhot [165] used a renormalization expansion procedure to
find the more general relation for ST as

UT = e(U/UT )p(4.4.6)

with p = 2, where UT = ST /SL. For large U , (4.4.5) implies that UT is approximately
U/
√

lnU . In [98], (4.4.6) is modified to a power p = 4/3 inside the exponential.
Peters [128] studied the mean and variance of G within closure approximations and
also modeled additional effects such as curvature and local flow straining.

What determines the different power laws in (4.4.3), (4.4.4), and (4.4.6) is rec-
ognized to be the energy spectrum of v, i.e., the way the fluid energy is distributed
in wavenumber space [134]. Typically, high Reynolds number flows have a broad
range of scales, which tends to increase the wrinkled flame surface areas and so ST .
On the other hand, if too much energy is concentrated in a narrow range of scales,
islands of reactants can form and decrease the effective flame surface area, making
ST smaller. An analysis of island formation is given in Joulin and Sivashinsky [92].
For an interesting experimental comparison of flame speeds in the presence of single-
and multiple-scale Taylor–Couette flows (flows in the annulus between two concentric
cylinders), see Shy et al. [143], Ronney, Haslam, and Rhys [135], and Figure 4 of [134].
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H-J equations with random coefficients similar to the G-equation (4.4.5) also
arise in understanding the formation and roughening of nonequilibrium interfaces; see
Kardar, Parisi, and Zhang (KPZ) [94], Barabási and Stanley [6], Family and Vicsek
[55], and references therein. These random H-J equations, known as KPZ equations,
are of the form

ht = νxhxx + νyhyy +
λx
2
h2
x +

λy
2
h2
y + η,(4.4.7)

where the constants νx, λx, etc., are measurable parameters of the underlying phys-
ical processes and η = η(x, y, t) is a Gaussian noise. A common property of most
rough interfaces observed experimentally or in discrete models is that their roughen-
ing obeys simple power laws. The morphology and dynamics of a rough interface can
be characterized by the surface width w(t, L), defined as

w2(t, L) = 〈[h(x, t)− h̄(t)]2 〉 = L2αf(t/Lz),(4.4.8)

where α is the roughness exponent of the interface described by its height h(x, t), z
is the dynamic exponent characterizing the scaling of the relaxation times with the
system size L, h̄(t) is the mean height of the interface at time t, and 〈·〉 denotes both
ensemble and space average. The scaling function f = f(u) behaves like f ∼ u2α/z

for small u and f ∼ const. for large u. Such a surface roughening phenomenon
occurs in technologically important processes such as sputter etching, where surface
morphology evolves due to erosion. Usually one relies on numerical simulation and
physical reasoning or a formal renormalization method to substantiate (4.4.8).

A scaling and roughening study of flame fronts is discussed in Provatas et al. [131]
using a model of two coupled R-D equations for temperature and reactant concentra-
tion,

Tt = D∆xT − Γ(T − T0) + R(T,C), x ∈ R2,

λ1Ct = −R(T,C),(4.4.9)

where R(T,C) = λ2T
3/2e−A/TC, the Arrhenius reaction, λ2 and A are positive con-

stants, T0 is the background temperature, and random concentration initial data
C0(x) are given. The function C0 is equal to 1 with probability c and 0 with prob-
ability 1 − c. The average initial concentration is c. Interestingly, (4.4.9) can model
forest fires with appropriate values of its parameters. The authors showed that there
is a threshold c∗ below which no temperature fronts propagate and above which fronts
propagate. A mean field theory of percolation is developed to explain the transition.
For c > c∗, the moving T interface develops large fluctuations and appears rough.
The roughness scales like the solutions of the KPZ equation. In the long-wavelength
and almost-uniform background concentration limit, the KPZ equation is derived for
the interface.

4.5. Summary, Figures, and Concluding Remarks. We have shown that there
are two types of random media, the tame and the wild. Tame random media sat-
isfy finite moment conditions and exhibit short correlations. There is a nice analogy
between fronts in tame random media and the classical central limit theorem in proba-
bility. We showed that the front locations in equations of Burgers type obey Gaussian
statistics and the central limit theorem. The Burgers equation with random flux is
also a place to apply the homogenization of the random H-J equation, which is em-
ployed shortly after to derive the KPP front speeds in random media obtained by the
large deviation approach. We also presented a model KPP equation with space-time
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Fig. 4 Covariance function for the random coefficients. Adapted from M. Postel and J. Xin, Comp.
Geosci., 1 (1997), pp. 251–270, by permission of Baltzer Science Publishers.

white noise, where the front width is a.s. finite and the front speed and shape exist
in a proper sense.

For wild (turbulent) random media, we motivated the anomalous phenomena with
stable laws in probability and the linear advection-diffusion problem. Later the upper
bounds of front speeds in a turbulent shear flow suggested that front speed anomalies
exist and front acceleration occurs. We finally illustrated the related modeling issues
in turbulent premixed combustion and the usefulness of the KPZ equation (a noisy
H-J equation) in understanding the evolution of stochastic interfaces in industrial
applications.

Let us show some figures on fronts to contrast different media and models and also
to help bring out some future research problems. Figures 4–8 come from simulations
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Fig. 5 Front position for correlation lengths 1/5 and 1/10. Adapted from M. Postel and J. Xin,
Comp. Geosci., 1 (1997), pp. 251–270, by permission of Baltzer Science Publishers.

of the random conservative equation(
u + k(x, ω)

u

1 + u

)
t

= 0.02uxx − ux

in the moving frame y = x − st, with boundary conditions u(t,−∞) = 1 and
u(t,+∞) = 0. The random stationary process k(x, ω) has mean 〈k〉 = 1 and stan-
dard deviation σk = 0.29. It is constructed as follows. First, we generate the values
of k at discrete points with spacing δr by ki = βki−1 + ηi, where β ∈ (0, 1) and the
ηi’s are uniformly distributed random variables. The variables ki are correlated with
covariance 〈ki − 〈k〉〉 · 〈ki+n − 〈k〉〉 = σ2

kβ
n and correlation length lc ≡ −δr/ log β.
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Fig. 6 Mean and variance of the front position for correlation lengths 1/5 and 1/10. Adapted from
M. Postel and J. Xin, Comp. Geosci., 1 (1997), pp. 251–270, by permission of Baltzer Science
Publishers.

Then we put numerical grid points in the spacing δr, with grid size δy = M−1δr,
M ≥ 1. The values of k at the grid points are obtained from linear interpolation.
Figure 4 shows the covariance function of the process k with M = 1, 10, and 20 for
small and large lag (separation). The curves decay to zero exponentially for large lag
in the same way and differ only slightly for small lag.

For the generated k, the front speed is calculated theoretically according to for-
mula (3.9.4). The numerical domain is the interval y ∈ [0, 17.5], with u = 1 at y = 0,
u = 0 at y = 17.5, and δy = 0.025, δt = 0.1. An upwind finite difference approxi-
mation is used. The initial front starts at y = 8. We see in Figure 5 that the front
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Fig. 7 Influence of randomness on front shape. Adapted from M. Postel and J. Xin, Comp. Geosci.,
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location of a single realization fluctuates about the mean position, which is the one
predicted by (3.9.4), the homogeneous front location, and is very close to the averaged
(over 1000 realizations) front location. For different realizations and different correla-
tion lengths, we can have either the up or the down fluctuation. In Figure 6, we show
the mean front location and the standard deviations averaged over 1000 realizations
for three correlation lengths. The parabolic shapes of the curves of standard deviation
vs. time show the

√
t scaling. In Figure 7, we show the front shapes. In the top-left

frame, three single realizations jump about the mean position. The fronts look the
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same since the front width is comparable to the spatial scale of k. In the top-right
frame, we average the fronts over 10, 100, and 1000 realizations. In the 10-realization
averaging, we see the appearance of spatial structures inside the fronts as they are
being widened. The bottom two frames are the corresponding differences between
the random and homogeneous fronts. In Figure 8, we plot the

√
t-normalized front

deviation σx vs.
√
lc and σk. The linear dependence in either case is evident, and

suggests the empirical formula σx = const.σk
√
lc, which is derivable from (4.1.26). In

fact, summing up σ2
kβ

n/n provides a discrete approximation to σ2
a. So, for small β,

σ2
a = σ2

k(1− β)−1 ∼ −σ
2
k

log β
= σ2

klc/δr,

and upon substitution into (4.1.26) we get the σk
√
lc factor. In fact, with the simula-

tion parameters, the prefactor constant obtained from the above approximation and
(4.1.26) is 2.357, while direct simulation gives 2.65, a very good agreement [129].

These computational results suggest the following problems.
• Study the statistics of front locations for convex scalar conservation laws with

randomness and establish a central limit theorem. Also study the statistics of R-D
fronts. A first step is to carry out numerical simulations of KPP fronts to collect
evidence of a Gaussian law.
• Study further the qualitative properties of R-D front speeds, such as enhance-

ment phenomena, by employing variational methods. In the KPP case, it would be
interesting to obtain bounds on the µ function for a given random medium.
• Investigate the proper extension of the periodic homogenization results of [105]

to the random H-J equation and analyze properties of the effective Hamiltonian.
Equally interesting is the problem of establishing the KPP front speeds via the H-J
formalism that we adopted here to derive the known KPP results. Since random H-J
equations arise in many other applications as well, they play the role of universal
equations for front propagation problems.
• Study the anomalous propagation law for fronts in turbulent media.
It is clear that studies of fronts in heterogeneous and, in particular, in random

media are at the beginning stage. We hope that the ideas, techniques, and results
discussed in this review will benefit future researchers in this rich and exciting area.
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