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Abstract 

We study the front dynamics of the bistable reaction-diffusion equations with periodic diffusion and/or convection 
coefficients in several space dimensions. When traveling wave solutions exist, the solutions of the initial value problem 
behave as wave fronts propagating with the effective speeds of traveling waves under various initial conditions. Yet due to 
the bistable nature of the nonlinearity, traveling waves may not always exist when the medium variations from the mean 
states are large enough. Their existence is closely related to the detailed forms of diffusion and convection coefficients, 
more so in multidimension than in one. We present a simple sufficient condition for the nonexistence of traveling waves 
(quenching) using perturbation method. Our two dimensional finite difference numerical computations show a variety of 
front behaviors, such as: the propagation, quenching and retreat of fronts. We found numerically that quenching occurs in 
two space dimensions when diffusion is spatially uniform and convection field is a periodic array of rotating vortices if the 
root mean square of the convection field reaches a critical number. 

I .  Introduction 

In this paper, we study the front dynamics of the solutions of the following reaction-diffusion (R-D) 

equations: 

ut = V x .  ( a ( X ) V x U )  + b ( x )  . VxU + f ( u ) ,  

ult__o = uo( x )  , (1:1) 

under the assumptions: 
(A1) a ( x )  = ( a i j ( x ) ) ,  x = (Xl ,X2 , . . .  ,Xn) C R n is a smooth positive-definite matrix on R n, 1-periodic in 

each direction xi; 
(A2)  b ( x )  = ( b j ( x ) )  is a smooth divergence free vector field, 1-periodic in each direction xi, and has mean 

equal to zero; 

(A3) f ( u )  is a bistable nonlinearity, i.e., f ( u )  = u(1 - u ) ( u  - tz) ,  for s o m e / z  E (0, 1 /2) .  
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The simple form of the function f in (A3) is chosen for convenience, and more general bistable nonlinearities 
will not essentially change the results in this paper. The initial condition ~ u0 (x) is continuous and ranges between 

0 a n d  1. 
Equations of the form (1.1) appear in the study of premixed flame propagation through turbulence media, 

see Clavin and Williams [13], where u is the temperature of the combustible gas, b(x)  is the prescribed 
turbulent incompressible fluid velocity field with zero ensemble mean, f ( u )  is the Arrhenius reaction term, and 
a(x )  is taken as a constant matrix. In [13], based on their formal asymptotic analysis in the large activation 
temperature limit, Clavin and Williams found that the temperature "profile" u propagates with effective turbulent 
flame speed. To avoid the difficulty of  dealing with complex flows involving a wide range of spatial and temporal 
scales such as turbulence, we consider here the very special periodic case. Typically, the flow fields b(x)  are 

made of a periodic array of vortices. As we will see, this simplification preserves the basic propagation feature 
of the problem and the related dynamic properties of solutions; moreover it eases our task of understanding 
the interaction between nonlinearities and inhomogeneities. For a work in the same spirit, see Berestycki and 
Sivashinsky [ 10]. 

The inhomogeneous diffusion matrix a(x)  arises in solute transport problems of hydrology, see Dagan and 

Neuman [ 15], where u is the concentration of the solute substance, b(x)  is the steady incompressible fluid 
velocity with homogeneous statistics, and a(x)  is the so called pore-scale dispersion tensor. Eq. (1.1) is thus 
related to both of these applications above on a formal level. 

When f ( u )  is a combustion nonlinearity, which is an approximation of the Arrhenius reaction with an ignition 
temperature cutoff (see Berestycki, Nicolaenko and Scheurer [4], Berestycki and Larrouturou [8] among 
others), traveling wave solutions exist for any a(x)  and b(x)  satisfying (A1) , (A2) ,  see Xin [34]. They are of 
the form u = U(k.  x - ct, x) ,  where k is a constant unit vector i.n ~n, c = c(k)  is the unknown wave speed along 

direction k; U as function of s =_ k .  x - c ( k ) t ,  and y - x, satisfies the boundary conditions U ( - c ~ , y )  = O, 

U( +c~,  y) = 1, and U(s , .  ) has period 1. Moreover, for a large class of front-like or pulse-like initial conditions, 
the solutions of  the initial value problem behave as wave fronts propagating with the effective speeds c(k)  of 
the traveling waves in all suitable directions, see Xin [35]. This is then the mathematical justification in the 
periodic case of  the effective propagation phenomena of flame fronts in statistically homogeneous media as 
observed by Clavin and Williams. 

When f ( u )  is the KPP (the Kolmogorov-Petrovsky-Piskunov) nonlinearity, e.g. f ( u )  = u( 1 - u ) ,  effective 
wave front propagation is shown in periodic case as well as in one-space-dimensional random case for pulse-like 
initial data, see Freidlin [ 18]. He uses probabilistic representation and large deviation techniques, which seem 
to work only for the KPP-like nonlinearities. 

One common feature of  the combustion and KPP nonlinearities is that they do not change sign on the interval 
[0, 1]. The fact that the bistable nonlinearities change sign on [0, 1] makes it much harder to obtain a general 
existence theory of traveling waves for (1.1). In fact, there are examples (both analytical and numerical) in the 
one space dimension showing that standing waves taking 0 and 1 at infinities exist when the variations of  the 
media are large enough, see Xin [35]. By maximum principle, this implies that traveling waves do not exist 
in those examples and quenching occurs. Quenching does not occur for Eq. (1.1) if  f ( u )  is a combustion or 
KPP nonlinearity, see Xin [34] and Freidlin [ 18]. On the other hand, we know that traveling waves exist up to 
a critical level of medium variation, see Xin [32] and [34]. Whether one can remove the critical obstruction 
to existence is a case by case issue. 

In this paper, we derive a sufficient condition for nonexistence or quenching of multidimensional traveling 
waves by perturbing around the known stationary solution of the constant coefficient bistable reaction-diffusion 
equation wi th /z  = 1/2. The sufficient (quenching) condition comes as the solvability condition of the pertur- 
bation scheme for constructing a stationary solution to Eq. (1.1). We show both positive examples that satisfy 
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the quenching conditions and negative ones where the quenching condition fails and we are unable to conclude 
analytically. In our numerical simulation of the positive examples, quenching indeed occurs. We also observe 
the subsequent retreat of fronts and offer our interpretations of this phenomenon. One of the most interesting 
negative examples is when a ( x )  is the identity matrix, and b ( x )  satisfies (A2). Existence of traveling waves 

or standing waves holds if b ( x )  is a shear flow and waves are moving along the shearing direction. This 
follows easily from the work of Berestycki and Nirenberg [7]. It seems not obvious when the standing waves 
appear, and we have not observed them within the scope of our numerical computations. How about other kind 
of divergence free mean zero flows? Our numerical computations indicate that quenching occurs in two space 
dimensions when b ( x )  is a periodic array of rotating vortices if the root mean square value of the flow fields 
reaches certain critical number. 

The rest of  the paper is organized as follows. In Section 2, we review the known existence theory of traveling 
waves as well as the propagation theorems if the traveling waves exist. In Section 3, we present the sufficient 
quenching condition, and examples that satisfy or fail to satisfy this condition. In Section 4, we describe the 
details of  our finite difference schemes, and the constructions of the rotating vortex flow field. In Section 5, we 
show the numerical results for the examples in Section 3 when the space dimension is equal to two. Section 6 

is the final conclusion. 

2. Traveling waves and front propagation 

We consider the traveling waves solutions of Eq. (1.1) of the form u ( x , t )  = U ( k  • x - ct,  x ) ,  where k 
is a constant vector in ~n; c, the wave speed, is an unknown constant depending on k; U, as a function of 
s = k .  x - c t ,  and y = x, satisfies the boundary conditions U ( - c ~ , y )  = O, U(+cxz, y )  = 1, and U(s ,  .) has 

period 1. Upon substitution into Eq. (1.1), we obtain the following equation for U = U(s ,  y )  and c: 

(kOs + ~y) ( a ( y )  (kOs + ~y)U) -[- b ( y )  • (kOs + ~y)U -~- cU s -[- f ( U )  = O, 

U ( - c ~ , y )  = O, U ( + c ~ , y )  = 1, U ( s , . )  has period 1 (2.1) 

Eq. (2.1) is a degenerate elliptic equation on the infinite cylinder ~1 x T n, T n being the n-dimensional unit 

toms. We have 

Theorem 2.1. (Existence). Let ~ = fT, a ( x ) d x ,  and assume that (A1) - (A3)  are valid. There is a positive 
number 8or, such that if Ila(x) - a l l m < T ° )  < ~cr, and IIb(x)ll,P<T.) < ~cr, where s = s (n )  > n +  1, there exist 
classical solutions (U(s ,  y) ,  c) of Eq. (2.1) satisfying all the boundary conditions, and that 

0 < U <  1, V ( s , y )  E R I × T  n , 

U s > O ,  V(s ,y)  C R  1 × T  n, 

c < 0 .  

(2.2) 

(2.3) 

(2.4) 

For a proof, we refer to Xin [35] or [32] and [34]. The number 6cr may be infinite. The following are main 
properties of traveling waves if they exist. 

Theorem 2.2. (Monotonicity and Uniqueness). Under assumptions ( A 1 ) - ( A 3 ) ,  any classical solutions (U, c) 
satisfy (2.2), (2.3), and (2.4). Moreover, if ( U ' , c  t) is another classical solution, then c t = c, and UP(s ,y )  = 

U ( s +  so, y )  for some so c I~ 1. 
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We refer to Xin [33] for a proof. 
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Remark 2.1. For corresponding theorems when f ( u )  is a combustion nonlinearity, see Xin [35]. In particular, 
existence of traveling waves holds without restriction on the variation of coefficients from their mean states as 
may happen in Theorem 2.1. 

Assuming that the traveling waves exist, we have 

Theorem 2.3. (Front Propagation). Let us consider the initial value problem for Eq. (1.1) with initial data 
0 <_ Uo(X) < 1. Assume that the traveling wave solutions U ( k . x - c ( k ) t , x )  exist, for any unit vectors k E ]R n. 
Let s E R1 and define the plane orthogonal to k by S = S(k) ,  i.e. 

S = {y E Rnly = x - ( k .  x ) k ,  Vx c ~ } .  

I. Suppose that 

lim sup u0 (x) < IX, 
k 0 .x----+ - -  o o  

l iminf  uo ( x ) > IX, 
ko.x---~+cx~ 

uniformly in S(k0), for some k0 ~ ]R ~. Then 

l i m u ( t ,  sk0t) = [  l ' i f  s > c ( k o ) ,  
t ~  L O, i f  s < c(ko). 

II. Suppose that 

l imsup uo ( x ) < IX, 

uo(x) > IX + ~7, for Ixl < L, 

where r / and  L are positive constants, and L >_ L0 = L0(7/) > 0. Then 

lim u(t,  skt) = ~ 1, i f c ( k )  < s < - c ( - k ) ,  
t ~  L 0, if s < c(k)  or s > - c ( - k ) .  

For a proof, we refer to Xin [35]. 
Suppose now that a(x)  is the identity matrix, b(x)  = (b j ( x ) ) ,  j = 1 , . . .  ,n, b l (x )  = bl (X2, . . .  , x , ) ,  and 

bj(x)  = 0, for j > 2. This kind of vector fields b(x)  is often called shear flows. Let us consider traveling 
waves going along xl direction, i.e., k = ( 1 , 0 , . . .  ,0) ,  U = U(xl - ct, y) ,  where y --- (x2 , - . .  ,Xn). Note that 
the traveling waves along xj, j > 2, directions are just the waves in the constant coefficient problem. Eq. (2.1) 
now reduces to 

As, yU + (c + b l (y )  )Us + f ( U )  = 0 ,  

U ( - c o , y )  = O, U(+co,  y) = 1, U(s , . )  has period 1. (2.5) 

We have 

Theorem 2.4. (Existence, Shear Flows). Consider Eq. (2.5) with a smooth mean zero periodic function bl (y)  
and its boundary conditions. Then there exist unique solutions (U(s ,  y) ,  c) up to constant translation in s, and 
(U,c) satisfy (2.2) and (2.3). 
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We remark that Eq. (2.5) describes both traveling waves ( i f  c ~ 0) and standing waves ( i f  c = 0),  while 

Eq. (2.1) in general only makes sense for traveling waves (c  ~ 0 ) .  In other words, traveling waves and standing 
waves are o f  different functional forms except in the special shear flow case. It seems not obvious that the wave 

speed c in (2.5) is never zero. However, within the range of  our numerical calculations, we have not observed 

any standing waves. For details o f  the numerical schemes we use, see Section 4. 

The proof  o f  the above theorem follows that of  Theorem 1.3 in Berestycki and Nirenberg [7] where they 
showed the existence of  a solution to Eq .  (2.5) with y belonging to a bounded convex domain oJ o f  R n-l, and 

U~, the exterior normal derivative of  U on the boundary o f  cylindrical domain o~ x R 1, equal to zero. Their 

proof  relies on the fact that any nonconstant solution of  the problem 

AyU + f ( u )  =0 ,  y e w ,  (2.6) 

u ~ = 0 ,  y E 0 w ,  (2.7) 

is unstable if  oJ is convex. Problem (2.6) is the limiting equation of  (2.5) as s tends to infinities, since Us 

vanishes in the limit. The instability of  a solution u means that the linearized operator around it: 

Ay~b -t- f t  ( u )~O, (2.8) 

has a positive principal eigenvalue with the same Neumann boundary condition. 
The instability of  nonconstant solutions is even easier to see in case of  periodic boundary condition. Actually, 

differentiating Eq. (2.6) with respect to yj,  j = 1 . . . . .  n, shows that each of  OyjU is in the kernel o f  the 
linearized operator (2.8). I f  U is nonconstant, then one of  them should be nonzero, hence an eigenfunction 

corresponding to the eigenvalue zero. Obviously, Oy s U cannot have a definite sign, since its average over T n-1 
is zero. By the Krein-Rutman theorem, the principal eigenvalue should be the largest one on the real axis and 

the principal eigenfuntion should be strictly positive (negative). Thus zero is not the principal eigenvalue, and 

the principal eigenvalue must be positive. We refer to [7] for all the other details of  the proof. 

3. A sufficient condition for quenching 

In this section, we derive a sufficient condition for quenching in any space dimensions. For convenience, we 

construct stationary solutions to Eq. (1.1) along the x~ direction. 

Set x = ( x l , y ) ,  y = ( x 2 , . . .  ,Xn) and consider the problem: 

~Tx( a ( x )  ~TxU) + b ( x )  • ~TxU + / z 2 f ( u )  = 0, (3.1) 

u ( - c ~ , y )  = 0 ,  u(+cx~,y)  = 0 ,  (u (O,y ) )y  = 1 / 2 , u ( x , . )  has period 1 (3.2) 

where a ( x )  = Id  + 8 A a l ( x ) ,  161 << 1, A E ]R 1, a s (x )  = ( a ~ ( x ) )  is a smooth 1-periodic symmetric n by n 
matrix; b ( x )  = 8Abl ( x ) ,  where bl(X) = ( b l , j ( x ) )  is a smooth mean zero divergence free vector field; ~ is a 
positive constant, f ( u ) = u( 1 - u) ( u - ½ + 6) ; (. ) y means taking the average of  the function inside the bracket 

over y E T n-1. 
Write u = ~o~(xl) + 6 v ( x ) ,  and f ( u )  = f o ( u )  + 6u(1 - u) ,  where f o ( u )  = u(1 - u ) ( u  - ½), and ~o~(xa) 

is the known solution of: 

= (3.3) ~XIXI -+-/x2f0(~ °g) 0, ~og(-c~)  = 0, ~og(+oo) = 1, ~os~(0) = ½. 

Moreover, ~OX~l > 0, ~og(xl) = ~Ol(/ZXl), ~oi(xl) being the solution to (3.3) with /z = 1, and ~ox~l(-xl) = 

~Ox~l(Xl). Substituting v for u in (3.1) gives 
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Vx( 1 + 6Aal) (Vxq~ ~ + 6VxV) + ~Ab~ (Vx~O ~ + t3VxV) +/x2f(~o u + t3v) = 0, (3.4) 

o r  

/x 
(~/~XlXI -t- 6 A x /)) "q-- 6AVx(al (Vxq~ q- 6VxV) ) d- 6Abl (x) • Vxq¢ ~ 

-4-~2Abl (x) • VxO +/x2f(q~ g + ~v) = 0, 

or by (3.3): 

t3 A x v + 8AVx(al (Vx~O u + 8VxV) ) + t3Abl (x) • Vx~O t~ 

+62ab~ ( x )  • V~v + ~ 2 ( f ( ¢  + 6v) - f o ( ¢ ' ) )  = 0. 

Cancelling 6 to get 

AxV + AVx(al (XTxCptz + t3XTxV) ) + Abl ( x) • Vx~O ~ + t3Abl • VxV + I.L2 t3 -1 ( f ( ~o ~ + t3v) - fo(  ~o t') ) = O. 
(3.5) 

Eq. (3.5) can be written as: 

AxV +/~2f~(q~) v -- R = R(v) = - A V x (  al Vxq~ t*) - aBVx( al VxV) - Abl • X~xCplz - 8Abl • VxV 

--llLl,2~vEfot(~lJ') +/tt2~2V 3 - - /£2(1  -- q~ -- ~ V ) ( ~  + ~V). 

(3.6) 

The linear operator (on L2(]~ 1 × T n-1 ) ) on the left hand side of (3.6) has a one dimensional kernel spanned 
by ~oXgl, and zero is a simple eigenvalue due to v being periodic in y. Regarding (3.6) as a linear equation for 
v with v in R(v)  given, then to solve (3.6) R m u s t  satisfy the following solvability condition: 

R(v)q~xldxldy = (3.7) O. 

~1 XTn--I  

We choose A so that (3.7) holds for any given v such that R(v) C L2(~  1 X Tn-1). This is possible for 8 small 
and v bounded in/_/2(N1 × Tn-1) if 

f ~Ogxl (Vx(alVxq¢ t) -4- bl • Vxq~tX)dxldy 7[0, (3.8) 

R 1 X T n - I  

whose left hand side is equal to: 

f dxl f dy~o~lrcall,,u 21 /x ¢a nl'~#' l + f dxl f dyb, l(X)(q~x,) 2 t~ 1Wxl)x~+(al  ~ ° X l ) X 2 + " ' + ~  1V'xlJx, J 
~1 T n - I  RI Tn_ 1 

= f d x x f  . 11  /x dy(~o~(a 1" ~o~)~ + b1,1 (x) (q¢~) 2) 
N1 Tn--1 

= dXl dy(gal,xl(q~x ~) +bl,l(X)(~O~xl)2 ). 
NI T n - 1 

So we have 

1 1,1 f (-ff(al,xl)y -t- (bl,l(X))y)(q~xl)2dXl ~0.  (3.9) 
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It is easy to see that if  condition (3.9) holds, then Eq. (3.6) admits a smooth solution v G L z ( R  1 x T n-l)  
if 6 = 8(/2) is small enough, and A = A(6, /z) .  This is achieved by a standard iteration scheme in a Sobolev 
space Hs(]R 1 x Tn-1), with s large enough, and the contraction mapping principle. In other words, if (3.9) 

holds, then there is a stationary solution to Eq. (3.1) along direCtion xl taking zero and one at xl infinities. 
By Theorem 2.3, we see that traveling waves do not exist, and there is no front propagation. Thus (3.9) is a 
sufficient condition for quenching. 

The first term inside the integral of  (3.9) is the averaged form of  the integrand appearing in the one space 

dimensional quenching condition, see Xin [35] .  The conditions for waves going along other directions can be 
derived similarly. Let us consider some examples. 

Example 1: Suppose that n = 2, al"l (x ,y)  = 1 + 8 ~ s i n x ( s i n y )  2, al,2(x,y)  = a2,1(x,y) = O, a2"2(x,y) = 
al"l ( x, y ) , and b( x, y ) = (0 ,0 ) ,  and f ( u ) = br2u(1 - u ) ( u - ½ + 8). Namely, we have the equation: 

ut = (a l ' l (x ,y)Ux)x  + (al ' l (x ,y)Uy)y + f ( u ) .  (3.10) 

Condition (3.9) reduces to: 

f cosx(~O~x)2dx ~0 ,  (3.11) 

which is just the quenching condition in one space dimensional case, and there exists/~ > 0, such that (3.11) 
is satisfied, see Xin [35] .  So quenching occurs in x direction. Similarly, if a l ' l ( x , y )  = 1 + 8A(sinx + s iny) ,  

and the rest data remain the same, condition (3.9) also holds and quenching occurs in x direction. 

Example 2: Suppose that n = 2, a 1'1 (x, y)  = 1 + 8A sin x sin y, and the rest are the same as in Example 1. Then 
condition (3.9) is never satisfied, and quenching may or may not occur. For instance, it may occur when 8 is 

not small, and so the standing waves are not captured by the perturbation method. 

Example 3: Suppose that a ( x ) =  identity matrix, x = (xa ,y ) ,  y E T n-l, and b(x)  is any divergence free mean 

zero vector field. Then condition (3.9) reads 

f (b(X))y(fff~xl)2dXl 4 0 .  (3.12) 

However, averaging div b = 0 over y C T n-l, we see that = o, and thus (b(x))y  = constant = 
0. Condition (3.9) fails. It is straightforward to check that (3.9) also falls in any other direction. In fact, it is 

possible that there is no quenching in the shear flow case. As for other incompressible flows more complicated 
than shear flows, we describe our numerical studies in the coming sections. 

Example 4: If  we allow b(x)  in example 3 to be compressible yet still having zero mean over T n, then condition 
(3.9) is easily satisfied. Take n = 2, and b(x)  = ( c o s x ( s i n y ) 2 , 0 ) ,  then there is quenching in xl direction. 

4. Numerical method 

In this section, we present a second-order finite difference method to solve Eq. (1.1) numerically in the 
two-dimensional case. Let us reorder and modify Eq. (1.1) to the following form: 

U t "4-12" VU = e ~ "  (a(x ,y)~Tu)  + l f ( u ) ,  (4.1) 
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with initial condition 

ul, = uoCx, y), (4.2) 

and boundary conditions 

ulx-~_~ =0, U [ x ~  = 1, Uly=l = Ulr=O. (4.3) 

Here u(x, y, t) is a scalar function representing either the temperature of the combustible gas or the mass 
fraction of certain reacting species. We have changed the notation for convection from b(x, y) to - v ( x ,  y) to 
emphasize the physical velocity field. Here it is a given incompressible velocity field, periodic in both x and y 
directions, and satisfies 

(v (x ,y ) )x  = ( v ( x ,  y ) ) y  = O, (4.4) 

where ( )x and ( )y represent averaging in x and y directions, respectively. Also in Eq. (4.1) a(x , y )  is the 
given diffusion coefficient, f ( u )  is the bistable reaction function, and e is a positive suitably small parameter. 
The parameter e is used to adjust the widths of the fronts so that their spreading is inside our computational 
domain throughout the time period that we are interested. On the other hand, the size of e is chosen not to be 
too small to render the resolution of our finite difference scheme difficult. We are studying those particular wave 
fronts that presumably propagate from the right to the left. The initial profile is usually like a one dimensional 
planar front along the x direction and independent of y. 

The second-order scheme we use to approximate Eq. (4.1) is based on a Crank-Nicholson type scheme where 
the linear convection is explicitly handled by a second-order upwind approach and the reaction nonlinearity 
is implicitly solved. For discretization, we partition the computational domain into a collection of rectangular 
cells, with cell centers xi,j = ((i  - 1)Ax, ( j  - ½)AY), and Ax and Ay being the cell sizes. The finite difference 
solution u~j is defined to approximate u at the centers of cells ( i , j )  at t = nat, with At being the time step. 
For the velocity field, the x-component vl is defined on the vertical cell edges (i + ½, j ) ,  and the y-component 
v2 is defined on the horizontal cell edges ( i , j  + ½). We use this so-called staggered grid for the velocity field 
because of the simplicity it provides when used to represent an incompressible velocity field in discretized 
form. With these definitions, the Crank-Nicholson discretization of the equation can be written as the following 
nonlinear system: 

uin,~.l __U n " ( un un+l ) n ,,J ~ , n + l / 2  -q- f ( u i , j )  q- f (  u'n+" 1) 
V U )  i,j 2 i,j 2 ' At + (v .  = Lh(a) q- J "J (4.5) 

with the velocity v = (vl, v2) satisfying the discrete divergence-free condition: 

U l , i + l / 2 , j  - -  U l , i - - 1 / 2 , j  U2,i,j+l/2 -- V2,~4--1/2 = 0. (4.6) 
(Dr)  i,j -~ A X  ~ Ay 

The discrete diffusion operator Lh(a) is an approximation to the variable diffusion term. If we write 
ai+ l /2,j+ l /2 = a ( xi+ l /2, Yj+ I /2 ) , the  second-order approximation is: 

( L h ( a ) u )  i,j = ai+ l /2"jUi+ l"J "}- a i -1 /2 ' jU i -  l'J -- ( ai+ l /2'J -~- ai-1/2 'J  ) ui'j 
A x  2 

ai,j+l/2Ui,j+l -q- a i , j -1 /2u i , j -1  - ( ai , j+l/2 -~ a i , j - 1 /2 )u l , j  
-~ (4.7) 

Ay 2 
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It remains to describe the approximation of the linear convection term ( v .  ~U) n+1/2, which is treated 
explicitly as a forcing term of the Crank-Nicholson system. Here we choose a second-order conservative 
approximation 

n + l / 2  n + l / 2  V n + l / 2  n + l / 2  
-- 2 i j+l /2Ui j+l /2  -- U2,ij--1/2Ri,j_l/2 ( V  ~ x n + l / 2  Ul,i+l/2,jbti+l/2,j Ol'i--1/2'jUi--1/2'J + , (4.8) 

• VU)i 'J  = A X  Ay 

by assuming the edge values of u, whereas the edge velocities are naturally given by our choice of the staggered 
grid for the discrete velocity field. The edge values of u at the half time steps are calculated from an upwind 
method based on ideas introduced by Colella [ 14] which requires no splitting to handle the two-dimensional 
effects. This method is second-order accurate for smooth solutions and stable in regions with steep gradients. 

n + l / 2  For example, to calculate the edge values Ui+l/2, j along the vertical edges, we extrapolate from both the left 
and the right cells using Taylor series expansions in both space and time, 

L n ½AXUx i j 1Atut,i,j, Ui+l/2, j = Ui, j + , ,  -~ 

R _ n 1 
Ui+l/2, j -- Ui+l, j -- ~AXUx,i+I, j -1- 1Atl~t,i+l,j. (4.9) 

The time derivative can be eliminated by using Eq. (4.1) and the resulting extrapolations are: 

L _ n ½Ax(1 At 1 1 A t [ , ( L h ( a ) u n ) i , j + l f ( u n j )  ] Ui+l/2, j -- Ui, j + -- __ U1 ,i,j -~X ) Ux'i'J "2 V2"i'jA tUy'i'J "~ ' ' 

[ 1 ] 
gV2,i+ l , jA tUy, i+ l,j + R _ n - -  lax(1 +Vl,i+l,j-~x)Ux,i+l d -  ~ ½At e ( Z h ( a ) u n ) i + l , j +  f ( u n + l j )  . Ui+l/2, j -- Ui+l, j 

(4.10) 

Here the velocity (Ul,i,j, U2,i,j) is taken to be the average of the edge velocities 

1 1 
Ul,i, j = "~(Vl,i+l/2, j + Ul,i--1/2,j), U2,i,j = ~ (U2,i,j+l/2 -~- O2,i,j_l/2). (4.11) 

We are now left with the approximations to the space derivatives Ux,i,j and Uy, i,j. For approximations to vertical 
edges, Ux is considered to be along the normal direction and Uy is considered to be along the transverse direction. 
These two space derivatives should be approximated differently, according to [ 14], for stability considerations• 
Namely, the normal derivative Ux is approximated by the central difference with the Van Leer limiter: 

Ux,i,j = ~ sign(Au) min (21AuLI,2[AURI, I~ul), aUL" AuR > 0, (4.12) 

O, AUL . AuR <_ O, 

where 

AU = 1 ( / , t i+ l ,  j __ Ui_ l , j ) ,  ARL = Ui,j -- Ui--ld, AUR = Ui+l,j -- Ui,:, (4.13) 

and the transverse derivative Uy is approximated by a first-order upwind difference: 

I Ui,j -- Ui,j--1 
A y , u2,i,j ~ O, 

Uy, i,j = ui,j+l _ ui,j (4.14) 
A y , u2,i,j < O. 

The idea behind this is that we want the second-order scheme to be reduced to the first-order corner-transport- 
upwind (CTU) scheme when the gradient of the solution becomes steep, where the CTU scheme is still stable. 
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L For details of  this we refer to [ 14]. Once we have the space derivative approximations, we can calculate lli+l/2, j 

or u~+1/2, j accordingly and the correct value is taken from the side according to the sign of the edge velocity, 

L 
. n+l/2 = f Ui+l/2,J ' Ul'i+l/2"J > O, 

u R - O. (4.15) Ui+l/2,j ) 
i-t-1/2,j Ul,i+l/2,J < 

The same technique is used for the approximations of horizontal edge values. 
This part of the scheme to calculate the flow flux is explicit and therefore requires the time step At to satisfy 

the Courant-Friederchs-Lewy condition 

A / < m i n (  h h [ )  (4.16) 
-- Ul,i-+l/2,jl' lV2,i,j+l/2 " 

Now we can write the nonlinear system in the following form: 

un+l -- 1 A t  [ ( L h ( a ) l l n + l ) i  j + un+l i,j , f (  i,j )] = F ( u n ) i , : ,  (4.17) 

with the given forcing term 

F(un) i . j  = un. .,,j + ½At [ (Lh(a )un) i , j  + f (u ] , j ) ]  - A t ( v  • VU)~, +1/2. (4.18) 

The boundary conditions are prescribed in the following way: we choose a finite domain [--XL,XL] X [0, 1] 
with the condition that the length of the numerical domain XL is large enough to cover the wave in the time 
period that we are interested. Therefore, we can impose 

Ulx=_x L = O, U[x=xL = 1, /,/13,= 1 = U I y = 0 .  (4.19) 

To solve this nonlinear system, we use a nonlinear package NKSOL ([11,16]) ,  which uses a GMRES 
iterative scheme. We found it very effective in this study. 

Next we describe briefly the velocity field used here. For this study, we choose a simple steady velocity 
field satisfying the discrete divergence-free condition (4.6). As later works proceed, we will consider more 
complicated flow fields and the coupling of the convection velocity and the reacting variables. To study the effect 
of convection, we require that this velocity field have zero mean flux in either of  the two directions. The flow 
generated by a periodic array of vortices serves as a good candidate for this purpose, but it does not necessarily 
satisfy the discrete divergence-free condition. We then modify the velocity field to satisfy Eq. (4.6). To do 
this, we take a projection step and use the discretely divergence-free part in our calculations. The streamline 
contour plot of  the field is shown in Fig. 1. The solid curves are for counter-clockwise rotating flow fields and 
the dotted curves are for clockwise rotating flow fields. The details of this velocity field can be found in [38]. 
There is a vortex length scale A in this construction and here we choose A 2 = 0.15. 

5. Numerical  results 

To make our results comparable to those in [35], we choose e = 0.05 in Eq. (4.1); and the domain for 
calculations is [--XL,XL] × [0, 1] with XL = 1 or 2, depending on the coverage needed for the wave. The case 
XL = 1 is equivalent to the numerical domain in [35] with a constant scaling factor of  5, both in time and 
space. The strength of the velocity field is measured by its root-mean-square value. For the diffusive media 
coefficient, we consider the following three forms: 

a l " l ( x , y )  = a ~ ( x , y )  = 1 + d~sin(o)x), (5.1) 
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Fig. 1. Streamline contour  o f  the velocity field. 

o r  

a l a ( x , y )  = a 2 ( x , y )  = 1 + 1~ ( s in (wx)  + s i n ( w y ) ) ,  (5.2) 

o r  

a l ' l ( x , y )  = a 3 ( x , y )  = 1 + 8 s i n ( w x ) s i n ( o J y ) ,  (5.3) 

with co = 100 chosen to be consistent with the choice in [35] .  In either of  the above choices, we set 

a 1'2 = a 2"1 = 0, and a 2,2 = a 1,1. The parameter  ~5 in (5 .1) ,  (5 .2) ,  and (5,3) differs from the S in Section 3 by a 

factor A, and the ~5 here does not have to be very small. 

Throughout  our calculations, we start with the fol lowing initial condition, which is l ike a wave profile in the 

x-direction: 

0, x < x f - - O .  1, 

Ult=O= 5 ( X - - x f + O ; 1 ) ,  X f - - 0 . 1  < X < X f - [ - O .  1, (5.4) 

1, x > x f  +O.1, 

where x f  is a parameter  to locate the initial front. Unless otherwise noted, we choose x f  = 0.7 to locate the 

initial  fronts in our calculations. We use uniform grids, Ax = Ay = 1/128, with sizes either 256 x 128 or 

512 x 128, corresponding to XL = 1 or XL = 2, respectively. We have results from a more refined grid for 

certain cases and the pictures do not differ substantially. For  computational convenience we will  use the grid 

h = Ax = Ay = 1/128 throughout  the calculations given below. For  all the surface plots with XL = 2, only a 

section o f  the domain with length 2 which contains the dynamics of  the wave front is shown. The omit ted parts 

are constant states with either u = 0 or u = 1. 

Let us consider a 1'1 = a l  as in (5 .1) .  First,  we choose / z  = 0.365, 6 = 0.96, which correspond to the starting 

values in [35] ,  and study the effect o f  the convection on the propagation. The case rms = 0 is reduced to the 

one-dimensional  case studied in [35] and we verified that our solutions agree with that in [35] .  In Fig. 2 the 

one-dimensional  profiles at t = 2, 4, 6 and 8 are plotted. Notice that the wave is propagated from the left  to 

the right with a steady speed. Then we add the convection term and increase the rms value gradually to study 

the effects of  the flow field. In the left column of  Fig. 3, we show the surface plot  o f  u at t = 2, 4 and 8 with 

rms = 0.125, which is a rather weak flow field, and we observe that the wave is accelerated with the presence 

of  the velocity field. Next we increase the rms value to 0.25 and the results are plot ted in the right column 

of  Fig. 3. In comparison o f  these two cases, we notice that the wave structures are similar, but the larger rms 

value produces a more enhanced propagation. This is only true for small values of  rms, results for large rms 

will  show otherwise, as we will  discuss later. 
In [35] it  was found that, without the convection, a t / x  = 0.365 quenching is observed by increasing 8 from 

0.96 to 0.98. One would expect from the above discussion of  the effect of  weak flow fields that quenching may 
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Fig. 2. One-dimensional solutions at t = 2, 4, 6 and 8. 
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Fig. 3. 

t=~ 
Fig. 4. 

Fig. 3. Propagating fronts for/~ = 0.365,8 = 0.96 and rms = 0.125, 0.25. 

Fig. 4. Propagating fronts for/z = 0.365,8 = 0.98 and rms = 0.125, 0.25. 

no longer exist for this 8 value if we add in the convection by a small amount. In Fig. 4 we indeed find this 

to be the case, where we set the r m s  value to 0.125 and 0.25. Quenching is not observed and the propagation 

is enhanced by the larger r m s  value, as long as the value is soi l  small compared to 1. Another factor in the 
quenching phenomenon is the value o f / z .  A larger value o f / z  is certainly to slow down the propagation of 

the front. The question is at what value o f / z  quenching starts to happen with 8 fixed. In the one-dimensional 

case quenching is observed a t /x  = 0.43 with/3 = 0.96. For the s a m e / z ,  in the two-dimensional case involving 
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de l=0 .96 ,  RMS=0.125 rnu=0.45 ,  del=O 

m ~ = o . 4 ~  RMS=O l z ~  a ~ s = o . z 5  
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Fig. 5. Fig. 6. 

Fig. 5. Propagating fronts for 8 = 0.96, rms = 0.125, with two cases/z = 0.43 and/z = 0.48. 

Fig. 6. Propagating fronts for/z = 0.45, 8 = 0, with two cases rms = 0.125 and rms = 0.25. 

a weak flow field ( r m s  = 0.125),  the propagation is enhanced. We find quenching only a t / z  = 0.48, as plot ted 

in Fig. 5. In column 1 o f  Fig. 5 w h e r e / z  = 0.43, the wave is still propagating to the left at t = 8, but column 2 

(Iz = 0.48) clearly shows the approaching of  a steady state. 

One extreme case we are part icularly interested in is when 8 = 0, where the diffusive media  is uniform and 

we can el iminate the factor o f  inhomogeneous diffusion. In Fig. 6 we s e t / z  --- 0.45, 8 = 0, and so a = l .  Again  

we find that a relatively larger r m s  value (0.25) results in a faster propagation than a relatively smaller r m s  

value (0 .125) .  F rom the above calculations we conclude that weak flow fields enhance wave propagat ion in 

the two-dimensional  case. 
The question is how far one can sustain this enhancing effect by increasing the r m s  value. In turbulent 

combustion,  there is a very important  quenching phenomenon caused by excessive flow disturbances which 

is characterized by large r m s  values. Here we use the relatively simple steady flow field in the hope of  

gaining some insight into this issue of  great practical significance. We study the cases with or without diffusion 

disturbances. The case without diffusion disturbances (8 = 0) is part icularly interesting. It is known in the 

one-dimensional  case that travelling waves exist for any 0 < / ~  < 0.5 i f  there is no disturbances in diffusion, 

therefore we can attribute the quenching phenomenon directly to the flow field disturbance i f  it  is observed. In 

Fig. 7, we plot  the results for the case /~  = 0.45, 8 = 0, and r m s  = 1 at t = 0.25, 0.5, 1,2,  4, and 8. This flow is 

so much stronger than the previous ones that the front is being wrapped by the flow at t = 0.25, then it retreats 

due to the reaction term with the large tz value at t = 1. At  t = 2 the front starts to reach its steady state, as 

we see in the subsequent plots. As we know, a wavy front without convection will  be flattened by the bistable 
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Fig. 7. Fig. 8. 

Fig. 7. Propagating fronts fo r /~  = 0.45, 8 = 0, rms = 1, with xy = 0.7. 

Fig. 8. Propagating fronts f o r / z  = 0.45, 6 = O,rms = 1, with xy = 0.3. 

reaction and the convection itself tends to wrinkle the front. This example suggests an equilibrium between the 

flow field and the reaction, and indicates that quenching due to excessive flow field does occur in the bistable 
reaction, even without the diffusive inhomogeneities. 

Weno te  that if us(x ,y)  is a steady state solution to Eq. (4.1), taking zero and one at x infinities, then 
us(x + np, y), where p is the period of the media, and n is any integer, is also such a steady state solution. 

Thus such steady states form at least a one-parameter family. If  there is quenching, the initial transient fronts 
will run into one of the steady states of this family or other. The fronts should presumably settle down to the 

ones that are most attracting. Imagine that these steady states were walls standing in front of the waves. If  
the first wall a wave hits is more attracting than its neighbors, then the wave will just attach to this wall and 

approach steady state there. But if it is not as attracting as one of its neighbors, the wave is first reflected, then 
retreats, and finally ends up attaching to the next wall. This may explain the different front behaviors we see 

above before quenching is realized. To verify this point, we change the initial front location from xf  = 0.7 to 
xy = 0.3 and repeat the calculation in Fig. 7. The results are shown in Fig. 8 and we observe that the steady 
state here is exactly the reflection image of that in Fig. 7, which indicates that this initial transient front has run 
into a neighboring steady state of the family. It is expected to see alternating reflection images for the steady 
states in the family since our velocity field has a counter-rotating periodic feature in that direction. We want to 
point out that for this case it takes longer to settle to the steady state. As we see from Fig. 8, for t < 1 the 
flow is wrapping the front in the clockwise direction, just in the same way as in Fig. 7, but then the reaction 
tries to flatten the front and leads the front to the next cell with a counter-clockwise rotation field. Eventually 
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Fig. 9. Propagating fronts for/* = 0.365,8 = 0.96, r m s  = 0.125 with diffusion coefficients a2 and a3. 

Fig. 10. Propagating fronts for/z = 0.45, 8 = 0.96, r m s  = 1 with diffusion coefficients a2 and a3. 

the front is wrapped by the counter-clockwise rotation and reaches the next steady state in the family. Also we 

notice that by  t = 2 the front has not reached the steady state yet, in comparison with the same t ime picture in 

Fig. 7. This jus t  shows that the wave in this case is not as close to the attractor as in the previous case. 

In all the above calculations we have assumed that the diffusion coefficient has the form al  (Eq. ( 5 . 1 ) ) .  In 

Fig. 9, we show the results corresponding to the diffusion coefficients a2 and a3 with a relatively small  r m s  

value. The propagat ion structures are similar to the case of  a l .  In Fig. 10, we increase the r m s  value to 1 

trying to observe the quenching phenomenon. Column 1 corresponds to a2, in this case the sufficient condit ion 

for quenching given in Section 3 is satisfied and we have a steady state similar to that in Fig. 7. The case of  

a3 is more interesting since the sufficient condit ion is not satisfied there. But our numerical result (column 2) 

does show a steady state similar to column 1. A comparison of  Fig. 10 with Fig. 7 reveals that the global  front 

structures in all 3 cases (wi th  r r n s  = 1 a n d / ,  = 0.45 but a 1"1 = 1, in Fig. 7, and a 1'1 = a2, a3 with c$ = 0.96 

in Fig. 10 ) are very similar, the only difference being the details o f  local fluctuations. This suggests that 

the quenching behavior  due to flows with large fluctuations is dominated by the flow fields and the diffusive 

inhomogenei t ies  play a lesser role. It is our hope that this can be established for more general and complex 

turbulent flows. 
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6. Conclusion 

Usi ng  analyt ical  and numer ica l  methods,  we have studied the front  dynamics  of  the bis table  reac t ion-di f fus ion 

equat ions  wi th  convect ive-diffusive per iodic  coefficients in  several space d imens ions .  The convect ion effect is 

d isplayed in  a twofold  way. In  two space d imensions ,  we observe front  quench ing  i f  the incompress ib le  

convect ive flow fields have a large enough  root  mean  square value. The diffusive inhomogene i t i e s  are subject  

to the s t rong convect ion  effects and do not  seem to change the quench ing  p h e n o m e n o n  qual i ta t ively in  the 

s t rong convect ion  regime. We also observe that weak convect ion fields enhance  the propagat ion  and so m ay  

remove  quench ing  caused by  diffusive inhomogenei t ies .  We showed a sufficient condi t ion  for quenching ,  and 

the per formed  numer ica l  calculat ions  agree with it  in  cases it  applies. We hope to discuss the front  dynamics  

in  the systems o f  b is table  react ion-dif fus ion equat ions with complex flow fields in the future. 
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