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REACTIVE FLOWS IN LAYERED POROUS MEDIA IL
THE SHAPE STABILITY OF THE REACTION INTERFACE*

J. XINT, A. PEIRCE%, J. CHADAM#, AND P. ORTOLEVA$

Abstract. The shape stability of the reaction interface for reactive flow in a layered porous medium is
studied. This is done using a complete linearized stability analysis in the setting of a free boundary model
of this phenomenon. The spectrum of the linearized problem is obtained in the general case, and it is
compared with that obtained for homogeneous media in two typical cases.
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1. Introduction. In previous work [1]-[3], we studied the problem of reactive flow
in a homogeneous porous medium and showed that shape instabilities of the reaction
zone occurred only if the reaction caused a porosity change (called the reaction-
infiltration instability [1]). The crucial destabilizing feedback mechanism works as
follows. If a porosity/ permeability change occurs, then, through Darcy’s law

(1.1) v=—x(e)Vp

(where k(¢) is a phenomenological function for the permeability as a function of the
porosity ¢, p is the pressure, and the viscosity is taken to be constant), there can be
an alteration of the flow pattern. Note that, if a protrusion (in the porosity level curves)
in the reaction zone exists at some time, the flow of the most reactive fluid tends to
be focused to the tip of the protrusion via Darcy’s law since “inside” the protrusion
(the upstream side) the permeability is greater than in the neighboring regions (see
Fig. 1.1.). Since additional reactive fluid now arrives at the tip, it tends to advance
more rapidly, causing fingering. On the other hand, diffusion from the sides of the
protrusion causes the fluid focusing at the tip to be less reactive and hence to decelerate
its advancement. The competition between these two mechanisms results in shape

F1G. 1.1. Focusing of flow to the tip of a porosity level curve.
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selection (self-organization) of the reaction zone, leading either to the decay of the
protrusion, restabilization to a morphologically more complicated advancing reaction
zone (fingering), or the temporal development of successively more complicated pat-
terns (tip splitting, budding, and so forth). Understanding this shape selection process
has important applications to many geochemical situations (e.g., the diagenesis and
evolution of mineral deposits, oil and gas reservoirs, the dynamics of breakout from
chemical and nuclear waste repositories, in situ coal gasification, enhanced oil recovery,
leaching of minerals, location of roll-front deposits, and so forth [4], [5]).

In this paper, we consider the flow of reactive fluids through layered porous media
and determine the effects of the layering on our previous shape stability analysis [1],
[2]. This generalization is very important from the viewpoint of applications because
much of the world’s natural gas can be found in large underground chambers whose
sides were naturally formed in a layered pattern. Breakout (puncturing the walls) from
these chambers thus requires carrying out the above analysis in the layered region of
the walls. Under-pressurized versions of the chambers also occur naturally. Their use
as chemical and nuclear waste repositories is quite interesting. A clear understanding
of the flow of these highly reactive fluids through the layered walls is crucial to
determining the feasibility of this method of storing waste. Mathematically, this has
led to a novel asymptotic analysis; coupling homogenization methods with free boun-
dary problems [6].

In § 2 we summarize our mathematical models of the above phenomena. We begin
with a system of partial differential equations, which, in a certain physical limit, reduce
to an amenable free boundary problem in terms of the macroscopic (averaged) variables
for a thin reaction interface. The details of this matched asymptotic analysis are
presented elsewhere [6], but a summary is contained here in the Appendix. Section 3
is devoted to the shape stability analysis of this reaction interface. The general criterion
is obtained in § 3.2, and a comparison with the homogeneous case is made for two
illustrative examples in § 3.3. A detailed summary of these results is provided in § 4
using the concepts and essential parameters developed in this work.

2. Mathematical models. In this section, we present, without details, two mathe-
matical models of the reaction-infiltration process in layered porous media. The first
is a coupled set of partial differential equations, which for numerical purposes is quite
useful [1], [7], but, from an analytic point of view, is untractable. Taking a physically
relevant limit, these equations reduce to a moving free boundary problem for the
reaction interface.

2.1. The general partial differential equation model. The complete details of this
model can be found in [1] and are presented in complete generality without any
hypotheses on the porous medium. The domain of the model is assumed to be an
infinite strip: (x, y) € (—00,00) x[O, L]. Throughout this region, the rate of increase in
porosity ¢(x, y, t) (equivalently, the rate of dissolution of the soluble minerals) is
proportional to the reaction rate

(2.1) ‘ @rz_k{wf_go}z”{c_ceq)s

where k is the reaction rate constant, ¢,(x, y, t) is the final porosity after complete
dissolution, and c¢(x, y, 1) is the concentration of solute in water with its equilibrium
concentration being c¢.,. The 2/3-power indicates that we are considering surface
reactions, but, as we see in the next section, the actual form of the reaction rate in
(2.1) does not affect our results since these details are confined to an infinitesimally
thin reaction zone when we take the distinguished limit in the next section. The solute
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concentration per rock volume ¢c satisfies a mass conservation equation
(2.2) (¢c), =V -[¢D(@)Vc+ck(¢)Vpl+pe,

where D and « are the porosity dependent diffusion coefficient and permeability, and
p is the density of the minerals being dissolved. In (2.2), p is the pressure, and Darcy’s
law, for the velocity v in the form (1.1), has been used. Finally, the conservation of
water implies that

(23) ¢ +V-(ex(@)Vp)=0.
The three equations (2.1)-(2.3) are to be solved for the three unknowns ¢, ¢, p, subject
to the imposed asymptotic conditions,

(2.4a) ¢c->0, ¢>¢;, and p,—->p; asx->-—-00
and
(2.4b) €>Cq, @@, and p,—>?7 asx->+oo,

along with initial data. Conditions (2.4a) say that, at the inlet (x = —0), the water is
free of solute, the porous medium has reached its final altered state in which all the
soluble minerals have been previously dissolved out, and a horizontal pressure gradient
(equivalently, velocity, through Darcy’s law) has been imposed. Similarly, conditions
(2.4b) say that, at the outlet far downstream (x =+0o0), the water is saturated with
solute, the porous medium is in its original state with porosity ¢o(x, y, t), and the
horizontal pressure gradient is to be determined as part of the problem. We take
zero-flux boundary conditions on the transverse boundaries of the aquifer.

In most geological examples of interest, the (transverse) size of the reaction zone
is several orders of magnitude greater than its thickness, and the details inside this
zone are not of interest per se except in the way in which the cumulative effect governs
the evolution of the reaction zone on this larger scale. To this end, we scale the above
equations in terms of the parameter [1]

(2.5) £ =ceq,’p

(typical values of & range from 10~ to 10™'°) and examine the limit £ - 0 (the so-called
large solid density limit) in the Appendix and § 2.2. We expect the thickness of the
resulting reaction front separating the two values of ¢ to be very thin (indeed, it is
O(&'?)), and the front itself to move very slowly. Thus, we introduce a slow dimension-
less time 7 by

(2.6) 7= e(keeg)t,
and space variables r=(x, y) by

(2.7) F=(ke.g)'"’n,
along with the scaled concentration

(2.8) Y=¢/Ceq.

Equations (2.1)-(2.4) can then be written as (dropping the tildes and writing d(¢) =
eD(¢), A(¢) = ex(p))

(2.9) e(ey),=V-[dVy+AyVpl+e,
(2.10) ep=—(or—9) " (y-1),
(2.11) ep, =V [AVp],

(2.12a) y=>0, ¢->¢, p>p;r asx->-—x,

(2.12b) ¥=>1, ¢->¢, pc—>? asx->+co0,
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The layering of rock on a wide range of length scales can either be due to
sedimentary deposition [8] or due to symmetry breaking that can occur through
nucleation feedback, mechano-chemical coupling, and other processes [9]-[11].
Sedimentary layering can be be as fine as a few grain diameters (i.e., close to the lower
bound of the validity of continuum theory) and can be as large as tens of meters or,
in a few cases, a few hundred meters. Specific examples of sites at which layering
occurs include the Simpson group sandstones [ 12], the marl/limestone alterations [13],
and selected shales in the Woodford formation [11], all of which occur in the Anadarko
basin and the St. Peter sandstone in the Michigan basin [14]. In these locations, the
layering is found on the mm to m scales.

Reaction fronts in layered rock occur both naturally [15] and in the mineral
extraction process. Variations in temperature or large variations in grain rate coefficients
due to factors such as the presence of kinetic inhibitors in the pore fluid can result in
reaction fronts that also vary from the grain scale to the scale of hundreds of meters.
Therefore, geochemistry is very rich in the range of important asymptotic limits that
can occur. Indeed, the ratio of the typical layer thickness to the front width can have
asymptotic limits oo, 1, and 0, all of which are relevant.

In this paper, we assume that the layering of the porous medium is the same as
the thickness of the front. A specific example in which a reaction front propagates in
one of the above layered rock sites and has the same thickness is taken from petroleum
engineering [12]. An HCI/HF acid injection process is used to repair well damage to
banded reservoirs in which the layer spacing is on the 10 mm scale. As a result of the
acid injection, mineral dissolution fronts leave the bore-hole-rock contact and enter
the multimineral system. Depending on the fluid injection velocities and the mineral
rate coefficients, reaction front widths range from 1-100 mm. This example provides
evidence of the practical relevance for the asymptotic limit considered in this paper.
The details of taking the resulting distinguished limit £ >0 to obtain an effective free
boundary problem are sketched in the Appendix. The resulting free boundary problem
is summarized in § 2.2.

2.2. The free boundary problem. In the large solid density limit (c.o/p—=0), we
arrive at the following free boundary problem using delicate matched
asymptotic/ homogenization methods, which are outlined in detail in the Appendix.
Upstream from the reaction front S(x, y, 1) =0, we have

Ei ii; dpyt Dz);: :;K;;?:v:f;ﬂypy - 0’} S(x, y,1)<0,

while downstream the concentration has reached its equilibrium concentration, so that

2. =

22.12 AoqxxiAolf;yﬁO} Shed, B

At the unknown reaction interface S(x, y, 1) =0, we have

(2.17) “ y=1,

(2.18) P=4q

a5 (T, = Py TS+ ASD) + (S = S, ) (A Sc T+ AfS,T,)
=(¢:T, — ¢, T.) (0S5 + A0S)) +(4,5: — 45, ) (AeSiTx + A0S, Ty ),

2
(2.20) (T, ~ 3T, )(%) —— (e~ (o).
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In these equations, we are using the following notation. The scaled concentration is
v, and p and g are the pressures upstream and downstream of the front S(x, y, 1) =0.
A coordinate tangent to the front is denoted by T(x, y, t). The averaged constants d,
Dy, Ay, Ay, Ag obtained via homogenization in the Appendix are to be understood as
follows. The “dees™ (d, D) and lambdas (A, A) denote appropriate averages of the
functions d(¢)=¢D(¢) and A(¢) = ¢k (¢), respectively. The subscripts f and 0 refer
to the final (altered, upstream) region and the original (unaltered, downstream) region,
respectively. The lower case indicates it is averaged in the x-direction in whatever
manner the homogenization dictates, while the upper case is the same for the y-
direction. As an example of this notation, consider the case in which the porous medium
ahead of the front is layered horizontally, and behind the front it is homogeneous as
in Fig. 2.1. Then ¢, is a constant, so that ¢D(¢,;) and ¢« (¢,) are also constant,
resulting in d; = D, and A,=A,. In the downstream region, Ao = {@ox(@y)) and Ay,=
(@0 'k (@e)~") ", where the braces () denote averaging over one period. In this example,
homogenization dictates that, in the x-direction, the usual, arithmetic average is to be
used, while, in the y-direction, the harmonic average is appropriate.

FiG. 2.1. A porous medium that is horizonially layered ahead of the front and homogeneous behind the front.

These equations are to be solved for y in the upstream region (since y=1 in the
downstream region), p, g, and S subject to the asymptotic conditions

(2.21) y=0, ¢=¢;, p.=p; asx->—-®
and
(2.22) © =@ as x> +co,

Note that, as x - +00, vy =1 automatically, and g, is to be determined as part of the
solution in terms of the desiderata of the problem, especially the inlet pressure gradient
pr- On the transverse boundaries of the aquifer, which by scaling we can take as y =0,
m, we impose the no-flow boundary conditions v,, p,, g, =0.

3. Linearized shape stability analysis. We now follow the method used in references
[1], [2] in which we studied the shape stability of the reaction interface S(x, y, 1) =0
when the porous medium was homogeneous. In particular, we explicitly compute the
planar solutions and thus use a linearized stability analysis to examine the stability of
perturbations of the form cosmy, which, for m=0,1,..., form a complete set. We
obtain a formula for the spectrum of the linearized problem for each m and compare
it with that derived for the homogeneous case [1], [2] to determine if the layering has
a stabilizing or destabilizing effect.
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3.1. Planar solutions. We seek planar solutions for which the front moves in the
x-direction with constant velocity V to be determined; that is,

(3'1) S(x,y) f)=x_Vta
and hence the perpendicular coordinate is given by
(3.2) T(x,y,)=y.

Letting all the unknown functions be of the form
Yoy )=y(x=V1), p(x,y,t)=p(x—=WVt), q(x,y,1)=q(x— V1)

expresses the fact that we seek travelling wave solutions. The planar version of equations
(2.13)-(2.20) is

(3.3) dy"+Apy'p =0,} X< Vi
(3.4) p'=0
while downstream
(3.5) y= l,}
> Vi
{36) qn=0 X
At the unknown planar interface x = V1,
(3.7) y=1,
(3.8) Ifzq' ; W
(3.9) Ap'=Aoq',
(3.10) diy' = V({e;)—{@o))

Solving these with the asymptotic conditions
(3.11) y-0, p'=p; asx->-00

with g’ to be determined as x > +00, we obtain (beginning with (3.4), substituting into
(3.3), and so forth), using an overbar for this planar solution,

(3.12) F(x— Vi) = 25~ ¥), _";’ Lt x<w,
f

(3.13) P(x—Vt)=pj(x— Vi),

(3.14) G(x— v:)zfr-’(x— Vi), T=a,/A,,

with the velocity of the travelling front, obtained from (3.10), being

(3.15) V=—piA /(o) — (o) =———,

(o) — (@0

where the inlet velocity v, =—pjA, by Darcy’s law. It is not difficult to see that
(3.12)-(3.15) is.the unique planar solution of (2.13)-(2.20), (3.1), (3.2), and (3.11) of
the form y = y(x, 1), p=p(x, 1), and g =q(x, 1), i.e., with ¥y, p, q simply independent
of y. We now investigate the stability of these planar solutions with respect to a complete
set of shape perturbations.

3.2. Linear instabilities. Let us consider small perturbations of planar fronts.
Suppose that Ar(y, t) is a small perturbation, i.e.,

(3.16) S(x, y, t)=x—Vi+Ar(y, 1),
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where A is the size of a morphological disturbance and is much larger than the &
appearing in the Appendix. The orthogonality condition to leading order is (see (A.7))

SoxToxt (S, + 8, )NTp,+T,,)=0.
Averaging over n, we have
SoxTox+So0yTo, +(81, T ) =0.

As A0, we get back the planar solution, so that S, ,, >0, T, , 0. Thus, 8., =0(4),
T, ., = O(A). Therefore, up to O(A), we have SoxTox+ S0, Ty, =0. We choose T, as

(3.17) To=y—Axr,.

To fix the front at x =0 so that the subsequent linearization is a standard procedure
(albeit with more complicated equations), we change variables

(3.18) X'=8(x, 3, t)=x—Vi—Ar(y 1),
(3.19) y'=Tyx,y, 1) =y —Axr,(y, 1).

Writing the solutions of (2.13)-(2.20) as perturbations of the planar solutions (3.12)-
(3.14), that is, as ¥+ Ay, p+Ap, G+ Ag, the linearized versions of (2.13)-(2.20) in the
transformed coordinates (3.18)-(3.19) are (dropping the primes)

(3.20) A+ Dy + Dy ¥+ A (P + ¥p) = 0,} eh
{321) }‘,r‘pxx+A|fpy_\' +A;f}yﬁ’=0 ’
3.22 =
(3.22) y=0, 3 } i
(3-23} ’\qu.r + A()q_r_\' 7+ Aﬂr_\'\‘q =0
(3.24) vy=0,
25 =
(3.25) P=a vl
(3.26) APy = Aogy,
(3.27) dyy. = r(—(e;) +{@o))
These must be solved subject to the homogeneous asymptotic conditions
(3.28) vy=0, p.—0 as x > —ao,
(3.29) q,—>0 as x - +oo.

Since (3.20)-(3.29) are linear, it suffices to solve for a complete set of perturbations
of the form

(3.30a) r(y, t)=e""" cosmy,

(3.30b) y(x, ¥, 1) = y,,(x) """ cosmy
(3.30¢) p(x, ¥, 1) = pn(x) e’ cosmy,
(3.30d) q(x, , 1) = qu(x) e”™" cosmy,

where o(m) is the spectrum of the linearized problem. Substituting (3.30) into (3.20)-
(3.29) gives (with primes denoting differentiation with respect to x, and dropping the
sub—m indexing wave numbers)

(3.31) dpy"+Appy' —m’Dyy —m* Dy e** + A\ e™p' =0,
(3.32) App"—m*App—m?Api=0

(3.33) Aog"—m’ANog —mAopj/T =0, x>0,

] x <0,
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(3.34) y=0,

35 =
8.36; p’p= rq(;', *=90,
(3.37) dpy' = (—(e) +{po))o(m)
(3.38) y=>0, p'=0 as x> —00,
and
(3.39) qg'=»0 as x—+co,

Solving (3.32), (3.33) for p and ¢, and matching them at x =0, we obtain

_ ' p}(l (1/[5)) |ml@ x
3.40 p =

A 1/2 A 1/2 A
3;=(;") ; ﬁn=(;—°) ; D=
:f. 0 As

Substituting (3.40) into (3.31), we obtain

x<0,

where

1=T {cr+,r3lr|ml)x

(3.41) 0=y"—ay —m?8iy—m’sa e —a’B|m| ————e s
! ! T+ B,/ Bo)

where

Solving (3.41) for vy, we find that

Hsic (a:+\.fa2+4m28} ) o _ o8 |m| I-T
X)= (5.4 —————————————X | ke — [ {5 3 Iy
3 P 2 T+ 8,/ Bo)
- e P (o m|+ m*(BF - 87)) .

By (3.34), it follows that

C=a+a’gm| (afy|m|+|m|*(B7—87) "

1-T
I'+(Bs/Bo)
Condition (3.37) implies that

_a(m)(~(e)+ (@)

Y|x%0 df
Wrerrr:
- E'___i%f_a?_azﬁﬂm
1=

'm(a+ﬂflm|)(aﬁf|mi+m’(ﬁ}—af)r‘.
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It follows that

d
(@) —(®0)

. [a2+a2,6f|m| .

o(m)=

1-T 2/ 02 Zan=
m(ﬂJfﬁflml)(aﬁflmHm (BF—87)"
{—F
(3.42) + (—0: —azﬁf|m| . F_+(,éf,f—,3)
_(a+m)]

2

(ﬂﬁf|m|+m2(.3}—ﬁ§))")

Let us simplify (3.42) as follows:

— df [ 2 24 .
olm) = o= L% Y P T3 (8,70

+(a +v’a2+4m26f-)
2

1-T 1
(«tBlmb o miET—p

(_ y 1-T 1 ]
P B /R aﬁf+|m|(s,%—a}))
_ d; [az—am+l B=F a’B;
(e (o0 2 2T+(B,/Bo) aBs+|m|(B;—57)

. ((a +2,8f[m|}—\/a2+4m26}):|

8 g [az_am”. T o
() —(ea) 2 I'+(Bs/Bo) “ﬁr+|m|(ﬂf'_5})
_ Bim®—m’8}+ap,|m| :|
(+a+2B/m|) +Va?+4m>s;
_ d; [az—a\m+2
(@) —{¢o) 2
W L s a’B,|m| ]
T+(B;/Bo) a+2B,|m|+Va>+4m>s2]

We note that
1-T
I'+(B;/Bo)

a(m)->— as |m|>, a(0)=0, o'(0)= aB;> 0.

Setting o(m) =0, we obtain

.(—a +~/a2+4m25})(a+2§,|m|+Jaz+4m23})
B =4a|m|B,- L
T T+ (B,/By)’

which yields

(3.45) B a’+4m?s} = ~2|m|5}+ e +2aB,- %'
'/ Bo
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It is easy to see that (3.45) has a unique positive solution, so that o(m) has the general
form shown in Fig. 3.1. Set .

1-I
ST e

Equation (3.45) then becomes
BN a*+4am’si=—-2\m|5}+Y.
Solving, we obtain
487 —-B1)dim*—487Y |m|+Y*—Bra’=0

or

_ 31X -V81¥?~(87-B)SHY’ - Bia?)
2(87-B})8] '

(3.46) ' ||

We continue to simplify (3.46) to obtain

(Bi/Bo)+2-T ( 2((3{/180)4“2—1‘)2 2 2)1!2
e | e e e 52— B2
_Be Y T+8J) \P\ T+gy80 ) T

[mu =

26; (87-B7)
({;3;}',30)+2—-I")2_1
_Be '+ (B,/ Bo)
28, _((B_ffBo)‘i'z‘“r) ( 2 2_(({!31'/!90}+2“F)2_ ))uz-
" \rv@ren )T\ B\t gren ) 7
o
0
a(m)
]

FiG 3.1. Graph of the spectrum, a(m), of the linear problem (3.31)-(3.39) as a function of |m|.
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then we have

(3.47)

Recall that

so that
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_(B/B)*2-T 5
C+(B/B0) "B

@ §2=1

. DN = WS

28, ts+Vr+si-1

A D 1/2
_ P 5f=(_.f) i

Expression (3.37) becomes

(3.48)

where

d! ’ d..f'
a LA
5 ! VDd;
A s —1
|mo| = (=pp) —=£

WDd, ts+Vs?+1-1"

(B,/By)+2~T 5,
S BB TS =2L>0.
T+ 0 TB”

v

This is the most general formula containing all of the parameters. In the case where
there is layering only ahead of the front, then 1 =1, and the formula reduces to

(3.49)

A
e = (-5} - -

2 -1
2% &

_g.(s—l)(s+1}

4 s

_a (2/B)+2 22T  T+(1/By)
4 T+(1/Bo) T+(1/By) (1/Bo)+2-T"

_ . (B'+D(-T)
(Bs'+T)(B5'+2-T)

Furthermore, if there is, in addition, no layering ahead of the front (i.e., the media is
homogeneous), then B,=1, and formula (3.49) reduces the expression in [1], [2].

3.3. Specific examples of layered porous media. In this section, we examine the
effect of layering on the stability of planar fronts in two typical situations: layering
only ahead of the front and layering ahead and behind the front with a fixed proportion
of the medium dissolved out as the front passes. These results are compared with the
case of homogeneous porous media [1], [2].

3.3.1. Layering ahead of the front. We examine the case of horizontal layering
ahead of the front as depicted in Fig. 2.1. Vertical layering ahead of the front can be
treated in exactly the same manner. Behind the front the porosity is a constant, which
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implies that d; = D, = constant and A, = A, = constant, and hence §,= 8,=1. As men-
tioned earlier, a reasonable form for the permeability is x(¢) = K", where K, k> 0.
Thus

(3.50) Ao(e) = Ko™

Since the layering is horizontal,

(3.51) Ao=K(ps"")

and

(3.52) Ao=K(ps" )™,
which results in

(3.53) Bo= Ao/ Ao=(@a“"")"/{p5"").

The important observation to make here is that, for convex functions (like x**'), the
harmonic mean is less than the arithmetic mean, which results in 8§ being less than
its value for homogeneous media, which we previously observed to be unity; i.e.,

(3.54) Bo<1=Bos-
Likewise, from (3.14) and (3.51),

K(es*™) (es*)
K¢}+1 e (P;H .

(3.55) T=A/As=

For a homogeneous porous medium with the same average porosity, we have

(3.56) Ty={e gk,
Again, by convexity,
(3.57) T=(es") o' > (@) "/ @f "' =T}

To compare the critical value m, with the one for a corresponding homogeneous porous
medium m, ;,, we consider it, as follows, as the intersection of the branch of a hyperbola
and a line (as in Fig. 3.2). In this case (using B,=8,=1), a direct calculation from
(3.42) gives, with a@ = —pA,/d; = a,, that |mo| is the unique solution of

2 4 a2y 2 o 4 Al =T)
(a®+4m”) _a+(lf‘ﬁo+l)

(3.58) <a+|m|(1-T)
<a+|m|(1-T}),

the last expression with equality being the determining equation for |m0‘,,| [11, [2].
Thus, as indicated in Fig. 3.2, the horizontal layering ahead of the front stabilizes the
front because the interval of unstable modes (0, |m,|) is shorter than for the correspond-
ing homogeneous situation (0, |m, ;). A physical justification for this result is relatively
subtle; however, we believe that the following reasoning gives a plausible explanation.
Because of the horizontal layering, (3.51) implies that the flow in the horizontal direction
is dominated by those layers (which can be viewed as channels) with the highest
porosity. If this effect acted alone, it would seem to promote the formation of horizontal
fingers in the channels with the highest porosity. However, due to the small width of
the layers, any fingers forming in these channels would be associated with high-
frequency modes m = O(e~'/?), which are the modes that decay the most rapidly (see
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L ——  (a*+4m?)'?
L —— a+ |m|(1=Th) g
2jm|(1 - T)

" ot e +1)

[mal Imo,al

frm|

FiG 3.2. Comparison of the critical wave number m, for a porous medium layered horizontally ahead of
the front with a homogeneous porous medium with the same average porosity.

Fig. 3.1). Therefore, any potentially unstable mode must be associated with a frequency
that spans a number of neighboring channels. Now (3.52) implies that flow in the
vertical direction is dominated by the channels with the smallest porosity (equivalently,
by the harmonic mean of the permeability, which is smaller than the arithmetic mean).
This serves to inhibit the formation of unstable fingers that span a number of neighboring
channels. By exactly the same type of analysis, we can show that vertical layering
ahead of the front has a destabilizing effect.

3.3.2. Layering ahead and behind the front. Here we consider the situation in which
the reactive fluid impinges on a layered porous medium dissolving out a fixed proportion
at every location and leaving behind a similarly layered medium with higher porosity
as in Fig. 3.3 with

(3.59) eo(x, y)=0¢s(x,y), 0<6<],

FiG. 3.3. Reactive front moving through a horizontally layered porous medium, dissolving out a fixed
proportion of the medium and leaving behind a similarly layered porous medium.
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where 6 is the fixed proportion dissolved out. Again, we only treat the horizontally
layered situation—the similar vertically layered case can be treated analogously.
In this case,

(3.60) Bi=(e; " (o™,

(‘Patk+]}>—l ek+l<‘P;“c+l}>”l 2
3.61 o= + = + T =P
( ) 180 (¢g 1} ek ](‘P; 1) Igf
and

L2 ST (" A T
3.62 I'=A/Ar= —=§ =0 =TI}
i) e e S i ¢
Thus, using (3.47) and the above relations,
a s7—1

(2i53) lmol_Z—S_;[Is+(s2+f2—l)”2i|’

where s=(3-1)/(I'+1)=s,, the value that enters the homogeneous medium
expression, where t = 8,/ 3, and

E_ ' ﬁ i)uz_ ' )"_f
(364) 81__ Pr d_'r (Df ===y (def)l,fZ”

If t=1=1, and a/8; = a;, then (3.63) is the expression for the homogeneous cutoff
|m 4| . Since the right-hand side of (3.63) is a decreasing function of ¢, having t < 1, =1
(i.e., the diffusion term & is smaller than the flow term ;) is a destabilizing effect if
a/8;> ay,. To see this from a more analytical viewpoint, we examine the case of small
perturbations,

(3.65) ® =@ tegy,

where (¢,)=0. Now

e (% y) =0 (1 +ex(x, )
(3.66)

. k+1 -
=¢_F '(1+e(k+1)x_,-{x,y)+(—E—)kszx;(x,y)+- . -),

where ¢, =(¢,) and x, = ¢,/ @,. Noting that (x,) =0, we obtain

(367 ory=a5 (1+85 0 e3p)

to lowest order in &, where p =(x7)=0. Similarly,

(3.68) (¢.F”‘*”>=@}"‘*"(1+—-—"(k+1)2(k+2) szp)-
Thus,

(3.69) A= K@j‘-*'(u@ﬁp)

and

(3.70) A)«:Kga_f-“(l —W Ezp),
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which results in

2 A, (k+1)(k+2) , )( (k+Dk , )"
{3_,«—)‘}_—(1 R l+72 ep

=(1—(k+1)%e%p).

(3.71)

Similarly, if we assume that the phenomenological function A(¢) = ¢D(¢)= De“"",
we obtain

d+1)d
(3.72) d; ZD@}{H(I‘FE—ZL azp),
d+1)(d+2
(3.73) B D@_;¢+l(1_(_~_)2(_)ezp),
and hence
1% 87=Dy/d;=(1-(d+1)%’p).

From the above, we have

43 A;

3_;: —Py (dID:r)”z
K@J‘“( (k+1k )

=-pj D& ) ep
~1/2 ~1/2
(3.75) : (l+7(d+l)d£2p) (1—-—'—(d+l){d+2) szp)
2 2

=a,(1+3((k+1)k+d+1)e’p)

> ay,
and

8/Br=(1—(d+1)’’p)"*(1-(k+1)’e’p) ">

(3.76)

=(1+3((k+1)°—(d+1)*)e?p),

which is smaller than the homogeneous value 1 if d >k, i.e., if diffusion (¢“*") is
dominated by flow (¢**"). The converse is more complicated, since, by (3.75), a /8, > a,,
always for this local analysis, and then there is a competition between the effects of
a/By and &,/ B,. Analogous results can be obtained if the layering is vertical.

4. Conclusions. Using a free boundary problem [6] as the mathematical model
for reactive flows in layered porous media, we obtain a closed form (3.48) for the
spectrum of the linearized shape stability problem. This is used to compare the onset
of instability for layered media with that for homogeneous media with the same average
porosity [ permeability in the following two typical situations: (i) layering ahead of the
front and homogeneous behind, and (ii) layering ahead and behind the front. If the
inlet flow (at x =—00) is horizontal and the layering is horizontal (i.e., ¢(x, y, t) is
periodic in y), then in case (i) the front is more stable if the unaltered medium ahead
of the front is layered than if it is homogeneous, and in case (ii) it is less stable if
diffusion is dominated by the flow. The reverse results are true if the layering is vertical
and the inlet flow remains horizontal. In all cases we use, in a crucial manner, that
the harmonic mean is less than the arithmetic mean. On the other hand, the analysis
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is different in the two examples. Case (i) is done for a general layering, and case (ii)
depends on the (physically reasonable assumption of the) layering in the altered and
unaltered medium being related through a proportionality constant (¢.(x, y)=
O¢(x, y)) and uses a local analysis (¢; = ¢, + e¢;, £ < 1) for technical simplification.

Appendix. Derivation of effective equations and interface conditions. To illustrate
the analysis, we consider the case of an initially horizontally layered medium, which,
after interaction with the solvent, has a homogeneous distribution of porosity, i.e.,
©o=,(y/€"?), where the period of the layering is the same as the width £'/? of the
reaction front.

Our strategy is to assume inner and outer multiple-scale perturbation expansions
of the unknowns. The outer expansion involves the macroscopic variables x, y, and ¢,
as well as the microscopic variable y/8 to represent the vertical periodicity on the
length scale 8=¢"?. The inner expansion involves the microscopic variables
S(x, y,1,8)/8 and y/& representing the normal coordinate to the unknown free boun-
dary and medium periodicity, respectively, and the macroscopic variables T(x, y, 1, §)
and ! representing the tangential coordinate to the unknown free boundary and the
time ¢, respectively. Redundancy in these representations is removed by exploiting the
periodicity assumption. We then derive a consistent set of effective equations and
interface conditions by matching averaged (i.e., macroscopically varying) inner vari-
ables to averaged outer variables.

A.1. Outer expansion. We expand each of the independent variables ¢, y, and p
in a multiple-scale perturbation expansion of the form

(A'l) (PS__-"S(x’y’y/aa 'r)__-‘sﬂ(xayayl{aa ‘)"’5‘51(%)’,}’/5, f)+' tT.

Here we have used (7) to distinguish an outer variable from an inner variable. However,

within this section, dealing only with outer expansions, we drop this notation.
Perturbation equations order by order. Defining n=y/é and substituting the

expansions of the form (A.1) for ¢, ¥, and p of the form (A.1) into (2.9)-(2.11) we obtain

08 %>
(A.2a) [d (o) Yo,n T A(@0)YoPo,n 1, =0,
(A-2b) ['\(‘Po)Po,n]q =0.

Integrating (A.2b) with respect to 7, dividing by A(¢,), averaging over one period in
7, and assuming that ¢,> 0, it follows that the zeroth-order pressure function varies
on the macroscopic scale only

(A.2¢) Po=po(X, y, 1).
Similarly, (A.2a) implies that
(A2d) _ Yo= Yo(X, 3, 1).

Exploiting the zeroth-order macroscopic dependences (A.2¢) and (A.2d), the next-order
equations become

o ">

(A.3a) [d(@o)(vo,y + ¥1.0) + A(@0) Yo Po,y + P1)]y =0,
(A.3b) [A(®0)(Poy +Pi1y)], =0.
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Applying to (A.3a) and (A.3b) a similar averaging procedure to that used for the
O(87?) equations and eliminating the arbitrary functions, we obtain .

(A.3¢c) )‘{‘P()}pl.n = pO,y((’\(‘Po}_1>_l —A(e))
and
(A.3d) d(‘Po)'Yl,n =((d(ﬁpo)_l)_]_d{‘Po))')’o.y-

Again exploiting the fact that y, and p, are macroscopic quantities, the next-order
equations are

0(8% >
(d (o) Yo« + A(@0) YoPo,x)«
*+Ld(eo)(vo,, + ¥1.0) +A(@0) Yo Poy + Pr.m)],
+[d(@0)Y1.x+A(@0) YoP1,y + A@0) Y1 Poy
+d'(90) @170,y + A(@0) 10 Po,y
td'(@0)@171,n T d(¢0) 72,5
+ (A (@) ervot A(@o) ¥1)P1 g
+A(@0) YoP2,n]s + @0 =0,
(A.4b) —(‘P,r'“‘ﬁou)z”(’}’u_ 1)=0,
('\(‘Po)Po,x}x+(MﬁPo)Pu_,;),;+“(‘Po)Pl.n )y
(A.dc) +(A'(@o) @1 oy T A(@o)Pr1y)y
+ (A (@0) @1 P1m + A(@0)P2y), =0.

Let So(x, y, t)=0 denote the limit free boundary surface; then (A.4b) implies that
©o= ¢, (upstream from the front, i.e., when Sy(x, y, 1) <0) or y,=1 (downstream from
the front, i.e., when Sy(x, y, 1)>0).

Effective equations downstream from the front Sy(x, y, t)>0. From (A.3d), we see
that y, ,, =0, so that vy, is a macroscopic variable y, = y,(x, y, 1). Averaging over 7 in
(A.4c) and using (A.3c), we obtain the effective pressure equation

(A.5a) (A (@0))Po.)x + ({A(@0) ™Y 'poy), =0.

Thus, in the limit § = £'/*> 0, we have

(A.da)

@5 = (@);  Ps = Po(X, »t); vs—1,
where po(x, y, t) satisfies (A.5a) with ¢y = ¢,.
Effective equations upstream from the front Sy(x, y, t) <0. Averaging (A.4a) over
7, using the fact that for Sy(x, y, 1) <0 ¢, = ¢,(n), and using (A.3¢c) and (A.3d), we
obtain the effective concentration equation

({d (@) vox —(A(@1))YoPo.x)x
+({(d ()™)Y 0, + (A (@) ) " YoPoy), = 0.

Similarly averaging (A.4c), we obtain the same effective pressure equation (A.5a)
as for the downstream case, but with ¢, = ¢,. Thus, in the upstream region S, <0, the
solution in the limit § = £'/?>> 0 becomes

(A.5b)

@s =@ Ps=>Po(X 1 1);  Ys=> Yo(x, 3, 1).
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A.2. Inner expansions. We expand each of the independent variables ¢, 'y, and p
in interior multiple-scale perturbation expansions of the form

(A.6a) @5 =po(S(x,5,1,8)/8 T(x,y,1,8),y/8,1)+8p,(S/8, T, y/8,1)+"--,

where we assume the following expansions for the normal and tangential coordinates:
§=5(x,,1;8) =So(x, y, 1) +85,(x, y, ¥/8, ) +- - -,
T=T(x,y,t;8)=Tox,y,t)+8T\(x, y, /8, 1)+ -

(A.6b)

Orthogonality condition. So that the chosen coordinate variables S and T are
orthogonal, we impose the following orthogonality constraint:

[A-?) 0= err+'s|_1'r\- = SO.xTU.x g (Sﬂ.y+sl.n)(T0.y+ TI,?;)+ O{S)'

Pertrubation equations order by order. We define &, =S/6, &=T, and n=y/8
substitute expansions (A.6) into (2.9)-(2.11), and gather terms to obtain

0(67%)>
So.x95[d(@0)So.xYo.e, T A(90) Y0S0.xPoz1]
(A.Ba) +(So0,,0¢ 13, d(©0)(So,Y0.e, T Yo.)
+A(20) Yo(So,vPo.e, + Po.n)]1 =0,
So.x96[A(P0)So.xPo.,]
+ (80,405,305 )[A(€0)(So,,Po.g, + Pon)]=0.

The limiting values & - +o correspond to the matching region where the inner
expansions are matched to the outer expansions, i.e.,

(A.8b)

El-i-Tm Po{fl ] 52) n I) =p~0(x0’ Yo, r)a

0= S(‘xoa Yo, I, 6)5

h tisfi
where (x,, y,) satisfies {§2= (%o, yo. 1, 8)

from which it follows that lim; ... po,, =0. We multiply (A.8b) by p,, integrate over
the region (—co, 00) x T', and integrate by parts to obtain

J. JT' )'v(‘}oﬂ)[s(z)xpé{] +(SO,_VPO,§|+p0.11)2] dfdﬂ =O-
—c0

Now, since A(gy) >0, it follows that S, .pye, =0 and (Sy,poe, + Po.,) =0. Assuming
that [V, ,So| # 0 and considering the two cases S, # 0 and S, , # 0 separately, it can
be shown that p, is constant over the region (—c0, ) x T' from which it follows that
Po is continuous across S, i.e., po(0+) = po(0—).

Since po¢, =0=p,,, (A.8a) is reduced to (A.8b) but with A(¢,) replaced by
d(¢y) > 0. Therefore the above argument implies that y, ;, = 0= v, ,, and that ¥,(0+) =
$0(0—). Moreover, since yo(+0, &, 1, 1) = ¥,=1, it follows that y,= yo(&, n, ) =1.

Collecting the O(8 ') terms in the pressure equation (2.11), using the fact that
So, 81, Ty, and T, do not depend on £,, and the orthogonality condition (A.7), we obtain

(S0t (Soy+S1.,)° 1A (@o)Pr.e) e, + (Soy + S1.0) (A(@0)Pry ),
+ [A(‘PO){{TO,]' =t Tl.n)p0.£z+ (SO,}' = Sl,n)pl.{q +pl.n}]n = 0

(A.9a)
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Similarly collecting O(8 ') terms in the concentration equation (2.9), using Yo.& =
0= y,.,, the orthogonality condition (A.7), and the fact that y,= yo(&, m, 1) =1, we
obtain

[S5.x+(Soy+81.,)°1(d(@0)71.6)e,
(A,9b) +(So,y+S1,q)(d(§°0)'}’|,n)g,+So,r§°u,gl
+ [d(wo}{(sn,y + Sl.n)')"l,sl i 'Yl.n}]n =0.

A.3. Asymptotic matching. Having derived equations governing the outer and
inner expansions, we now present the procedure for matching the inner and outer
solutions across the interface. This procedure results in jump conditions for the normal
derivatives of ¥, and p, and the eikonal equation for Sy(x, y, 1).

Local inversion of the transformation: (&,, ¢,)-(x, y). For matching we must
express the outer variables (x, y) in terms of the inner variables (£,, &). In (A.6b) we
must match (&,, &) to (x, y) while keeping n fixed. To achieve this, consider the
nominal point (x,, y,) defined to be the solution of the system

(A'lo) 0=S().’0, }’o,f; 8)’ §2= T(x()s yO’f; 6)'

The solution to (A.10) yields the parametric representation x,= xy(&), Yo = Vol £2).
We now linearize the transformations (A.10) about (x,, yo) and invert. Let
(A.11) X=X+ bx;+ -, y=yo+tby,+---,

substitute these into (A.6b), and expand. The O(8) terms yield a linear system having
the following solution:

(A.12) X, = T&_\flfl';; n=—To.&/J,

where J(xg, yo, 1) = So.<To, — So,,To.« is assumed to be nonzero.
Matching inner and outer expansions for y: Combining the properties of y, and
v, established in §§ A.1 and A.2, respectively, we obtain the following expansions:
Outer expansion:

(Al3a) So>0: f=1, S(){O: ']r“':?()(xaya ‘)"‘5&1(3‘,)’,7?, I)+”. L
Inner expansion:

(A.13b) y=1+y (&, &)+ -

matching in the region S,>0 is straightforward. To match in the region S,<0, we
substitute the expansions (A.11) for x and y into (A.13) and expand and eliminate x,
and y, using (A.12) to obtain

¥ = Yo(X0, Yo, 1) + 8[ Yox (X0, Yo, 1) To €1/ — Yo, (X0, Yo, 1) Toxé1/J
#+ 'Y~|(x0, Yo, 7, f)]+ 0(62)'

Since x,= x,( &) and y, = yo(&,), the outer expansion y has effectively been expressed
in terms of the inner variables ¢, and ¢&,. Matching the O(8) terms in (A.13b) and
(A.13c), we obtain

Yi(é1, &, My 1) = Yo (Xo, Yo, 1) To 61/
= Yo,y (X0, Yo, ) To &1/ T+ ¥1(Xo, Yo, m 1) as & - —c0.

(A.13¢)

(A.13d)

We now use (A.9b) for y, to derive jump conditions for ¥,. Since x,= xo(&;) and
Vo= Yo(&,), it follows from (A.13d) that

(A.13e) Ye = {fo.xTu,y = fu.,vTu.x)/J =F(&,1); Y15 = ')T'l.n as § - —00,
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£+—x ¥ 5 i = "
Since ¢o—— ¢, (which is independent of £,), it follows that limg, .« @o,¢, = 0. We
therefore conclude that

glil'[lm (d(@0)71.6,)s, =0 and Elij’{lm (d(@o)¥1,0)e, =0

Combining all these limiting conditions, we see that, in the limit &~ —, (A.9b)
becomes
d(e){(So,+S1,)Fi(&, 1)+ v1,}=C (independent of 7).

Dividing by d(¢,), averaging over 7, and eliminating C, we obtain
(A-l4} d(‘P_{}(SO.y+Sl.n)F.1{§29 r)+d(¢f)§l,h =<d{¢f)_l)_lsﬂ.yF1{§2s !}‘
From (A.3d), ¥, , is @ known function of 7, so that (A.14) is an equation that can be
used to determine the n dependence of S, and is known as the cell problem for S,.

We now integrate (A.9b) over the region (¢,, ) € (—0, ) X T', use the fact that
¥, (+0, &, 1, 1) =0, (A.13¢), and (A.14) to obtain the jump condition on ¥
((d(@,)Sa+(d (@) ") 'S5,)

Sﬂ.xTO._v i SD.yTU.x

+ (@) = (@) So, = 0.
Matching inner and outer expansions for p: Matching the 0(8°) terms in the inner
and outer expansions and differentiating, we obtain

(A 15) (ﬁo.xTﬂ.y b fﬂ.,l’Tx)

(A.16a) Po.e::aigz Po(xo(&), yol&), 1)
=(—PoxSoyt+PoySox)/J as &> 0.
The O(6) matching conditions for p are
P&, &, 7 1) =(Pox(X0, Yo, ) To,/J —Poy(Xa, Yo, ) Tox/T)é
+p1(x0, o, M 1) @S £ >0,

where i represent the outer expansions in the regions S,> 0 and S, <0, respectively.
These equations lead to the following derivative conditions:

Pl,g. __-{ﬁl;.x To.y _'ﬁ(:;._vTO,x)/J = F:ZL{§2; f)-;
pl.IJ:ﬁ:It,ﬂ(xﬁ’ Yo. 7. f) as fl_)ico'

We now consider (A.9a) in the limit & - +00, make use of the limiting conditions
(A.16), and integrate with respect to n to obtain

(Toy+ Tin)Poe,+ (Sop+Sin)F2(&2, )+ Pin=C*A(go)”' as &>+,
where C* are independent of 7. Averaging over n and eliminating C*, we obtain
AMeo)[(To,+ T )ﬁ;ﬁ"‘ (Su,y + Sl,n)F;(gz-) 1) +ﬁin]
=(A(¢0)" i To,yﬁs,.f;"i' So._;-F;}-

We now integrate (A.9a) over the region (&, n) € (—00, ) X T' and use (A.17), the
zeroth-order orthogonality condition (A.7), and (A.16a) and (A.16b) to obtain
(BaxTo,—Poy To) (A (@6))S5.+(A(@,) ") 7'S3,)
+(Po.ySox — PoxSo.) (A (@6))So,xTo  +{A (¢5) ") 'S0, To,)
= (f"t:x TU,y _ﬁ(;,y To.x}«f\(ﬁPf»Sg.x +(‘\{wf)_l)_ls(2],y)
+ {ﬁ(;,_vs(),x = ﬁ&.xSo,y)(b\ (‘Pf))SD.xTO,x +(A( ‘Pj')_ 1>_ : SO,_VTO.y )s

which is the jump condition for the pressure.

(A.16b)

(A.17)

(A.18)
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