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Abstract

A two-space dimensional active nonlinear nonlocal cochlear model is formulated in the time domain to capture

nonlinear hearing effects such as compression, multi-tone suppression and difference tones. The micromechanics of the

basilar membrane (BM) are incorporated to model active cochlear properties. An active gain parameter is constructed

in the form of a nonlinear nonlocal functional of BM displacement. The model is discretized with a boundary integral

method and numerically solved using an iterative second-order accurate finite difference scheme. A block matrix

structure of the discrete system is exploited to simplify the numerics with no loss of accuracy. Model responses to

multiple frequency stimuli are shown in agreement with hearing experiments. A nonlinear spectrum is computed from

the model, and compared with FFT spectrum for noisy tonal inputs. The discretized model is efficient and accurate, and

can serve as a useful auditory signal processing tool.

r 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Auditory signal processing based on phenom-
enological models of human perception has helped
to advance the modern technology of audio
e front matter r 2005 Elsevier B.V. All rights reserve
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compression [1]. It is of interest, therefore, to
develop a systematic mathematical framework for
sound signal processing based on models of the
ear. The biomechanics of the inner ear (cochlea)
lend itself well to mathematical formulation ([2,3]
among others). Such models can recover main
aspects of the physiological data [4,5] for simple
acoustic inputs (e.g. single frequency tones). In
this paper, we study a nonlinear nonlocal model
d.
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and associated numerical method for processing
complex signals (clicks and noise) in the time
domain. We also obtain a new spectrum of sound
signals with nonlinear hearing characteristics
which can be of potential interest for applications
such as speech recognition.

Linear-frequency domain cochlear models have
been around for a long time and studied exten-
sively [6,7]. The cochlea, however, is known to
have nonlinear characteristics, such as compres-
sion, two-tone suppression and combination tones,
which are all essential to capture interactions of
multi-tone complexes [8–10]. In this nonlinear
regime, it is more expedient to work in the time
domain to resolve complex nonlinear frequency
responses with sufficient accuracy. The nonlinear-
ity in our model resides in the outer hair cells
(OHCs), which act as an amplifier to boost basilar
membrane (BM) responses to low-level stimuli,
so-called active gain. It has been shown [11]
that this type of nonlinearity is also nonlocal in
nature, encouraging near neighbors on the BM to
interact.

One space dimensional (1-D) transmission line
models with nonlocal nonlinearities have been
studied previously for auditory signal processing
[9,12,10,13]. Higher dimensional models give shar-
per tuning curves and higher frequency selectivity.
In Section 2, we begin with a two space dimen-
sional (2-D) macromechanical partial differential
equation (PDE) model. We couple the 2-D model
with the BM micromechanics of the active linear
system in [7]. We then make the gain parameter
nonlinear and nonlocal to complete the model
setup, and do analysis to simplify the model.
Scala Vestibuli

Scala Tympani

Footplate
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Window
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Fig. 1. The figure on the left is a schematic of the cochlea, while t

macromechanical equations and boundary conditions.
In Section 3, we discretize the system and
formulate a second-order accurate finite difference
scheme so as to combine efficiency and accuracy.
The matrix we need to invert at each time step has
a time-independent part (passive) and a time-
dependent part (active). In order to speed up
computations, we split the matrix into the passive
and active parts and devise an iterative scheme.
We only need to invert the passive part once,
thereby significantly speeding up computations.
The structure of the system also allows us to
reduce the complexity of the problem by a factor
of 2, giving even more computational efficiency. A
proof of convergence of the iterative scheme is
given in Appendix.
In Section 4, we discuss numerical results and

show that our model successfully reproduces the
nonlinear effects such as compression, multi-tone
suppression, and combination difference tones.
We demonstrate such effects by inputing various
signals into the model, such as pure tones, clicks,
and noise. A nonlinear spectrum is computed from
the model and compared with FFT spectrum for
the acoustic input of a single tone plus Gaussian
white noise or colored road noise. The conclusions
are in Section 5.
2. Model setup

2.1. Macromechanics

The cochlea consists of an upper and lower fluid
filled chamber, the scala vestibuli and scala
tympani, with a shared elastic boundary called
H

L

x

p = 0 p = 0 

p
z = 2 utt

pz = 0

z

px = TM pe(t)

he figure on the right represents the upper chamber with the
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the BM (see Fig. 1). The BM acts like a Fourier
transform with each location on the BM tuned to
resonate at a particular frequency, ranging from
high frequency at the basal end to low frequency at
the apical end. The acoustic wave enters the ear
canal, where it vibrates the eardrum and then is
filtered through the middle ear, transducing the
wave from air to fluid in the cochlea via the stapes
footplate. A standing pressure wave in the fluid
creates a skew-symmetric motion of the BM. The
pressure difference drives the BM, which resonates
according to the frequency content of the standing
wave.

We start with simplification of the upper
cochlear chamber into a two-dimensional rectan-
gle O ¼ ½0;L� � ½0;H� (see Fig. 1). Due to the
symmetry, we can ignore the lower chamber. The
bottom boundary (z ¼ 0) is the BM, while the left
boundary (x ¼ 0) is the stapes footplate. The
macromechanical equations are

Dpðx; z; tÞ ¼
q2p

qx2
þ

q2p
qz2
¼ 0,

x 2 ½0;L�; z 2 ½0;H�; t 2 ½0;1Þ,

pxð0; z; tÞ ¼ TMpeðtÞ; pðL; z; tÞ ¼ 0,

pzðx; 0; tÞ ¼ 2ruttðx; tÞ; pzðx;H; tÞ ¼ 0, ð2:1Þ

where pðx; z; tÞ is the pressure difference across the
BM, uðx; tÞ denotes BM displacement, and r is
fluid density. Differentiation in time is denoted by
subscript t and differentiation in space by sub-
scripts x and z.

At the stapes footplate ð0; zÞ, peðtÞ is pressure
at the eardrum while TM is a bounded linear
operator on the space of bounded continuous
functions that incorporates the middle ear filtering
characteristics. In the frequency domain, for
each input eiot, TMðoÞ ¼ 2rio=Zm, where Zm is
the impedance of the middle ear. The middle ear
amplification function is given by aM ¼ jTMj. In
our case, based on Guinan and Peake [14],

aMðf Þ ¼ 1:815f 2 1�
f 2

f 2
m

 !2

þ ð2zmf =f mÞ
2

0
@

1
A
�1=2

,

(2.2)

where f m ¼ 4 kHz is the middle ear characteristic
frequency and zm ¼ 0:7 is the middle ear damping
ratio. Thus, for peðtÞ ¼ A expf2pif g þ c:c:, where
c.c. is complex conjugate, we have TMpeðtÞ ¼

B expf2pif g þ c:c:, where B ¼ aMðf ÞA.
For more complex stimuli, it is useful to model

the middle ear in the time domain as a one-degree
of freedom spring–mass system. The equivalent
time domain formulation of the steady-state
middle ear is given by

peðtÞ ¼ mm €sðtÞ þ cm _sðtÞ þ kmsðtÞ,

sð0Þ ¼ _sð0Þ ¼ 0, ð2:3Þ

where sðtÞ is stapes displacement and mm, cm, and
km are the mass, damping and stiffness of the
middle ear. The dot denotes differentiation with
respect to time. The stapes boundary condition in
(2.1) is replaced by

pxð0; z; tÞ ¼ 2r€sðtÞ. (2.4)

One of the interesting effects of using the time
domain middle ear model is that it reduces the
dispersive instability in the cochlea (see [15]). It
appears that the steady-state middle ear model
ignores important transient effects and phase shifts
that help to reduce the shock to the cochlea.
At the helicotrema ðL; zÞ, we have used the

Dirichlet boundary condition pðL; z; tÞ ¼ 0. In [7],
they used an absorbing boundary condition
pxðLÞ ¼ cptðLÞ, where c is a positive constant.
Other models use the Neumann condition
pxðLÞ ¼ 0. It has been stated that the frequency
domain solutions are minimally affected by which
boundary condition is chosen [6], and thus we have
chosen the simpler Dirichlet condition. However,
interesting results on choosing the best initial
conditions to minimize transient effects (dispersive
instability) have been shown in [15] using the
Neumann condition. To summarize, the macro-
mechanics consist of Eqs. (2.1)–(2.4).

2.2. Micromechanics

This is a resonant tectorial membrane (TM)
model based on [7]. The BM and TM are modeled
as two lumped masses coupled by a spring
and damper, with each mass connected to a wall
by a spring and damper (see Fig. 2). A classical
approximation is to have no longitudinal coupling
except that which occurs through the fluid.
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Fig. 2. Cross-section micromechanics of the cochlea. The mass

m1 represents a cross-section of the BM, while mass m2 is a

cross-section of the TM. (Reconstructed from Fig. 3 in [7].)
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Denoting xðx; tÞ ¼ ðuðx; tÞ; vðx; tÞÞ as BM and TM
displacement, respectively, the equations of mo-
tion for the passive case at each point along the
cochlea are given by

Mp
€xþ Cp

_xþ Kpx ¼ F , (2.5)

where

Mp ¼
m1 0

0 m2

" #
,

Cp ¼
c1 þ c3 �c3

�c3 c2 þ c3

" #
,

Kp ¼
k1 þ k3 �k3

�k3 k2 þ k3

" #
ð2:6Þ
and forcing function

F ¼
pðx; 0; tÞ

0

� �
. (2.7)

The parameters mi, ci, and ki are functions of x.
The initial conditions are given by

xðx; 0Þ ¼ _xðx; 0Þ ¼ 0. (2.8)

To make the model active, a self-excited vibra-
tional force acting on the BM is added to (2.5):

Mp
€xþ Cp

_xþ Kpx ¼ F þ Fa,

where

Fa ¼
g½c4ð _u� _vÞ þ k4ðu� vÞ�

0

� �
.

The difference u� v represents OHC displace-
ment. The parameter g 2 ½0; 1� is the active gain
control. In [7], this is a constant, but in our case
will be a nonlinear nonlocal functional of BM
displacement and BM location. Bringing F a to the
left, we have

Mp
€xþ ðCp � gCaÞ

_xþ ðKp � gKaÞx ¼ F , (2.9)

where

Ca ¼
c4 �c4

0 0

� �
; Ka ¼

k4 �k4

0 0

� �
. (2.10)

Thus, the micromechanics consist of Eqs.
(2.6)–(2.10).
2.3. Nonlinear nonlocal active gain

A compressive nonlinearity in the model is
necessary to capture effects such as two-tone
suppression and combination tones. Also, to allow
for smoother BM profiles, we make the active gain
nonlocal. Thus, we have

ûðx; tÞ ¼
2ffiffiffiffiffiffi
lp
p

Z L

0

e�ðx�sÞ2=lu2ðs; tÞds

and gain

gðx; tÞ ¼
1

1þ yû
,

where y; l are constants.
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2.4. Semi-discrete formulation

Solving the pressure Laplace equation on the
rectangle using separation of variables, we arrive
at the following series representation for pressure:

pðx; 0; tÞ ¼ TMpeðtÞðx� LÞ þ
X1
n¼1

An cos bnx,

(2.11)

where

An ¼
�4rH

L

� �
coth bnH

bnH

� �Z L

0

uttðx; tÞ cos bnxdx,

bn ¼
ðn� 1

2
Þp

L
. ð2:12Þ

Substituting (2.11) into (2.7) and then discretizing
(2.9) in space into N grid points, we have

M~xtt þ CðtÞ~xt þ KðtÞ~x ¼ ~bðtÞ, (2.13)

where

M ¼
M1 þ aMf 0

0 M2

" #
,

CðtÞ ¼ Cp � ĜðtÞCa

¼
C1 þ C3 � GðtÞC4 �ðC3 � GðtÞC4Þ

�C3 C2 þ C3

" #
,

KðtÞ ¼ Kp � ĜðtÞKa

¼
K1 þ K3 � GðtÞK4 �ðK3 � GðtÞK4Þ

�K3 K2 þ K3

" #
,

~bðtÞ ¼
TMpeðtÞð~x� LÞ

0

� �
,

M f ;ij ¼
XK

k¼1

coth bkH

bkH
cosðbkxiÞ cosðbkxjÞwj,

a ¼
4rH

N � 1
.

Cp, Kp, Ca, and Ka are now block diagonal,
where Ki ¼ diagfkig and Ci ¼ diagfcig. Also,
Mi ¼ diagfmig, GðtÞ ¼ diagfgiðtÞg and ĜðtÞ ¼
diagfGðtÞ; 0g. The numbers wj are numerical
integration weights in the discretization of (2.12)
and are chosen based on the desired degree of
accuracy. Note that we can write M f ¼Ms

fW ,
where W ¼ diagðwjÞ and Ms

f is symmetric and
positive definite. The result of separation of
variables produced the matrix M f , which is
essentially the mass of fluid on the BM and
dynamically couples the system.
3. Numerics

In formulating a numerical method, we note
that the matrices in (2.13) can be split into a time-
independent passive part and a time-dependent
active part. In splitting in this way, we are able to
formulate an iterative scheme where we only need
to do one matrix inversion on the passive part for
the entire simulation. Thus, using second-order
approximations of the first and second derivates in
(2.13), we arrive at

ðLp � Ln
aÞ
~x

nþ1
¼ ~B

n
¼) ~x

nþ1;kþ1

¼ L�1p
~B

n
þ L�1p Ln

a
~x

nþ1;k
, ð3:1Þ

where superscript n denotes discrete time, k

denotes iteration and

Lp ¼ 2M þ 3
2
DtCp þ Dt2Kp,

Ln
a ¼ Ĝ

n
½3
2
DtCa þ Dt2Ka�,

~B
n
¼ Dt2~bðnDtÞ þMð5~x

n
� 4~x

n�1
þ~x

n�2
Þ

þ
Dt

2
Cnð4~x

n
�~x

n�1
Þ.

Proof of convergence will follow naturally from
the next discussion. Note that this is a 2N � 2N

system. We shall simplify it to an N �N system
and increase the computational efficiency.

3.1. System reduction

We write Lp and Ln
a in block matrix form as

Lp ¼
~M1 �P3

�P3
~M2

" #
,
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Table 1

Model parameters in cgs units

m1ðxÞ 3� 10�3 g cm�2 mm 6:7� 10�3 g cm�2

c1ðxÞ 20þ 1500e�2x dyn s cm�3 cm 2:36� 102 dyn s cm�3

k1ðxÞ 1:1� 109e�4x dyn cm�3 km 4:23� 106 dyn cm�3

m2ðxÞ 0:5� 10�3 g cm�2 L 2.5 cm

c2ðxÞ 10e�2:2x dyn s cm�3 H 0.1 cm

k2ðxÞ 7� 106e�4:4x dyn cm�3 r 0:1 g cm�3

c3ðxÞ 2e�0:8x dyn s cm�3 y 0.5

k3ðxÞ 107e�4x dyn cm�3 l 0.08 cm

c4ðxÞ 1040e�2x dyn s cm�3 Dt 2:5� 10�6–10�5 s

k4ðxÞ 6:15� 108e�4x dyn cm�3 N 401
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Fig. 3. Both figures are sensitivity curves for CP ¼ 0.77 cm or CF ¼

linear steady-state active model where the parameter is the active ga

nonlinear time domain model where the parameter is pressure at the
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Ln
a ¼

GnP4 �GnP4

0 0

� �
,

where

~M1 ¼ 2ðaMf þM1Þ þ P1 þ P3,

~M2 ¼ 2M2 þ P2 þ P3,

Pi ¼
3
2
DtCi þ Dt2Ki.
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10 kHz. The left plot is a collection of sensitivity curves for the

in g. The right plot is a collection of sensitivity curves for the

eardrum in dB SPL (sound pressure level).
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It is easily seen that the left inverse of Lp is
given by

L�1p ¼
D�1 D�1 ~M

�1

2 P3

~M
�1

2 P3D
�1 ~M

�1

2 P3D
�1 ~M1P

�1
3

2
4

3
5,

where

D ¼ ~M1 � P3
~M
�1

2 P3

¼ 2aM f þ ½2M1 þ P1 þ P3ðI � ~M
�1

2 P3Þ�

¼ f2aMs
f þ ½2M1 þ P1 þ P3ðI � ~M

�1

2 P3Þ�W
�1gW

� DsW . ð3:2Þ
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Fig. 4. An impulse, or click, lasting 0.1ms starting at 0.4ms is input

displacement time series for various CF’s ranging from 0.5 to 4 kHz. Th

CF ¼ 6:4 kHz.
Note that D is invertible, since Ms
f is positive

definite, thus invertible, and all other terms are
positive diagonal matrices, and thus their sum is
positive definite and invertible. We also have

L�1p Ln
a ¼

D�1GnP4 �D�1GnP4

~M
�1

2 P3D�1GnP4 � ~M
�1

2 P3D
�1GnP4

" #
.

(3.3)

Letting ~B
n
¼ ð~B

n

1; ~B
n

2Þ, we have

~unþ1;kþ1
¼W�1½zn

1 þD�1s GnP4ð~u�~vÞ
nþ1;k
�, (3.4)
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-1000

-500

0

500

1000

Time (ms)

80 dB SPL 

60 dB SPL 

40 dB SPL 

into the nonlinear nonlocal ear model. The left plot is the BM

e right plot is a sensitivity plot for various stimulus intensities at
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~vnþ1;kþ1
¼W�1 ~M

�1

2 P3½z
n
2 þD�1s GnP4ð~u�~vÞ

nþ1;k
�,

(3.5)

where

zn
1 ¼ D�1s ½

~B
n

1 þ
~M
�1

2 P3
~B

n

2�, (3.6)

zn
2 ¼ D�1s ½

~B
n

1 þ
~M1P

�1
3
~B

n

2�. (3.7)

At each time step, we do 2 N �N matrix solves in
(3.6) and (3.7) to initialize the iterative scheme.
Then, since the same term appears in both Eqs.
(3.4) and (3.5), for each k we only have to do 1
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Fig. 5. Gaussian noise is input into the ear. The left plot is the BM

16kHz. The right plot is a sensitivity plot for CF ¼ 6:4 kHz.
N �N matrix solve. In practice, since Ds is
symmetric, positive definite and time-independent,
we compute the Cholesky factorization of Ds at the
start of the simulation and use the factorization for
more efficient matrix solves at each step. As a side
note, if we subtract (3.5) from (3.4), we have one
equation for the OHC displacement u� v.
4. Numerical results

4.1. Model parameters

We start with a modification of the parameters
in [7] (see Table 1). It is known that higher
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displacement time series for various CFs ranging from 0.5 to
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dimensional models give higher sensitivity. This is
the case with this model. The 1-D model [7] gives a
90 dB active gain at 16 kHz, whereas the 2-D
model gives a 160 dB active gain. Thus, we need to
tune the system to reduce the gain. There are many
ways to do this, and the method we choose is to
increase all the damping coefficients in the table by
the following:

2e0:2773xci 7!ci; i ¼ 1; 2; 3; 4.

Scaling all damping coefficients uniformly guar-
antees preservation of the tuning curve shapes.
The exponential scaling function was chosen to
give qualitatively similar threshold of hearing
curves typical for healthy cochlea.
0 1 2
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Fig. 6. Two sinusoidal tones, 7 and 10 kHz at 80 dB each, are the i

displacement and active gain, respectively. The right plot is a spectru
4.2. Isointensity curves

Each location along the BM is tuned to resonate
at a particular frequency, called the characteristic
frequency (CF) for that location. Alternately, each
frequency in the range of hearing has an associated
characteristic place (CP) on the BM. To construct
isocontour curves, a probe is placed at a CP on the
BM where the steady-state or time domain
response is measured and analyzed for input tones
covering a range of frequencies.
Fig. 3 shows isointensity curves for CP ¼

0:77 cm corresponding to a frequency of 10 kHz.
The left plot is the linear steady-state active case.
The parameter is the active gain g, and for each
value of the active gain we get a curve that is a
2
ation
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m plot of the BM displacement time series at CP for 4 kHz.
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function of the input frequency. The value of the
isointensity curve is the ratio jujðCPÞ=Pe, where
jujðCPÞ is steady-state BM displacement at the
CP and Pe is pressure at the eardrum. This is
known as sensitivity. It is basically an output/input
ratio and gives the transfer characteristics of the
ear at that particular active level. Note that
when g ¼ 1, the BM at the CP is most sensitive
at the corresponding CF, but at lower values of
the gain, the sensitivity peak shifts to lower
frequencies.

Analogously, the second plot in Fig. 3 shows
isointensity curves for the nonlinear time domain
model where now the parameter is the intensity of
the input stimulus in dB SPL (sound pressure
level). For the time domain, we measure the root-
mean-square (rms) BM amplitude from 5ms (to
remove transients) up to a certain time T, and thus
the value of the isointensity curve is jujrmsðCPÞ=Pe.
Note that for high-intensity tones, the model
becomes passive while low-intensity tones give a
more active model. This shows compression.
Again, there is a frequency shift of the sensitivity
peak (about one-half octave) from low- to high-
intensity stimuli in agreement with [5], so-called
half-octave shift. The plot agrees well with Fig. 5
in [5].
4.3. Complex stimuli

The first nonsinusoidal input we look at is a
click. In the experiment, in the left plot of Fig. 4,
we put probes at varying CPs associated with
frequencies ranging from 0.5 to 4 kHz to measure
the time series BM displacement. The click was
40 dB with duration 0.1ms starting at 0.4ms. All
responses were normalized to amplitude 1. The
plot is similar to Fig. 4 in [9]. In the right plot of
Fig. 4, a probe was placed at CP for 6.4 kHz and
the time series BM volume velocity was recorded
for various intensities and the sensitivity plotted.
This shows, similar to Fig. 3, the compression
effects at higher intensities. See Fig. 9 in [5] for a
similar plot.
The second nonsinusoidal input we explore is

Gaussian white noise. Fig. 5 is similar in all
regards to Fig. 4. Note again in the right plot the
compression effect.

4.4. Difference tones

Any nonlinear system with multiple sinusoidal
inputs will create difference tones. If two frequen-
cies f 1 and f 2 are put into the ear, nf 1 �mf 2 will
be created at varying intensities, where n and m are
nonnegative integers. The cubic difference tone,
denoted f ¼ 2f 1 � f 2, where f 1of 2, is the most
prominent. Fig. 6 contains three plots of one
experiment. The experiment consists of two
sinusoidal tones, 7 and 10 kHz at 80 dB each.
The cubic difference tone is 4 kHz. The plot on the
left is the BM profile for the experiment at 15ms.
We see combination tone peaks at 1.21 cm (CP for
4 kHz), 1.54 cm (CP for 2 kHz) and 1.85 cm (CP
for 1 kHz). The middle plot shows the snapshot at
15ms of the active gain parameter, showing the
difference tones getting an active boost. Finally,
the right plot is a spectrum plot of the time series
for BM displacement at 1.21 cm, the CP for 4 kHz.
The cubic difference tone is above 1 nm and can
therefore be heard.

4.5. Multi-tone suppression

Two-tone (and multi-tone) suppression is char-
acteristic of a compressive nonlinearity and
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has been recognized in the ear [5,8,16]. Fig. 7
illustrates two-tone suppression and is a collection
of isodisplacement curves that show decreased
tuning in the presence of suppressors and is
similar to Fig. 16 in [5]. We placed a probe at
the CP for 4 kHz (1.21 cm) and input sinusoids
of various frequencies. At each frequency, we
record the pressure at the eardrum that gives a
1 nm displacement for 4 kHz in the FFT spectrum
of the time series response at CP. The curve
without suppressors is dashed with circles. We
then input each frequency again, but this time in
the presence of a low-side (0.5 kHz) tone and
high-side (7.5 kHz) tone, both at 80 dB. Note
the reduced tuning at the CF. Also note the
asymmetry of suppression, which shows low side
is more suppressive than high side, in agreement
with [16].
For multi-tone suppression, we look at tonal

suppression of noise. In Fig. 8, for each plot, a
probe was placed at every grid point along the
BM and the time response was measured from 15
up to 25ms. The signal in each consisted of
noise at 50 dB with a 2 kHz tone ranging from 40
to 80 dB (top to bottom). An FFT was performed
for each response and its CF amplitude was
recorded and plotted in decibels relative to the
average of the response spectrum of 0 dB noise
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from 0.5 to 16 kHz. We see suppression of all
frequencies, with again low-side suppression
stronger than high-side suppression. Fig. 8 is
qualitatively similar to Fig. 3 in [8]. It is useful to
compare this figure with Fig. 9. This figure is
the same as Fig. 8, except we do an FFT of the
input signal at the eardrum. Comparing these two
figures shows that we have a new spectral trans-
form that can be used in place of an FFT in certain
applications, for example, signal recognition and
noise suppression.

We repeat the previous simulation on real-world
road noise, whose power spectral density is
displayed in Fig. 10. The results of the simulation
are displayed in Fig. 11. Again we see tonal
suppression of noise. Note the presence of an odd
harmonic at 6 kHz, characteristic of the choice of
nonlinearity.
5. Conclusions

We studied a two-dimensional nonlinear non-
local variation of the linear active model in [7].
We then developed an efficient and accurate
numerical method and used this method to explore
nonlinear effects of multi-tone sinusoidal inputs,
as well as clicks and noise. We showed numerical
results illustrating compression, multi-tone sup-
pression and difference tones. The model reached
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agreement with experiments [5] and produced a
novel nonlinear spectrum. In future work, we will
analyze the model responses to speech and
resulting spectra for speech recognition. It is also
interesting to study the inverse problem [17] of
finding efficient and automated ways to tune the
model to different physiological data. Applying
the model to psychoacoustic signal processing [13]
will be another fruitful line of inquiry.
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Appendix. Convergence of iterative scheme (3.1)

We need the following lemma:

Lemma 1. If

M ¼
A �A

B �B

� �
then every nonzero eigenvalue of M is an eigenvalue

of A� B.

Proof. Let l be a nonzero eigenvalue of M with
nontrivial eigenvector ~x ¼ ð~x1; ~x2Þ. Thus, M~x ¼ l~x
gives

Að~x1 � ~x2Þ ¼ l~x1, (A. 1)

Bð~x1 � ~x2Þ ¼ l~x2. (A. 2)

Subtracting the two equations, we have

ðA� BÞð~x1 � ~x2Þ ¼ lð~x1 � ~x2Þ.

Now, if ~x1 � ~x2 ¼ 0, then from (A. 1) and (A. 2)
above and la0, we have ~x1 ¼ ~x2 ¼ 0. But this
means ~x ¼ 0, which is a contradiction. Thus, l is
an eigenvalue of A� B with nontrivial eigenvector
~x1 � ~x2. &

Theorem 2. There exists a constant C40 such that

if DtoC, then

rðL�1p Ln
aÞo1,

where r is the spectral radius. Thus, the iterative

scheme converges.

Proof. By the above lemma applied to (3.3), with
constant g, we have

sðL�1p Ln
aÞ � gsðD�1P4 � ~M

�1

2 P3D
�1P4Þ

¼ gs½ðI � ~M
�1

2 P3ÞD
�1P4�,

where s denotes spectrum. Thus, we have

rðL�1p Ln
aÞpgkðI � ~M

�1

2 P3ÞW
�1D�1s P4k2

pgkðI � ~M
�1

2 P3ÞW
�1k2kD

�1
s k2kP4k2.

Now, let ðl; ~xÞ be the eigen-pair of Ds with
l the smallest eigenvalue and k~xk ¼ 1. Note
that l40 since Ds is positive definite. Thus,
we have 1=l is the largest eigenvalue of D�1s ,
which gives

kD�1s k2p1=l.



ARTICLE IN PRESS

1 2 3 4 5 6 7 8

-50

0

50

40
 d

B

50 dB Road Noise + 2 kHz Tone

1 2 3 4 5 6 7 8

-50

0

50

60
 d

B

1 2 3 4 5 6 7 8

-50

0

50

Characteristic Frequency (kHz)

80
 d

B

D
is

pl
ac

em
en

t i
n 

dB
 r

e 
R

0 
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Thus, using the definition of Ds from (3.2), we
have

l ¼ ~xTDs~x

¼ ~xT
f2aMs

f þ ½2M1 þ P1 þ P3ðI � ~M
�1

2 P3Þ�W
�1g~x

X~xT
f½2M1 þ P1 þ P3ðI � ~M

�1

2 P3Þ�W
�1g~x

Xminf½2m1 þ p1 þ p3ð1� ~m�12 p3Þ�w
�1g,

where lowercase represents diagonal entries. The
third line above follows from 2aMs

f being positive
definite. Finally, we have

rðL�1p Ln
aÞpgkðI � ~M

�1

2 P3ÞW
�1k2kD

�1
s k2kP4k2

pg
max½ð1� ~m�12 p3Þw

�1�maxðp4Þ

minf½2m1 þ p1 þ p3ð1� ~m�12 p3Þ�w
�1g

.

For Dt small enough, we have convergence. &

With our parameters, for convergence it is
sufficient that Dtp0:0008. In practice, however,
convergence is seen for Dt as large as 0:01.
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