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Abstract Given a set of mixtures, blind source separation
attempts to retrieve the source signals without or with very
little information of the mixing process. We present a geo-
metric approach for blind separation of nonnegative linear
mixtures termed facet component analysis. The approach is
based on facet identification of the underlying cone structure
of the data. Earlier works focus on recovering the cone by
locating its vertices (vertex component analysis) based on a
mutual sparsity condition which requires each source signal
to possess a stand-alone peak in its spectrum. We formu-
late alternative conditions so that enough data points fall on
the facets of a cone instead of accumulating around the ver-
tices. To find a regime of unique solvability, we make use of
both geometric and density properties of the data points and
develop an efficient facet identification method by combin-
ing data classification and linear regression. For noisy data,
total variation techniquemay be employed.We show compu-
tational results on nuclear magnetic resonance spectroscopic
data to substantiate our method.
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1 Introduction

Blind source separation (BSS) is a major area of research in
signal and image processing [7]. It aims at recovering source
signals from their mixtures with minimal knowledge of the
mixing environment. The applications of BSS range from
engineering to neuroscience. A recent emerging research
direction of BSS is to identify chemical explosives and bio-
logical agents from their spectral sensing mixtures recorded
by various spectroscopy such as nuclear magnetic resonance
(NMR), Raman spectroscopy, ionmobility spectroscopy, and
differential optical absorption spectroscopy. The advances of
modern imaging and spectroscopic technology have made it
possible to classify pure chemicals by their spectral features.
However, mixtures of chemicals subject to changing back-
ground and environmental noise pose additional challenges.

To separate the spectral mixtures, one needs to solve the
following matrix decomposition problem

X = A S + N , (1.1)

where A ∈ R
m×n is a full rank unknown basis (dictio-

nary) matrix or the so-called mixing matrix in some appli-
cations, N ∈ R

m×p is an unknown noise matrix and S =
[s(1), . . . , s(p)] ∈ R

n×p is the unknown source matrix con-
taining signal spectra in its rows. Here, p is the number
of data samples, m is the number of observations, and n
is the number of sources. Various BSS methods have been
proposed based on a priori knowledge of source signals
such as statistical independence, sparseness, and nonnegativ-
ity [3,6,7,11,12,14–16,19,22,23]. As a matrix factorization
problem, BSS has permutation and scaling ambiguities in
its solutions similar to factorizing a large number into prod-
uct of primes. For any permutation matrix P and invertible
diagonal matrix Λ, we have
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X = A S + N = (A PΛ)(Λ−1P−1S) + N . (1.2)

Then, the solutions (APΛ, Λ−1P−1S) and (A, S) are con-
sidered to be equivalent in the sense of BSS.

Recently, there has been active research on BSS by
exploiting data geometry [1,2,5,13,19–26]. The geometric
observation [1,19,26] is that if each row of S has a dominant
peak at some location (column number) where other rows
have zero elements, then the problem of finding the columns
of the mixing matrix A reduces to the identification of the
edges of a minimal cone containing the columns of mixture
matrix X . In hyperspectral imaging (HSI), the condition is
known as pixel purity assumption (PPA [5]). In other words,
each pure material of interest exists by itself somewhere on
the ground. The PPA-based convex cone method (known as
N-findr [26]) is nowa benchmark inHSI, see [5,19–22] for its
more recent variants. The method termed vertex component
analysis (VCA) proposed in [21] is worth mentioning here
being a fast unmixing algorithm for hyperspectral data. In
NMR spectroscopy that motivates our work here, PPA was
reformulated by Naanaa and Nuzillard in [19]. The source
signals are only required to be nonoverlapping at some loca-
tions of acquisition variable (e.g., frequency).

Assumption (PPA) : For each i ∈ {1, 2, . . . , n}, there exists
an ji ∈ {1, 2, . . . , p} such that si, ji > 0 and sk, ji = 0 (k =
1, . . . , i − 1, i + 1, . . . , n), where si, ji (resp., sk, ji ) is the
(i, ji )-th (resp., (k, ji )-th) entry of S.

Simply put, the stand-alone peaks possessed by each
source allow formation of a convex cone enclosing all the
columns of X , and the edges (or vertices) of the cone are the
columns of the mixing matrix A. Moreover, every column
of A is colinear to some column of X . To find the vertices
(or edges) of the cone, the following optimization problem
is solved for each column Xk of X [19]:

min score = min
λ j≥0

‖
p∑

j=1, j �=k

X jλ j − Xk‖22. (1.3)

A high score means that the corresponding column is
far from being a nonnegative linear combination of other
columns. So the n rows from X with highest scores are
selected to form A, the mixing matrix.

If PPA is violated, the vertices are no longer in the data
matrix X (up to a constant factor) andmay not be the primary
objects for identification. In this paper, we consider a more
general scenario where data points (scaled columns of X )
lie either inside or on the facets (possibly located at the ver-
tices) of a convex cone, see Fig. 1 for an example. Recently,
a dual cone-based approach to BSS problem was proposed
in [20]. But this method appears indirect and computation-
ally unwieldy, besides requiring the orthogonality of source
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Fig. 1 Nonuniqueness of cone A. The data points of X (in blue) and
two convex hulls Convhull(A) (black and red) are formed by selecting
three facets of cone X (color figure online)

signals. Here, we opt to solve the problem in a greedy man-
ner directly by identifying the facets of the data cone under
unique solvability conditions, whichwe call facet component
analysis (FCA).

The rest of the paper is organized as follows. In Sect. 2,
we propose a new source condition for solving (1.2) based
on the geometric structure of the data points and develop an
algorithm for facet identification and reconstruction of the
associated convex cone. We also discuss template-assisted
FCA solutions in the regime of nonuniqueness. In Sect. 3,
we present computational examples and results. For heavily
noisy data, a denoising method based on total variation is
discussed. Concluding remarks and future work are given in
Sect. 4.

2 Proposed method

First of all, we emphasize that FCA is not only applicable
to all the data separations for which VCA works, as will be
seen later, but also designed for tasks where the sources are
sparse with moderate overlaps among their peaks.

2.1 Facet component analysis

In order to illustrate the basic idea behind FCA, we first
consider nonnegative matrix factorization (NMF) problem
in the noiseless case:

X = A S

We assume that X, S ∈ R
m×p (i.e., the numbers of available

mixtures and source signals are equal) where p � m and
that the mixing matrix A ∈ R

m×m is of full rank. Since A is
a square matrix, what we consider here is just the determined
case. However, the proposed method can be easily extended
to the overdetermined case.
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The first source condition on the problem is as follows:

Assumption 1 For each i = 1, . . . ,m, at least m − 1 linear
independent columns of the sourcematrix S have a zero entry
in the i-th element.

UnderAssumption 1, there are at leastm−1 data points lie
on each facet of them-dimensional convex cone that encloses
the columns of X . As we notice that each facet is correspond-
ing to a (m−1)-dimensional hyperplane, linear independence
of the data points makes each of the facets identifiable. The
columns of the mixing matrix A are obtained from the inter-
sections of the hyperplanes expanded from the facets. To state
thismore precisely, we first start with the definition of convex
cones: let M ∈ R

m×p, the subset of Rm defined by

M = Cone(M) := {M α ∈ R
m |α ∈ R

p ≥ 0}
is a convex cone, and M is said to be a generating matrix of
M since every element of M is a nonnegative linear com-
bination of the columns of M . Let X = Cone(X) and A =
Cone(A), then we have the following theorem (or combining
Lemma 3 and Lemma 5 in [20]):

Theorem 1 If X = A S, and A, S ≥ 0, then X ⊆ A. More-
over, each facet of A contains a facet of X .

For readers’ convenience, a short proof is given below.

Proof ∀ x ∈ X , let x = X α, α ≥ 0. So x = A S α =
A (S α), where S α ≥ 0. So clearly x ∈ A.

The second claim follows as we notice the facts: (1)A has
m facets and each one is spanned by m − 1 column vectors
of A; (2) Using Assumption 1, X = A S has at least m − 1
linearly independent column vectors located in each facet of
A; (3) X ⊆ A. 	


Since A is nonsingular, A has m edges and thus has( m
m−1

) = m facets. After projecting column vectors of X

onto the hyperplane xT · 1 = 1, where x = (x1, . . . , xm)T

and 1 = (1, . . . , 1)T, the resulting data points together with
the origin 0 = (0, . . . , 0)T form a m-dimensional convex
hull denoted by Convhull(X). We then acquire all the facets
and the associated vertices of Convhull(X), which can be
done by means of the MATLAB function convhulln. It
is an implementation of the Quickhull algorithm computing
the convex hull of a point cloud.

However, Theorem 1 implies that X generally has more
facets thanA, making the selections of A clearly nonunique.
So we propose an additional source assumption based on
the density property of the data points to provide a selection
criterion.

Assumption 2 The m facets of X containing the largest
numbers of data points are contained in the m facets of A.
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Fig. 2 Top row sources recovered by selectingA according toAssump-
tion 2 (red convex hull in Fig. 1). Bottom row sources recovered by
selecting black convex hull in Fig. 1

Remark 1 We note in passing that PPA is a special (much
more restrictive) case of Assumption 1. Moreover, PPA also
implies Assumption 2 since X and A would have the same
number of facets. These observations actually validate our
claim at the very beginning of this section.

Remark 2 The intuition behind Assumption 2 can be that it
is essentially a geometric interpretation of the source matrix
S being sparse. To see this, let X j (nonzero) be the j-th data
point of X , we have

X j =
m∑

i=1

Si j A
i .

If Si j = 0 for some index i , then X j is a nonnegative lin-
ear combination of all columns of A but Ai . Geometrically
speaking, the data point X j is located in the facet of A cor-
responding to the edge (vertex) Ai . On the other hand, if
Si j �= 0 for all i , then X j is an interior point of A, and vice
versa. Assumption 2 basically says that we want as many
data points as possible to be contained in the facets of A,
which is equivalent to looking for the sparsest S via FCA.
In Fig. 1, the red Convhull(A) should be selected accord-
ing to Assumption 2 as one can see that there are many data
points lie in its facets. The corresponding recovered sources
are shown in the top row of Fig. 2, while the bottom row
of Fig. 2 are the recovered sources if we selected the black
Convhull(A) in Fig. 1. This example is an illustration that
selecting mixing matrix A under Assumption 2 finally yields
sparse sources S.

We then count and sort the number of data points in each
facet of Convhull(X) followed by selecting them facets with
the largest numbers of data points. Each one is contained in
some facet of A. So the intersection of any m − 1 facets out
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of the obtained m facets is an edge of A. By intersecting
all m edges with the hyperplane xT · 1 = 1, we obtain all
the columns of A. In the last step, we use nonnegative least
squares to recover the source matrix S.

Let us include the additive noise and summarize the algo-
rithm under Assumptions 1–2 as follows:

Algorithm 1 (Facet component analysis) (A, S)= FCA(X, ρ,

ε, σ, δ); parameters ρ > 0; ε, σ, δ ∈ (0, 1).

1. (Preprocessing) Set the negative entries in X to 0, then
discard those column vectors with norm less than ρ. Let
us still denote by X the resulting matrix. Project column
vectors of X onto the hyperplane xT · 1 = 1.

2. (Convex hull) Add the origin 0 as the first column to X.
Find all the facets and vertices of Convhull(X) using
the MATLAB function convhulln, keep only the facets
with the vertex 0. Denote by Fi the i th facet and Vi the
set of its vertices.

3. (Grouping) Initialize a group Gi = Vi . For the j-th
column X j /∈ Gi , if the distances D(X j , Fi ) < ε and
D(X j , Vi ) > σ , then add X j to Gi .

4. (Plane fitting) For each Gi , obtain the fitting plane
denoted as xT · bi = 0, where bi is the normal vector
with length 1. Select m planes from those of Gi with the
largest cardinalities such that bTi · b j < δ ≈ 1, where
i �= j .

5. (Intersecting) Obtain the m intersections of any m − 1
planes out of m planes from step 4 and the hyperplane
xT · 1 = 1 to form A.

6. (Source recovering) For each X j , solve the nonnegative
least squares problem to find S j :

min ‖X j − A S j‖22 s.t. S j ≥ 0.

Remark 3 The choices of the four parameters are basically
heuristic, so we provide the following rules of thumb for
selection:

1. The values of ε and σ should rely on the level of noise.
Normally, we can set them equal. A higher level of noise
demands larger ε and σ . For instances, in noise-free
cases, they can be as small as 10−6; when noise level
is SNR ≈30 dB, ε and σ should be on the order of 10−2;
if high-level noise is present, they increase up to the order
of 0.1.

2. The value of ρ is also positively correlated with the
amount of noise. We suggest ρ not exceed 1

2‖X‖1, where
‖X‖1 is maximum absolute column sum of X .

3. In step 4, we need the parameter δ to guarantee the
selected facets of Convhull(X) to be sufficiently distinct.
We can just fix δ = 0.99, which works well in all of our
experiments.
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Fig. 3 Scatter plot of columns of X where the data points are rescaled
to lie on the plane x + y + z = 1. Six facets of cone X contain same
number of data points. Red cone is the true A used to generate data
(color figure online)

2.2 Template-assisted FCA

We recognize another scenario of nonuniqueness: Among
the n facets X , q of them contain the same number of data
points and q > m; see Fig. 3, for example. In this case,
Assumption 2 would fail to guarantee the unique selection of

coneA. There are

(
q

m

)
= q!

m!(q − m)! possible choices for
A. Although the nonnegativity may rule out some choices of
the convex cones when their vertices fall outside the positive
sector of the space,we are still leftwith a number of solutions,
especially when q is large. To overcome this nonuniqueness
issue or reduce the number of possible solutions, a template
of source signals may be used. Suppose that the k (k ≤ m)
sources being recovered have spectral template in a database
of size N . Let T ∈ RN×q (N � m ) be the database matrix.
For each possible coneA, we compare the recovered source
matrix S against the database T by solving the equation S =
C T , whereC serves as an indicator matrix and is sparse. The
nonzero entries ofC j ( j-th row ofC) imply that S j ( j-th row
of S) is a linear combination of the corresponding spectral
references from T . The sparsity of C suggests that we solve
the following 	1 optimization,

min
C j≥0

μ‖C j‖1 + 1

2
‖S j − C j T ‖22 , (2.1)

Define u = (C j )
T, f = (S j )

T, B = T T and rewrite (2.1) as

min
u≥0

μ‖u‖1 + 1

2
‖ f − B u‖22 . (2.2)

This problem could be solved by the linearized Bregman
iterative method [10] by introducing an auxiliary variable vl :

{
vl+1 = vl − BT(B ul − f ),
ul+1 = δ · shrink+(vl+1, μ

)
,

(2.3)

123



SIViP (2016) 10:19–28 23

where u0 = v0 = 0, δ > 0 is the step size, and shrink+ is
given by

shrink+(v, μ
) =

{
v − μ, if v > μ,

0, if v < μ.
(2.4)

Remark 4 1. If k = m, all the source signals being recov-
ered have spectral templates in the database. Solving
S = C T for all possible recovered source signals S from
FCA, we obtain sparse indicator matrices. The desired
source matrix S is the one corresponding to a matrix C
of row sparsity one (only one nonzero entry). In this case,
the nonuniqueness issue can be fully resolved.

2. If k < m, not all source signals being recovered have
spectral templates in the database. Then, FCA with tem-
plate would not be able to pinpoint the true solutions.
However, it can reduce thenumber of possibilities. In fact,
the method can identify those recovered source matrices
containing these k signals, and as a result the searching
for true solutionwill be narrowed down to amuch smaller
number of solutionswhichwill be handed to practitioners
for further analysis with their knowledge and experience.

3 Numerical experiments

We report the numerical results of our algorithm in this sec-
tion. The data we tested include real-world NMR spectra as
well as synthetic mixtures.

The first example involves source signals with stand-alone
peaks. For the data, we use true NMR spectra of compounds
β -cyclodextrine, β-sitosterol, andmenthol as source signals.
The NMR spectrum of a chemical compound is produced by
the Fourier transformation of a time-domain signal which is a
sum of sine functions with exponentially decaying envelopes
[9]. The real part of the spectrum can be presented as the sum
of symmetrical, positive-valued, Lorentzian-shaped peaks.
The NMR reference spectra of β-cyclodextrine, β-sitosterol,
and menthol are shown in the top panel of Fig. 4 from left to
right. The mixtures were obtained by adding white Gaussian
noise with SNR = 30 dB. For the parameters, we set ρ = 5×
10−2, ε = σ = 10−2, δ = 0.99 and list the recovery result
below. A1 is the column-wise rescaled true mixing matrix,
while Â1 is the computed mixing matrix via our method. By
comparing the two matrices, we can see that the recovery is
almost perfect.

A1 =
⎛

⎝
0.4000 0.2778 0.4118
0.2667 0.2778 0.1765
0.3333 0.4444 0.4118

⎞

⎠

Â1 =
⎛

⎝
0.4007 0.2788 0.4109
0.2667 0.2772 0.1778
0.3326 0.4440 0.4113

⎞

⎠
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Fig. 4 Top row from left to right, the three reference spectra of β-
cyclodextrine, β-sitosterol, and menthol in Example 1. Bottom row
recovery results by our method
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Fig. 5 Top row true sources in Example 2. Bottom row computed
sources by our method

In the second example, we use three Lorentzian-shaped
synthetic sources that violate the PPA. We add white
Gaussian noise with SNR = 30 dB, and the recovery result
is plotted in Fig. 5. True mixing matrix A2 and computed
Â2 are listed below. The result is achieved by setting ρ =
80, ε = σ = 2 × 10−2, δ = 0.99.

A2 =
⎛

⎝
0.3000 0.5000 0.4545
0.5000 0.4286 0.1818
0.2000 0.0714 0.3636

⎞

⎠

Â2 =
⎛

⎝
0.3083 0.5030 0.4483
0.4911 0.4298 0.1751
0.2005 0.0672 0.3766

⎞

⎠

In [8], the Comon’s index is introduced to measure the
performance of source separations. Let A and Â be two
nonsingular matrices with 	2-normalized columns. Then, the
Comon’s index ε(A, Â) between A and Â is defined as

ε(A, Â) =
∑

i

∣∣∣∣
∑

j

|di j | − 1

∣∣∣∣
2

+
∑

j

∣∣∣∣
∑

i

|di j | − 1

∣∣∣∣
2

+
∑

i

∣∣∣∣
∑

j

|di j |2 − 1

∣∣∣∣ +
∑

j

∣∣∣∣
∑

i

|di j |2 − 1

∣∣∣∣,
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Fig. 6 Robust performance of FCA in the presence of noise

wheredi j is the entry of A−1 Â. A and Â are considerednearly
equivalent in the sense ofBSS (i.e., Â = A P Λ) if ε(A, Â) ≈
0.With this concept,we then show the robust performances of
FCA in the presence of noises. The three sources in Example
2 were combined to generate three mixtures corrupted by
Gaussian noises with SNR varying from 16 to 50 dB. At
each noise level, Comon’s indices were averaged over 50
independent trials. Figure 6 indicates the robustness of our
method with small indices even in the low SNR zone.

In the next example, we show the computational results
of template-assisted FCA. We are to separate three source
signals from three mixtures, where the Convhull(X) is a
hexagon in Fig. 3. The data are synthetically generated so
that each side contains the same number of data points. In
Fig. 7, we show an example that cone X has 6 facets con-
taining same number of data points. Technically, there are(
6

3

)
= 20 choices for coneA. The cones that lie in the pos-

itive sector of the space will be kept for further analysis due
to the nonnegativity of A. We are left with six cones showing
in Fig. 7, and the three cones in the first column lie outside
the data points and are not meaningful solutions. As a result,
we have three choices of cone A shown in the right panel of
Fig. 7. The corresponding source recovery is shown in Fig.
8. Suppose the three source signals have spectral references
from a database of size ten. For each three recovered sources
from Fig. 8, we compare the recovered signals against the
database by solving (2.1). The correct selection of the source
signals should associate with a sparse indicator matrix C of
row sparsity one.We show the results of the coefficientmatrix
C for the cone 4, 5, 6, respectively, in the following,

C4 =
⎛

⎝
0.001 0 0.02 0.015 0.106 1 0 0 0 0
0 0.03 0.01 0 0 1 0.59 0 0.001 0
0 0 0 0 1 0 0.76 0 0.11 0

⎞

⎠,

C5 =
⎛

⎝
0 0 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

⎞

⎠ ,

C6 =
⎛

⎝
0.002 0 0.02 0.015 0.178 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0

⎞

⎠.

Apparently, C5 is the sparsest and its row sparsity is one;
hence, the corresponding recovered source signals and cone
will be selected as the desired solutions. The parameter used
in the 	1 optimization μ = 0.03.

If only one source signal has spectral reference from the
database, the solutions of C4 − C6 are listed below

C4 =
⎛

⎝
0.1 0.98 1 0.5 0.26 0 0.16 0.1 0 0
0.08 1 0.8 0.4 0.2 0 0 0.11 0.42 0.064
0 0 0 0 1 0 0 0 0.93 0.11

⎞

⎠,

C5 =
⎛

⎝
0.097 1 0.98 0.48 0.22 0 0.12 0.11 0 0
0 0 0 0 1 0 0 0 0 0
0 0.3 0 0 0.37 0 0 0.03 1 0.13

⎞

⎠,

C6 =
⎛

⎝
0.1 0.98 1 0.5 0.3 0 0.17 0.1 0 0
0 0 0 0 1 0 0 0 0 0
0 0.295 0 0 0.37 0 0 0.028 1 0.13

⎞

⎠.

Both C5 and C6 contain a row of sparsity one, which indi-
cates that the recoveries S5 and S6 contain a source that has
a spectral reference from the database. Therefore, we will
eliminate cone 4 but keep cones 5 and 6 as two possible
solutions.

In the last example, we present the comparisons of FCA
with some existing BSS methods. The first comparison is
between FCA and VCA. VCA focuses on identifying the
cone by locating its vertices based on PPA. FCA also works
for the separation of data of PPA, which has been shown
previously. Here, we present in Fig. 9 the scatter plots along
with the recovery results of mixing matrix A via FCA and
VCA, respectively. It can be found that the results agree well
in case of the stand-alonepeak conditionwhich is theworking
assumption for VCA. Computation was performed on a PC
with 4G RAM and 3.0 GHz Intel Pentium CPU. The CPU
time for FCAwas 0.3750 seconds, and it was 0.6094 seconds
for VCA. FCA sees a cpu time saving 38% comparing to
VCA, and this improvement is consistent across other data
sets under the same assumption. We also compare FCA and
NMF and show the result in Fig. 10. NMF decomposes the
mixture X into A and S by solving

min
A,S

‖X − A S‖22 s.t. S ≥ 0, A ≥ 0. (3.1)

Optimization approaches for solving (3.1) include gradient
descent and alternating least squares. FCA is clearly better
than NMF for the stand-alone peak source signals. But we
point out that if no knowledge of the source spectra other
than the positivity is available, NMF should be used.
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Fig. 7 Nonuniqueness of cone
A when Assumption 2 fails to
be satisfied. Data points are in
blue, the ground truth of convex
hull Convhull(A) is red, while
the black color shows the
identified Convhull(A) by our
method. The black triangles
(1,2,3) formed in the left panel
lie outside the data points and
will be dropped. Then only,
reasonable solutions are the
triangles in the right panel
(4,5,6) (color figure online)
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3.1 Total variation denoising

If there is considerable noise in the data, it would be desir-
able to reduce or remove the noise before feeding them to
the proposed method. We propose to apply the total vari-
ation (TV) idea of image denoising by Rudin et al. [27]
to noise removal, combining with the FCA after step 3. In
the following, we shall use the example of a point cloud
in xyz plane to illustrate the idea of TV denoising. We
first preprocess the data by rescaling them onto a plane
x + y + z = 1, and the projected data are two dimen-
sional. For each point (x, y), a distance function to the point
cloud is d(x, y) = minxi ,yi

√
(x − xi )2 + (y − yi )2, where

(xi , yi )T corresponds to the i-th column of X , note that zi is
not included since the zi = 1− xi − yi . For computation, the
distance function will be restricted on a rectangular region
which contains the point cloud.

We use the recent Chambolle’s Algorithm [4] to solve the
Rudin–Osher–Fatemi model to obtain a denoised distance
function u(x, y):

min
u

TV(u) + λ/2||d − u||22,

where TV(u) is the anisotropic TV of u defined as

TV(u) =
∑

i, j

|ui+i, j − ui, j | + |ui, j+1 − ui, j |.

The zero-level set of the resulting minimizer u(x, y) will be
taken as the denoised point cloud. In the real calculation, we
will consider the following set with threshold S = {(x, y) :
0 ≤ u(x, y) ≤ τ } where τ takes on a tiny value. The noisy
point cloud and the result after the noise removal are depicted
in Fig. 11. The detected planes from both of them are shown
in Fig. 12 and their intersections, i.e., the vertexes of the
cone. It can be noted that total variation denoising is very
effective at preserving edges (thick lines in the figures) while
smoothing away noise in flat regions. The idea of denoising
distance function by total variation extends to point cloud of
any dimension.

We show a comparison of FCA with and without TV
denoising in Fig. 13. The mixtures were corrupted by
Gaussian noises varying from 8 to 25 dB.With TV denoising
the Comon’s indices are substantially lower than without it,
resulting in better separation performance.
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Fig. 8 Rows one to three are
the source signals recovered by
selecting black convex hulls in
the right panel in Fig. 7. Bottom
row is the three true source
signals
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Fig. 9 Comparison between FCA and VCA for data satisfying stand-
alone peak assumption
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Fig. 10 Comparison between FCA andNMF for data satisfying stand-
alone peak assumption
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Fig. 11 The point cloud before (left) and after (right) denoising. The
points correspond to the columns of mixture matrix X , which are pro-
jected onto the plane x + y + z = 1

Fig. 12 Computational results of planes from noisy data (left) and
denoised data (right) shown in Fig. 11. TheGreen lines are the detected
planes using the method proposed in the paper (color figure online)
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Fig. 13 Comparison of Comon’s indices (in log scale) of FCA with
and without TV denoising at high noise levels

4 Concluding remarks

We developed a novel FCA for nonnegative blind source sep-
aration problems. We presented facet-based unique solvabil-
ity conditions up to scaling and permutation by exploiting
both the geometry of datamatrix and the sparsity of the source
signals. With the assistance from a template, the method pro-
posed is able to remove or reduce the ambiguities of the
solutions when the source signals fail to satisfy uniqueness.
Numerical results on NMR signals validated the solvabil-
ity conditions and showed satisfactory performance of the
proposed algorithm. For noisy data, TV denoising method
serves as a viable preprocessing step. In terms of knowledge
of the source signals, the FCA method works in a setting in
between the VCA (under PPA) and the NMF (under only
nonnegativity).

A line of future work is to separate more source signals
from their mixtures, known as an undetermined blind source
separation, or uBSS.
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