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a b s t r a c t

Rapid and reliable detection and identification of unknown chemical substances are
critical to homeland security. It is challenging to identify chemical components from a
wide range of explosives. There are two key steps involved. One is a non-destructive and
informative spectroscopic technique for data acquisition. The other is an associated library
of reference features along with a computational method for feature matching and
meaningful detection within or beyond the library.

In this paper, we develop a new iterative method to identify unknown substances from
mixture samples of Raman spectroscopy. In the first step, a constrained least squares
method decomposes the data into a sum of linear combination of the known components
and a non-negative residual. In the second step, a sparse and convex blind source separation
method extracts components geometrically from the residuals. Verification based on the
library templates or expert knowledge helps to confirm these components. If necessary, the
confirmed meaningful components are fed back into step one to refine the residual and then
step two extracts possibly more hidden components. The two steps may be iterated until no
more components can be identified. We illustrate the proposed method in processing a set
of the so called swept wavelength optical resonant Raman spectroscopy experimental data
by a satisfactory blind extraction of a priori unknown chemical explosives from mixture
samples. We also test the method on nuclear magnetic resonance (NMR) spectra for
chemical compounds identification.

Published by Elsevier B.V.
1. Introduction

A critical problem in homeland security is reliable and
rapid identification of unknown chemical and biological
substances in the explosives. Due to the harmful environ-
ment caused by the release of the explosive chemicals,
non-destructive spectroscopic techniques are typically
used to record the optical spectrum without interfering
with the samples. Ideally, a standoff detection is per-
formed to acquire the spectral information. Then a search
B.V.

),
and matching procedure through a prepared spectral
database will be carried out for identification. However
such an approach would be unsuccessful if the explosives
contained chemical compounds outside of the database,
which is highly likely as hidden explosives are often
unknown a priori. In general, the samples may involve
multiple unknown substances besides impurities. Conven-
tional analysis routines are mostly based on least squares
fitting whose residuals could remain mysterious. Further
analysis calls for the development of blind identification
methods to extract major components from the residuals.

Various recent experimental techniques (see [3,7,8] and
the references therein) can identify pure chemicals with
notable success. These methods are mainly based on Raman
spectroscopy, a spectroscopic technique to study the chemical
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composition of the samples [16,28]. Combined with other
spectroscopic techniques such as Ultraviolet and Infrared
spectroscopy, Raman spectroscopy has been widely used in
materials science, biosciences, geosciences (gemology), foren-
sic sciences, nano-technology, and pharmaceutical chemistry
[3,5,6,8,19,21,23,30]. For example, the Swept Wavelength
Optical Resonant Raman Detector (SWOrRD) at the Naval
Research Laboratory developed in 2009 can generate two-
dimensional spectral maps of biological agents and chemical
substances. The resultant two-dimensional signatures contain
much more information than the single illumination wave-
lengths, which may result in a greater likelihood of successful
identification even in complex mixtures [3,8]. Raman spectro-
scopy is based on Raman scattering, an inelastic scattering
process that shifts the frequencies of the incident photons.
During the interaction of the incident light with a molecule, a
scattered light of lower (Stokes Raman) or higher (anti-Stokes
Raman) energy is emitted, allowing the measurements of the
molecule's vibrational modes. The appeals of this technique
are non-destructiveness and fast sensing capability. It has
become a promising tool for standoff distance detection for
explosives at airports among other transportation centers.

In general, Raman spectra of a sample are composed of
many substances, and they must be identified by an
analysis software. If one has the complete knowledge of
the kinds of substances in the sample, the least squares
fitting can be used to retrieve their concentrations (or
volumes) by a linear combination of the known spectra on
a template. In most practical situations, one may have to
identify the substances and quantify their concentrations
at the same time. This becomes a blind source separation
(BSS) problem, or recovering pure signal sources from
their mixtures without a detailed knowledge of the mixing
process. There have been several studies on the BSS of
Raman spectra [17,18,22] based on independent compo-
nent analysis (ICA, [11]) and nonnegative matrix factoriza-
tion (NMF, [13]). However these methods are non-convex
and too general to be robust and reliable in real-world
applications. The independence hypothesis of ICA does not
hold if chemicals share some common structures and have
correlated Raman spectral line shapes. Moreover, these
existing approaches do not address how to identify
unknown substances from the fitting residuals when
partial knowledge of the source signals is available. Such
a semi-blind problem is more often encountered in appli-
cations and of great importance to practitioners.

In this paper, we shall develop a convex semi-blind
source separation method based on partial sparsity of the
source spectra. We are concerned with the regime where
the sample contains some known and some unknown
components. In other words, we have knowledge of some
of the components and their concentrations, which is
the case of the SWOrRD data. We further assume that
the upper bound of the concentrations of the known
substances is available, say from experiments or prior
knowledge, as is the case of SWOrRD data. Though our
method here is designed for Raman spectra, it is applicable
to spectra with similar line shapes, such as nuclear
magnetic resonance (NMR) data, see [25,26] where more
general sparseness source conditions and post-processing
methods have been studied. A similar semi-blind source
identification approach has been developed for mysterious
species of the atmospheric gas mixtures [27]. The method
is determined to be an iterative approach. The method for
Raman type data contains two major steps. The first step
decomposes Raman data X into a linear combination of the
reference spectra (known components) plus a remainder,
or X ¼ ASþR, where the columns of matrix A are known
reference spectra, the matrix S contains the non-negative
concentrations and has known upper bound. The first step
is carried out by solving a constrained least squares pro-
blem. The constraints on S help to maintain the nonnega-
tivity of remainder matrix R. The second step performs a
nonnegative blind source separation of the remainder
matrix R to extract the unknown components. We show
that proper sparsity of source signals reduces the general
non-convex problem to constrained convex programming
permitting solutions with better mathematical properties.
Geometrically speaking, this step involves the identification
of a convex cone enclosing the data points; Depending on
the source sparsity, the cone will be recognized either from
its facets or vertexes. Sparse solutions to convex objectives
are achieved through ℓ1 norm minimization and a fast
iterative method (the linearized Bregman). The two steps
may be iterated. If some of the components from step two
are confirmed as chemically meaningful, they are fed back
to step one to refine the residual for further extraction of
hidden components in step 2.

The paper is organized as follows. In Section 2, we
introduce the source sparseness condition and our
method. In Section 3, we illustrate the method in proces-
sing a set of SWorRD experimental data to identify a prior
unknown chemicals. We also test the method and show
the numerical results on separation of NMR spectra.
Conclusion and future works are discussed in Section 4.
2. The method

In this section, we shall present our method for unknown
chemicals detection. Based on the assumption that part of the
substances in the chemical mixture and the upper bounds of
their concentrations are known, the first step of the method
fits these known chemicals to the mixtures. This step solves a
constrained least squares optimization.
2.1. Constrained least squares

The following linear model is used for Raman spectra of
mixtures

X ¼ ASþR; ð2:1Þ

where the columns of matrix X are the measured Raman
data, the columns of A contain reference spectra of the
known chemicals, and those of S matrix contains their
concentrations. Matrix R is the fitting residual which
might contain hidden spectral structures, the instrument
noise, etc. Matrix S is nonnegative on physical ground that
its entries represent concentrations. Furthermore, the
upper bound of S is known a priori. Then for the estima-
tion of S, we minimize the following constrained objective
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function:

min
S

JX�ASJ22; s:t: 0rSrc; ð2:2Þ

where the vector c contains the upper bounds of the
concentrations of the known substances in the sample.
For the Raman data in our numerical experiments, we
found that the linear constraint in (2.2) helps to maintain a
nonnegative remainder R¼ X�AS. In the residual R, there
might be spectral structures (one or many) of chemicals
buried in noise, or just random noise. In either case, we
factorize the residuals in a blind fashion due to the lack of
knowledge of the hidden components. Conventional blind
source separation methods such as NMF and ICA are non-
convex optimization methods. These methods are for
general purpose, yet often unreliable in real-world appli-
cations due to non-convexity or sensitivity of their work-
ing assumptions. For our problem, we show that proper
sparsity of source signals reduces the general non-convex
problem to constrained convex programming permitting
solutions with better mathematical properties. Sparse
solutions to convex objectives are achieved through ℓ1
minimization.

2.2. Blind source separation with convex cones

The remainder matrix R is factorized as

R¼WM; ð2:3Þ
where the columns of the matrix W are the identified
substances, M is their concentrations in the sample. All
the matrices are nonnegative. For the purpose of illustra-
tion, we shall call WARp�n the source matrix, MARn�m

the mixing matrix. The dimensions of the matrices are
expressed in terms of three numbers: (1) p the number of
available samples, (2) m the number of mixture signals,
and (3) n the number of source signals. For the Raman data
we considered in the paper, there are more mixtures than
sources, i.e., mZn. The goal is to recover W and M for a
given R. This is also known as an nonnegative matrix
factorization, or NMF problem.

2.2.1. Vertex representation
Various methods have been developed to solve BSS

problems by exploiting the natures of source signals. For
example, independent component analysis (ICA) recovers
statistically independent signals. However, the indepen-
dence should not be assumed on the Raman spectra of the
chemical substances when they share common structural
features (the line shapes of their Raman spectra are
similar). A better working assumption for the data is a
so-called partial sparseness condition. Namely, the source
signals are only required to be non-overlapping at some
locations of acquisition variable. This sparseness condition
was first known in the 1990s [1,29] in the study of blind
hyper-spectral unmixing of remote sensing, where the
source condition is called pixel purity assumption (PPA)
[2]. In 2005, Naanaa and Nuzillard [20] used this assump-
tion to separate the signals in NMR spectroscopy. In fact,
this condition is well suited to many chemical substances
including the Raman spectra studied in this paper. Such
a sparseness condition leads to a dramatic mathematical
simplification of a general non-negative matrix factoriza-
tion problem (2.3) which is non-convex. Geometrically
speaking, the problem of finding the mixing matrix M
reduces to the identification of a minimal cone containing
the rows of matrix R. The latter can be achieved by linear
programming. In the context of hyper-spectral unmixing,
the resulting geometric (cone) method is the so called
N-findr [29], and is now a benchmark in hyper-spectral
unmixing. Next we shall review the essentials of the
partial spareness condition and the geometric cone
method.

Simply speaking, the key sparseness assumption on the
source signals is that each source has a stand alone peak
at some location of acquisition variable where the other
sources are zero. More precisely, the source matrix WZ0
is assumed to satisfy the following condition:

Assumption. For each jAf1;2;…;ng there exists an ijA
f1;2;…; pg such that wij ;j40 and wij ;k ¼ 0; ðk¼ 1;…; i�1;
iþ1;…;nÞ.

Eq. (2.3) can be rewritten in terms of rows as

Ri ¼ ∑
n

k ¼ 1
wi;kM

k i¼ 1;…; p; ð2:4Þ

where Ri denote the ith row of R, and Mk the kth row of M.
The source assumption implies that Rij ¼wij ;jM

j j¼ 1;…;n
or Mj ¼ ð1=wij ;jÞRij . Hence Eq. (2.4) is rewritten as

Ri ¼ ∑
n

k ¼ 1

wi;k

wik ;k
Mik ; ð2:5Þ

which says that every row of R is a nonnegative linear
combination of the rows of M. The identification of M's
rows is equivalent to identifying a convex cone of a finite
collection of vectors. The cone encloses the data rows in
matrix R, and is the smallest of such cones. Such a minimal
enclosing convex cone can be found by linear program-
ming methods. Mathematically, the following optimization
problems are suggested to estimate the mixing matrix:

min score¼ ∑
p

i ¼ 1;ia l
Riλi�Rl

�����
�����
2

; s:t: λiZ0; l¼ 1;…; p:

ð2:6Þ
A score is associated with each row of R. A row with a low
score is unlikely to be a row of M because this row
is roughly a nonnegative linear combination of the other
rows of R. On the other hand, a high score means that the
corresponding row is far from being a nonnegative linear
combination of other rows. The n rows from Rwith highest
scores are selected to form M, the mixing matrix. Fig. 1 is
used to demonstrate this vertex-represented cone contain-
ing all data points. As depicted in the figure, the cone can
be identified by its vertices. Some source signals however
do not satisfy the stand-alone peak condition, and this
makes the estimation of M's rows intractable to the convex
cone method proposed above. Among the cases which
stand-alone peak condition are violated, we shall consider
a regime where data points lie inside a cone or on its
facets, see Fig. 2 for an example. Note that there is no data
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Fig. 1. A cloud of data points (rows of R) rescaled to lie on a plane determined by three vertices of the cone (right).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0
0.2
0.4
0.6
0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
(:

,2
)

R(:,1)

R
(:

,3
)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0
0.2
0.4
0.6
0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

R
(:

,2
)

R(:,1)

R
(:

,3
)

Fig. 2. Scatter plots of rows of X. The cloud of data points (left) is also rescaled to lie on the plane determined by the vertices of the cone (right).
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points on the vertices of the cone, we need to develop an
approach to identify such a cone by its facets in this case.

2.2.2. Facet representation of a convex cone
Given the point cloud as shown in Fig. 2, the facets of

the cone are lying on flat submanifolds (planes in this
example of three-dimensional data, and hyperplanes in
higher dimension). The identification of these flat geo-
metric structures will help to determine the vertices of the
cone, i.e., the rows of the mixing matrix M. The problem is
boiled down to the identification of flat structures from a
point cloud, which has been an important topic in com-
puter vision. Various approaches have been proposed to
recognize (extract) shapes from point clouds in 2D and
3D cases. Classical methods include Hough transform and
moving least squares. The Hough transform is a feature
extraction technique used in image analysis, computer
vision, and digital image processing [24]. The simplest
case of Hough transform is a linear transform for detecting
straight lines, and it is essentially a voting process where
each point belonging to the line (or other pattern) votes
for all the possible lines passing through that point. The
votes are accumulated in an accumulator array, and the
line(s) receiving the maximum vote is taken to be the
desired line(s). The main advantages of the transform
are its robustness to noise and outliers in the data, and
discontinuities in the line (pattern) – both of which are
frequently encountered in real-world image and data. The
disadvantages of the Hough transform are its demand for a
tremendous amount of computing power and large sto-
rage. The high cost prohibits them from being used in
processing of high dimensional data such as the data we
have tested in the paper. For the application under con-
sideration, the dimension of the data can be up to tens
or hundreds, hence a more practical approach should
be employed. Here we opt for the moving least squares
(MLS). The MLS method was proposed by Lancaster and
Salkauskas [12] for smoothing and interpolating data. The
idea is to start with a weighted least squares formulation
for an arbitrary fixed point in Rd, and then move this point
over the entire point cloud, where a weighted least
squares fit is computed and evaluated for each point
individually. We shall briefly review some essentials of
the MLS next.

Consider the rows of RARp�m. Note that each row can
be viewed as a point in Rm, and there are p points. We



Fig. 3. The voting results on the coefficients by linear MLS, the three peaks imply there are three planes in the data which is plotted in Fig. 2.
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shall denote xi ¼ ½Rði;1Þ;Rði;2Þ;…;Rði;m�1Þ�ARm�1, the
i-th row of R without the last component. Let yi ¼ Rði;mÞ.
Then the problem formulation is: given p points xi where
iA ½1…p�. In the weighted least squares, for a fixed point
xARm�1 we will minimize

J ¼∑
i
θðJx�xi J ÞJ f ðxiÞ�yi J

2 ð2:7Þ

where f is taken from the space of polynomials of total
degree d in q dimensions, denoted as ∏q

d, and can be
written as

f ðxÞ ¼ bðxÞTc¼ bðxÞ � c; ð2:8Þ
where bðxÞ ¼ ½b1ðxÞ;…; bkðxÞ�T is the polynomial basis vec-
tor and c¼ ½c1;…; ck� is the vector of unknown coefficients,
which we wish to minimize in (2.7). Here are some
examples for polynomial bases: (a) for d¼ 2; q¼ 2,
bðxÞ ¼ ½1; x; y; x2; xy; y2�T, (b) for a linear fit (d¼ 1; q¼ 3),
bðxÞ ¼ ½1; x; y; z�T, and (c) for fitting a constant in arbitrary
dimensions, bðxÞ ¼ ½1�. In general, the number k of ele-
ments in bðxÞ (and therefore in c) is given by k¼
ðdþqÞ!=d!q!, see [14]. (2.7) is similar to conventional least
squares only that now the cost function is weighted by θðeÞ
where ei are the Euclidean distances between x and the
positions of data points xi.

The unknown coefficients we wish to obtain from the
solution to (2.7) are weighted by distance to x and there-
fore a function of x . Thus, the weighted least square
approximation is written as

f x ðxÞ ¼ bðxÞTcðxÞ ¼ bðxÞ � cðxÞ ð2:9Þ
Many choices for the weighting function θ have been pro-
posed in the literature, such as Gaussian θðeÞ ¼ expð�e2=h2Þ
where h is a spacing parameter which can be used to smooth
out small features in the data, see [15]. Another popular
weighting function is θðeÞ ¼ 1=ðe2þε2Þ.

Remark. The choice of weight θ is crucial to make the MLS
accurate and robust with respect to noise and non-uniformity
which are typical to the data under consideration. After
extensive testing, we find that some commonly used weight-
ing functions, such as θðeÞ ¼ expð�e2=h2Þ; θðeÞ ¼ ð1�e=hÞ4
ð4e=hþ1Þ or θðeÞ ¼ 1=ðe2þɛ2Þ, work well for our problem, h
is a spacing parameter which can be used to smooth out small
features in the data. They all give accurate local approximation
for the hyperplanes. We opt for the choice of θðeÞ ¼
expð�e2=h2Þ.

Analogous to conventional least squares, we take par-
tial derivatives of the cost function J with respect to cðxÞ
2∑

i
θðeiÞbðxiÞ½bðxiÞT�yi� ¼ 2∑

i
½θðeiÞbðxiÞbðxiÞTcðxÞ

�θðeiÞbðxiÞ� ¼ 0;

where ei ¼ Jx�xi J . We divide by the constant and rear-
range to obtain

∑
i
θðeiÞbðxiÞbðxiÞTcðxÞ ¼∑

i
θðeiÞbðxiÞyi;

and solve for the coefficients

cðxÞ ¼ ∑
i
θðeiÞbðxiÞbðxiÞT

" #�1

∑
i
θðeiÞbðxiÞyi:

Note that the coefficients cðxÞ are local and need to be
recomputed for every x .

The idea of MLS is to start with weighted least squares
formulation for an arbitrary fixed point, and then move
this point over the entire domain, where a weighted least
squares fit is computed and evaluated for each point
individually. For the data structure considered here, linear
polynomials will be used for the fitting. MLS on each data
point generates a coefficient vector c. It is then followed by
a voting process on these coefficients, the idea of voting is
similar to that in Hough transform. Fig. 3 shows the result
of the voting on the coefficients computed by MLS, the
presence of three large peaks means that there are three
planes. Note that these planes pass through the origin.
Hence the equation of such a hyperplane is given by the
following:

0¼ P � n¼ xnxþynyþznz; ð2:10Þ

or

0¼ x � cos θ � sin ϕþy � sin θ � sin ϕþz � cos ϕ; ð2:11Þ
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The parameters (normal direction described by angles
θand ϕ) can be easily read off from the plot.

Now we have a convex cone of facet description, and
please be reminded that we still need to solve the vertexes
of the cone to estimate M. Note that the vertexes are on
the intersections of the facets (hyperplanes), then we shall
propose to first find the intersections then project them to
a cut-plane in the section enclosing positive numbers (e.g.,
xþyþz¼ 1 in 3D). This will deliver one solution of M's
rows. In the example above, the equations of three planes
read follows:

5:65x�9:90y�z¼ 0
2:68x�5:01yþz¼ 0
1:01x��3:34y�z¼ 0

8><
>:

To solve for the vertexes, any two equations from the
above intersect with the projection plane xþyþz¼ 1 to
generate the following three solutions written as columns
of a matrix:

M̂ ¼
0:8686 0:7670 0:3669
0:4850 0:3855 0:3669
0:1017 0:5130 0:8546

2
64

3
75

M¼
0:7670 0:8686 0:3669
0:3835 0:4826 0:3669
0:5113 0:0967 0:8561

2
64

3
75;

where M is the ground truth, and the first row of M̂ is
scaled to be same as that of M for easy comparison.

Remark 1. For a point cloud of dimension higher than
three, the peaks cannot be visualized, and their locations
cannot be read off directly. However, we can detect peaks
by looking for local maxima of the surface. Another
alternative is to do a low dimensional projection, and try
to read the peak locations off.
2.3. Sparse source recovery

With the recovery of M, we solve for W next. An
existing method [20] is to directly compute W ¼ RMþ ,
where Mþ is the pseudo-inverse of M. It is however
sensitive to noise, and tends to introduce errors and
artifacts of negative values. Although a nonnegative least
squares can produce a nonnegative W, spurious peaks
might be introduced in the results. To benefit from the
sparseness source condition in the first step, a more reliable
method is to solve a nonnegative ℓ1 optimization. Although
the source signals (columns of W) are not sparse, the rows
of W possess sparsity. Hence, we seek the sparsest solution
for each row Wi of W:

minJWi J0 s:t: WiM¼ Ri; WiZ0: ð2:12Þ

Here J � J0 (0-norm) represents the number of nonzeros.
Because of the non-convexity of the 0-norm, we minimize
the ℓ1-norm as a convex relaxation:

minJWi J1 s:t: WiM¼ Ri; WiZ0; ð2:13Þ
which is in the form of linear programming. The fact that
the data may in general contain noise suggests us to solve
the following unconstrained optimization problem:

min
Wi Z0

μJWi J1þ
1
2
JRi�WiMJ22; ð2:14Þ

for which Bregman iterative method [9,31] with a proper
projection onto non-negative convex subset is used to
obtain a solution. In this paper, we shall use the linearized
Bregman iteration to solve (2.18) due to its efficiency. For
each row Wi of W, we introduce u¼ ðWiÞT; f ¼ ðRiÞT;B¼MT,
then (2.18) is equivalent to

min
uZ0

μJuJ1þ1
2 J f �BuJ22: ð2:15Þ

The l2 norm in (2.18) and (2.15) is to model the unknown
measurement error or noise as Gaussian. When there is
minimal measurement error, one must assign a tiny value
to μ to heavily weigh the fidelity term J f �BuJ22 in order for
Bu¼ f to be nearly satisfied. The linearized Bregman
method can be written iteratively by introducing an auxiliary
variable vj:

vjþ1 ¼ vj�BTðBuj� f Þ;
ujþ1 ¼ δ � shrinkþ ðvjþ1; μÞ;

(
ð2:16Þ

where u0 ¼ v0 ¼O, δ40 is the step size, and shrinkþ is for
computing nonnegative solutions,

shrinkþ ðv; μÞ ¼
v�μ; if v4μ;

0; if voμ:

(
ð2:17Þ

To summarize, we use the following flow chart to show
the pipeline of the method proposed in this work.

Algorithm 2 (Semi-BSS method). Input: the measured
data matrix X and a list of known chemical spectra in
matrix A.
1.
 (Decomposition) Decompose the data into a sum of
linear combination of the known components and a non-
negative residual, X ¼ ASþR. The method is a constrained
least squares. The next steps are to extract unknown
chemical spectra from the residual.
2.
 (BSS with convex cones) Suppose that the residual
matrix R¼WM where the columns of the matrix W
are the identified substances, M is their concentrations in
the sample. To recover M, we use convex cone method
based on vertex component analysis or facet component
analysis. Linear programming may be used to identify the
vertexes of the cone (which are rows of M) if they are
among the data. For the scenario where data points (rows
of R) lie either inside or on the facets of a convex cone, yet
none of them are located on edges (vertices). The cone
structure will be reconstructed from its facets instead of
the vertices. We use moving least squares to identify the
facets, other methods include Hough transform.
4.
 (Plane fitting and intersecting) For the convex cone of
facet representation, we first obtain the normal direc-
tions of the planes where the facets lie on, then the
equations of the planes. Obtain the m intersections
of any m�1 planes out of m planes with the plane
xT � 1¼ 1, and form the m rows of mixing matrix M.
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5.
Fig
the
(Source recovering) We seek the sparsest solution for
each row Wi of W. We shall solve following uncon-
strained optimization problem,

min
Wi Z0

μJWi J1þ1
2 JR

i�WiMJ22; ð2:18Þ

for which Bregman iterative method with a proper
projection onto non-negative convex subset is used to
obtain a solution.
6.
 (Verification) For the recovered sources W, verification
based on the library templates or expert knowledge
helps to confirm these components. If necessary, the
confirmed meaningful components are fed back into
step 1 to refine the residual and then steps 2–7 extract
possibly more hidden components. The steps may be
iterated until no more components can be identified.

3. Numerical experiments

In this section, we shall apply our method to the so-
called SWOrRD Raman data and NMR data, and present
the computational results.

3.1. Experimental data

The Swept Wavelength Optical Resonant Raman Detector
(SWOrRD) at the Naval Research Laboratory is a spectroscopy
system which is able to produce two-dimensional spectral
data of biological agents and chemical substances. A target
substance is illuminated with a specific laser wavelength and
this generates a resonance Raman spectrum. When the laser
wavelength is varied and the process is repeated, the
resonance Raman spectra (one at each laser wavelength),
forms a two-dimensional plot (signature) where one axis is
the input laser wavelength and the other axis is the
wavenumber of the Raman spectrum. Fig. 4 is an example
. 4. SWOrRD 2D signatures of four pure substances are shown in boxes on t
left.
of 2D SWOrRD Raman spectra of a mixture of ethanol,
ethylene glycol, acetonitrile, and water. The data matrix X
corresponds to this 2D spectra. Each column X is a Raman
spectrum of the mixture at a specific laser wavelength. For
SWOrRD data, there are much more mixtures than the
number of sources. The spectral features may be slightly
altered from onewavelength to another. To reduce this effect,
we do not necessarily use all the data, and so we sample the
spectra at a subset of input laser wavelengths.

The other dataset is NMR spectra. NMR technique is
widely used by chemists and biochemists to investigate the
properties of organic molecules, though it is applicable to
any kind of sample that contains nuclei possessing spin. The
NMR spectrum of a chemical compound is produced by the
Fourier transformation of a time-domain signal which is a
sum of sine functions with exponentially decaying envel-
opes. The real part of the spectrum can be presented as the
sum of symmetrical, positive valued, Lorentzian-shaped
peaks. Laboratory NMR spectrometer usually produce spec-
tra of high resolution. However, as the instruments age, some
pixels may become less responsive due to damage or dust
particles being present. The resulting spectra will contain
limited information due to the resolution loss. In this case,
the stand-alone peak condition can be easily violated, i.e., no
data points are on the vertexes of the cone. They lie on
the facets and inside of the cone. And the method proposed
can be used to retrieve the mixing matrix from the facets
representation.

Next, we report the computational results from our
proposed method.

3.2. Results of detection of a prior unknown chemicals

We tested our method on two sets of SWORrD data.
The samples consist of several liquid substances, some of
them are commonly used for synthesizing explosives. The
first data set includes 21 mixed Raman spectra at different
he right. A signature of a mixture of these pure substances is shown on
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Fig. 6. One fitting residual from the constrained least squares data fitting.
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excitation wavelengths. This sample is known to contain
methanol and its concentration is below 1/3. There are
also two a priori unknown liquid chemicals. The method
first fits the known reference spectrum of methanol to the
Raman data. Then it identifies two unknown chemicals
from the fitting residuals. The results are shown in a series
of plots, Figs. 5–8. From all the data available, we found
that the 5 spectra at consecutive laser wavelengths of (248,
250, 252, 254, 256) nm produce the best results. The
theoretical underpinning of optimal selection of the data
is under further study. Fig. 5 shows the line shape of the
spectrum of the mixture, and the spectral reference of
methanol. The residual after fitting methanol to the data is
plotted in Fig. 6, where some structure can be seen. Then
further identification of the two hidden chemicals was made
by the convex BSS method, and the results are presented in
Fig. 7. Compared to the ground truth, the results are satisfac-
tory in that the recovered spectral structures are recognizable
as ethanol and acetonitrile.

As a comparison, we present here the results by non-
negative matrix factorization (NMF). The NMF was first
introduced by Lee and Seung [13], sometimes called also
PMF (positive matrix factorization), decomposes the data
matrix R as a product of two matrices W and M having
only nonnegative elements. The NMF was first introduced
in its modern formulation as a method to decompose
images. NMF will be applied to extract signals from the
fitting residual after fitting the known spectral references
to the data, Consider the following cost function:

JðW ;MÞ ¼ JR�WMJ2 ¼∑J ½R�i;k�½WM�ik J2

s:t: WijZ0; Mj;kZ0: ð3:1Þ

This is a non-convex problem, so the NMF algorithms may or
may not converge to the same meaningful solutions on each
run, depending on the random initial conditions and the kind
of algorithms we use. Using the gradient descent approach
for this cost function in respect of elements Wi;j of W, we
obtain

ΔWi;jðlþ1Þ ¼Wi;jðlþ1Þ�Wi;jðlÞ ð3:2Þ
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Fig. 5. A Raman spectrum of the mixture of methanol and two other liquid chem
is plotted on the right.
ΔWi;j lþ1ð Þ ¼ �ηij
∂J

∂Wi;j
¼ �ηij ½RMT�i;j�½WMMT�i;j

� �
: ð3:3Þ

Assuming that elements Wi;j are fixed, we obtain additive
update rule for elements Mjk of M

ΔMj;kðlþ1Þ ¼Mj;kðlþ1Þ�Mj;kðlÞ ð3:4Þ

ΔMj;k lþ1ð Þ ¼ � ~ηjk
∂J

∂Mj;k
¼ � ~ηjk ½WAT�j;k�½WTWM�j;k

� �
:

ð3:5Þ
To ensure automatically non-negativity constraints onW and
M, Lee and Seung proposed to choose a specific learning
rates in [13]

ηij ¼
Wi;j

½WMMT�ij
; ~ηjk ¼

Mjk

½WTWM�jk
ð3:6Þ

which leads to a simple multiplicative update rules:

Wi;j←Wi;j
½RMT�i;j

½WMMT�i;j
; Mj;k←Wj;k

½WTR�j;k
½WTWM�j;k

ð3:7Þ

Study shows that this standard NMF (without any aux-
iliary constraints) provides sparseness of its component,
one can achieve some control this sparsity by imposing
additional constraints. Among many other works, the
spareness constrained NMF was studied by Hoyer [10]
where an ℓ1 norm was imposed either on source or the
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Fig. 7. Left column is the two identified spectral structures, right column shows the Raman spectral references for ethanol and acetonitrile. The value of μ
used in step 2 is 0.09.
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Fig. 8. Left column is the results computed by NMF, right column shows the Raman spectral references for ethanol and acetonitrile.
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Fig. 9. A Raman spectrum of the mixture of methanol, ethanol and two other chemicals is shown on the left, while the Raman spectral references of
methanol and ethanol are plotted on the right. μ¼ 0:09 is used for the source recovery in step 2.
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mixing matrix depending on the problem. Despite their
successes in some BSS problems, the NMF and its exten-
sions are non-convex optimization methods, hence
often are unreliable in real-world applications due to
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Fig. 10. One fitting residual from the constrained least squares data
fitting.
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Fig. 12. Left column is the two identified spectral structures by NMF, right column
non-convexity. To show the improvements of our pro-
posed method, we present some NMF results of two
extracted spectral structures in Fig. 8. It is clear that our
method delivers better results.

In the second example, we try to identify two hidden
chemicals from a mixture of four chemicals. The known
chemicals are methanol and ethanol. The total concen-
tration of the two is below 1=2, which is known from the
sensing hardware. The computational results are pre-
sented in Figs. 9–13. Although no apparent Raman spec-
tral structure can be identified from the first plot in
Fig. 11, the second structure is easily recognizable as
acetonitrile upon comparison with reference spectrum.
Next we subtract the confirmed acetonitrile from the
residual by solving the constrained least squares in step 1,
then feed the new residual back to step 2 for extracting
more hidden chemicals. The extracted structure in Fig. 13
can be easily identified as ethylene glycol comparing to
the ground truth. For a comparison, we also provide NMF
results of the recovered spectral structures in Fig. 12.
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Computations are performed on a Dell laptop with 6 G
RAM and 1.6 GHz i7 CPU. The cpu time for Example 1 is
7.613 s, and it is 10.327 s for Example 2. The method proves
to be efficient and can be of use in rapid detection of
chemical substances.
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Fig. 13. Top panel is the recovered structure after subtracting acetonitrile.
The spectral line shape is easily recognizable as ethylene glycol, whose
spectral reference is shown in the bottom plot.
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Fig. 14. Left panel is one of the original mixture spectrum; in the right plot, som
by an aged instrument.
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3.3. Detection of chemical compounds from their
NMR spectra

In a third example we apply the method to NMR data.
We used true NMR spectra of four compounds mannitol,
β-cyclodextrine, β-sitosterol, and menthol as source signals
(data are from [20]). Suppose that mannitol is known to be
contained in the mixture sample, and the upper bounds of its
mixing coefficients are also assumed to be given. To mimic the
information loss in the data, we remove a few peaks from the
mixture data, and replace the removed peaks with zeros. The
left plot in Fig. 14 shows the original mixture, and the right
plot is a mixture spectrum with damaged pixels. We add
Gaussian noise (SNR¼60 dB) to the data to test the robustness
of the method. The three peaks in Fig. 15 imply that three
planes are detected in the scattered plot of Fig. 14, and the
coordinates of the peaks correspond to the normal directions
of these planes, and they can be easily read off in this
example. The recovered source spectra and their ground truth
are shown in Fig. 16. the results are reasonably good in the
presence of damaged pixels in the data. For comparison, NMF
results are provided in Fig. 17.
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Fig. 16. Left: the true source signals. Right: source signals recovered by our method.
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Fig. 17. Left: the true source signals. Right: source signals recovered by NMF.
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Fig. 18. Performance of our method on 40 random 3�3 mixing matrices.
The three sources in Example 3 are used.
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Fig. 19. Test the robustness of our method in the presence of noise. The
portion in the blue box is zoomed in and depicted in Fig. 20. (For
interpretation of the references to color in this figure caption, the reader
is referred to the web version of this article.)
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To test the performance of our method, we compute the
Comon's index [4]. The index is defined as follows: let A and Â
be two nonsingular matrices with L2-normalized columns.
Then the distance between A and Â denoted by εðA; ÂÞ which
reads

εðA; ÂÞ ¼∑
i
∑
j
jdijj�1

�����
�����
2

þ∑
j
∑
i
jdijj�1

����
����
2

þ∑
i
∑
j
jdijj2�1

�����
�����þ∑

j
∑
i
jdijj2�1

����
����;

where D¼ A�1Â, and dij is the entry of D. In [4] Comon
proved that A and Â are considered nearly equivalent in the
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Fig. 20. The Comon's index V.S. noise of SNR¼60–80 dB.
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sense of BSS (i.e., Â ¼ APΛ) if εðA; ÂÞ � 0. Figs. 18 and 19 show
Comon's indices between the true mixing matrices and the
computed matrices by our method. For the result in Fig. 18,
we compute the Comon's indices using the three sources in
Example 3 and 40 4�4 random mixing matrices. Clearly the
Comon's indices are very small suggesting the equivalence in
the sense of BSS of the true mixing matrices and the
computed ones. Figs. 19 and 20 show the performance of
our method in the presence of noise. The three sources in
Example 3 are combined to generate three noisy mixtures by
adding white Gaussian noises with SNR varying from 30 dB to
80 dB. The reliability of our method is manifested from
the plots.

4. Conclusions and future work

A semi-blind sparse and convex source identification
method is developed to extract meaningful spectral structures
from mixture data of Raman spectroscopy and NMR spectro-
scopy. The method is designed to identify potentially hidden
chemicals after fitting the known spectral references to the
data. Our method can be useful for extracting unknown
source signals from the residuals after known reference
spectra have been first deployed to fit the data. The major
strength of the technique is its ability to be used either with
known reference spectra for quantification or without refer-
ence spectra for identification of unknown/hidden chemical
substances. Numerical results on SWOrRD data and NMR data
showed the promising potential of our method on explosives/
chemicals detection.

The model considered in the paper is a linear and
stationary model which assumes no shift and(or) squeeze
in the spectral lines. A future line of work will study how
to build this nonlinear effect into the identification model.
Given that the shift and(or) squeeze amount is small, one
may explore the idea of image registration. We also plan to
study more reliable and efficient methods for the residuals
decomposition, as their success highly depends on a viable
working assumption on the pure signals.

The semi-blind source identification problem we
addressed here also has analogues in detecting atmospheric
trace gases with the so called differential optical absorption
spectroscopy. Analysis of the fitting residuals for mysterious
species arises there as well, and is non-convex in general.
Recently the authors achieved some success in this direction
based on a similar semi-blind framework, although the
details of fitting and blind source identification process are
quite different [27].
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