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1 Introduction
We consider the Cauchy problem for tfie spatially bomogeneous Boltzinann equation
without angular cutoff

$\partial_{t}f(t, v)=Q(f, f)(t, v)$ , $t\in \mathbb{R}^{+},$ $v\in \mathbb{R}’\backslash ’$ ,
$f(0, v)=f_{0}(v)$ , (1.1)

where $f(t, v)$ is the distribution function of particles at time $t$ with velocity $v$ . In this
note we present the main result obtained in [12] that any weak solution to the problem
(1.1) satisfying the natural boundedness on mass, energy and entropy (see, [21]), that
is,

$\sup_{0<t}\int_{\mathbb{R}}:sf(t, v)[1+|v|^{2}+\log(1+f(t, v))]dv<+\infty$ , (1.2)

is in the Sobolev space $H^{+\infty}(\mathbb{R}^{3})$ or even in the Schwartz space $S(\mathbb{R}^{3}\backslash )$ for any $t>0$ .
There are extensive studies on this problem and some related results, see [11, 4, 5].
However, to our knowledge, this problem has not been completely solved in the sense
that some extra conditions are assumed besides the natural bounds on mass, energy
and entropy. The improvement made in [12] allows us to remove these extra conditions,
by using pseudo-differential calculus developed in [16] (cf., [6, 7]).

As usual, the collision operator $Q(g, f)$ in (1.1) is a bi-linear functional representing
the change rate of the particle distribution through elastic binary collisions, and it takes
the form

$Q(g, f)= \int_{\mathbb{R}^{s}}.\int_{S^{2}}B(|v-v_{*}|, \sigma)\{g(v_{*}’)f(v’)-g(v_{*})f(v)\}d\sigma dv_{*}$ , (13)

and
$v’= \frac{v+v}{2}+\frac{|v-v_{*}|}{2}\sigma,$ $v_{*}’= \frac{v+v_{r}}{2}-\frac{|v-v_{*}|}{2}\sigma$, (1.4)

which give the relations between the post and pre collisional velocities. The non-
negative function $B(|z|, \sigma)$ called the Boltzmann collision cross section depends only
on $|z|$ and the scalar product $\{\frac{z}{|z|},$

$\sigma\rangle$ for monatomic gas. We assume that

$B(|v-v_{*}|, co_{\iota};\theta)=\Phi(|v-v_{*}|)b(co_{\iota};\theta)$, (1.5)
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where $\Phi$ and $b(\cos\theta)$ can take the following two forms corresponding to the modified
(soft or Maxwellian or hard) potentials and the Debye-Yukawa potential. That is,
either

$\Phi(|v-v_{*}|)=(1+|v-v_{*}|^{2})^{f}2$ , $\gamma\leq 1$ , (1.6)
$sirl\theta b(\cos\theta)\approx K\theta^{-1-\nu}$ , $0<\nu<2$ , (1.7)

or
$\Phi(|v-v_{*}|)=(1+|v-v_{*}|^{2})^{\frac{1}{2}}$ , (1.8)

$s^{1}in\theta b(\cos\theta)\approx K\theta^{-1}(\log\theta^{-1})^{\mu}$ , when $\thetaarrow 0+,$ $\mu>0$ , (1.9)
for some constants $K>0$ .

Recall that the potential of the inverse power law $\frac{1}{\rho^{\iota}},$ $s>1,$ $\rho$ being the distance
between two particles, has the form (1.5) where the kinetic factor related to tlie relative
velocity is given by

$\Phi(|v-v_{*}|)\approx|v-v_{*}|^{1-\frac{4}{\hslash}}$ ,

and the factor related to the collision angle has the singularity,

$k;in\theta b(\cos\theta)\approx\frac{K}{\theta^{1+\nu}}$ when $\thetaarrow 0$ ,

for $0< \nu=\frac{2}{s}<2$ (see [10, 23], for example). The cases $1<s<4,$ $s=4$ and
$6>4$ correspond to so-called soft, Maxwellian and hard potentials respectively. Notice
that the Boltzmann collision operator is not well-defined for the case $s=1$ which
corresponds to the Coulomb potential. The form (1.5) corresponding to Debye-Yukawa
potential was proposed in [16] for the first time, see its appendix.

The fact that $\sin\theta b(\cos\theta)$ has a non-integrable singularity around $\theta=0$ in tfie
case (1.7) is usually removed by applying the Grad $s$ angular cutoff assumption. This
assumption has played an intrinsic role for the profound progress of the mathematical
theories and phenomena investigations of the Boltzmann equation. On the other hand,
it is now well established that the Boltzmann collision operator without angular cutoff
behaves like a singular integral operator or pseudo-differential operator whose leading
term is characterized by the operator $(-\Delta)^{\nu/2}$ . This was first pointed out by Pao [17],
see also Ukai [20] where the Boltzmann equation without angular cutoff was studied
for the first time in Gevrey classes, and was formulated explicitly by Lions [14] based on
the regularity properties of the collision gain term[13] (see also [9, 15, 25]). The optimal
Sobolev exponent $\nu/2$ is due to Villani [22]. Around $2000s$ , the regularity induced by
the grazing collision was analyzed in terms of the entropy production integral (, cf.
the work [2] and others in its refereces). In particular, [2] establishes several elegant
formulations associated with the collision operator which have been essentially used to
the study of the spatially homogeneous problem.

It should be noted in our assumptions that the factor $\Phi$ in the cross section related
to the relative velocity is modified by adding the constant 1 and this is why we call them
modified potentials. By adding this constant, we avoid the degeneracy and singularity
when $v=v_{*}$ so that the function $\Phi(z)$ is smooth and has a uniform positive lower
bound. The sirnilar rnodifi$(:ations$ are also assumed in [11, 4, 5]. How to remove this
artificial assumption rigorously is still not known.

Now, we can state our main results in [12]. The first result is concemed with the
case when the angular singularity of the cross section is mild.
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Theorem 1.1 Suppose that the $cros6S$ection $B$ satisfies $(1.6)-(1.7)$ for $0\leq\gamma\leq 1,0<$

$\nu<1$ or $(1.8)-(1.9)$ . Let $f$ be any weak solution satisfying (1.2) and the mass conser-
vation. Then, $f$

. is in $H^{+\infty}(\mathbb{R}^{3})$ for any $t>0$ , or more precisely,

$f\in L^{\infty}([t_{0}, T];H^{+\infty}(\mathbb{R}^{3}))$
,

for any $T>0$ and $t_{0}\in(0, T)$ .

This theorem does not rely on the existence of $L^{1}$ moments, while the following
theorem does depend on it essentially. Actually, we consider the weak solutions satis-
fying

$|v|^{m}f\in L^{\infty}([T_{0}, T_{1}];L^{1}(\mathbb{R}^{3}))$ , (1.10)

for all $m\in N$ and for some $0\leq T_{0}<T_{1}$ . Notice that $T_{0}=0$ means the propagation of
moment while $T_{0}>0$ means the moment gain.

Theorem 1.2 Letl $\gamma\leq 1$ . Suppose $(1.6)-(1.7)$ for $0<\nu<2$ . Let $f$ be any weak
solution satisfying (1.2), the mass conservation and the moment condition (1.10) for
some $0\leq T_{0}<T_{1}$ . Then, $f$ is in $S(\mathbb{R}^{3})$ , or more precisely,

$f\in L^{\infty}([t_{0}, T_{1}];S(\mathbb{R}^{!}))’$ ,

for any $t_{0}\in(T_{0}, T_{1})$ .

We remark that the existence of weak solutions to the Caucliy problem (1.1) witfiout
angular cutoff has been proved by Villani [21], under the sole assumption that initial
data have the finite mass, energy and entropy (see (1.2) and Definition 3.1 below).
These solutions are called the entropy solutions.

One of tbe irnportant properties of tfie entropy solutions for the hard potentials
(namely $\gamma>0$ ) is, according to the work by Wennberg [24] (cf., Bobylev[8]), the
moment gain property. That is, the $L^{1}$ moments of arbitrary order are created as soon
as $t>0$ even if initial data do not have finite mornents. It should be remarked that
we do not know whether this moment gain property can be justified to all entropy
solutions for the hard potentials, because the finiteness of moment is formally assumed
to show the uniform estimate concerning the moment (see (59) in [8]). It is obvious
that the entropy solutions constructed by [21] enjoy this moment gain property since
they are obtained as limits of solutions for angular cutoff Boltzmann equations. The
uniqueness of weak solution to homogeneous Boltzmann equation is still open problem
except for Maxwellian molecule case, cf. [18, 19]. In Section 2, we give a new result
concerning the uniqueness for soft potential case, see TIleorem 2.2

There are at least two previous results [11, 5] closely related to Theorem 1.1 and
1.2. First of all, Desvillettes and Wennberg [11] stated that for the case of the angular
non-cutoff and non-Maxwellian molecule, there exist weak solutions to (1.1) acquiring
$S$ regularity for $t>0$ . Actually, these authors constructed such weak solutions by
solving the approximate problem

$(f_{e})_{t}=Q(f_{\epsilon}, f_{\epsilon})+\epsilon\Delta_{v}f_{\epsilon}$ ,
$f_{\epsilon}(0, \cdot)=f_{0}*\phi_{e}$ ,

and by taking the limit when $\epsilon$ tends to zero, where $\phi_{\epsilon}$ is a sequence of mollifiers with
$\epsilon>0$ . Notice again that the uniqueness of the weak solution is unknown. Also, notice
that $t1_{1}e$ proof uses in an essential way $t1_{1}e$ result on tlie $L^{1}$ rnoment gain. On tlie otfier

lThe case $0\leq\gamma<1$ is only considered in [12], but the proof there is applicable to the case $\gamma<0$ .
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harid, Alexandre and Safadi [5] successfUlly show tIlat any entropy solution is in $S$ for
modified hard potentials in positive time. However, in their work, another assumption
is introduced on the weak solutions, that is, the existence of $L^{2}$ moments of arbitrary
order.

$f(t, v)\in L^{\infty}([t_{0}, +\infty);L_{r}^{2}(\mathbb{R}^{3}))$ for any $r\in \mathbb{R}$ . (1.11)
The proof of our theorerns is largely based on some sharp estimates of commutators

of the collision operators and pseudo-differential operators. The technique developed
for it gives an improved upper estimate of the collision operator, such as those studied
in [1, 3]. The riext Section 2 is devoted to presenting this upper estimate, together
with lower and commutators estimates, which have been refined and given newly in
our recent joint work [7] with R.Alexandre and C.-J.Xu. In Section 3 we give a sketch
of proofs of Theorems 1.1 and 1.2.

2 Upper and lower estimates for collision operator
We adopt the notations for the weighted function spaces,

$\Vert f\Vert_{L_{\gamma}^{\nu=}}\Vert f(v)\{v)^{r}\Vert_{L^{p}}$ , $1\leq p\leq\infty$ , $r\in \mathbb{R}$ ,
and

(2.1)
$\Vert f\Vert_{H_{r}^{g}}^{2}=\int_{\mathbb{R}^{n}}|\{D\rangle^{s}\langle v\rangle^{r}f(v)|^{2}dv$ , $s,$ $r\in \mathbb{R}$ ,

where $(v\rangle=(1+|v|^{2})^{\frac{1}{2}}$ and $\{D\}$ is the pseudo-differential operator with the symbol
$\langle\xi\}=(1+|\xi|^{2})^{\frac{1}{2}}$ . We often write $\{v\rangle^{l}=W_{l}$ for $l\in \mathbb{R}$ .

Firstly we state the upper estimate of the non-cutoff collision operator.

Theorem 2.1 Let the collision cross section $B$ be of the form (1.5) satisfying (1.6)
and (1.7). Then for any $m\in \mathbb{R}$ , one has

$\Vert Q(f, g)\Vert_{H^{rr\iota}(\mathbb{R}_{v}^{d})}\leq C\Vert f\Vert_{L_{(\gamma+\nu)}^{1}(\mathbb{R}_{v}^{J})}\Vert g\Vert_{H_{(\gamma\nu)}^{\pi}}+\cdot\ddagger^{\nu}+(\mathbb{R}_{v}^{d})$ ’ (2.2)

where $k^{+}= \max(k, 0)$ .

Remark 2.1 Similar estimates are given by [1, $3J$, including the case of Besov space.
However, the estimates there require the weighted Sobolev or Besov norm of $f$ to esti-
mate the left hand side.

For the proof of (2.2) it suffices to show

$|(Q(f, g),$ $h)_{L^{2}(\mathbb{R}_{v}^{J})}|\leq C||f||_{L_{(\gamma+\nu)}^{1}(\mathbb{R}_{v}^{s})}||g||_{H_{(\gamma\mu)}^{rr\iota}}\ddagger^{\nu}+(\mathbb{R}_{v}^{J})||h||_{H^{-m}(\mathbb{R}_{v}^{d})}+\cdot\cdot\cdot$ . (2.3)

Our method for the proof of (2.3) leads us to a more general estimate

$|(W_{l}Q(f, g),$ $h)_{L^{2}(\mathbb{R}_{v}^{3})}|$ (2.4)

$\leq C||f||_{L_{l++}^{1}(\mathbb{R}_{v}^{J})}||g||_{H_{(l+\gamma+\nu)}^{m+\nu}(\mathbb{R}_{v}^{d})}||h||_{H^{-\tau n}(\mathbb{R}_{v}^{3})}+(\gamma+\nu).+\cdot$ ,

where $l\in \mathbb{R}$ . Hence we have
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Corollary 2.1 Let the cross section $B$ be th $e$ same as in Theorem 2.1. Then for any
$m,$ $l\in \mathbb{R}$

$\Vert Q(f, g)\Vert_{H_{t^{rn}}(\mathbb{R}_{v}^{s})}\leq C\Vert f\Vert_{L_{l++(\gamma+\nu)+}^{1}(\mathbb{R}_{\dot{v}}^{1})}\Vert g\Vert_{H_{(1+\gamma+\nu)^{+}}^{\pi+\nu}(\mathbb{R}_{\dot{v}})}$ . (2.5)

Next we state the lower bound for the collision operator.

Lemma 2.1 (cf., [2, 11]). Let $B=\Phi(|v-v_{*}|)b(\cos\theta)$ and let $\Phi=\{v-v_{*}\}^{\gamma}$ with $\gamma\leq 1$ .
Let $b$ satisfy (1.7) or (1.9). Assume that $g\geq 0,$ $\not\equiv 0,$ $g\in L_{\max\{\gamma^{+},2-\gamma^{+}\}}^{1}\cap L\log L(\mathbb{R}_{v}^{3})$ .
Then there exist constants $C_{g}>0$ depending only on $b,$ $\Vert g\Vert_{L_{1}^{1}}$ and $\Vert g\Vert_{L\log L}$ and $C>0$
depending on $b$ such that for any smooth function $f\in H_{\gamma/2}^{1}(\mathbb{R}_{v}^{\prime;}\backslash )\cap L_{\gamma^{+}/2}^{2}(\mathbb{R}_{v}^{J})’$ , we have

$-(Q(g, f),$ $f).+C||g||_{L_{IIlax\{\gamma 2-\gamma\}}^{1}(R_{v}^{3})}\Vert f\Vert_{L_{\gamma^{i}/z}^{2}(\mathbb{R}_{v}^{3})}^{2}+,+\cdot$

$\geq C_{q}\{$ $\Vert^{W_{\gamma/2}f||^{2}\prime}\prime H^{\nu}l_{2}^{R_{v})}$

. if (1.9) is satisfied.
if (1.7) is satisfied,

(2.6)

Here
$| Ig\Vert_{L\log L}=\int_{\mathbb{R}^{n}}|g(v)|\log(1+|g(v|)dv$ .

Remark 2.2 The factor $W_{\gamma/2}$ is crucial to show Theorem 1.1.
$Outli\gamma\iota e$ of proof First, we have

$(Q(g, f), f)$

$= \int_{\mathbb{R}^{6}}\int_{S^{2}}\Phi(|v-v_{*}|)b(\cos\theta)g(v_{*})f(v)\{f(v’)-f(v)\}d\sigma dv_{*}dv$

$= \frac{1}{2}\int_{\mathbb{R}^{0}}\int_{S^{2}}\Phi(|v-v_{*}|)b(\cos\theta)g(v_{*})\{f(v’)^{2}-f(v)^{\prime z}\}d\sigma dv_{*}dv$

$- \frac{1}{2}\int_{\mathbb{R}^{b}}\int_{S^{2}}\Phi(|v-v_{*}|)b(\cos\theta)g(v_{*})\{f(v’)-f(v)\}^{2}d\sigma dv_{*}dv$

$=\mathcal{R}_{1}-\mathcal{R}_{2}$ .

For $\mathcal{R}_{1}$ , the change of the variable $v’arrow v$ (see the cancellation lemma (Corollary 2 of
$[$ 2] $)$ we have

$\mathcal{R}_{1}=\frac{1}{2}\int_{\mathbb{R}^{6}}$

.
$\int_{S^{2}}\Phi(|v-v_{*}|)b(\cos\theta)g(v_{*})\{f(v’)^{2}-f(v)^{2}\}d\sigma dv_{*}dv$

$= \frac{1}{2}\int_{\mathbb{R}^{6}}\int_{S^{2}}\{\Phi(\frac{|v-v_{*}|}{CO\mathfrak{i}^{1},\frac{\theta}{2}})\frac{1}{\cos^{3}\prime\frac{\theta}{2}}-\Phi(|v-v_{*}|)\}b(\cos\theta)g(v_{*})f(v)^{2}dvd\sigma dv_{*}$

$= \frac{1}{2}\int_{\mathbb{R}^{6}}J_{S^{2}}^{\cdot}\Phi(\frac{|v-v_{*}|}{\cos^{}\frac{\theta}{2}})\{\frac{1}{\cos^{3}\frac{\theta}{2}}-1\}b(\cos\theta)g(v_{*})f(v)^{2}dvd\sigma dv_{*}$

$+ \frac{1}{2}\int_{\mathbb{R}^{6}}\int_{S^{\lrcorner}}$

. $\{\Phi(\frac{|v-v_{*}|}{cos\cdot\frac{\theta}{2}})-\Phi(|v-v_{*}|)\}b(\cos\theta)g(t_{*})f(v)^{2}dvd\sigma dv_{*}$

$=\mathcal{R}_{11}+\mathcal{R}_{12}$ .

For the first term $\mathcal{R}_{11}$ , from l–cos3 $\frac{\theta}{2}\leq 3(1-\cos\frac{\theta}{2})=6\sin^{2}\frac{\theta}{4}$ , it follows that

$\mathcal{R}_{11}\leq C\Vert g\Vert_{L_{\gamma}^{l}}\Vert f\Vert_{L_{\gamma^{+}/l}^{2}}^{2}+’$ ’
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because $\Phi\leq 1$ when $\gamma<0$ . For the second term $\mathcal{R}_{12}$ , we first note that the mean
value theorem gives

$\Phi(\frac{|v-v_{*}|}{c\cdot os\uparrow\frac{\theta}{2}})-\Phi(|v-v_{*}|)$

$=-( \frac{1}{C^{}OS^{1}\frac{\theta}{2}}-1)|v-v_{*}|^{2}(1+(\frac{|v-v_{*}|}{a})^{2})^{l-1}2\frac{2}{a^{3}}$

$\leq C(\frac{1}{\cos^{1}\frac{\theta}{2}}-1)\Phi(|v-v_{*}|)$ ,

where $c_{2^{2}} \leq\cos\frac{\theta}{2}<a<1$ . Similarly to $\mathcal{R}_{11}$ , we can obtain

$\mathcal{R}_{12}\leq C\Vert g\Vert_{L_{\gamma+}^{1}}\Vert f\Vert_{L_{\gamma/2}^{2}}^{2}+\cdot$

Since $\mathcal{R}_{2}\geq 0$ we have

$(Q(g, f),$ $f)_{L^{2}(\mathbb{R}_{v}^{3})}\leq-C||g||_{L_{\gamma+}^{1}(\mathbb{R}_{\dot{t}}^{*},)}\Vert f\Vert_{L_{\gamma/2}^{p}(\mathbb{R}_{v}^{\delta})}^{2}+\cdot$ . (2.7)

The further hard observation on $\mathcal{R}_{2}$ gives (2.6), (see Lemma 4.2 of [12]).
Here we newly give the commutator estimates between the collision operator $Q$ and

the moment weight $W_{l}$ for $l\in N$ , though they are not given in [12].

Lemma 2.2 Let $l\in$ N. Let $B=\Phi(|v-v_{*}|)b(\cos\theta)$ where $\Phi=\langle v-v_{*}\rangle^{\gamma}$ with $\gamma\leq 1$

and $b$ satisfies (1.7). (1) When $0<\nu<1$ , one has

$|((W_{l}Q(f, g)-Q(f, W_{l}g)),$ $h)_{L^{2}(\mathbb{R}_{t)}^{d})}|$ (2.8)

$\leq C\Vert f\Vert_{L_{1+\gamma+}^{1}(\mathbb{R}_{v}^{d})}\Vert g\Vert_{L_{l+\gamma+}^{2}(\mathbb{R}_{v}^{d})}\Vert h\Vert_{L^{2}(\mathbb{R}_{v}^{1I})}$ .

(2) When $1<\nu<2$ , for any $\epsilon>0$ there is a $C_{\epsilon}>0$ such that

$|((W_{l}Q(f\cdot, g)-Q(f, W_{l}g)),$ $h)_{L^{2}(\mathbb{R}_{v}^{3})}|$ (2.9)

$\leq C_{\epsilon}\Vert f\Vert_{L_{l+\nu-1+\gamma+(R_{v}^{d})}^{1}}\cdot\Vert g\Vert_{H_{l+\nu-1+\gamma+}^{\nu-1+\epsilon}(\mathbb{R}_{v}^{d})}\Vert h\Vert_{L’(\mathbb{R}_{v}^{3})}2^{\cdot}$ .

(3) When $\nu=1$ , we have the same estimate as (2.9) with $\nu-1$ replaced by any small
$\kappa>0$ .

Remark 2.3 When $0<\nu<1$ and $l\geq 3(>5/2)f$ the following variant of (2.8) holds

$|((W_{l}Q(f, g)-Q(f, W_{l}g)),$ $h)_{L^{2}(\mathbb{R})}:s|$ (2.10)

$\leq C\Vert f\Vert_{L^{2}(R_{v}^{3})}+\Vert g\Vert_{L_{l+\gamma}^{2}(\mathbb{R}^{3})}\Vert h\Vert_{L^{2}(\mathbb{R}^{d})}\iota+\cdot\cdot$ .

where the $L^{1}$ norm of $f$ is replaced by its $L^{2}$ norm without increasing the weight.
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As an application of upper-lower estiinates and this remark, we consider the unique-
ness of solution to the Cauchy problem (1.1).

Theorem 2.2 (cf. H.Tanaka[18], Toscani-Villani [19] for the case $\gamma=0,$ $\nu=\frac{1}{2}$ I Let
$B=\Phi(|v-v_{*}|)b(\cos\theta)wf\iota er\cdot e\Phi=\langle v-v_{*}\}^{\gamma}$ with $\gamma<0$ and $b$ satisfies (1.7) with
$0<\nu<1$ . Assume that $0\leq f,$ $g\in C([0, T];H_{l+(\gamma+\nu)^{+}}^{\nu})$ with $l\geq 3$ . If $f,$ $g$ are solutions
to the Cauchy problem (1.1) with the initial data $f_{0}\in H_{l+(\gamma+\nu)^{+}}^{\nu}$ then they coincide.

Proof. Setting $F=f-g$ and $G=f+g$ , we have

$\frac{c?F}{\partial t}=\frac{1}{2}(Q(G, F)+Q(F, G)),$ $v\in \mathbb{R}^{3},$ $t>0$ ; $F|_{t=0}=0$ .

Multiply the equation by $W_{2l}F$ and integrate with respect to $v$ variables in $\mathbb{R}^{3}$ . Then
we obtain

$\frac{d\Vert F\Vert_{L_{l}^{A}}^{2}}{dt}=(W_{l}Q(G, F),$ $W_{l}F)+(W_{l}Q(F, G),$ $W_{l}F)=I_{1}+I_{2}$ .

Write

$I_{1}=(Q(G, W_{l}F),$ $W\iota F)+((W_{l}Q(G, F)-Q(G, W_{l}F)),$ $W_{l}F)=I_{1,1}+I_{1,2}$ .

By (2.7) we have
$I_{1,1}\leq C\Vert G\Vert_{L^{1}}\Vert F\Vert_{L_{l}^{2}}^{2}$

and it follows from (2.10) we have

$|I_{1,2}|\leq C\Vert G\Vert_{L_{l}^{2}}\Vert F\Vert_{L_{l}^{2}}^{2}$ .

Write also

$I_{2}=(Q(F, W_{l}G),$ $W_{l}F)+((W_{l}Q(F, G)-Q(F, W_{l}G)),$ $W_{l}F)=I_{2,1}+I_{2,2}$ .

It follows from (2.3) with $m=0$ that

$|I_{2,1}|\leq C||F||_{L_{l}^{2}}\Vert G\Vert_{H_{l+(\gamma+\nu)^{+}}^{\nu}}||F||_{L_{l}^{2}}$

By (2.10) we have
$|I_{2_{J}2}|\leq C||F||_{L_{l}^{l}}\cdot\Vert G\Vert_{L_{l}^{l}}\cdot||F||_{L_{1}^{2}}$ .

Summing up above estimates we obtain

$\frac{d\Vert F\Vert_{L_{l}^{2}}^{2}}{dt}\leq C_{G}\Vert F\Vert_{L_{l}^{I}}^{2}\cdot$ ,

which gives the uniqueness.

Remark 2.4 By using the rnetric

$d_{2}(f, g)= \sup_{\xi\in \mathbb{R}^{\delta}}\frac{|\hat{f}(\xi)-\hat{g}(\xi)|}{|\xi|^{2}}$ ,

Toscani-Villani [1 $9\int$ showed the uniqueness of solution in Ma cwellian molecule case,
assuming only finiteness of $tf\iota e$ energy, that is, $f_{)}g\in L_{2}^{1}$ .
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Remark 2.5 The proof of $Tf\iota eorern2.2$ can be applicable to the $\prime ur\iota iqueness$ of solutions
to spatially inhomogeneous Boltzmann equation without angular cutoff in soft potential
case (see $f7]$ ) where the hard potential case is also discussed.

Theorem 2.2 uses the commutator estimates with respect to $W_{l}$ . We also need the
the following estimates concerning the commutator with respect to the Sobolev weight
$|D_{v}|^{2}$ . Typical example of such a weigIlt is

$M_{\delta}(D_{v})= \frac{(1+|D_{v}|^{2})^{N_{0}/2}}{(1+\delta|D_{v}|^{2})^{N_{1}/2}}$ , (2.11)

where $N_{0},$ $N_{1}\in \mathbb{R}$ with $N_{1}\geq N_{0}+4>0$ , and $0<\delta<1$ is a parameter which tends to
0. It should be noted that the symb$o1M_{\delta}(\xi)$ satisfies

$|’\partial_{\xi}^{\alpha}\Lambda f_{\delta}(\xi)|\leq C_{\alpha}M_{\delta}(\xi)\langle\xi\rangle^{-|\alpha|}$

for a constant $C_{\alpha}$ independent of $\delta$ .

Lemma 2.3 Let $B=\Phi(|v-v_{*}|)b(\cos\theta)$ where $\Phi=\{v-v_{*}\}^{\gamma}$ with $\gamma\leq 1$ and $b$ satisfies(1.7). Let $\lambda\in \mathbb{R}$ and let $M(\xi)$ be a positive symbol of pseudo-differential operator in
$S_{1,0}^{\lambda}$ of the form $M(\xi)=\tilde{M}(|\xi|^{2})$ . Assume that, there exist $c,$ $C>0$ such that

$c^{-1} \leq\frac{s}{\tau}\leq c$ imvlies $C^{-1} \frac{\tilde{M}(s)}{A\tilde{:}f(\tau)}\leq C$ (2.12)

and $\Lambda I(\xi)$ satisfies
$|M^{(\alpha)}(\xi)|=|\partial_{\xi}^{\alpha}M(\xi)|\leq C_{\alpha}M(\xi)\langle\xi)^{-|\alpha|}$ (2.13)

for any $\alpha$ . Then, if $0<\nu<1$ then for any $N_{1}\in N$ there exist a constant $C_{N_{1}}$ such
that

$|(M(D_{v})Q(f, g)-Q(f, M(D_{v})g), h)_{L^{2}(\mathbb{R}_{\dot{v}}^{\{})}|$ (2.14)

$\leq C_{N_{1}}\Vert f\Vert_{L_{\gamma}^{1}(\mathbb{R};_{f}))}+\cdot,(+\prime s.\cdot$ .

Furthermore, if $1<\nu<2$ , for any $\epsilon>0$ and for any $N_{1}\in \mathbb{N}$ , there exists a constant
$C_{\epsilon,N_{1}}$ such that

$|(M(D_{v})Q(f, g)-Q(f, M(D_{v})g), h)_{L^{2}(\mathbb{R}_{v}^{3})}|$ (2.15)

$\leq C_{\epsilon,N_{1}}\Vert f\Vert_{L_{(\nu+\gamma-1)}^{1}(\mathbb{R}_{t}^{J},))}+\cdot(\Vert Mg\Vert_{H_{(\nu+\gamma-1)^{+}}(\mathbb{R}_{v})}\nu-1+\zeta a+\Vert g\Vert_{H^{\lambda-N_{1}}(\mathbb{R}_{v}’)))\Vert h\Vert_{L^{2}(\mathbb{R}_{v}^{J})}}3^{\cdot}$ .

When $\nu=1$ we have the same estimate as (2.15) with $(\nu+\gamma-1)$ replaced by $(\gamma+\kappa)$

for any small $\kappa>0$ .

Remark 2.6 As stated in Lemma 5.1 of [12], we have the following better estimate in
the case $1<\nu<2$

$|(M(D_{v})Q(f, g)-Q(f, M(D_{v})g), h)_{L^{2}(\mathbb{R}_{v}^{S})}|$ (2.16)

$\leq C_{N_{1}}\Vert f\Vert_{L_{(\nu+\gamma-1)}^{1}(\mathbb{R}_{v}^{3}))}+\cdot(\Vert M_{9}\Vert H_{(\nu+\gamma-1)/2+}^{(\nu-1)/2}(\mathbb{R}_{v}^{d})+\Vert g\Vert_{H^{\lambda}}-N_{1(\mathbb{R}_{t}^{s},)))\Vert h\Vert_{H_{(\nu+\gamma-1)/2}^{(\nu-1)/z}}}+\cdot\cdot(\mathbb{R}_{v}^{3})$.
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At the erid of tliis section we give soine eleriieiitary results derived from $ti_{1}e$ usual
pseudodifferential calculus.

Lemma 2.4 Let $p,$ $r$ be in $\mathbb{R}$ and let a(v), $b(\xi)\in c\propto sati_{6}fy$ for $ar\iota y\alpha\in \mathbb{Z}_{+}^{3}$ ,

$|D_{v}^{\alpha}a(v)|\leq C_{1,\alpha}\{v\rangle^{r-|\alpha|},$ $|\partial_{\xi}^{\alpha}b(\xi)|\leq C_{2,\alpha}\{\xi\}^{p-|\alpha|}$

for some constants $C_{1},{}_{\alpha}C_{2,\alpha}>0$ . Then there $e,xists$ a constant $C>0$ depending only
on $p_{)}r$ and finite numbers of $C_{1},{}_{\alpha}C_{2,\alpha}>0$ such that for any $f\in S(\mathbb{R}\backslash ’)$ ,

$\{\begin{array}{l}||a(v)b(D)f||_{L^{2}}\leq C||\langle D\rangle^{p}\langle v\rangle^{r}f||_{L^{2}},||b(D)a(v)f||_{L^{2}}\prime\leq C||\{v\}^{r}\{D\}^{p}f||_{L^{A}}\cdot.\end{array}$ (2.17)

In $pa7ticular$, the two nor $ms$ on the $r\dot{\tau}gf\iota t$ hand sides of (2.17) are equivalent to each
other.

Corollary 2.2 Let $\lrcorner fI_{\delta}(\xi)$ be given in (2.11). $lff\in L_{2}^{1}$ , then there exists a constant
$C_{\delta}>0$ depending on $\delta>0$ such that for any $\kappa\leq 2$

$||\{v\}^{\kappa}M_{\delta}(D_{v})f||_{L^{2}}\leq C_{\delta}||f||_{L_{2}^{1}}$ .

Proof. Since $|\Lambda f_{\delta}(\xi)^{(\alpha)}|\leq C_{\delta,\alpha}\{\xi\rangle^{-4-|\alpha|}$, it follows from (2.17) that

$||\langle v\}^{\kappa}M_{\delta}(D_{v})f||_{L^{2}}\leq C_{\delta}||\langle v\}^{2}f||_{H^{-4}}\leq C_{\delta}’||\overline{\langle\cdot\}^{\prime z}f}||_{L\propto(\mathbb{R}_{\xi}^{s})}$ .

It follows from Lemma 2.4 that the norm of $H_{\iota^{k}}$ defined in (2.1) is equivalent to
$||\{v\rangle^{l}\{D\rangle^{k}f||_{L^{2}}$ . The following is a slight generalization of the interpolation estimates
given in [11].

Lemma 2.5 Let $p,$ $r\in \mathbb{R}$ and $\epsilon>0$ . Then, there exists a constant $C=C(p, r, \epsilon)>0$

such that $fo\tau$
. any $f\in S(\mathbb{R}^{3})$ ,

$\Vert f\Vert_{H_{f}^{p}}^{2}\leq C\Vert f\Vert_{H_{2r}^{p-\epsilon}}\Vert f\Vert_{H^{\nu+e}}\leq C(\Vert f\Vert_{H_{\ell r}^{p-\epsilon}}^{2},+\Vert f\Vert_{H^{p+\epsilon}}^{2})$. (2.18)

Proof. It follows from Lemma 2.4 that

$\Vert f\Vert_{it_{r}^{p}}^{2}=(\{D\rangle^{-p-\epsilon}\langle v\rangle^{r}\langle D\rangle^{2p}’(v\rangle^{r}f, \langle D\}^{p+\epsilon}f)_{L^{2}}$

$\leq\Vert\{D\}^{-p-\epsilon}\langle v\rangle^{r}\{\langle D\rangle^{2p}\langle v\rangle^{r}f\}\Vert_{L^{2}}\Vert f\Vert_{H^{p+\epsilon}}$

$\leq C||\{v\}^{r}\langle D\}^{-p-\epsilon}\{\{D\rangle^{2p}\langle v\rangle^{r}f\}\Vert_{L^{2}}\Vert f\Vert_{H^{p+\epsilon}}$

$\leq C||\langle D\rangle^{p-\epsilon}\langle v\}^{r}\{\{v\rangle^{r}f\}\Vert_{L^{2}}\Vert f\Vert_{H^{p+\zeta}}\leq C\Vert f\Vert_{H_{2r}^{p-\epsilon}}.\Vert f\Vert_{H^{p+\epsilon}}$ .

Proposition 2.1 Let $k,$ $r\in \mathbb{R}^{+}$ and $\epsilon>0$ . If $\ell\in N$ is bigger than $(k+3/2)/\epsilon$ , then
there exists a constant $C(k, r\cdot\}\epsilon)>0$ such that for any $f\in S(\mathbb{R}^{3})$ ,

$\Vert f\Vert_{H_{r}^{k}}^{2}$

.
$\leq C(N, r, \epsilon)(\Vert f\Vert_{\iota;_{2^{\ell}}}^{2}+\Vert f\Vert_{H^{k+\epsilon}}^{2})$ .

140



Proof. The repeated use of (2.18), $\ell$ times, yields

$\Vert f\Vert_{H_{r}^{k}}^{2}\leq C(\Vert f\Vert_{fi_{r2^{\ell}}^{k-\epsilon l}}^{2}+\Vert f\Vert_{H^{k+\epsilon}}^{2})$ .

Since $L^{1}\subset H^{-m}$ if $m>3/2$ , we obtain the desired estimate.

Remark 2.7 Since for any $\kappa>0$ we have, instead of (2.18),

$\Vert f\Vert_{H_{r}^{p}}^{2}$

. $\leq\kappa\Vert f\Vert_{H^{p+\epsilon}}^{2}+C_{lt}\Vert f\Vert_{H_{2r}^{p-\epsilon}}^{2}$

.

and the symbols $M_{\delta}(\xi)$ belong to a bounded set of $S_{1,0}^{N_{0}}$ uniformly with respect to $0<$
$\delta<1$ , by means of Lemma 2.4 we have for a suitable large $r^{l}>0$

$||\Lambda f_{\delta}f||_{H_{r}^{k}}^{2}\leq\kappa||M_{\delta}f||_{H^{k+\epsilon}}^{2}+C_{\kappa}||\{v\rangle^{r’}\{\langle D_{v})^{-2-N_{0}}M_{\delta}f\}||_{L^{2}}^{2}$

$\leq\kappa||M_{\delta}f||_{H^{k+\epsilon}}^{2}+C_{\kappa}||\{v\rangle^{r’}f||_{H^{-2}}^{2}$ (2.19)
$\leq\kappa||M_{\delta}f||_{H^{k+\epsilon}}^{2}+C_{\kappa}||f||_{L_{r}^{1}}^{2},$ ’

provided that $M_{\delta}f\in H^{k+\epsilon}$ and $f\in L_{r}^{1},$ .

3 Sketch of Proofs of Theorems 1.1 and 1.2
We will first give the proof of Theorem 1.1. Before that, we give the precise definition
of weak solution for $t\}_{1}e$ Cauchy problem (1.1), cf. [21].

Deflnition 3.1 Let $f_{0}(v)\geq 0$ be a function defined on $\mathbb{R}^{3}$ with finite mass, energy and
entropy. $f(t, v)$ is called a weak solution of the Cauchy problem (1.1), if it satisfies the
following conditions:

$f(t, v)\geq 0$ , $f(t, v)\in C(\mathbb{R}^{+};\mathcal{D}’(\mathbb{R}^{3}))\cap L^{1}([0, T];L_{2+\gamma^{+}}^{1}(\mathbb{R}^{\prime;}\backslash ))’$ ,
$f(0, v)=f_{0}(v)$ ,

$\int_{\mathbb{R}^{3}}f(t, v)\psi(v)dv=\int_{\mathbb{R}^{3}}\backslash f_{0}(v)\psi(v)dv$ for $\psi=1,$ $v_{j},$
$|v|^{2}$ ;

$f(t, v)\in L^{1}\log L^{1}$ , $/\mathbb{R}^{3}f(t, v)\log f(t, v)dv\leq/\mathbb{R}’sf_{0}\log f_{0}dv$, $\forall t\geq 0$ ;

$\int_{\mathbb{R}^{3}}f(t, v)\varphi(t, v)dv-\int_{\mathbb{R}^{s}}$

.
$f_{0} \varphi(0, v)dv-\int_{0}^{t}d\tau\int_{\mathbb{R}\backslash \}f(\tau, v)\partial_{\tau}\varphi(\tau, v)dv$ (3.1)

$= \int_{0}^{t}d\tau\int_{\mathbb{R}^{d}}$

. $Q(f, f)(\tau, v)\varphi(\tau, v)dv$ ,

where $\varphi(t, v)\in C^{1}(\mathbb{R}^{+};C_{0}^{\infty}(\mathbb{R}^{3}))$ . Here, the right hand side of the last integral given
above is defined by

$\int_{\mathbb{R}}:\{Q(f, f)(v)\varphi(v)dv$

$= \frac{1}{2}\int_{\mathbb{R}^{6}}.\int_{@^{2}}Bf(v_{*})f(v)(\varphi(v’)+\varphi(v_{*}’)-\varphi(v)-\varphi(v_{*}))dvdv_{*}d\sigma$.

Hence, this integral is well defined for any test function $\varphi\in L^{\infty}([0, T];W^{2,\infty}(\mathbb{R}^{3}))$ (see
p. 291 of $[21J)$ .
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For arbitrary large but fixed $k\in \mathbb{R}$ , we take the tinie-dependent multiplier

$M_{\delta}( \xi)=\Lambda\prime I_{\delta}(\xi;t)=\frac{(1+|\xi|^{2})^{\frac{kl.-4}{\lrcorner}}}{(1+\delta|\xi|^{2})^{\frac{kT+4}{2}}}$ for $t\in[0, T]$ .

Let $f$ be a weak solution of the Cauchy problem (1.1). We know that $f(t)\in L^{1}(\mathbb{R}^{3})\subset$

$H^{-2}(\mathbb{R}^{3})$ for all $t\in[0, T]$ . Then, for any $\delta\in(0,1)$

$A/l_{\delta}(D_{v}, t)f\in L^{\infty}([0, T_{0}];W^{2,\infty}(\mathbb{R}^{3}))$ , (3.2)

whose norm is bounded from above by $C_{\delta}\Vert f_{0}\Vert_{L^{1}}$ .
We consider the Debye-Yukawa potential ca,ge in Theorem 1.1. Since for any $0<$

$\nu<1$ we have
$(\log\theta^{-1})^{\mu}\leq C\theta^{-\nu}$ for any $\theta\in(0, \pi/2]$ ,

it follows from (2.14) in Lemma 2.3 that

Lemma 3.1 $Ur\iota der$ . the hypothesis $(1.8)-(1.9)$ for the Debye-Yukawa potential, we have

$|(Q(f, f), M_{\delta}^{2}f)-(Q(f, M_{\delta}f), M_{\delta}f)|\leq C\Vert f\Vert_{L_{1}^{1}}(\Vert M_{\delta}(D_{v})f\Vert_{L_{1/2}^{2}}^{2}+\Vert f\Vert_{L^{1}}^{2})$,

$wf\iota er\cdot e$ the constant $C>0$ is independent of $\delta\in(0,1)$ .

Indeed, we set $M=M_{\delta}$ and $h=M_{\delta}f$ in (2.14). Setting $f=M_{\delta}f$ in Lemma 2.1, we
have

Lemma 3.2 Under the hypothesis $(1.8)-(1.9)$ for the Debye-Yukawa potential, we have

$-(Q(f, M_{\delta}f), M_{\delta}f)\geq C_{f,1}\Vert(\log\Lambda)^{\mu_{\frac{+l}{\prime l}}}\{\cdot)^{\frac{1}{\prime 2}}M_{\delta}f\Vert_{L^{2}}^{2}’-C_{2}\Vert\{\cdot\}^{\frac{1}{2}}M_{\delta}f\Vert_{L^{\lrcorner}}^{2}\cdot$ ,

where $\Lambda=(e+|D_{v}|^{2})^{\frac{1}{2}}$ . Here $c\cdot onstar\iota tsC_{f},{}_{1}C_{2}>0$ depend only on $b,$ $\Vert f\Vert_{L_{1}^{1}}$ and
$\Vert f\Vert_{LlogL}$ .

We take $M_{\delta}^{2}(D_{v}, t)f$ as a test function in the definition of the weak solution (3.1).
In addition to (3.2), we have

$M_{\delta}f\in C([0, T];L^{2}(\mathbb{R}^{3}))$ , (3.3)

and for any $t\in(0, T]$ , we have

$\frac{1}{2}\int_{R^{s}}f(t)M_{\delta}^{2}(t)f(t)dv-\frac{1}{2}\int_{0}^{t}\int_{\mathbb{R}^{d}}f(\tau)(\partial_{t}M_{\delta}^{2}(\tau))f(\tau)dvd\tau$ (3.4)

$= \frac{1}{2}\int_{\mathbb{R}^{3}}f_{0}\Lambda f_{\delta}^{2}(0)f_{0}dv+’\int_{0}^{t}"$
’

where $M_{\delta}(t)$ denotes $M_{\delta}(D_{v};t)$ . About the proof of (3.3) and (3.4), we refer to the
end of Section 3, [12].

Since
$\partial_{t}M_{\delta}(\xi;t)=k\log\{\xi\}M_{\delta}(\xi;t)$ , (3.5)

we obtain

$\int_{0}^{t}\int_{R^{3}}$

.
$f( \tau)(\partial_{\tau}M_{\delta}^{2}(\tau))f(\tau)dvd\tau\leq 2k\int_{0}^{t}\Vert(\log\Lambda)^{1/2}M_{\delta}f(\tau)\Vert_{L^{2}}^{2}d\tau$. (3.6)
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By coriibining Lemina 3.1, Lemma 3.2, (3.4), and (3.6), we then have

$\Vert M_{\delta}(t)f(t)\Vert_{L^{2}}^{2}+C_{f,1}\int_{0}^{t}\Vert(\log\Lambda)^{(\mu+1)/2}\langle\cdot\}^{\frac{1}{2}}M_{\delta}f(\tau)\Vert_{L^{2}}^{2}d\tau$

$\leq\Vert M_{\delta}(0)f_{0}\Vert_{L^{2}}^{2}+2k/0^{t}\Vert(\log\Lambda)^{1/2}M_{\delta}f(\tau)\Vert_{L^{l}}^{2}\cdot d\tau$ (3.7)

$+C_{f,2} \int_{0}^{t}\Vert\{\cdot\rangle^{\frac{1}{2}}M_{\delta}f(\tau)\Vert_{L^{2}}^{2}d\tau+C_{f,3}\int_{0}^{t}\Vert f\Vert_{L^{1}}^{2}d\tau$.

We now show that the terms $\Vert(\log\Lambda)^{1/2}\{\cdot\}^{\frac{1}{2}}M_{\delta}f(\tau)\Vert_{L^{2}}$ and $\Vert\{\cdot\rangle^{1}zM_{\delta}f(\tau)\Vert_{L^{2}}$ can be
controlled by

$\Vert(\log\Lambda)^{(\mu+1)/2}\{\cdot)^{\frac{1}{2}}M_{\delta}f(\tau)\Vert_{L^{2}}^{2}$ .
Since $[(\log\Lambda)^{1/2}, \{v\}^{-1/2}]$ is a $L^{2}$ bounded operator, for any $h\in H^{1/2}$ we have

$\Vert(\log\Lambda)^{1/2}\{\cdot\}^{-1/2}h\Vert_{L’}^{2}r_{2}\leq||(\log\Lambda)^{1/2}\prime 2h||_{L^{2}}^{2}+C||h||_{L^{1}}^{t}\cdot$,

and moreover for any $\kappa>0$ and any $m\in N$ the estimate

$||(1og\Lambda)^{1/2}h||_{L^{\lrcorner}}^{2}\cdot+||h||_{L^{2}}^{2}\leq\kappa||(\log\Lambda)^{(\mu+1)/2}h||_{L^{2}}^{2}+C(\kappa, m)||h||_{H}^{2_{-rr}}$ ,

holds with a suitable $C(\kappa, m)>0$ . Putting $h=\{\cdot\}^{\frac{1}{2}}M_{\delta}f$ we have $||h||_{H^{1/2}}\leq C_{\delta}||f||_{L^{1}}$

by a similar way as in the proof of Corollary 2.2. Applying the above two estimates $1/2to$

(3.7) and taking $m$ such that $m>kT$ , we obtain

$\Vert M_{\delta}(t)f(t)\Vert_{L^{2}}^{2}\leq||M_{\delta}(0)f_{0}\Vert_{L^{2}}^{2}+C_{\int,k,3}\int^{t}\Vert f\Vert_{L_{1}^{1}}^{2}d\tau’$, (3.8)

where we have used the fact that $||\{\cdot)^{\frac{1}{2}}M_{\delta}f||_{H^{-m}}\leq C||f||_{L_{1/2}^{1}}$ for a $C>0$ independent
of $\delta$ . Note that $||f||_{L_{1/2}^{1}}\leq||f||_{L_{2}^{1}}\leq||f_{0}||_{L_{2}^{1}}$ ,

$\Vert M_{\delta}(t)f(t)\Vert_{L^{2}}^{2}=\Vert(1-\delta\triangle)^{-(\frac{kT+4}{2})}f(t)\Vert_{H^{kt-4}}^{2}$ ,

and
$\Vert M_{\delta}(0)f_{0}\Vert_{L^{l}}^{2}\cdot=\Vert(1-\delta\triangle)^{-(\frac{kT+4}{2})}f_{0}\Vert_{H^{-4}}^{2}\leq\Vert f_{0}\Vert_{H^{-4}}^{2}\leq C\Vert f_{0}\Vert_{L^{1}}^{2}$ .

Then it follows from (3.8) that

$\Vert(1-\delta\triangle)^{-(\frac{kT+4}{2})}f(t)\Vert_{H^{kt-4}}^{2}\leq C\Vert f_{0}\Vert_{L_{2}^{1}}^{2}$,

where the constant $C>0$ is independent of $\delta$ . Finally, for any given $t>0$ , since $k$ can
be chosen arbitrarily large, by letting $\deltaarrow 0$ , we have $f(t)\in H^{+\infty}$ . Now the proof of
Theorem 1.1 for the Debye-Yukawa potential is completed.

The proof of Theorem 1.1 for the case $0<\nu<1$ and $0\leq\gamma\leq 1$ is similar. Noting
(2.14) in Lemma 2.3 and setting $g=M_{\delta}f$ in Lemma 2.1, we have

$\Vert M_{\delta}(t)f(t)\Vert_{L^{2}}^{2}+C_{f,1}\int_{0}^{t}2’$

$\leq\Vert M_{\delta}(0)f_{0}\Vert_{L^{2}}^{2}+2k\int_{0}^{t}\Vert(\log\Lambda)^{1/2}M_{\delta}f(\tau)\Vert_{L^{2}}^{2}d\tau$ (3.9)

$+C_{f,2} \int_{0}^{t}2\int_{0}^{t}\Vert f\Vert_{L^{1}}^{2}d\tau$ ,
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so that for any given $t>0$ we fiave $f(t)\in H^{+\infty}$ by the saine way as in $t1_{1}e$ previous
proof for the Debye-Yukawa potential case. Now the proof of Theorem 1.1 is completed.

Finally, we shall prove Theorem 1.2. First, Theorem 1.1 implies, if combined with
Proposition 2.1. that if the assumption (1.10) is fulfilled and if $0<\nu<1$ (with $\gamma\geq 0$ )
or for the Debye-Yukawa potential, any entropy solution is in $H_{r}^{k}$ for any $k,$ $r>0$ .
This proves Theorem 1.2 for the case $0<\nu<1$ (with $\gamma\geq 0$) and the Debye-Yukawa
potential.

For the case $1\leq\nu<2$ or $\gamma<0$ , on the otlier hand, the above proof does not
work unless extra estimates are available because the energy inequality (3.9) is to be
replaced, in view of (2.15), by

$\Vert M_{\delta}(t)f(t)\Vert_{L^{2}}^{2}+C_{f,1}\int_{0}^{t}\Vert\langle\cdot\}^{\gamma/2}M_{\delta}f(\tau)\Vert_{H^{\nu/2}}^{2}d\tau$

$\leq\Vert\Lambda f_{\delta}(O)f_{0}\Vert_{L^{2}}^{2}+2k\int_{0}^{t}\Vert(\log\Lambda)^{1/2}M_{\delta}f(\tau)\Vert_{L^{2}}^{2}\cdot d\tau$ (3.10)

$+C_{f,2} \int_{0}^{t}\Vert\langle\cdot\}^{(\gamma+\nu-1)^{+}}M_{\delta}f(\tau)\Vert_{H^{\nu/2-e}}^{2}d\tau+C_{f,3}\int_{0}^{t}\Vert f\Vert_{L^{1}}^{2}d\tau$ ,

and since $\nu>1$ or $\gamma<0$ , the term $\Vert\{\cdot\}^{(\gamma+\nu-1)^{+}}M_{\delta}f(\tau)\Vert_{H^{\nu/2-\in}}$ cannot be controlled by
$\Vert\{\cdot\rangle^{\gamma/2}M_{\delta}f(\tau)\Vert_{H^{\nu/2}}’$ . It is the assumption (1.10) that provides such estimates. Indeed,
we can then use Proposition 2.1 or more precisely the estimates (2.19) in its remark
which reduces (3.10) to

$\Vert M_{\delta}(t)f(t)\Vert_{L^{2}}^{2}\leq\Vert M_{\delta}(0)f_{0}\Vert_{L^{2}}^{2}+C\int_{0}^{t}\Vert f\Vert_{L\}}^{2},d\tau$ ,

for a suitable large $\gamma’>0$ . Thus, we can conclude that $f\in H^{+\infty}$ for $t>0$ . Clearly,
the same conclusion holds for the case $\nu=1$ in view of the last part of Lemma 2.3.
Now the proof of Theorem 1.2 ig also complete.
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