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Abstract

The main purpose of the present paper is to investigate the nonlinear stability
of viscous shock waves and rarefaction waves for the bipolar Vlasov—Poisson—
Boltzmann (VPB) system. To this end, motivated by the micro—macro decomposi-
tion to the Boltzmann equation in Liu and Yu (Commun Math Phys 246:133-179,
2004) and Liu et al. (Physica D 188:178-192, 2004), we first set up a new micro—
macro decomposition around the local Maxwellian related to the bipolar VPB
system and give a unified framework to study the nonlinear stability of the basic
wave patterns to the system. Then, as applications of this new decomposition, the
time-asymptotic stability of the two typical nonlinear wave patterns, viscous shock
waves and rarefaction waves are proved for the 1D bipolar VPB system. More
precisely, it is first proved that the linear superposition of two Boltzmann shock
profiles in the first and third characteristic fields is nonlinearly stable to the 1D
bipolar VPB system up to some suitable shifts without the zero macroscopic mass
conditions on the initial perturbations. Then the time-asymptotic stability of the
rarefaction wave fan to compressible Euler equations is proved for the 1D bipolar
VPB system. These two results are concerned with the nonlinear stability of wave
patterns for Boltzmann equation coupled with additional (electric) forces, which to-
gether with spectral analysis made in Li et al. (Indiana Univ Math J 65(2):665-725,
2016) sheds light on understanding the complicated dynamic behaviors around the
wave patterns in the transportation of charged particles under the binary collisions,
mutual interactions, and the effect of the electrostatic potential forces.
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1. Introduction

It is an interesting and challenging problem to investigate the nonlinear wave
phenomena and understand the dynamical behaviors of charged particles transport
under the influence of external forces such as electrostatic potential, magnetic field,
or electromagnetic fields, etc.. To begin with, we first investigate wave phenomena
for the bipolar Vlasov—Poisson-Boltzmann system, which is used to simulate the
transport of two dilute charged particles (for example ions and electrons) affected
by the self-consistent electrostatic potential force [26]. In spatial three-dimensional
space, the bipolar Vlasov—Poisson—-Boltzmann system takes the form

Far +v-VyFa+ ViIl-VyFg = Q(Fa, Fa) + Q(Fa, Fp),
Fpy+v- -V Fgp —V, I1-V,Fg = Q(Fp, Fa) + Q(Fp, Fp),

(1.1)

ATl = /(FA — Fp)dv,
where v = (v1,v2,v3) € R, x = (x1,x2,x3) € R3, 1 € Rt and Frx =
Fa(t,x,v), Fp = Fp(t, x, v) are the density distribution function of two-species
particles (for example ions and electrons) at time—space (¢, x) with velocity v, and
IT = TI(x, t) is the electric field potential. For the hard sphere model, the collision
operator Q( f, g) takes the bilinear form

1
O(f o)) =5 / / (fHgW)) — F()g(v) (v — vy) - )| dvy L,
RS2

where the unit vector Q € S%r ={Q e 2. w—v)-Q 2= 0}, (v, vy) and
(v/, v,) are the two particle velocities before and after the binary elastic collision
respectively, which together with the conservation laws of momentum and energy,
satisfy the following relations:

V=v—[(v—0) QR v=v+[v—1,) -QQ, QeS&.

In the case that the effect of electrons is neglected, the bipolar Vlasov—Poisson—
Boltzmann (abbreviated as VPB for simplicity below) system (1.1) can be reduced
to the unipolar VPB equations [26]

Far +v - ViFpa+ ViI1- VyFa = Q(Fa, Fa),

ATl = f Fadv — p(x), (1.2)

with p(x) > 0 a given function representing the background doping profile.
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Both the bipolar VPB system (1.1) and unipolar VPB system can be viewed
as the Boltzmann equations under the affect of the electrostatic potential force de-
termined through the self-consistent Poisson equation related to the macroscopic
density of charged particles. However, this bipolar or unipolar VPB system is by
no means the simple extension of the Boltzmann equation. Indeed, there are com-
plicated asymptotical behaviors, which are different completely from those of the
Boltzmann equation, as has been observed and justified rigorously for the VPB
systems (1.1)—(1.2) in [5,17,18] due to the combined effects such as the binary
elastic collision between the particles of same species, the electrostatic potential
force, and/or the mutual interactions among the charged particles of two different
species. To be more precise, it was shown in [17] that for the unipolar VPB system
for motion of one species, the influence of the electric field affects the spectrum
structure of the linearized VPB system and causes the slower but optimal (com-
pared with the Boltzmann equation) time-asymptotical convergence rate of global
solution to the equilibrium state, and there is no wave pattern propagation (such
as the shock profile and rarefaction wave compared with the Boltzmann equation)
due to effect of the electric field [18]; one can refer to [5,17,18,43] and references
therein for more details. On the other hand, however, a completely different dynam-
ical phenomena/behaviors of global solution are observed for bipolar VPB system
in [18]. Therein, it was shown that the linearized VPB system around the global
Maxwellian consists of a decoupled system: one is the linear Boltzmann equation
for the distribution function F; = w of the average of the total charged par-
ticles which admits the wave modes at lower frequency, the other is the equation
of unipolar VPB type for the neutral function F> = @ of the particles with
different charge which admits spectral gap at lower frequency, and it causes strong
neutrality in the sense that the neutral function F; and the electric field related the
neutral function F> decay exponentially in time. In addition, the multi-dimensional
pointwise diffusive properties similar to those of the Boltzmann equation are also
shown in [18]. A natural problem follows then: can one observe the nonlinear wave
pattern propagation and justify the combined influence of the electrostatic poten-
tial force and/or the mutual interactions among the charged particles for the bipolar
VPB system?

The main purpose of the present paper is to investigate the nonlinear wave phe-
nomena and understand the dynamical behaviors of charged particles transported
under the influence of the electrostatic potential force. It is well-known that the
Boltzmann equation is asymptotically equivalent to the compressible Euler equa-
tions as illustrated by the famous Hilbert expansions. The system of compressible
Euler equations is a typical example of hyperbolic conservation laws system. There
are three basic wave patterns to the hyperbolic conservation laws: two nonlinear
waves, that is, the shock wave and rarefaction wave in the genuinely nonlinear field,
and one linearly degenerate wave called contact discontinuity. Therefore, the Boltz-
mann equation has rich wave phenomena as for the macroscopic fluid mechanics,
and there has been important progress on the nonlinear stability of these basic wave
patterns of the Boltzmann equation; refer for instance to [2,14,15,21,22,24,35,42]
and references therein. However, we should mention here that the pioneering study
on the stability and positivity of viscous shock waves was first made by Liu AND YU
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[21] in energy space with the zero total macroscopic mass condition based on the
micro—macro decomposition proposed by Liu AND Yu [21]. Furthermore, YU [42]
made an important breakthrough to establish the stability of a single viscous shock
profile without the zero mass condition by the elegant point-wise method based on
the Green function around the shock profile. Then, the stability of the rarefaction
wave is proved by Liu ET AL. [24] and the stability of the viscous contact wave,
which is the viscous version of contact discontinuity by HUANG AND YANG [15]
with the zero mass condition and HUANG ET AL. [14] without the zero mass condi-
tion. Recently, WANG AND WANG [35] proved the stability of superposition of two
viscous shock profiles to the Boltzmann equation without the zero mass condition
by the weighted characteristic energy method.

Therefore, due to the appearance of wave modes and the spectral gap of the
linearized bipolar VPB system as shown in [18], it is natural and interesting to in-
vestigate and understand the nonlinear wave phenomena of the bipolar VPB system
under the influence of the electric field and mutual interactions between charged
particles. To this end, we first consider the nonlinear stability of viscous shock
waves and the rarefaction wave for the bipolar VPB system. Nevertheless, com-
pared with the stability analysis made for the Boltzmann equation, it is not straight-
forward to study the stability of viscous shock waves and the rarefaction wave
under the influence of the electric field effect and the mutual interactions among
the charged particles. Moreover, there is no generic framework made concerned
with the stability of basic wave patterns to the bipolar VPB system as far as we
know. To overcome these difficulties, for F; = £ AJQFF £ satisfying the Boltzmann-
type equation with the additional electric fields, we employ the micro—macro type
decomposition as in [21,23] for the Boltzmann equation, while in the VPB type
equation for F, = E A;F B we introduce a new micro—macro type decomposition
around the local Maxwellian with respect to F1. More importantly, we can derive a
new diffusion equation with the damping from the macroscopic part of F>, which
crucially implies that the electric fields are strongly dissipative and guarantees the
stability of wave patterns.

Note that this new decomposition for F5 is quite universal and will play an
important role in the stability analysis towards wave patterns to the bipolar VPB
system (1.1). Then as the applications of this new decomposition, the stability of
viscous shock waves and the rarefaction wave are proved for the 1D bipolar VPB
system as the first step. Note that for the stability of superposition of two viscous
shock waves in the first and third characteristic fields, there are no zero macroscopic
mass conditions for the initial perturbations by introducing suitable shifts on the
two viscous shock waves, the linear diffusion wave in the second characteristic field
and the coupled diffusion waves, a more motivated by Liu [19], SZEPESSY AND XIN
[33], HUANG AND MATSUMURA [12] and WANG AND WANG [35]. Roughly speaking,
it is first proved that the linear superposition of two Boltzmann shock profiles is
nonlinearly stable time-asymptotically to the 1D bipolar VPB system up to some
suitable shifts without imposing the zero macroscopic conditions on the initial
perturbations. Moreover, we proved the nonlinear stability of the rarefaction wave
solution to the Riemann problem of inviscid Euler system time-asymptotically to
the 1D bipolar VPB system. The precise statements of the stability of viscous shock
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waves and rarefaction waves can be referred to Theorems 3.1 and 4.1, respectively.
Future works will be done on the stability of other wave patterns and their linear
superpositions.

There have been important works on the existence and behavior of solutions to
the VPB system. The global existence of the renormalized solution for large initial
data was proved in MisCHLER [29]. The first global existence result on a classical
solution in torus when the initial data is near a global Maxwellian was established
in Guo [10]. The global existence of the classical solution in R® was given in
[39,41]. The case with a general stationary background density function was stud-
ied in [6], and the perturbation of vacuums was investigated in [5,7]. Recently, L1
ET AL. [17,18] analyze the spectrum of the linearized VPB system (unipolar and
bipolar) and obtain the optimal decay rate of solutions to the nonlinear system near
global Maxwellian. See also the works on the stability of global Maxwellian and
the optimal time decay rate in [34,36,38], and on boundary value problems of the
stationary VPB system [1]. Recently, DUAN AND Li1U [4] proved the stability of the
rarefaction wave to a unipolar VPB system, which can be viewed as an approxi-
mation of bipolar VPB system (1.1) when the electron density is very rarefied and
reaches a local equilibrium state with small electron mass compared with the ion.
However, there is not any analysis made concerned with the stability of viscous
shock waves to the bipolar VPB system (1.1), as far as we know.

It should be also mentioned that deep investigation has been achieved on the
asymptotic stability of wave patterns for viscous conservation laws, which are ex-
tremely helpful for understanding the wave phenomenon of the kinetic equations.
The time-asymptotic stability of the viscous shock profile started from Goob-
MAN [8] for the uniformly viscous conservation laws and MATSUMURA AND NISHI-
HARA [27] for the compressible Navier—Stokes equations independently by the anti-
derivative methods. Note that in both of the above results the zero mass conditions
are imposed on the initial perturbation. Then Liu [19] and SzEPESSY AND XIN [33]
removed the zero mass condition by introducing the linear and nonlinear diffusion
waves and the coupled diffusion waves in the transverse characteristic field for the
uniformly viscous conservation laws and Liu AND ZENG [25] proved the physical
viscosity case. ZUMBRUN [44] proved the stability of large-amplitude shock waves
of compressible Navier—Stokes equations by the Evans function approach. Then
the stability of rarefaction waves for the compressible Navier—Stokes was proved
by MATSUMURA AND NISHIHARA [28] and NISHIHARA ET AL. [30]. The stability of
the viscous contact wave for the uniformly viscous conservation laws was proved
by Liu AND XIN [20] and XIN [37] with the zero mass condition. Then for the
compressible Navier—Stokes equations with physical viscosities, the stability of
the viscous contact wave was proved by HUANG ET AL. [13] with the zero mass
condition, and by HUANG ET AL. [14] without the zero mass condition. For com-
posite waves, HUANG AND MATSUMURA [12] first studied the asymptotic stability
of two viscous shock waves under general initial perturbation without zero mass
conditions on initial perturbations for the full Navier—Stokes system and HUANG
ET AL. [11] justified the stability of a combination wave of a viscous contact wave
and rarefaction waves.
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The rest of the paper is arranged as follows. In Sect. 2 we present the classical
micro—macro decomposition and introduce a new micro—macro decomposition for
the bipolar VPB system (1.1). Then the main results on the stability of viscous
shock waves and the rarefaction wave are stated and proved in Sects. 3 and 4,
respectively. Finally, “Appendix A and B” are devoted to a priori estimates for the
stability of viscous shock waves and the rarefaction wave, respectively.

2. Micro—-Macro Decompositions

We reformulate the bipolar VPB system (1.1) and give a new micro—macro
decomposition around the local Maxwellian in order to study the nonlinear stability
of basic wave patterns to the system (1.1). Set

_ Fa+Fp P _ Fa—F3

2

F 3 — T 4
! 2 2

then the system (1.1) is changed into
Fiy+v-VoFi + VI Vi, =20(F1, Fr),
Fy+v-ViFy + Vi IT- Vy F1 = 20(F1, F2),

2.1

ATl =2 / F> dv.
We present the micro—macro decompositions around the local Maxwellian to the
bipolar VPB system (2.1). The equation (2.1); can be viewed as the Boltzmann
equation with additional electric potential force; we make use of the micro—macro
decomposition as introduced by Liu AND YU [21] and Liu ET AL. [23]. In fact,
for any solution Fi(t, x, v) to equation (2.1);, there are five macroscopic (fluid)
quantities: the mass density p (¢, x), the momentum m (¢, x) = pu(z, x), and the
total energy E(t, x) = p(e + %|u|2)(t, x) defined by

p(t,x) =/ E0()F1 (1, x, v) dv,
R3

pui(t,x) = \ §(WFi(t,x,v)dv, i=1,2,3, (2.2)
R
2
u
p (e+ '—') 0= [ &R0 d,
2 R3
where & (v) (i =0, 1, 2, 3, 4) are the collision invariants given by

L

fowy=1, &) =v ((=123), &)=l (2.3)

and which satisfy

/éi(v)Q(gl,gz)dvzo, for i =0,1,2,3,4.
R3
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Define the local Maxwellian M associated to the solution Fi(z, x, v) to equation
(2.1)1 in terms of the fluid quantities by

p(t, x)  o—u(,0)?
M := M[p,u,@](ta X, V) = —————¢ 2R0G0) | (2.4)

VT RO(t, x))3
where 6(z, x) is the temperature which is related to the internal energy e(t, x) by
e = 3RO with R > 0 the gas constant, and u(7, x) = (u1(2, x), ua(t, x), us(t, x))t
is the fluid velocity. Then, the collision operator of Q(f, f) can be linearized to be
Ly with respect to the local Maxwellian M by

Lmg =20M, g) +20(g. M). (2.5)

The null space 91y of Ly is spanned by &;(v) (i =0, 1,2, 3, 4).
Define an inner product (g1, g2)y; for g € L(Rg) with respect to the given
local Maxwellian M as

1
(g1, 8208 = /Rs ﬁgl(v)gz(v)dv. (2.6)

For simplicity, if M is the local Maxwellian M in (2.4), we shall use the notation
(-, -) instead of (-, -)p. Furthermore, there exists a positive constant 5; > 0 such
that it holds for any function g(v) € ‘ﬁll (cf. [3,9]) that

(g.Lmg) = —o1(v(lvDg. &) 2.7)

where v(|v|) ~ (1 + |v]) is the collision frequency for the hard sphere collision.
With respect to the inner product (-, -), the following pairwise orthogonal basis
span the macroscopic space ;:

1 Vi — U .
x0()=—M, xi(@)=——=M for i =123,
N/2 ' ) JRop
1 [|v—ul o
=——|—5—-3|M, LX) =06, i,j=0,1,2,3,4.
xa(v) @< RO > (Xi> Xj) = Sij, 1, ]

(2.8)
In terms of the above orthogonal basis, the macroscopic projection P from L? (Rﬁ)
to 91y and the microscopic projection P from LZ(Rg) to ‘)’tf- can be defined as

4

Pog = Z(g, xi)xj» Pig=g—Pog.
j=0

A function g(v) is said to be microscopic or non-fluid if it holds

/g(v)&'(v)dv =0, i=0,1,23,4,

where &; (v) are the collision invariants defined in (2.3).
Based on the above preparation, the solution Fi(z, x, v) to equation (2.1); can
be decomposed into the macroscopic (fluid) part, that is, the local Maxwellian
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M = M(t, x, v) defined in (2.4), and the microscopic (non-fluid) part, that is
G =G(t, x,v):

Fi(t, x,v) =M(, x,v) + G, x,v), PoFi =M, PF =G,
and the equation (2.1); becomes
M+G),+v-ViM+G) + V, I1-V,F, =LuG +20(G, G). (2.9)

Taking the inner product of the equation (2.9) and the collision invariants &; (v)
(i =0,1,2,3,4) with respect to v over R?, one has the following system for the
fluid variables (p, u, 0):

pr +divy (pu) =0,

(pu) +divy(pu @ u) + Vop —noVyll = — [ v® v - VG dv,

|:,0 (e + T):| + divy [pu (e + T) —l—pu} — V,IT- / vF dv
t

=—/ %|v|2v - V.G dv,

where
ny =no(x,t) =/F2(x,t,v)dv. 2.11)

It must be noted that the above fluid-type system (2.10) is not self-contained and
the equation for the microscopic component G is needed, which can be derived by
applying the projection operator Py into equation (2.10):

G +Pi(v-ViM) +P1(v- Vi G) +P (Vi IT-V, F2) = LmG+20(G, G). (2.12)

Recall that the linearized collision operator Ly defined by (2.5) is dissipative on
‘ﬁll, and its inverse Li,ll is a bounded operator on ‘ﬁf— Thus, it follows from (2.12)
that

G =Ly [Pi(v- V,M)] +T, (2.13)

with
[ = Ly'[G/ + P (v- ViG) + P (V, T -V, F2) — 20(G, G)]. (2.14)

Substituting (2.13) into (2.10), we finally obtain the compressible Navier—Stokes-
type equations for the macroscopic fluid quantities (p, u, 6):

pr + divy (pu) = 0,
(pu) + divy(ou @ u) + Vip — na Vi I1
= —/v®v~Vx (Lg,ll[Pl(szxM)]) dv—/v@v-Vdev,

Jul? . Jul?
P 9+7 + div, | pu 9+T +pul|—V,II- [ vFdv
t

1 2 —1 1 2
=~ [ Sllv-v. (LM [P1(v~VxM)]> dv— [ Slvfv- V.I dv.
(2.15)
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A direct computation gives rise to

—/viv,.vxj (L;;[Pl(v : VXM)]> dv

3
3 2 '

|:PL(9) (Mix_,- +Ujx — gaijdlvxu):|
=1 Xj

J

J

and

- /%sz Ve (Ly [P - ViM)T) d
3

=) k(@) + 3 p(@)u; uix./‘i‘ujxi_%gijdiqu ;
j=1 3 x

i,j=1 j

where the viscosity coefficient 1(0) > 0 and the heat conductivity coefficient
k(6) > 0 are smooth functions of the temperature 6. Here, we renormalize the gas
constant R to be % sothate =0 and p = %p@.

Now we decompose F; in the equation (2.1),, which is one of main contributions
of the present paper. Roughly speaking, the macroscopic part of F> satisfies the
diffusive equation with damping term and the microscopic couplings, which ensure
the strong dissipation of the electric forces and further guarantee the stability of
wave patterns. More precisely, the equation (2.1), is a system of Vlasov—Poisson—
Boltzmann type, which in virtue of the decomposition F; = M + G becomes

Fy+v-ViF, +V, I1-VyFi = NmF +20(F2, G), (2.16)

with the linearized operator Ny defined by
Nmh =20 (h, M).

The null space 91, of Ny is spanned by the single macroscopic variable

(v) M
Xov) = —,

NG
which is totally different from the linearized operator Ly due to the quite different
collision structures, whose null space 1 is spanned by five macroscopic variables
xj(w) (j = 0,1,2,3,4); one can refer SOTIROV AND YU [32] for the delicate
analysis of the structure of the linearized operator Ny for the gas mixture without
the electric effects. Furthermore, there exists a positive constant 6 > 0 such that
it holds for any function g(v) € ‘JIZL (cf. [32]) that

(g.Nmg) < —o2(v(lvDg. ).

where v(|v]) ~ (1 4 |v]) is the collision frequency for the hard sphere collision.
Consequently, the linearized collision operator Ny is dissipative on 915, and its
inverse NK,II is a bounded operator on N5-.
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Then we introduce a new micro—macro decomposition around the local Max-
ellian M(x, 7, v) associated with F; as follows:

M
Pig = (g, M)? P.g=g—Pag. Vg.
Then the solution F>(z, x, v) to the VPB equation (2.1), can be decomposed into
M M M
Rt x,v) = —n+ Pk, PiFo=—ny, PFp=F——ny (2.17)
2 o P

Taking the inner product of the equation (2.16) and the collision invariants &) (v) = 1
with respect to v over R>, one has the following conservation law:

ny; + divy (/ vl dv) =0. (2.18)

Substituting the micro—macro decomposition of F> in (2.17) into the above con-
servation law yields

ny: + divy (uny) + divy (/ vP . F) dv) =0. (2.19)

Applying the projection operator P, to the equation (2.16), one has the non-fluid
part equation of F»:

0 (PcF2) = Nm(PcF2) +Pe(v - Vi F2)

+P(ViIT-Vy Fy) + (%) ny =20(F2, G), (2.20)

t

where we have used the facts that

M
P (0, F2) = 0,(P.F>) + (;) n2, Nm(F2) = Nm(P:F).

t

By (2.20) and continuity of the inverse operator Ng,ll on ‘IKZL, the P.F> can be
expressed by

_ M
PCF2 = NMl |:8t(PcF2) +Pc(v . VXFZ) +Pc(vxn . vvFl) + <?)
13

and it follows that
div, (/ vP.F, dv) = div, </ UNK/II [0:(P.F2) +P.(v -V, F?)

+P(V IV Fy) + (%) ny —20(F», G)] du> .

(2.22)

t
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The second and third terms on the right hand side of (2.22) can be further trans-
formed as follows: by the decomposition F, = %nz + P F>, it holds that

div, < / Ny [PC.(U.vsz)]) = div, <vx_, (";) / Nyt [PC(UJ-M))])

n

+ div, <p2 f le;[1 [P.(v - VXM))]) + div, (/ UNK/[I [P.(v - Vx(PcFZ))])

= _div, (,q )V, (’:)2)) + div, (';2 / Ny [Pe(v va))])

+ div, ( f Ny [P (v - VX(PCFZ))]>, (2.23)
where we have used the fact that
/uiN;; [P.(v;M)] = /U[NK/II [(v; —u)M))]
= [ = NG [0 = M) = —1 023

withi, j = 1,2,3 and «1(0) > 0 being a smooth function of the temperature 6.
On the other hand, by the decomposition i = M + G, it holds that

div, ( / Ny [Po(V, T - v,,Fl)]> = div, ( / uNy [V, 1T - VUF1]>
v —
RO

— div, (%?vm) + div, (/ uNy [V IT - VUG]) .

= —div, (f vNy [vxn. ”M)D + div, (/ Ny [V, IT - VUG]>

(2.24)
Substituting (2.22) into (2.19) and making use of (2.23) and (2.24), we can derive
the governing equation on the fluid-part of F>:

Ny + divy (uny) + divy (’“(9) vn) — div, <K1(9)v (’Q))
RO o

= _divx('Z/uN;; |:PC(U : va))D - divx(/ Ny [Pc(v : Vx(PCFz)):D
—divx< / vNy [vxn : VUGD

—divx( / Ny [at(Pch) + (f) ny —20(F, G)] dv). (2.25)
t

Note that the equation (2.25) is a diffusive equation with the damping term and
higher order source terms, which is new and observed first time. The equation
(2.25) is one of the main contributions of the present paper such that we can handle
the electric potential force term in order to prove the stability of basic wave patterns
to the bipolar VPB system (1.1).
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To conclude, the VPB system (2.1) can be decomposed to consist of the fluid-
dynamical system (2.15) and non-fluid type equation (2.12) for the distribution
function Fj, as well as the fluid-dynamical equation (2.25) and the non-fluid type
equation (2.20) for F> coupled with the Poisson equation

ATl = 2n».

Note here that the micro-macro decomposition for Fj is similar to the one for the
Boltzmann equation in [21,23] but with some additional electric potential force
terms, and the new micro—macro decomposition for F is made in such a way that
it is possible to get the dissipative property of the electric field and further to study
the stability toward wave patterns for the bipolar VPB system (2.1). It should be
remarked that this decomposition is quite universal and gives a unified framework
for the stability analysis towards the wave patterns. As an application of the new
decomposition, in the following sections, we prove the nonlinear stability of viscous
shock waves and rarefaction waves to the 1D bipolar VPB system as the first step.
Furthermore, it can be expected that we will prove the nonlinear stability of the
other elementary wave patterns, such as contact discontinuity, boundary layers and
S0 on, to the system (2.1), but this is left in the future works.

Now, for later use, we list some lemmas on the estimates and dissipative prop-
erties of collision operators in the weighted L? space. The following lemmas are
based on the celebrated H-theorem (the first lemma is from [21]):

Lemma 2.1. There exists a positive constant C such that

/ v(lo) 1 Q(f, 9)? q
. — v
M

2 2 2 2
fC{/de/gwdv—i—/dev./Mdv},
M M M M

where M can be any Maxwellian so that the above integrals are well-defined.

Based on Lemma 2.1, the following two lemmas are taken from [24]; their
proofs are straightforward by using Cauchy inequality:

Lemma 2.2. If 6/2 < 6, < 0, then there exist two positive constants ¢ =
G(p,u,b;

D> Us, Oy) and no = no(p, u, 0; px, Uy, 0y) such that if |p — ps| + U — us| +
10 — 0x| < no, we have for g;(v) € M- (i = 1,2),

L ~ [ v(v 2 N ~ [ v(v 2
_/81 M&1 dvzo/ (JvDegj do, [ &Nwms2 dvgo/ (vDg3 4.
M, M.,

Lemma 2.3. Under the assumptions in Lemma 2.2, we have, for each g;(v) €
N =1,2),

1,2
/VI(JLDmK;g”sz < '572/—1)('?1/)[* L] dv, and

v(v) g ~ 5 [v(vD)7'ed
/ M. Ny g27dv =6 T*dv.

3 k
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Remark 2.1. In Lemmas 2.2 and 2.3, n9 may not be sufficiently small positive
constant. However, in the proof of Theorem 4.1 in the following sections, the
smallness of 7 is crucially used to close the a priori assumptions (3.47) and (4.20).

3. Stability of Boltzmann Shock Profiles for the Bipolar VPB System

In this section, we want to use the micro-macro decomposition introduced in
the previous section to prove the nonlinear stability of Boltzmann shock profiles to
the 1D bipolar Vlasov—Poisson—Boltzmann system (1.1)

Far +v10x Fa + 05110y, Fg = Q(Fa, Fa + Fp),
Fp; +v10x Fg — 0,110y, Fp = Q(Fp, Fo + Fp),

(3.1)

O I = /(FA - FB)dU»
withx € R, 7 € R, v = (v1, v2, v3)" € R3 and the initial values and the far-field
states given by

Fp(t =0,x,v) = Fao(x,v) = My, u,,6,(V), asx — Foo,
Fp(t=0,x,v) = Fpo(x,v) = Mjp, uy.0,1(v), asx — Foo, (3.2)
I, - 0, asx — Zoo,

where uy = (u1+,0,0)" and p+ > 0, u14, 6+ > 0 are prescribed constant states
such that the two states (o4, u+, 61) are connected by the superposition of 1-shock
and 3-shock wave solutions to the corresponding 1D Euler system

Pt + (pul)x = Oa
(pur): + (pui + p)x =0,
(pui): + (purui)y =0, i=2,3, (3.3)

e ]l ) o]

As in the previous section, set

Fs+ Fp Fy — Fp
F="2T"8 p=A"78

2 2
Then one has the system

Fii +v10, Fy +axnav1F2 =20(F, I),
Fy, +v18xF2+3xHav1Fl =20(F, F),

(3.4)
Oy I1 = 2/ F>dv = 2ny,

with the initial values (Fg, Fao) satisfying

Fi(t=0,x,v) = Fio(x,v) = My, u,.0,1(v), asx — oo,
(it =0,x,v) = Fx,v) > 0, asx — Foo, 3.5)
I, - 0, asx — Zoo.

Remark that the equation (3.4); is just the Boltzmann equation coupled with the

Vlasov—Poisson electric potential terms. By the decomposition for F| = M + G,
one can derive from (2.15) and (2.12) the following fluid-part system
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or + (pup)x =0, 5

I1 4
(pur); + (put + p)x — (T) = 3Ou1), - / viT, dv,

(pui)r + (purui)xy = ((@uix)x — / viv;lydv, 1 =2,3,
ul*\ T2 Ju|? 4
p (94_7)_’_7 + | puj (9 + 7) + pur | = & (@)0)x + 5 ((@)uiuyy)y
2 4 ¢ 2 N 3
3

1
+ Y (nOuiui) — / SuivPPTedu,

i=2

(3.6)
and the non-fluid equation for Fy:

G + Pi(viMy) + P (v1Gy) + Pi1(I1,0y, F2) = LmG +20(G, G),  (3.7)

where G can be expressed explicitly by (2.13) and (2.14). Note that the fluid-
system (3.6) is the compressible Navier—Stokes type system strongly coupled with
microscopic terms and electric field terms. By the new decomposition to F»,

F, = a3y P.F,
0

from the equations (2.24) and (2.20), the macroscopic part n satisfies the following

equation:
ny + (f v dv) =0, (3.8)
X
or equivalently,

)
_ _(% / WN [Pc(lex))] dv)x _ ( f viNy! [Pc(vl(Pchn)] dv)x
- (f legg[nval} dv)
— (f UlNK,Il |:8,(PCF2) + <%) ny —20(F, G):| dv) , 3.9)
, .

and the microscopic part P; F; satisfies the equation

M
0 (PcF2) = Nm(Pc F2) + Pe(vi Fay) + Pe(T1,: 0y, F1) + <;> ny =20(F2, G).

t
(3.10)
Then the stability analysis towards the Boltzmann shock profiles for the bipolar
VPB system (2.1) will be carried out for the equivalent system (3.6)—(3.10).
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3.1. Existence of Boltzmann Shock Profiles

In this subsection, we state the existence and list the properties of Boltzmann
shock profile. Consider the viscous shock profile to the 1D slab symmetric Boltz-
mann equation

Fii +viFiy =20(F, F1). (3.11)

We recall the Riemann problem for the compressible Euler equation (3.3) with the
Riemann initial data

_Jo—,m_,E_), x <0,
(psmsE)(an)_ {(p+’m+,E+), X >0, (312)
where m+ = pyus, E+ = pt(6+ + |"§|2) and us = (uipm,0,0)". It is well-

/100

known that the system (3.3) has three eigenvalues: A} = u) —¥5=, Ay = uj, A3 =

up + ‘/ITW where the second characteristic field is linear degenerate and the other
two are genuinely nonlinear. In the present section, we focus our attention on the
situation where the Riemann solution of (3.3), (3.12) consists of two shock waves
(and three constant states), that is, there exists an intermediate state (og, mg =
puuy, Ey = p#(9#+%)) withug = (14, 0, 0)! suchthat (o_, m_, E_) connects
with (pg, m#, E4) by the 1-shock wave with the shock speed s1 and (og, m#, E4)
connects with (p4, my, E1) by the 3-shock wave with the shock speed s3. Here
the shock speeds s1 and s3 are constants determined by R—H conditions (3.16) and
(3.15) and the entropy conditions (3.17). By the standard arguments (for example
[31]) for each (p—,m_, E_), we can see that our situation takes place provided
(p4, m4, E4) is located on a curved surface in a neighborhood of (p—, m_, E_).
In what follows, the neighborhood of (p—, m_, E_) is denoted by 2_. To describe
the strengths of the shock waves for later use, we set

850 = |py — p_| + lmy —m_| + |E4 — E_|,
8% = |pg — prl + Imy —my| + |Ey — E4|

and § = min{851, §53}. When we choose |(p4 — p—, m+ —m_, E; — E_)| small
in our situation, for the fixed (p—, m_, E_), we note that it holds that

85 +8% < Cl(py — p—.my —m_, Ex — E_)|,

where C is a positive constant depending only on (p_, m_, E_). Then, if it also
holds that
851 +8% <8, as8S 6% -0 (3.13)

for a positive constant C, we call the strengths of the shock waves are “small with
same order”. In what follows, we always assume (3.13).

Then we recall the i-shock profile F IS i(x —s;t,v) (i =1, 3) of the Boltzmann
equation (3.11) in Eulerian coordinates with its existence and properties given in
the papers by CAFLISCH AND NICOLAENKO [2] and Liu AND YU [21,22]. Note that
the compressibility of the Boltzmann shock profile is first proved in [22], which is
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crucial for the stability analysis towards the Boltzmann shock profile. First of all,
the i-shock profile FISi (x — s;t, v) satisfies

! !
=i (F7) 4o (F7) =20(FF FY). i=13,
F1S] (_009 U) = M[pf,u,ﬁf](v)a Flsg (—OO, U) = M[p#,u#,@#](v)s (314)

s s
FP' (400, v) = Mipy up.00 (), F}7 (400, 0) = My, s 0,1(0),

where’ = dﬁ,z? =x—sit,ux = (u1+, 0,00 up = (u14,0,0)" and (o4, u+, 6+),
(p#, ug, Ou) satlsfy Rankine-Hugoniot conditions

—s1(ps — p-) + (ppur1 — p—uy—) =0,

—s1(psury — p—u1-) + (psuty + py — p_ui_ — p_) =0,

—s1(pgEy — p—E_) + (pgu1 £y + pypurg — p—u1—E_ — p_u;-) =0,
(3.15)

—s3(p+ — p#) + (oru14+ — pgury) = 0,
—s3(pgtt14 — pyury) + (ppuiy + py — pyuiy — pi) =0,

—s3(p+E+ — ppEy) + (p1ui+ E+ + pruiy — ppuipEy — ppury) = 0,
(3.16)

and Lax entropy conditions
Mg <81 < A—, A3y <853 < A34#, (3.17)

with s; being i-shock wave speed and A; = uj + (— 1) Y= 10 (i = 1, 3) being the

i-th characteristic eigenvalue of the Euler equations in the Eulerlan coordinate and

dae = =0 i = g+ (=)' T A G = 1,3 and day = w4+ L0

By the micro—macro decomposition to the Boltzmann equation (3.11) around the
local Maxwellian M% (i = 1, 3) (cf. [21,23]), it holds that

Flsi (x — sit,v) = M5 (x — 5,1, v) + G5 (x — 51, V),

where
M% (x — sit, v) = M5, 5 g5 (¥ — i, v)
Si ) _ \vfusi (xfsir)\z
— /0 (.x — Slt) e ZRHSi (x—s;1) ,
V@rROS (x — 5;1))3
with
pSi 1
Y . .
,oS'uj :/ v FIS'(x—s,-t,v)dv, j=123.
RS\ i?

) ) Si |2
,OS’(QS’ + |u2| )
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With respect to the inner product (-, -)ygs; defined in (2.6), we can now define the
macroscopic projection Pgi and microscopic projection Pf’ by
4
Si, Si Si
Pog—Z(:)<g,xj >M5i xj. Pig=g—Pyg.
]:

where Xfi (j =0,1,2,3,4) are the corresponding pairwise orthogonal base de-
fined in (2.8) by replacing (p, u, 6, M) by (,oSi, uSi 95, MSf). Under the above
micro—macro decomposition, the solution F, 1S i=F IS "(x — s;t, v) satisfies

Pgi FISI — MS,' , PfiFSi — GS,' ,
and the Boltzmann equation (3.11) becomes
(M5 +G50),+vy (M5 +G5), = Z[Q(MS", G%)+0(G%, MS")}+2Q(GS", G5,

Correspondingly, we have the following fluid-type system for the fluid components
of shock profile:

plSi_i_(pSiu*lgi) =0,
X ) 4
(p5ud) +10% () + P51 = §<u(95f)uf;> - / vy dv,
X
(), + (), = (weut) = [rarian, j=2.3
s A8 |14S"|2 Si Sif nSi |L‘)§[|2 Si Si SingSi
P70 + —— )| +|p7u (07 + —— )+ pouy | = | k(O7)6
2 t 2 X X

4 e g 1 ,
5 (neud) +Z<“(9S”‘ @) - [ o a

(3.18)
In fact, from the invariance of the equation (3.14) by changing v; with —v; for

J =2, 3 and the fact thatu j+ = 0, we have ufi = / vlvjl"f" dv=0forj =2,3.

And the equation for the non-fluid component G5 (i = 1, 3) is
G+ P} (uMF) + P} (11GF) = Lys 6% +20 (6%.G%).  (3.19)

Here Ly;s; is the linearized collision operator of Q(F, Si , F Si

local Maxwellian M5 :

) with respect to the

Lys: g = 2[0(M%, g) + 0(g, M¥)].
Thus

G5 =L, [P i (v M5 )] + 15,
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r =L [(Gf" + P (ul(;ff)) —20 ((;Sf, GS")] . (3.20)

Now we recall the properties of the shock profile F 151' (x —sit,v) (i =1, 3) that are
given or can be induced by Liu AND YU [22] in Theorem 6.8.

Lemma 3.1. [22] Fori = 1, 3, if the shock wave strength 8% is small enough, then
the Boltzmann equation (3.11) admits a i-shock profile solution F IS (x — sit,v)
uniquely up to a shift satisfying the following properties:

(1) The shock profile F IS "(x — sit, v) converges to its far fields exponentially fast
with an exponent proportional to the magnitude of the shock wave strength, that
is

(PS' —p—,ufl —u_, 05 —0_ )‘ < csSte 7“8S'|’9‘| as 9 < 0,
P5 = iy = 1y, 65 = 64)| < €8S as iy > 0,
P9 = pa ) — iy, 05 — 6, )| < Co%e SIS ey 5 0,
P — ppouy — ury, 05 — 9#)‘ < 85NNl a9y <0,

(WDIGS 2 | \?
v(|v ! . i 19 .
(/—M dv) < CES2e =13,
0

with 85 being the i-shock strength and My being the global Maxwellian which
is close to the shock profile with its precise definition given in Theorem 6.8,
[22].

(2) Compressibility of i-shock profile:

«/1095
3

OSyg <0, A =ud 4 (—1)'T

(3) The following properties hold:

1
s, s s, s, v(luDIGS > | 2
Py, ~ Uy, ~ Oy~ (A )y, ~ (/Tdv ,
0

where A ~ B denotes the equivalence of the quantities A and B, and

Wy =0, [vTydv=0 j=2.3

J
o (o5, a7, 0% )| < @ |(pi s 00)] . k=2,
1

v(vD[0f G5 1> \3 GS[  \?
(/—I%dv) < C((&;Sz)k</Mdv> k>,
My M

[ogor ol scss |l | j=1234

1 19,’

)

where §;(v) (j = 1,2, 3, 4) are the collision invariants defined in (2.3).
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2
Let Ux, 1) = (p,m, E + 22) with m = pu and E = p(6 + %) being the
solution of the system (3.6) and Ux,t) = (p,m, E)t being the linear superposition
of 1-shock and 3-shock profile with

p=p5(x —s1t) + p5(x —s31) — pg.  E = ES1(x —51t) + ES3(x — 53t) — Ey,
iy =my'(x = s16) +my (x = s3t) —myg, =0, i=2,3,
(3.21)
where (-)! denotes the transpose of the vector (-). Note that in order to keep the
2
conservative form of the system (3.6), an additional term %, which means the
2

electric potential energy should be put on the total energy E + %, which is quite

different from the classic Boltzmann equation.
Since the present paper is concerning with general initial perturbation, that

[e¢)

is, the integral (U = U)(x,0)dx may not be zero, to use the anti-derivative

—00
o0

technique, we need to find an ansatz U such that / U(x,t)— f/(x, t))dx =0,
o0

meanwhile, U and U are time-asymptotically equivalent, that is, |U — U| tends to
zero as t — 00. As observed by Liu [19], the general perturbations will not only
produce the shift on the viscous shock wave itself, but also the linear or nonlinear
diffusion waves in the transverse fields. Let

0 1 0

myom? 4my 2

A(IO3 mi, E) = p2 + 3p2 3,0 3
S5mE 2m*my SE 2’”% m? 5m
£ St

. . 2 m? m? 5miE mim?>\t -
be the Jacobi matrix of the flux (m, 3E + -t — 35, =55~ — 317) in the Euler
system (3.3) with respect to (p, m1, E). Then the second right eigenvector of the
matrix A(p, my, E) at the intermediate state (pg, m4, E4) is

2\ !
— (1 Uy
r2_ ,M]#, 2 .

Furthermore, a direct computation yields that the three vectors r1 = (og —p—, mg —
m_, Esx — E_)", rp above and r3 = (04 — pg, my — mg, E+ — Eg)" are linearly

independent in R if 851 4- 8% is suitably small. So if the initial mass / (U(x,0)—
U (x, 0)) dx is not zero, we can distribute the initial mass along the three independent
directions rq, rp and r3 as in L1u [19], that is,

3
/(U(x, 0) = Ux,0)dx = Y airy. (3.22)
i=1
where «; (i = 1,2, 3) are constants uniquely determined by the initial data. The

excessive mass o171 in the first characteristic field can be eliminated by the trans-
lated 1-viscous shock wave with a shift «, that is, ,OS1 (x — s1t 4 a1). Similarly,



58 HAILIANG LI ET AL.

we can eliminate a3r3 by replacing ,oS3 (x — s3t) by ,053 (x — s3t + a3), so the re-
maining problem is how to remove the excessive mass in the second characteristic
field, that is, ap . Motivated by HUANG AND MATSUMURA [12], the desired ansatz
U = (p, m, E)' is constructed in the following form:

p=pStx—sit +a1) +pP(x —s3t +a3) — pg + OCx, 1), =0, =23,
my = mfl(x—51t+a1)+mf3(x — 53t +a3) —mig + upO(x, 1) —aBy(x, 1),

3 1

E = ESt(x—sit+a)+ES (x — 53t + a3) — Es + 5u%#@(x, 1) —aus© (x, 1),

(3.23)

where «; (i = 1, 3) are the shifts of the i-viscous shock wave and © is the linear
diffusion wave

o _ Gmuggt? 3k (Ox)
Ox,t) = ————=¢ %l | g=—>0 3.24
(. 1) JVara(l +1) Sp# 629
satisfying the heat equation
o0
O+ 110, =, Ot =ad). [ Olndr=wm,  (25)
—00

and the terms —a®, and —au 40, are the coupled diffusion waves as first intro-
duced by SzePESsY AND XIN [33] which does not carry the initial mass, but get rid
of some bad error terms decaying not enough with respect to the time ¢. Then it
follows from (3.22) that

oo

/ (U(x,0) — U(x,0))dx =/ (U(x,0) — U(x,0))dx

—00

+ foo (U(x,0) = U(x,0))dx =0, (3.26)

—00

where we have used the fact that ffooo ®dx = ap. Thus U (x,t) is the desired
ansatz.

By Lemma 3.1, for suitably small § and «», we have the wave interaction
estimates between two viscous shock waves:

1051 — pul - 1p53 — py| < C8516% (e—césl(|x|+t)+c'851 lacy | +e—c653(\x|+t)+c(353|a3|)
< C§Pem D, 3.27)

and between the i-viscous shock waves (i = 1, 3) and the diffusion waves:

. 3 .
1p5i — pu| - |©] < Clag|§2e~d0xI+N
|a2| c(.’cfumgt)2

+C——e T +C6+ |ag)e D (3.28)
(1+1)2
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where we used the fact that 5y and 8% a3 are uniformly bounded by (3.22) for
small 851 and 853 as long as the initial perturbation stays bounded. Set

0= {q(r, x) gl < c(a2 + |az|63)e—“<'”’>

|a2| _ z:(xful#t)z
PR — 1+1

+C 3
(1+1n2

+CO6+ |az|)e—c<'X'+’>}. (3.29)

From now on, we denote g as a function belonging to the set Q if without confusions.
Applying (3.23), we can calculate directly that

- a
7 ~u1 +u —up — —0O,, and
Pi#
2 S1y2 $312 2
m m m
Tl’\‘( 15) ( lS) —i-i-u%#@—Zul#a@x,
o P> p>3 o3

where A ~ B means that A = B + g with g € Q. Similarly, we can calculate p,
6.y, p @iy, ME

that the ansatz U = (p,m, E )! defined in (3.23) well approximates solution of the
VPB system as

m/‘)p Oy, k(0)0, and w(0)iiyii1,. Henceforth, we can check

151 +’;11)C = 07
~2
miy; + <71 + ﬁ) = —(u@uix)x — / U] (FSI + l—ng) dv + Qiyx,
X
- mE  pig
i — + — (€ (0)0x)x + 5 (O)urit1x)y

(3.30)
where
~2 S132 $3y2 2
m o mHr m)?  m i
R et L CEVARVAL
P o Js P#
4/ .
—§<u(9>u1x u(OSHuy! u(953>uf;)+zu]#a®x—u%#®—a2®xx,
3.31)
and
1
Q — — —
o p5i P53 P4

i E m‘]glES1 m]%ES3 migEs
2= +
+

~ S S1
1p_myp [ ml#P#)
o pS p53 p#

K(0)0, — k(05051 — K(953)9§3)



60 HAILIANG LI ET AL.

4 -
-3 (M(G)ﬁlﬁlx — @y, — /L(953)us3ufi>

3 1
+ 5u%#a@)x — zﬁ#@ — a’u140,,. (3.32)

Obviously, it holds that Q1, Q> ~ 0, that is, Q1, Q> € Q. Under the above
preparation, we are now at the stage to state our main result. We first fix any
(p—,m_, E_), and assume that (o4, m4+, E4) € Q_ and the Riemann solution of
(3.3), (3.12) consists of two shock waves. Then the macrpscopic composite wave

(p,m = pu, E = 50 + @))(x, t) defined in (3.23) is well defined. Denote the
perturbation around the ansatz by

2
(O, Wy, Wo) (1, x) = (9, ¥, 0) (1, x) = (p —p,m—m, E+ % - E) (r, x),

a(t, x,v) = G(t, x, v)—GSl (x—s1t+aq, v)—GS3(x — 8§31t + a3, v),
Fi(t,x,v) = Fi(t,x,v) — F3 , (t, x,v), (3.33)

o],03
with
FS ot x,0) = F'(x — 51t + a1, v) + FP (x — s3t + 03, 0) — My (3.34)

being the superposition of shifted 1-shock profile and 3-shock profile to the 1D
_ Iu—u#\z

Boltzmann equation (3.11) and My = #g 2R% is the intermediate equi-
T RO

I1lbrium state.

3.2. Main Result

Denote

E(t) = sup {n(cb, W W)CL9) 17
s€(0,7] x

9% (G.P.Fy)?
vy [ a1t P

0<|81<2
9“9 (G, P F2)
dvd
PV s ve
le|=1,0=5|BI=1
|9 (F1. F2)?
—————dvdxy, 3.35
I e (33%)
lor|=2
with M, being the global Maxellian chosen in Theorem 3.1 and 9% = 97, 9P =af.

Now we can state our main result as follows:
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Theorem 3.1. There exist positive constants 8y and &y and a global Maxellian
M., = M, u, .6, Such that if the shock wave strength and the diffusion wave
strength ay satisfy |(p+ — p—,my —m_, E; — E_)| + |az| £ 8¢ and (3.13) and
the initial data satisfies that

£(0) = o,

then the Cauchy problem of the bipolar VPB system (2.1) admits a unique global
solution (F1, F»)(t, x, v) satisfying

1
E)sC <5(0) + 88)
for the uniform-in-time positive constant C and the time-asymptotic behaviors

(Fl(t,x, v), Fo(t, x, U))

+ 1 (T, n2) (7, X)[| 5o — 0, asz — oo.
LQOL%<1>

Consequently, it holds that

S S
(FA —Fy oy FB— Fal,a3>

+ [(Tx, n2) e — 0, ast — oo.

Here and in the sequel, f(v) € L%(ﬁ) means that 5(_1\% € L% (R3).

Remark 3.1. Theorem 3.1 implies that the linear superposition of two Boltzmann
shock profiles in the first and third characteristic fields is nonlinearly stable time-
asymptotically to the 1D bipolar VPB system (2.1) up to some suitable shifts. Note
that there is no zero macroscopic mass conditions on the initial perturbations.

With the above preparation, we will give the proof of the main theorem in the
following section. For this, we will first reformulate the problem. It follows from
(3.6), (3.30) and (3.33) that (®, W, W) solves

@, 4+ Wy, =0,
2 ~2 2
m m . IT 4 ~ L
W+ L +p—— =5 — =% = Z(uO@ui, — n@iiry)
P o 4 3

—/ VI =TS —T%)dv — Qy,

mym;  mim; ~
U + (—’ - %) = (@) uix — 1(0)iliy)
o o
a —/ v (T =T5 =TS dv, i=23, (3.36)
Em m Em pm .
W+ [ 2L PO Z PRLY _ e(0)0, — k(6)By)
p P f; ;

3

4 A
3 W@uiury — p@)iritne) + D wO)uini
i=2

-1 / v 2T =T —T5)dv — Q5.
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To capture the viscous effect of velocity and temperature, set

U =5V 4o, (3.37)
_ i NN jif?
We also denote } o
(’»”7 5))([1 x) = (\I‘va Wx)(tvx)' (339)
Then we have the following linearized system for (J, 0, VT’):
qjt"‘la\ilx +ﬁ1q>x+,5x\~ljl+ﬁ1xq)=03 .
o~ e~ 1.. ~ 2~ 2 _ .~ 2~ 200y
oY1 + puWix — zpuy W + z oW+ - pWy + 00, — ——@
4 3 3 3 3 3p
= SO —j v} =T — %) dv + Jy + Ny — 01,
ﬁ{r’il +)5ﬁl‘1;ix Pl W M(Q)qjlxx (3.40)
— [T =TS =TS)dv+J; + N;, i=2,3,
o~ e~ e o~ 2 e~ 2 -~ o~
PWr + pu Wy — puix W+ 3,00\1-’1)6 - gpex\pl =k (0) Wy,
mm%r—r&—r*mu+m/Qﬁr—r&—r%mu
+J4+ Ny — (Q2 — w1 01),
where
4@ _ . | D 4ud) .
Ji = <f U%(FS1+FSS)dU_Q1) __&) xUlx | < _Ms)ulxq)x
x 3 p p
4. 6 o~ 4 0) . ~
+3 (u%x p) WOT + 3 (—"“ﬁ ) x\pl)
X
4M@L~
i W+ u(9)u1x
3 3
6) . ~ @) _ - ~
5= ("255,) 29568, =23
o N o

2
v - ~
h:(/mg}wf+r§mv—m/ﬁﬂ@huﬁnw—gh+mgu

“@~§)2
B

———=PxUx
0
~>4%“®@Wm (3.41)
X

k(@) ~

u® _ .
p

Ulx Px

v

(/Zw&+r&mu—gx+§
8 .~
+§H«(0)u1x\p1x

-4\ . ~ ]
+[(K(9)—§u(9>)ulm} +( _
X p
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and the nonlinear terms

Ni = O()|[(Px, Wy, Wy, Ty, Doy, Win) 2, i =1,2,3, (3.42)
N4 = 0(1)|(q>x’ ‘le» W)n Hx» q)xx» \lex» Wxx)lz- (343)
From (3.7), (3.19) and (3.33), we can derive the equation for the non-fluid compo-
nent G(z, x, v) as
G, — LuG = —P1(v1Gy) — P((T1,d,, F)
+20(G, G) +2[Q(G, G5 +G) + Q(GS' +G%, G)]
+2[0(G*, G%) + Q(G™, G%)]
- [Pl(lex) —pY (ulel) —p¥ (U1M§3)] + 3 R,
i=1,3
(3.44)

with R; given by
R; = (Lyt — Lyys, )G — [Pl (ulei) — P (leff)] Ci=1,3 (345
From (2.1) and (3.14), we have the equation for 171 defined in (3.33)

Fiy + v Fiy + 3y, F> = LuG 4+ 20(G, G) + (Lm — Ly;s, ) (G5
+ (Lm — Lys;)(G) 4 2[0(G, G5' + G%) + (G5 + G5, G)]
+2[0(G™, G) + Q(G%, G)].
(3.46)

Consider the reformulated system (3.40), (3.44), (3.46), (3.8), (3.9) and (3.10).
Since the local existence of solution to the VPB system can be proved similarly, as
in [10], to prove the global existence on the time interval [0, 7], we only need to
close the following a priori assumption by the continuity argument:

E(T) < x7. (3.47)

where £(T) is defined in (3.35). Here and in the sequel x; is a small positive
constant depending on the initial data and wave strengths. Note that even x; is
denoted by the subscription 7', which means that the a priori assumption (3.47) is
imposed on the time interval [0, T'], however, x is to be chosen to be independent
of the time T'.

3.3. The Proof of Main Result

By the continuum argument for the local solution to the system (2.1) or equiv-
alently the system (3.6)—(3.10), to prove Theorem 3.1, it is sufficient to close the a
priori assumption (3.47) and verify the time-asymptotic behaviors of the solution.
We start from the lower order estimates in the following Proposition:
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Proposition 3.1. For each (p—, m_, E_), there exists a positive constant C such
that, if § + |az| < 8 for a suitably small positive constant 8y, then it holds that

2
(D, ¥, W, ©,, I, n2)(, t)|| +//|(GP—F2)|( ,v,t)dxdv

+/ (T, Mr, n2)||% de

+ Z/ 18 (@, W, W, ¥, W, ny)||> dt

la']=1

/ II\/IM11|+IM |+ 10, (®, ¥y, W)||* dr

al 2
+/ //V(IUI)I(G,Pch)I dx dv dr

<COtr+60) Y / 10 (. ¥, w)|I* d

l'|=1

t
+C/ (B, ¥u, @) 17 dT + C (%7
0

t C 2
+80)/ /f v([vDI(G, PCFZ)v1| dx do dr

o 2
oy / /f"(“")'a 1\(4(} P 44 dvdr+C<8(0)2+6 )

lo’|=1

The proof of Proposition 3.1 will be given in “Appendix A”. Then we perform the
higher order estimates. Firstly, we apply d; to the system (3.40) to get

b1 + Py + i1y + Pt + i1 = —Lo,

- - 1. -~ 2. . 2_. 2 20,
PV + puit iy — P11 + S0k @ + £ pDy + 0@ — —¢
3 3 3 3 30

4 . .
= (§M(9)1/f1x> — / V(=TS =T, dv+ (J1 + N; — Q1) — L1,
~ ~ X ~ ~ ~
ﬁwit + ﬁﬁlwix - ﬁﬁlxwi = (H«(Q)wix)x
—/um(r TS5 TS dv+ (Ji + Ny — L;, i =23,

2 .~ - ~ .
=001 = (k(0)x)x

- e . a2 s
PWy + pll1 Wy — PU1x® + §p9w1x ~3

1 [oiu2(C =TS = T%), dv
+ (m / v =T — r53>dv> + <J4 + Ny — (02— ﬁlQl)) — Ly,
) " (3.48)

where
LO = ﬁx&l + ﬁlxd’ + /5)6)6\171 + ﬁlquD,

.o~ - ~ | . ~ 2. ~ 2 .
Ly = pxV1r + (pup)x ¥y — §(pu1x)xqjl + gpxxW + gpxw
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2. 2 (65,
0 — = @,
ey ()

L; = ;5x\~yi1 + (ﬁﬁl)xl/fz (pulx)x i 1=2,3,

S U .- x 2 -~
Ly = px Wi + (pur)xow — (pulx)xw + g(pe)XWI - g(pex)xlyb

To derive the estimate on the more higher order derivatives, we apply dy to the
system (3.48) to obtain

Oxr + 151/’}1)6)6 + ﬁld)xx + ﬁxlzflx + ﬁ1x¢x = _Z(%

1 2 2 2~ 29px
pwlxt + p”ll/flxx - gpulxwlx + 3pxa)x + 3wax + 0¢xx - F; ——= P«

= <3u<9>1/f1x) - / V(@ =T5 =I5 dv+ (Ji + Ny — Q1w — L1,
XX
ﬁl/}ixt + ﬁﬁllpixx - 5ﬂ1x&ix = (M(é)lpix)xx - / viv; (I = FS] - FS3)xx dv
+(Ji + Ni)xw — Liy, i=2,3,
. o 2 2
PWyt + PUTWxx — pulxwx + /091ﬁ1xx - g
1
—5/v1|v| (r—r% - FS3)XX dv+<

+(Ja+ Ny — (Q2 — 41 Q1)) xx — La,

é & Ix = (K(é)d)x)xx
fvl(F rs —FS3)dv>

XX

(3.49)
where

= /3)(&1)( + ﬁ1x¢x + K;xx&l + ﬁlxx(p + Loy,
. ST . ~
= px VY1 + (PUD)xY1x — g (Pit1x)y Y11
2

™
=

b2 pendst i + 2Bepe — 2 s b+ L

—Pxx® + = px@ - - = ,

310xx 3,0xx 3xx 3 ,0 1x
X

Li = pxtbi + (Pit): Vix — (Bit1)x¥i + Lix, i =23,

~ Lo . - .2 - 2 . -

Ly = pxor + (pit1)x0x — (PU1x)x® + g(ﬂe)xl/flx - §(Ioex)x1/fl + Ly,.

By using the above two systems and the equations for n, and the non-fluid

component P. F>, we can establish the following proposition for the higher order
energy estimates:

Proposition 3.2. Under the assumptions of Proposition 3.1, it holds that

sup [n(qb, ¥, )G Ol 4 1Ty, 2, n2) G012

0<t<oc0

8 2
+ 3 //|a (GPF2)|( v, 1) dx dv

08122
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o' qp 2
+ Z //‘|8 9 (GPF2)|( v, 1) dx dv

lo'|=1,0<18/|IS1
o 2
+ Z// 19 (FI’F2)| v,t)dxdvi|
|| =2
+ Z / 10% (¢, ¥, w, n2)|| dr+f (M, n2) |1 dz
1510|122
o 2
N Z / //v(lvl)la (G, P.F)| de dvde
1512|122
(|v|>|aﬂ<G P.F)|?
+ 3 / //” dx dvdr
0S|p1S2
o 9B 2
/ //v(lvl)la 3 (G, P.Fy)| dx dv dr
le’|= llﬁ\ 1

< C(S(0)2 + 55).

The proof of Proposition 3.2 will be given in the “Appendix A”.
With Propositions 3.1 and 3.2, we can close the a priori assumption (3.47) and

one has
/+°° / / |(Fy, F2). dode de
0 M*
(00— ) ¢
X

/+OO//
+00 2
/ // (G, PF2)x| dvdx dr

< 0(5(0)2 + 502).

From the Vlasov—Poisson—Boltzmann system, we can obtain

+oo d ? F 2
/ _// [(F1, F2)x| dvdx
0 dr M*

Therefore, one has

+00 T 2 ~ 2
/ // [(F1, F2)x| dvdx + i// [(F1, F2)x] dv dx
0 M. dr M.,

which implies that

dvdxdr

1
dr £ 0(5(0)2 +5(§>.

)dr < 00,

Fy, B
lim /Mdvdxzo.
M.,

t——+00
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By Sobolev inequality,

LR |* P Fy)? B F). 2
H/ |(F1, F2)| d gc/‘/ [(Fy, F2)| dvdx// [(F1, F2)x| dvdx.
TP M, M,

and we can prove the asymptotic behavior of the solutions and complete the proof
of Theorem 3.1.

4. Stability of Rarefaction Wave to the Bipolar VPB System

In this section, we employ the micro—macro decomposition introduced in Sect. 2
to prove the nonlinear stability of planar rarefaction wave to the Cauchy problem
of the bipolar VPB system (3.1)—(3.2) in spatial one-dimension by the two states
(p+, u+,0+) with ux = (u1+,0,0)" and p+ > 0, u1+, 0+ > 0 being connected
by the rarefaction wave solution to the Riemann problem of the corresponding 1D
Euler system (3.3) with the Riemann initial data

ro.r pr _ (,O-Q—a Uy, 9+)v x >0,
(Pl 4y, 0) () = { AR Ay “.1)

Correspondingly, the initial values to the transformed system (3.4) satisfy

Fi(t=0,x,v) = Fio(x,v) = Mjp, uy.0,1(v), asx — Foo,
F,(t=0,x,v) = Fpox,v) > 0, asx — £o0, 4.2)
Iy, -> 0, asx — Zoo.

4.1. Rarefaction Wave and Main Result

First we describe the rarefaction wave solution to the Euler system (3.3), (4.1)
with the state equation

2 5 1
p=5pt =kp3exp(S), k=-——.
3 2me

It is straight to calculate that the Euler system (3.3) for (p, u1, 0) has three distinct
eigenvalues

i+l .
Ai(p,ur, ) =ur + (=17 /pp(p,S), i=13, ta(p,ui,S) =uy,

with corresponding right eigenvectors

i+1 t
(o1, $) = (=17 0. /b, (0, 9).0) .
i = 19 3a r2(p7 ui, S) = (pSVOs _pp)ts
such that

ri(p,u1,8) - Vpuy,9ri(o,u1, ) #0, i=1,3, and
(o, u1,S) - Vpu,r2(p, u1, S) =0.
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Thus the two i-Riemann invariants El.(j )(i = 1,3, j = 1,2) can be defined by (cf.
[31])

i L. Y
=0 =y + (—1)71/ vreS . 2@ =3, (4.3)
Z
such that

VopurE (o, ur, $) - riCo,ur, ) =0, i=13, j=1.2

Given the right state (o4, u14+, 64+) with py > 0,64 > 0, the i-Rarefaction wave
curve (i = 1, 3) in the phase space (p, u1, 6) with p > 0 and 6 > 0 can be defined
by (cf. [16]):

Ri(py,u14,04) 1 = {(,0, ui, 0)|Aix(p,ui, ) > 0, E,-(j)(/),ul, S)

= E,-(j)(p+,u1+, Sy), j=1, 2}- “4.4)

Without loss of generality, we consider stability of 3-rarefaction wave to the Euler
system (3.3), (4.1) in the present paper and the stability of 1-rarefaction wave can
be done similarly. The 3-rarefaction wave to the Euler system (3.3), (4.1) can be
expressed explicitly by the Riemann solution to the inviscid Burgers equation:

w; + wwy, =0,

w_, x <0, 4.5
w(x,O):{w+ x > 0. )

If w— < w4, then the Riemann problem (4.5) admits a rarefaction wave solution
w’(x,t) = w"(7) given by

w_, TSwo,
. <
w(2) =15 wo=iZw. (4.6)
Wy, T2 wy

Then the 3-rarefaction wave solution (p”, u", 9r)()7‘) to the compressible Euler
equations (3.3), (4.1) can be defined explicitly by

r X r r r X
wt = A3(p+, Ui+, 04), w (;) =A3(p", uy, 0 )(;)
. N .
=9 (o i, 67) (7) =3P (s iz, 04), =12, uh=uf=0

where Eé’ ) (j = 1, 2) are the 3-Riemann invariants defined in (4.3).

By the previous micro—macro decomposition for 1 = M+ G, one has the fluid-
part system (3.6) and the non-fluid equation (3.7) for F;. By the new micro—macro
decomposition to

= Dv P.F,
0
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the macroscopic part n; satisfy the nonlinear diffusion equation (3.8), or equiva-
lently (3.9), and the microscopic part P, F; satisfy the equation (3.10).

The analysis of nonlinear stability towards the rarefaction wave to the bipolar
VPB system (3.4) will be carried out for the equivalent system (3.6)—(3.10), which
can be roughly viewed as the strong couplings of the system of viscous conservation
laws with the microscopic terms and the electric field terms.

Denote the energy functional £(¢) by

E(t) = sup {n(p—pr,u—u’,e—9’>||i,1(R)+||(nx,n2,n2x>||2
7€[0,1]

102(G, P F2)|?
———— dvd
> /R/ M, v

0=|BI1=2

%98 (G, P, F»)|?
+ Y //' ((;4’* 21 4y d

lal=1,0< 18IS 1

o 2
+ > //'a“;wl—’Fz)'dudx}, (4.8)

Jo|=2

where and in the sequel 9% = 97, 3P = 8% Note that the global Maxellian M,
in (4.8) is determined in Theorem 4.1. Then the main result for the stability of

rarefaction wave to bipolar VPB system (3.4) can be stated as follows:

Theorem 4.1. Assume that Riemann solution of Euler equation (3.3), (4.1) consists
of one 3-rarefaction wave given by (4.7). Then, there exist positive constants 5y and
eo and a global Maxellian My, = M, 4, 0.1 With pyx > 0,60, > 0, such that if the
wave strength § = |(p+ —p—, u+ —u_, 01 —0_)| < 8 and the initial data satisfies

£(0) = &0, (4.9)

then Cauchy problem of the bipolar VPB system (3.4)—(4.2) admits a unique global
strong solution (Fy, F», ®) satisfying

EBSC (5(0) + 3§> , (4.10)

with the positive constant C independent of t 2 0, and the time-asymptotic behav-
iors

H (F1 (,x,v) — Mpr ur o2, x,v), F2(2, x, v))

— 0, ast — oo,
2 1

+ [[(TLx, n2) (@, x)||[Le — 0, ast — oo.
Lge

X

H (pv u, 9)(t’-x) - (Ioi” urv 9")<t)

Here f(v) € L%(ﬁ) means that \);(_1\% € L%(R3).
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Remark 4.1. From Theorem 4.1 it follows that there exists a unique global strong
solution (F4, Fp, Ily) to the original bipolar VPB system (3.1)—(3.2) which satis-

fies
%) 1
L2 L%( @{)

as t — oo, which implies the time-asymptotic stability of rarefaction wave to
the inviscid Euler system for the 1D bipolar VPB system (2.1). Note that the
time-asymptotic stability of rarefaction wave in Theorem 4.1 is independent of
the approximation for the rarefaction wave fan in the following Sect. 4.2:

H <FA(t, x,v) — My or)(t, x,0), Fp(t, x,v) — My ur or1(t, X, v))

+ (T, n2) (¢, X)||Le — O,

Remark 4.2. Theinitial values I1o, is defined through the Poisson equation 1oy, =
2n20, while nog = / Fro(x, v)dv.

4.2. Approximate Rarefaction Wave

We first construct an approximate smooth rarefaction wave to the 3-rarefaction
wave defined in (4.7). Motivated by [28], the approximate rarefaction wave can be
constructed by the Burgers equation

w + ww, =0,
- - - —w_ 4.11
w(0, x) = wo(x) = Wyt w + Oy W tanh x, @.11)
2 2
where the hyperbolic tangent function tanh x = ¢ —¢" Note that the solution

eX e

w(t, x) of the problem (4.11) can be given explicitly by

w(t, x) = wo(xo(t, x)), x = xo(t,x) + wo(xo(t, x))t, (4.12)
and w (¢, x) has the following properties:
Lemma 4.1. [28] The problem (4.11) has a unique smooth global solution w(x, t)
such that:
D w_ <w(x,t) <wy, dw(x, 1) >0, forx eR, t 20;
(2) The following estimates hold for all t > 0 and p € [1, co] we italics

IG. 1) = w e < Cwy —wo),

19, Dllzr < € minf(wy — w-), (wy —w_) /PPy,
1950, 0)lLr < Cmin{(wy —w_), 17"},
32w (x, 1) dw(x, 1)

<C
| 9x2 = ox

3) The approximate rarefaction wave w(x, t) and the original rarefaction wave
pp 8
w’ (7) are time-asymptotically equivalent, that is,

lim sup |D(x, 1) — w" (;) | =0.

t——+00 xeR
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Correspondingly, the approximate rarefaction wave (7, it, ) (x, t) to the 3-
rarefaction wave (p”, u", 6") (%) in (4.7) to compressible Euler equations (3.3), (4.1)
can be defined by

{wﬂ: = r3(px, uix, 01), wx, 1+1) =A3(p, i1, 0)(x, 1),

N ; ) _ _ 4.13)
2By, ), ) = S (o, ure, 01), j=1,2, iig=it3 =0,

where w(x, t) is the solution of Burger’s equation (4.11) defined in (4.12). Then
the approximate rarefaction wave (p, u, 0)(x, t) satisfies the Euler system

pr + (pur)x =0,
(pi1); + (piif + p)x =0,
(Bitr); + (Pitniiy)y =0, i =23,
(09): + (pu10)x + pit1x =0,
and the following properties, which can be proven by similar arguments as used in
[28] and is omitted for brevity:

(4.14)

Lemma 4.2. The approximate 3-rarefaction wave (5, i, 0) defined in (4.13) satis-
fies the following properties we italics:

(i) uix(x, ) >0; forx eR, t 2 0.
(ii) The following estimates hold for all t > 0 and q € [1, oo]:

1. 1, 8¢, 0) = (o w67 (£ ) 1o = €,
(3, i1, 0)x (. DllLe < Cq 8191+ 1)~/
(B, i1, 0)xx (-, D)lla < Comings™', (1 + )71}
(iit) Time-asymptotically, the approximation rarefaction wave and the inviscid rar-

efaction wave are equivalent, that is,

lim sup |5, @, 0)(x, 1) — (o', u’, 6") (;)‘ —o.

=430 1 eR

Denote the perturbation around the approximate rarefaction wave (p, i, 0)(x, 1)

by
(@, ¥, 0)t,x) =(p—p,u—u,0—0)(x,1) (4.15)

where (p, u, 0)(x, t) is the fluid-dynamical quantities related to the solution F (¢, x,
v) of the VPB equation (3.4),. By (3.6) and (4.14), we obtain the system for the
perturbation (¢, ¥, w) in (4.15) as follows:
¢t + ﬁwlx + 121¢x + ﬁxl//l + Izlxd) - _(dﬂ/fl)x,

_ _ 2
Y +urie Hun g + 30
+200+ 300 (8- 2) - 2 + 91y = @m0 — L [ iy,
_ 1 1 .
Yir 1 Vix + Y1y = ;(M(O)uix)x - = / vyl dv,i =2,3,

_ 2 2 I1 1
o i x 01+ U0 + 39\01x+7’( (/ v Frdv — ’/lln2) = ;(K(Q)ex)x
3

3 2
4 1 1 vl 1
+ 02_’_75: gz_f/vfl"dv-i-— -fvadv.
—3/)#( )ulx ,Ol,zzlu( )u,x P 1 5 X p;uz 1Vil x

(4.16)
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Set the correction function G as

- 3, v —ul?* - .
GZ%LM Pl v 20 Oy + viugy M|, “4.17)

and let G be the rest part related to the microscopic function G

G=G-G, (4.18)

which satisfies
~ ~ 3 v —ul?
Gl — LMG = —%[Pl (Ul <Ta)x +v- wx)>M:|
—P1(11Gy) — P (11,3, F2) +20(G, G) — G, (4.19)

Notice that in (4.18), G is subtracted from G when carrying out the lower order
energy estimates because / [(ity, 9_X)|2 dx ~ (141)"is notintegrable with respect

to the time ¢.

4.3. The Proof of Main Result

Consider the reformulated system (4.16), (4.19) and (3.8), (3.9) and (3.10).
Since the local existence of solution to the VPB system can be proved similarly as
in [10], to prove the global existence on the time interval [0, 7] with T > 0 be any
positive time, we only need to close the following a-priori estimates:

N(T) = sup {||(¢, ¥, o)1, )+ [1([e, n2, n20) 11

0T

3B (G, P.F)|?
+ ) f/—' (M* I 4y dx

0=IBI1=2

10907 (G, P, F2)|?
+ Z / / ML dvdx

lo’|=1,0< 811

o 2
+ Z f/'a(fwﬂdudx} < x2 (4.20)

l|=2

in the sequel xr is a small positive constant only depending on the initial data
and wave strengths and independent of the time 7'. Notice that the difference of
energy functionals £(T) in (4.8) and N (T) in (4.20) lie in the perturbations around
the original inviscid rarefaction wave and the approximate rarefaction wave. By
Lemma 4.2, it can be seen easily that

N(T) = CET) +8) and E(T) = CN(T) +9),
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with some uniform positive constant C. Under the a priori assumption (4.20), we
can prove that

sup [n(¢, W, @), 0130+ 1M 2, 2.0 G D)

0<t<o0
3P (G, P.F»)|?

+Z//|( 2)|(vt)dxdv

0<|8122

3% 38 (G, P F»)|?

+ Z //' ( 2l (x,v,t)dxdv

lo’|=1,05 8121

4 (Fy, F»)|?

+Z//| (k1 PP vt)dxdv]

|oe|=2

+/0 Vi (¢, Y1, )||* dr

+ Y / 16%(@. Y. @, n)|? dr+/ (M. n)? de

1|2

o 2
Py / /quvma G PR

1S £2

B 2
Ly / //vuvma G PRP |

0=|81=2
a' qp 2
/ //v(lvl)la 9" (G, PcF)| dr do dr
lo'|= 1|ﬂ/| 1
S CWN©P+8%) £ C (5(0)2 + aé) : 4.21)

The detailed proof of the a priori estimates (4.21) will be given in “Appendix B”.
Therefore, from (4.21), we can close the a-priori assumption by choosing suit-
ably small positive constants &g, 5o and one has

/+°°/f [(F1 — pue],Fz)xl dvdx de
) < x (M[ﬁyﬁ’é])x’ (%M)x>|2
1]

+00 2
f //I(Gx,(P F2)x)| dvdx dr

= C/O 18, ¥, @, n2)i|1* de +C50/0 (¢, ¥, @)|I*dz

dvdxdr
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+00 2

+f /fKG’“(ll\)/I—CFZ)X)'dvdxdr+C3%§C<N(O)2+8§>
0 *

< C(6(0)2 + 55‘*)

From the Vlasov—Poisson—-Boltzmann system (3.4), we can obtain

2
/*OO //|(Fl (5.i,8) F2)x] o da
0 dl M.,

Therefore, one has

/+m<//|(Fl M[pug F2)x| dv dx

Fi—M F
dt//|( 11— [pug 2)x| dv dx

1
dr < C<5(0)2 + 53).

)dr < 00,

which implies that

F 5.0.0) F2)xl?
//l( 1— p 2)x| dvdx = 0.
za+oo M

By Sobolev inequality

”/ |(Fl M[pug F2)|
M.,

2
<C<f/ P — 0”9]’F2)| dvdx)
<// |(F1 pue],FZ)xl dvdx>

2
dvllze

we can prove that

|(F1 —My; ;41 F2)I?
lim sup [ 1\’; Ll dv = 0. 4.22)

t—>+00 %
Similarly, one can prove that

lim_[[(ITy, np)|| = 0.
t—+00

By Lemma 4.2, it holds that

M, 5.5 — Mipr o1
,Jim_sup / M, dv = 0. (4.23)



Stability of Nonlinear Waves to Bipolar VPB 75

Thus the time-asymptotic convergence of the solutions (Fp, F>) to the rarefaction
wave M,r ,r gr] can be derived directly from (4.22) and (4.23). By (4.21) and
Lemma 4.2, it holds that

ENHSCWN@+d=C (5(0) +8(§l‘) , Vi €[0, +00),

which proves (4.10). Thus the proof of Theorem 4.1 is complete.
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Appendix A: A Priori Estimates for Stability of Boltzmann Shock Profiles

By (3.6) and (3.18), one has

O+ ¥1x =0,

. N n?2 4( -
Y1+ (puf — pit + p— plx — (T) =—§<u(9>u1x — @y — u<953>uf;)
X

X

- Ulzéx dv — Q1y,

Yir + (puiu;)x = —/Ulviéx dv, i=2,3,
o w2 a)? .
ot + (pu16 — pu16 +pur—= = pity——+ pui - Put)x
= —(x(é)éx — k(@SS — K(953)ef3>

X

a4l 1 ~
_§<M(9)M1M1x - M(Qsl)ufluf)'c - M(GS3)MIS3MIS;> -3 / 1 1v1*Gy dv — Qo
* (A.1)
In fact, by the a priori assumption (3.47), one also has from the system (A.1) that

1C8, W) 32, (D, W, W, &, WG, (@, ¥, @, T, n2)lI7e = COxr +80)°,
(A.2)
and

(e, Yo, 0 I* < Cxr + 80)%,

hence, one has
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ICoe, e, 011 < Cli(pr, me, Ep)II*
< Cl(¢r, Y, p, T, T + Cl By, 1ite, ED NP S Clxr + 80)°.

For |a| = 2, it follows from (2.2) and (2.11) that

2 ao{F’F 2
||a°‘(p pup(9+%) >||2<C//Mdvdx

IU(Fy, Fy)|? 9 (Fy o)
S (“1“3)' dvdx < COtr + o)

(A.3)
and
o 2 o | |2 2
13%(p, u, ) < C|19 (p pu, p(9+7)) [
+cZ[|a“( (9+%))|4dx
2
lo/|=1

< C(xr + 80)*. (A4)
Therefore, for || = 2, we have

10%(, ¥, w, ) 1> < Cxr + 80)°. (A.5)

By (3.8) and a priori assumption (3.47), it holds that

|(PeF)]?
e |* < C[||n2x||2+/|nz|2|(px,ux,ex>|2dx+//%dxdv
3

< Clxr +80)™. (A.6)
By (3.47), (A.5) and (A.6), for || = 1, it holds that
18 (@, V. @, n2) |20 < C(xr + 80)%.
By (3.8), one has
%Hx; + / viFrdv =0,

that is,
1
EHX,+u1n2+/v1PCF2dv =0. (A7)
Therefore, one has
P.F|?
T )1 < C[I|n2||2 + / / %dx dv] < Clxr + 80)%. (A.8)
3

By (A.7), it holds that

STl + i), + / 01 (PoFy), dv = 0, (A9)
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Thus, one has

|(P.F2) |
T )? < C[nnmn%/ |”2|2|Mz|2dx+//TthdU < Clxr+80)°.
%

(A.10)
By (A.8), (A.6), (A.10) and (A.5), it holds that

(M )70 < ClI My M) (2, n2i0) | S C(xr + 80)%.

Moreover, it holds that

H / (G, P.Fy)?
——dv
M.,

~ 1

P.F 2 2

fC(//KG’ )| dvdx)
L® M.

~ 1

2 2

</f |(G7 PCFZ)x| dvdx)
ML,

< Clxr + 80)*.

Furthermore, for |o| = 1, it holds that

ao/ al . 2 o (3 ; 2
H/| G PR éc(ff 107 (G, P Fy)| dvdx)
M., M.

1

39 (G, P Fa), | ?

(//| (G, PFo);| dvdx)
M.,

< Cxr(xr +80) < Clxr +80)%.  (A1D)

D=

Ly

Finally, by noticing the facts that F{ = M + G and F, = %M + P, F>, it holds
that

3% (G, P.F)|? 3% (F|, F)?
//I( ‘2)|dvdx§C//|(12)|dvdx
M. M.,

|0%(M — M5! — MS3)|2 + |8°‘(%M>|2
+c// dvdx < C(xr + 80)°.
M.,

Appendix A.1: Proof of Proposition 3.1: Lower Order Estimates

The proof of the lower order estimates in Proposition 3.1 involves five steps.
Step 1 Estimation on ||(®, W, W)(z, ~)||2;
. 20 Wy ~ w
Multiplying (3.40); by 35 (3.40), by 7, (3.40)3 by ¥, (3.40)4 by 5_2’ respec-
o

tively, and collecting the resulted equations together, we can get

~
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o2 pU2 2502 52 o, w2
LN P ) )y — i [ Y P —
( 20 ZZ: 2 202 ), * “\ 36 ; g2

4M(9) ( )

-+ Z O PE + —=-

O\ ~ ~ o~ e (k@) ~
=—\| — \I]\I"x_ 0 x\pi\yix_ = WWX
( % ) Wi = (1)) <92 )

i=2
W v
— —~+9~ (/09z+,0b119x)+K1+—(11+N1 01)

3 ~
+ ) Wi +N>+~ (Ja+ No— Q2 +i101) (A.L1)
i=2

with
\111 3
K1=—9 / v — FSl—FS3)dv—Z\IJifv1vi(F—Fsl—FS3)dv

_ i=2
w 2
- U vlﬁ(r rs— 1“53)dv—ﬁ1/vf(r -y —FS3)dv:|.

Here and in the sequel the notation (- - - ), represents the term in the conservative

form so that it vanishes after integration. By (3.30), one has
s 2. 4L 57 vl

PO + pu16y = —§p9u1x + —u(9)u1x + k(@0 )x — | vi—

+ﬁ1/v% (FS' 1"53) dv+ Q¢ — 1 Q1x-

(r$+1¥) av

(A.1.2)
Substituting (A.1.2) into (A.1.1), carring out similar estimates as to [35] and choos-
ing 8o and y suitably small yields that

t
||<d>,w,W><r,~>||2+/0 [H ]+ |u |

2
<c / / G|
o M* 0

t ~ ~ t S S
+of ||<wf,wt)||2dr+caof I/ Tyt =+ [u2 | @)1 * dT
0 0

! v(|v]) ~ 2 ! 2
Cs —IGI dvdxdt + C(xr +3d0) | [I(Ily, n2, Myp)||”dz
0

+Cxr +80) Y / 16 (. ¥, w)|I* d

/Il

2 1
+CXT/ //”“”')'a;d(l)ﬁ)' dxdvdt+C(6(O)2+802>, (A.13)
0 *

+ (P, v’“muz] dr
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where and in the sequel section the global Maxellian M, = M, ., 6,] is chosen
such that

1
pe> 0. 20(1.2) <6, <61, x), (A.1.4)

and

lo(x, 1) — ps| + lu(x, 1) —us| +16(x, 1) — 64| < no, (A.1.5)

with 19 being the small positive constant in Lemma 2.2. In fact, if the wave strength
8 + |orz] is suitably small, then it is holds that

1 ~ ~
—supf(x,t) <inf6(x,1).
2 x,t X1

Therefore, we can choose the global Mawellian M, = M, ., 0, satisfying (A.1.4)
and (A.1.5) provided that the solution (p, u, 6)(x, t) is near the ansatz (o, u, 0)(x, 1)
as in a priori assumption (3.47).

Step 2 Estimation on fot f(|ui'c| + |ui3c|)d>2 dxdr.

In order to estimate [ [ (IuIS)‘C |+ |uf; [)®? dx dz, we borrow the ideas of the vertical
estimates in GOODMAN [8] to carry out the following characteristic weight estimates.
First, we diagonalize the system (3.40). Let V = (®, W, W), then

Vi+ A1Vy 4+ AV = A3V, + Ay, (A.1.6)

where

ﬁ} p 0 ’21} 5, 0

Al = %—% i % ) , Ay = _23915; _ﬁ% % ’

0 36 i 0 =30, —ii

0 0 0

0 O %
and

0
Av=1 — [ V@ =TS =T dv+ /1 + N1~ Q1
P vrloP?

)(F—FS‘ —T%)dv+ Jy + Ny — (Q2 — 11 Q1)

Jo-

We can compute three eigenvalues of the matrix A in the system (A.1.6)

V100 5 _: 100
3 b

e

r =il — 2 =1, 5»3=b71+T,

with corresponding left and right eigenvectors given by

- V100 = 3 ~ V100
L= 97_—~5 0 ) l = 9507__~ ) l = 97—~ 0 )
| ( P p) > < 2/0) 3 ( S h p)
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and

= 1
3 (. V106 2- 2
ry = P, — =0 ) rzzﬁ(lo?oa_g)v

1056 373

P
= t
3 . V106 2.
nB=—=\0 —F > =0 )
1056 33

respectively. If we denote that the matrix composed with the left and right eigen-
values by L = (1, 5, [3)!, R = (r1, 2, r3), then we have

LR =1d., LAR=A :=diag(ii, A2, A3),

with Id. being the 3 x 3 identity matrix. Denote that Z = LV with Z = (Z1, Z», Z3)',
then we have V = RZ. Multiplying the system (A.1.6) by the matrix L on the left,
we can obtain the diagonalized system for Z

ZANZ—LA3RZ,x=—L(Ri+A Ry —A3Rx)Z—LA;RZ+2LA3R Z,+LA4.
(A.1.7)
Introduce the weight function

S S
at.x) = P gy = P2
P

From the properties of the shock profile to the Boltzmann equation, we have
AT <0, and p¥ <0 (i=1,3).
Thus it holds that
a,B<1 and |a—1|, [B—-1=2Cék1, if§<KI.
Taking inner product by multiplying Z := (Z1, a™ Z5, aV Z3)" with N being a
large positive constant to be determined and noting that for i = 2, 3,

o + Aoy = —S10y + Ay = (AZ.S' — sl) oy + (ii — Aisl)ax,

we have

2 2 2 2 3 18352
|:Z1+aN(Z2+Z3):| +(~-~)X—As'ﬁ—a1"zkf;zi
t

2 2

=

3 N 2
AL —81)Z7 _
— NaV ', E % — 7 -LA3RZ,,

i=2
=—7-L(R,+ ARy — A3R.\)Z — Z - LA>RZ

- - . 7?2
427 - LA3R,Zy + Z - LA4 + i1y — )»fj()?l
3 .z 37

Six — 2522 (i — A1) Z?

+(XNZ—( _2' —l—NaN*laxZ 2

i=2 =2
Note that
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~Z - LA3RZyx = —(Z-LA3RZ,)y + Zy - LA3RZy + Z - (LA3R) Zy
= —(Z-LA3RZ\)y +Zy - LA3RZ, + (Z — Z), - LA3RZ,
+Z - (LA3R) Z,.

We can directly compute that the matrix LA3 R is non-negatively definite, and so
Z, -LAsRZ, =2 0.
On the other hand, it holds that

(Z—2Z) =0, @ —1)Z, @ —1)Z3), '
= (@ = 1)(0, Zax, Z3)" + Na™ 1y (0, Z2, Z3)".

By the Lax entropy condition to 1-shock, we have

106_ 106_ J100_
)Lg'—sl>A§‘—A1_=uf‘—(u1_—¢3 )2\/3 —Cs > -

and

106_
kgl — 51 > Agl — A >

if § < 1.
Therefore, it holds that

(Z = 2)c- LASRZ,| < |(@" = 1)(0, Zay, Z3x)' - LASRZ,|

+ NV 1, (0, Za, Z3)' - LA3RZ,|
3 N—1 3
_ NoVta, |
< COIZo P+ NaV Mo D 1Zil1 Zy| < =3

i=2 i=2
+Cy/S0lZy 2,

if we choose N = —— with 80 < 1. Then one has
Vo

17 LAsR,Zi = C (] + i)
< CVaolZi 2+ ¢V ([t
where g € Q defined in (3.29). Similarly to [35], we can get

t 3
12, )12 +/ / [\kf; Zi+ )
0 i=2

|é|2 t 5
<C = (t,x,v)dvdx + C/8o | |(Ze, Zo))* dr
* 0

t
+C (8o + Xr)fo (¢, ¥, )] dr

t t
+c/ /‘x§; (Z%+Z§) dxdr+C/ //M|G|2dvdxdt
0 0 M.

+ 1040 +q) 1Z11Z:]

(A.1.8)
+ i) 122+ 121

S3
)“ix

3
Z}+ Nloe| Y Z?} dxdt
=2
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t t
+Cxr Z/O ||a°”<</>,w,w>||2dr+6<xr+6o)/0 1T, n2, M) |* de

lar|=1

! 3y, (P F>)|? !
+CXT/O //”(“")' ;14( f2)l dxdvdt+Cf0 IV/10,1Z|* dt
%k

+C (5(0)2 + aé ) : (A.1.9)

Taking the inner product by multiplying 7= BNz, BNZ,y, Z3)" with N =

1

NZTY

as before, similarly to (A.1.9), we can get

t 2
1Za, ->||2+/O /[\Ai Z3i+
i=1

2 t
§c[f'G' <t,x,v)dvdx+CJ%/ 1(Ze, Zo)I12 dr
0

S
)”ix

3
Z? + N|B.| sz} dxdr
=2

M.

t
+C(S + XT)/O (b, ¥, w)||* dz

t

S

+c/ /‘Al;
0

1 t
+Cxr Y /O ||a“’<¢,w,w>||2dr+0/0 IV16,1Z]* dz

|ar|=1

+C (5(0)2 + 30% )

! 3y, (P.F2)|?
+CXT/ // v([v))] 1'(/11( F)l dx do dr
0 *

t
+C(XT+50)/ (T, n2, M) || dr. (A.1.10)
0

2 2 ! v([v]) =
(Z; + Z5)dxdr + C ——|G|*dvdxdr
0 M.,

Combining (A.1.9) and (A.1.10) and choosing &y sufficiently small, it holds that

2
! 1
1z, -)||2+/ H Slz| dr<c <5<0>2 +ag)
0
62
+C/f |M|* (t,x,v)dvdx

t 2 ¢ ~
+c/ H‘/|®X|ZH dr—i—C/ //.M|G|2dvdxdr
0 0 M.
t
+c<so+xT)/0 16, v, )| dr

t t
+Cu X [ ol dr+ Vo [ 1z 2ol

Ja/|=1
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' 8, (P, F>)|?
+CxT/ f/ v(v))] ;14( )] dr do de
0 *

t
+C(xr +50)/ (T, n2, M) 1% dr. (A.1.11)
0

Step 3 Estimation on fot IV1O:1Z | dx.

In this step, we estimate fé Iv/T®+1Z||? dz on the right hand side of (A.1.11). Note
that the linear diffusion wave ®(z, x) in (3.24) and the coupled diffusion wave
O, (¢, x) propagate along the constant speed u 1#. Therefore, somehow we can view
these diffusion waves as the viscous contact wave in the linearly degenerate field
as constructed in [13, 14]. In fact, the viscous contact waves is exactly constructed
through the self-similar solution to the diffusion equation. Thus we can borrow some
ideas of the weighted estimates for the viscous contact wave in [11] to estimate
the term fot IvTOx1Z|1?dz. Similar to the viscous contact wave in the second
characteristic field, the diffusion waves here have the extra dissipation on the first
and third transverse characteristic fields. By the delicate weighted estimates, we
can get such estimates as

t
|a2|/ / [h (zf + Z%) + hzzg] dx d, (A.1.12)
0

c(x—upgt 2

withh ~ (1+41)~ 5 e % definedin (A.1.15). Note that (A.1.12) means that the
diffusion wave in the second characteristic field has some extra dissipative effects
on the first and third transverse characteristic fields compared with the second
diffusion wave field. By the inequality

(x—u t)2
1011212 < Clanl(1 +6)~'e™ w0 (z% + 73+ z%)
< Clazl[h (212 + Z%) + hZZﬂ (A.1.13)

we can get the desired estimate for fot Iv1Ox1Z |12 dr from (A.1.12). In what fol-
lows, we focus on the proof of (A.1.12).
We first set the matrices (¢;j)nxn and (b;j)uxn as

LA3R := (¢ij)uxn, L(R;+ A1Ry — A3Ryx + A2R) := (bij)nxn-

Then from (A.1.7), one has the equation for Zi:

3 3
Zy+MZic=)Y c1jZjxx — Y bijZj+ QLA3R.Z, + LAy)1. (A.1.14)
j=1 j=1

Here (-); (i = 1, 2, 3) denotes the i-th component of the vector (-). Set

! exp | — (x —wigt)” and 7] =exp /x h(y,t)dy
J16ma(l + 1) 16a(1 + 1) oo ’
(A.1.15)
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witha = %pi#) > (. Then & satisfies

he +uighy = ahyy.

Obviously, it holds that 1 < 5 < e and

X
N = m/ hi(y,t)dy = ni(ahy —uizh), nix =mbh.

—00

Multiplying (A.1.14) by n1Z1, we can get

2 2 2 3

m 2 = 4 ) 2 T A = =3 Zyem 2

) t 1M1x 3 1xM 3 jxlC1jni£1)x
t

j=1
3

+ | =D b1jZj + QLARZ, + LAx)1 | mZi + (---)x.  (A.116)
j=1

Integrating (A.1.16) with respect to x, ¢ and similar to [35], one has

2 o GI®
Zidx + hZydxdr <C M (t,x,v)dvdx
0 *
t
+C/
0

t t
+af ||zn||2dr+cﬂf f/mlGlzdvdxdr
0 0 M.,

t
+C(50+Xr)f0 I, ¥, w)||* de

2
Bzl +1z? | de

3x

t
texn Y /O 167, ¥, @I de

lar|=1

t 1
+Cf /|®x|(z§+zg) dxdr+c<5(0)2+ag>
0

t 3y (P, F>) |2
+Cfo //v(lvl)l ;14( )| dr dv de
0 *

t
+C (xr + 50)/ (e, n2, T |1* d, (A.1.17)
0

with sufficiently small positive constant o > 0 and positive constant C,,. Similarly,
one can derive that

! 1
/Z%dx+/ /hZ%dxdr 50(5(0)2+53>
0

G2 ' 2
+C (t,x,v)dvdx +o | ||Z3 | dt
M. 0




Stability of Nonlinear Waves to Bipolar VPB 85

83

2
t
2z +1z? dr+C<8o+xT)/0 (b, ¥, )||* dz

t
+c/
0
t
+cg/0 //%ZWGdedxdt

t t
+Crr Y /0 ||a°“(¢,w,w>||2dr+0/0 [10:1(Z+ ) axer

|ar|=1

! 3y, (P.F)|?
+Cfo f/v(lvl)l v (PeF2)] dr dvdr
0 M.

t
+C(XT+80)f I (T, n29nxr)”2df. (A.1.18)
0

Then we estimate [, [ |©x|Z3 dx dr. Set

n(x,t) = / h(y, t)dy;

it is easy to check that
n = ahy —uigh, |nfr~ =1.

The following lemma is from HUANG ET AL. [11] for the stability of viscous con-
tact wave, which plays an important role for weighted characteristic estimate to
Jo [1©x123 dx dt:

Lemma 4.3. For 0 < t < oo, suppose that Z(t, x) satisfies
ZeL™0,1;L’R)), Zy € L*(0,1; L*(R)), Z € L*(0,1; H'(R).

Then the following estimate holds for any T € (0, t],

t 1 t
/ [hzzzdxdt < —/Zz(x,O)dx+4/ 1Z,||? dz
0 a 0

2 1 t
—}——(/ <ZT,Zn2>dt—u1#/ /Zznhdxdt).
a 0 0

3 3
Zoi + A Zoy = ZCZijxx - szjzj + 2LA3R Zy + LAg)a,
j=1 j=1

From (A.1.7), we have

and we can get that



86 HAILIANG LI ET AL.

! t
/ < Zar, Zon® > dt — ul#/ /Z%nhdx dr
0 0
t 3 3
- / / Y e2jZjxx = ) b2 Zj + QLARZy + LA4): | Zon®
0 . ,
J=1 j=1

— (X222x22n2 + ul#Z%nh)} dx dr.

Taking Z = Z, in Lemma 4.3 and using the above equation, one can get

t - |é|2
/ /h szxdTSCg// (t,x,v)dvdx
0 M*
13
ve H
0

> ! 2 ! v([v]) ~
+o |1zl +[ 1Za ] dr}+cg/ f/—|c| dv dx de
0 0 M*

t t
+Cxr Y /0 ||8°“(¢,1p,a))||2dr+C/O [|@x|<Z%+Z§) dx de

lor|=1

+C<5(0)2+50£> + Cyxr /t// v(|v|)|8v](PcF2)|2 dxdvdr
0 M*

S3

2
DNZ| +1Z* | de

t
+C( + XT)/O (¢, ¥, @, Ty, na, M) || > dr. (A.1.19)

Combining (A.1.17), (A.1.18) and (A.1.19), noting that (A.1.11) and (A.1.13) and
choosing §p and o sufficiently small, one has

izaor+ [ "\/\Af;
oy

t t
+C(o+&>/0 1(Zz, Z)I dT + Cxr Z/O 10% (¢, ¥, ) |I* dx

las|=1
! v(|v]) ~ -
+C / /f—G dvdxdr
| R

t
L CGo+ XT)/ 1, ¥, @, T, na, L) | de
0
! 3y, (P F2)|?
+erf //V(M)' 1131( FD1 4y dvar. (A.1.20)
0 *

Noting that Z is a linear vector function of @, \Tl, W and combining (A.1.3) and
(A.1.20), we can get

2
+10,] Z|| dr

S
+ 3

|(~}|2 2 1
(t,x,v)dvdx + C [ £(0)" + &7
M.,
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(@, ¥, W), )|
t
[N
0
ccf[G
< M.

t
L Clo i \/%)fo 1, T, W), | de

2
+ (W, W% | dr

UL+ U | + 0] (@, T, W)

ulx

t
+Ctr + 50) / (ML, m2, T2 dr

+Cxr +80) ) / 10% (¢, ¥, ) |I* dx

s =1

! t
+CO-/ // 1(\1[U|)|G|2dvd.xdf+ C(O.+XT+\/(%)/ ”(¢’w, w)szf
0 * 0

! P.F)|? 1
—i—CxT/O //”(M)'a&( 2l dxdudr+c(5(0)2+502>.
%

Step 4 Estimation on ||® (¢, -)||>.
Note that the dissipation term does not contain the term || @ ||>. From (3.40),, we
have

4 () 2 4p@) o~ .~ u()

M.. q>xt+p\l’1t+pulll’lv+ QCDX_— 'u~ "lplx+)0xx

3 p 3 3p 3p

1. ~ 2.~ 2.~ 20

+§pu1x\111 = 3hW = ZhWe+ 3§x<1>—/u%(r—r51 —TS)ydv+Ji + N — Q1.
(A.1.21)

Multiplying (A.1.21) by @, yields that

2u(f 26 210 5 U il
1

, 3 30
aud) . ~ o~ 4ud) 2. o~ 2~2~
+|: 35 Wiy + oxx W) — —— 35 (Ml‘b)xx_gﬂulx“l’l 3 pxW — g X
205
* 3§xq’—/v?(F—Fsl—FS3)dv+Jl+N1—Q1]¢x+<~-)x.
(A.1.22)

By using Lemmas 2.1, 2.2 and 2.3, one has

t 2
/ /VU%(F—FSI —T'5)dv
0

t
+C(5o+xT)f //v(|v|)|(~}|2dvdxdr

/ //”(|U|)|3“G|2d dx dr

lo’]=1

t
dedr < C8% + C50/ 1@, ¥, )* d
0
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! 8, (P, Fy)|?
+CxT/ // v(|v))] ;14( ] dr do de
0 *

t
+C(xr + 80)/ (M, n2, M) 1% dr. (A.1.23)
0

Integrating (A.1.22) with respect to x and ¢, which together with HRlder’s inequality
and (A.1.23) gives that

t t
D, (7, ->||2+/0 1@, ]1* dT < C|1¥ (1, ~)||2+C/0 (W, W) |1% de

t
Y Cxr /0 1@es w10 P de

t
+050/ \/‘uf;
0
! 3y, (P.F>)|?
+Cer //V(Ivl)l 11(/11( cF2)l dx dv dr

0 *
t
+C(XT+50)/O I(W, w, T, o, M) |1* de

t 1
+C(50+XT)/O //%|é|2dvdxdr+c<g(0)2+sg)

! t
+C Z / // Ul(\l[‘u')laa G|2dvdxd‘1:+/ /Q|(¢3W7W)|2d.xdf
0 * 0

lo']=1

S3

2
+ |uds +|®x|(<b,€f1,v7>H dr

Step 5 Estimation on the non-fluid component.
Next we do the microscopic estimates for the Vlasov—Poisson-Boltzmann system.
Multiplying the equation (3.44) and the equation (3.10) by M% and Pﬁ}li 2 | respec-

tively, one has

IG|? G. ~ ~ Si (S
——LuG=3{-P G,) — P (I1,9,, F 2 G°!, G”3
(ZM* t M, M 1(v1Gy) 1 (I, vy 2) +2[0( )

+0(G%, G 4 2[0(G, G5 + G%) + (G5 + G, G)]
- [Pl(lex) — P} (M) — P (0 M) }

~

+20G.G)+ > RA/} ¢ (A.1.24)

Mo
j=1,3 *

and
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P.F|? P.F
<| P > R CEINN o
t

2M., M.,
P.F,
M, ’
(A.1.25)

= |:_ V10, o — (%M) - Pc(nxavl F) +20(F2, G)]
t

where in the equation (A.1.25), one has used the fact that

M M
—P.(v10x F2) — B ny = =010y Fp +Py(v10, F2) — N ny
t 1

M M
= —v10Fp + —</U1dev) — (—) no
o x P/

M M nn
=00 — —noy—|— | no=—vioyFr — | =M .
p P/ o t

It can be computed that

n
P (I8, F2) = TPy [avl (fM + PCFZ)} =P, [avl (PCFz)]

4
X
=TI, (PCFZ> — 11, Z/ (PCFz) M’dvxj =TI, (PCF2>
V1 j=0 V] V]

4
X
+ij§0/(PCF2)<Mj>U. dvy;, (A.1.26)

and
Pc(nxamFl) = Hxavl Fl - Hde<av1Fl> = Hxavl Fl
= LMy, + Gy + 1L (G5 +G) . (A127)

Substituting (A.1.26) and (A.1.27) into (A.1.24) and (A.1.25), respectively, then
summing the resulting equations together and noting the cancelation

~ ~

G ~ P.F, P.F -G P.F -G
n(P.FR) — +1,G (=" m-—<=7 (M) ,
x( c 2>U1 M* + I, V] M* ( X M* >Ul + Iy M2 < *)vl

k

it holds that

G2 + [P.F,? G._ ~ P.F
<| | +| c 2| ) ——LMG— cl’2
2M, .M, M.,

NM(PcF2) + ( t )v1

= { — P (11G,) +20(G, G) +2[Q(G, G%) + 0(G%, G)]

+2[0G. G5 +G) + 0(GT + G5, G+ D R;
j=1,3
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- |:P1(U1Mx) —p (le;fl) —p% <U1M§3)i|
4 ~
Xi G
— I, PR (2} duy; b=
;/( 2)(M>vl ”X’}M*

+ |: — V10, Fp — (%M) +20(F,G) — II,M,, — I, (Ggll + ng>i|
t

P.F P.F, -G
x—2 4 L(Mﬂ:) .
1

M, M2

*

Integrating the above equation with respect to x, ¢, v yields that

GP + [Pl GI> + [P Ff?
//| > + P (x,v,t)dxdv_/ IGE+ P2 0y dxdo
5 2M.,

M.
_/I//[G G4 Pel2 Fz)]dxdvdr
>k M*
f/f{[—m(vlﬁxwzg(ﬁ,é)

+2[Q(G%, G%) + Q(G%, G)]

+2[0(G, G¥ +G™) + 0(G™ + G, G)1+ ) R;
j=1.3

_ [pl (M) — P (o M31) — PIS3(U1Mf3)}

4 ~
Xj G
_an/(P0F2)<M’> dvxj:|M— + [—vlasz
j=0 vl *

n P.F
- (—2M> +20(F, G) — I,M,, — [1,(G}! + G%} Z
1Y T M*
P.F -G
+nx;<M*> }dxdvdr
M* V1
13
=3 1. (A.1.28)

Now we calculate the right hand side of (A.1.28). The estimations of ¥; (i =
1,2,---7,10, 12, 13) are standard and will be skipped for brevity. Noting that

P.F
M.

F

P, n
—v10y F> = —v10c| =M +P.F,
* Y

<n2 ) P.F, ( |PcF2|2)
=—-v|—M|) ——(vi——7—
p ). M, ™M, ),
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nyy M P.F» <M) P.F Y0
= —v —nmovy| —
/Y M., X M., *
noy M ) M\ P.F, npy
=—"v | —1 P~F2—I12U1<—> — —v PP+ (),
P (M* ‘ P/ My p ‘ )

it follows from (A.7) that

Y = — / //ma F
M\ P.F
///[-”ﬁm(—-l)”z-"zvl( )
M. P/ x M.
nox
— —le F2i| dvdxdr
M\ P.F
///[—nﬁvl(——l)P Fz—nzvl( ) < 2]dvdxdr
M., P/ My
nax
// ( xT —i—u]nz) dxdr. (A.1.29)
By integration by parts, we can compute that
! 1
//nﬁ<—nxr+u1n2>dxdr
0
1
= //[—nzf—i- nzl'Ixr( ) +(ﬂ> n%]dxdt
P/ \20/)
= / 2(x t)dx—i—/ﬁdx
//[( >n2+1n1'[ (1) +<”1) n2:|dxdt (A.1.30)
- — ) — — . 1.
0 20), 2 27 " \p)y \20/), 7

Substituting (A.1.30) into (A.1.29) and estimating the other terms yields that

dx dvdr

2
”_2 < 2
Y+ (x, t)dx < Clinaoll” + C(xr + do)

/ 19 @, v, )| de

lo'|=1

t
+Cltr +50) / |(na, TLeo) 1 dr
0
t P.F 2
+C(Xr+5o+770)/ |:||n2x||2+f/%—cz|dxdv] dr.
0 *

Similarly, it holds that
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npr M M P. F2
|Y9|—| ——P F4+ny dvdxdr]|
IO T M*
nar M\ P./>
= |/ //|:—<——1>P h4+n <—) :|dvdxd1:|
0 P M. - ? P/ M,

! v(lv)|P.F>|?
§C(XT+80+770)/ [||n2,||2+//—(| ';'4‘ 2| dxdvi|dr
0 *

t
+Cltr +80) / |(TLer, )12 de

+COtr+80) Y. / 10% (¢, . )| dr.

lo'|=1

Again it follows from (A.7) that

ulPF2
Y = M ——dvdxdzt
M,
/f/ Ul_ul( 1>PCF2dvdxdt
*
/// ”1_”1< 1>PCF2dvdxdt
RO \ M,
+/ /R—;</U1Pchdv> dx dr
//f i —1)P.Fydvdxdr
RO M*
//RG( xt+1/lll’l2)dxd‘[

—f 4R"9 dx + ClITeo )2 + Cxr + 80 + 10)

t 2
/ [||Hx||2+//—”(“")'PJ2| dxdv}dr
0 M,

t
+C(xf+ao>/ (T, TLe, n2, 00, i, @012 dr,
0

P F>dvdxdr

[IA

where in the last inequality one has used the fact that

H2 H20
dxdr = — d > d
//RG( ”+”1"2> e 4R6 /4R90 x
/ / 1'12 dxdrt
4R6 4R9
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A

Hf‘d + C|ITox |I> + C(xr + 80)
4RO X Ox Xr 0

t
/ (T, Tae, 2, 00, i, 002 dr.
0

Substituting the above estimations into (A.1.28), then choosing xr, 8, no suffi-
ciently small imply that

~ 2
//KG,ISIﬂ(x,v,t)dxdv—i—II(l_Ilez)(',f)ll2

v(|v|)|(é, Pch)P

'
—i—/ // dvdxdt
0 M*

G,P.F)?
§C//|(G’M—2)|(x,v,0)dxdv

t 1
4+ (Mo, na0) 12 + c/o 1@ Y, 002t + €52

13
+Clxr +50)/0 [n(nxr,m)n% > 1%, v, w>||2] dr

la|=1

t
+C(XT+30+770)/ (T, nax, nar)||* de
0

! v(lv])]8¥ G|?
+C Y /0 f/%*'dudxdr. (A.1.31)

lo’|=1

Step 6 Estimation of electric field terms.
Now we estimate the Poisson term in the electric fields, which is one of the key
ingredients of the present paper. Multiplying the equation (3.9) by —I1 yields that

2 3c10) _,  261(0) 5 1 )
(Tx>,+ 26t gl
—1

= () — nx% / viNy, |:PC(U1Mx)] dv

—nx/le;; [Pc(vl(Pch)x)i| dv — nf/le;; [le]dv

—nx</le;41 [8,(PCF2)+ (%) n —2Q(F2,G)} dv).
t

Integrating the above equation with respect to x, ¢ implies that
t
ITLC [ () — [ITLc 1% 0) + f 1T, n2) 1 de < Cxr +6)
0

t
/n(nx,nz,wu,wx)nzdr
0
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t
+c/ /mx”_z/leh—dl[Pc(lex))} dv| dx dt
0 P
, _
+c/ /mx/le;;
0 L
) -
—i—C/ /mi/le;; le}dv|dxdt
0 L
t i M
+c/ /mx/le;; 3 (P.F>) + (—) nz] dv|dx dt
0 L P /e

t
+c/ /|HX/UIN;4‘Q(F2,G)dv|dxdr
0

P.(v; (Pch)X)i| dv|dxdt

t 5
= Clu + 50)/ 1M, 2, Y1, w0 P de + 373 (A.1.32)
0

i=1

Now we estimate 7; (i = 1, 2, 3,4, 5) in (A.1.32) one by one. First, it holds that

t -1 2 L
T éC/ /Inzllﬂxl</ V(v IRy Pe(viMo] dv)2
0 M.
%
(fv(|v|)—1v%M*dv> dx dt
1 —1 2 1
< c/ /|n2||nx|(/ v([v)) 7 [P (v1My)] dv)zdxdt
0 M.,

f v(u) T M = Boun). 2\
SC | | In2liTL] dv) dxdr
M
0 *

1
§C/O fInzllnxll(px,uxﬁx)ldxdf§C(Xr+30)

[N

t
fo [Il(nz, 1% + (¢, s wx)||2i| dx dr, (A.1.33)

and

v(|v|)|N;;[PC(MPCFZ)X)}P |
d

! 2
e fim( [ ')
0 ) Mip, u..26.]

1
2
([v(|v|)—1u12M[p*,u*,29*] dv) dx dt

1
- Cf[fm |</ V() [P (01 (P F2)) dv)zdxdr
- 0 ! M[P*,u*l@*]
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-1 2 )
/ /IH |(/ v([v) 7 |(PeF2) )] v>2d dr
M,
2
< flln I dr—i—C/ //V(IUDl(P cF2)x)] dvda dr.

Then one has

1 2 L
T3 <c/ /IH | (fvﬂv') (G| v>2dxd1:
1 2
< C(XT+30)/ [||nx||2+f/Mdvdx} dr,
0 M*

, (o) @) + B ma? N3
Ty < C/ /|1'[x| / dv) dxdr
0 M.,

t
< C(o+ m)/o [n(nx, Mo, n2) 1 + (e, Ve, w»ﬂ dr

1 ! P.F)
+—/||1'[x||2dr+C/ //—”('”W FDN 4y e ar,
8 0 M*
and

t -1 2 L
Ts = C/ /|Hx|</ vvD 5(F2,G)| dv)zdxdr
2 l
<C/ /m lIna (/”('”')'G' v) dx dr
2 1 2 1
+c /|n |( qu')'P F )2< 'ﬁ' d )zdxdt
2 l 2 1
+C /|1_I |(/ [P ol ) (/‘v(hi\';"‘(}' v)zdxdt
2
< C(XT+80)[/ ||(Hx,n2)||2dr+f //dedxdr
0 M.,
2
///”(“")'G' dv dxdr]. (A.1.34)

Substituting (A.1.33)—(A.1.34) into (A.1.32) and choosing x7, § sufficiently small
yields that

H/\

\ /\

t t
1L () +/ (T n2) P de < CITLP0) + Clxr +50)/0 IMLe ] dr

+Cur + o) Z/ 169, v, )12 dr

la|=1
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o 2
‘c Z///V(IUI)I3 (PcF2))] dvdx dr

/|]

2
+C(XT+50)|:/ ff 1)(IUI)I(G PeFIP 40 dx de

2
///v(lvl)lel o dx d} (A.1.35)

Multiplying the equation (3.9) by n, yields that

2

2\ 310 , (310

o n
(2),+ 2 T\ )

ny no ’
—(K1(9)<?) n2)x +K1(9)<;> nox + (U1ny)y

na _
—upnpnoe = (- )x + nu; / vNy [Pc(lex))} dv

. / vINg [Pc(m(Pch)x)} dv

—i—nle'lx/lei,[l [le]dv
4 M
+ nox /leM 0 (PcF2) + " ny —20Q(F2,G) [dv ).
t

Integrating the above equation with respect to x, ¢, one has
2 ! 2 2
n2l1*() + / [(n2x, n2)[I” dT = Clingoll
0
! 2
+Cxr +50)/ ITLe|” dz

+ C(xr +do) Z/ 19%(¢, ¥, )| dr

|or=1

o 2
//fv(lvl)l8 (PcF2))| dvdx dr

lo']=1

f 2
+C(XT+50)|:/0 //%ﬁdvdxdr
P -~ ~ 2
+/ ffwdvdxdr] (A.136)
0 M.

By (A.9), it holds that

t t P.F 2
/ [TL. 12 dt gcf |:||n2||2+//%—62|dxdv] dr.  (A.1.37)
0 0 *
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By the equation (3.8), one has

t t
/ In2c |I* dz =/ ||/v1sz dvl|* de

0 0
¢ M

_ / || / vl(—n2+Pch) dv|? dr

0 14 X
t P.F 2
SC/ [||n2x”2+// v([oD (P F2)y | dxdv] i
0 M.,

t
+Cxr —I—80)/0 (72, b v, )| dz. (A.1.38)

On the other hand, from (3.37), (3.38) and (3.39), it holds that

t t -
fo ||(¢,w,w>||2dr§6f0 (b, ¥, &% de

t
+C(30/ \/
0
t ~ ~
+/ /q|(<I>,\IJ,W)|2dxdt
0

t t B t ~
/0||<¢x,wx,wx)||2dr§C/o ||<¢x,wx,cbx>||2dr+cso/0 I(#, ¥, &)|1*dt

2
+C50/

dr
+/ /q|(q>,$,v71)|2dxdf.
0

On the other hand, from the fluid-type system (3.40), we can get

S
Upy +

Mlx

2
+ 10, (@, ¥, W)H dr

and

+ 10, (P, ¥, W)

ulx ulx

t t
fn(@f,wf,wf)uzdréc/ 1@y vy Wer, By, Ty, W) P de
0

+C50

Mlx ulx

+C(60+Xr)/ //U(M)Ialzdvdxdr
0 M,

t
+C(50+Xr)/ ITL, 1% de

+c Y / //”(|”')|a“(}| dvdx dr + €82,

/ll

2
+ 10, |(d, T, W)H dr

In summary, collecting all the above lower order estimates and choosing suitably
small x7, 6 and ng, we complete the proof of Proposition 3.1.
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Appendix A.2: Proof of Proposition 3.2: Higher Order Estimates

Step 1 Estimation on || (¢, ¥, @) ||%.

2
Similar to the lower order estimates (A.1.1), we multiply (4.16); by 3—(]3 (4.16),
0

by % (4.16)5 by ¥;, (4.16), by g)—z respectively and adding them together to get

~ 1 - 1
(@, ¥, &), )II* +f0 (e, @) |I>dT £ C (5«»2 +35)

t
+/ /qI(CD,\lJ,W)|2dxdt

2
+10,1(®, T, W)‘

+C80 ulx “1x dr

+C(XT+80)/O |(@x, Pxxs &xx» Cbxx)”zdf

t
+c<xT+so>/ 16, #. &, T, na) > de

+c Y / //"(' VD, ' &2 du d de

lo’|=1

+C8 / 1B, Wo) 2 dr
0

t 2
Fotva [[ [ [ HCBELOE g,

Step 2 Estimation on || (¢, -)||2.
t

To estimate the term / |« ||2 dr, we rewrite the equation (4.16), as
0

4u(d)
l; ¢xz+,0¢1t+,0u11//1x+39¢x
40 4 - .
= - l;p (2:0x1//1x +/0xx1/f] + (Uh10)xx +L()x> + g,u/(e)@xl/f]x
+1 7 2 2. +2§ﬁx¢
u — = px® — =P
3,0 1x¥1 3)0)( 3/0 X 3ﬁ
- /UIZ(F_FSI — I, dv+ (J1 + N1 — Q1)x — L1 (A.2.1)

Multiplying the equation (A.2.1) by ¢, and integrating the resulting equation with
respect to ¢, x, we get
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t t
lle (2, -)||2+/0 g lI* dz < ClIgrn (1, -)||2+c/0 I (Pix, @0)l|* de

t t
+C(xT+so)/ ||<¢xx,¢“,cbm)||2dr+C<xT+80)/0 (T, n2)||* de

+C80

ulx ulx

+10,/(2, ¥, W)‘

dr+C (5(0)2 + 53)

+C50/ (@, ¥, &> dt

Ot 2
+Clur + 50) Z / // v(jv)I(3*'G, G, Bvll\(/[P F2), 0y, x (P F2))| do d de
lo’|=1 *

—1
+C Z/ // (|v|)|8°‘G| dv dxdr+/ /ql(dD T, W) dx dr.

|or|=2

Now we turn to the time-derivative terms. To estimate ||(¢;, ¥, @)%, we need
to use the system (A.1). By multiplying (A.1); by ¢, (B.1)2 by ¥1;, (A.1)3 by
Yir (i = 2,3) and (A.1)4 by w; respectively, and adding them together, after
integrating with respect to ¢ and x, we have

t
/0 (e, Yr, @0)(z, )| de

1
cwf
0

t
+c/0 1o Tre )P de

! . ! v(|v) x o
+C8 | (g, ¥, ®)|*dt +C 200G P dudedr
0 0 M*

t t
+f fq|(<1>,w,W>|2dxdr+C(xT+ao)/ (T, n2)||* d + Céo.
0 0

uil| + + 10, 1(®, U, W)|| dr

Mlx

Step 3 Estimation on || (¢y, ¥y, @x)(z, )||2

Multiplying (3.49), by ¢x , (3.49), by I/ﬂlx , (3.49); by Vix and (3. 49)4 by 5

adding them together, and integrating the resultmg equation with respect to 7, x,
we have

t
(B, Ve, @2)(, -)||2+/0 I (Fex, @x) 1> dT < C (£(0) + &)
t
+C<xT+5o)/o (T, n2)||* dz

t ~
+COxr +50>/0 1. 5. )2, dr
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t
+c30/ \/‘uf;
0

! t
+C Z/O //%T)laaGlzdvdxdt—i—/o /Q|(¢,‘AIJ,W)|2dxdr

S3
+ ’ulx dr

2
+ 10, (P, ¥, W)‘

lo|=2
! %G, G, 3y, (P Fa), 3y, x (P. F2))|?
+Cxr +80) Y / // v(vDIC ”'1\(/[ 2): ux P P v ae
lo'|=1"0 *
(A.2.2)
To get the estimation of ||@yy ||2, we apply dx to (A.1);, we get
e . I12
I/flxt + (pu% - pu% + P — p)xx - <Tx>
XX
ar .
= —g[u(é’)uu — p@u — M(953)Mi3€:|
XX
- / VG dv — Qs (A.2.3)

Multiplying (A.2.3) by ¢, and integrating the resulting equations, we obtain

t
/ Vi Pux (£, X) dx + /0 lpaxI? dT < CllYriaxll?

S1

S3
Uyy +

Uy

! 1
+C +50)/0 14, ¥, @)7 dv +C (5(0)2 +ag>
ro t
+C/ ||<w”,cb“>||2dr+ca0/ \/
0 0

! d v(lv ~
+C(XT+50)/ Il (2, nay)||* dt + C 2/ //_1(\|4 |)|8"G|2dvdxdt
0 0 *

la|=2

t
+/ /ql(CI), U, W)|?dx dr. (A2.4)
0

2
+ O, (@, ¥, W)“ dr

To estimate [|(dxr, Yxr, @x)|I* and (b, Y, o) 1|, we use the system (A.1)
again. Applying 0, first, and multiplying the four equations of (A.1) by ¢rs, ¥1xss
Yive (i = 2, 3), wy; respectively, then adding them together and integrating with
respect to ¢ and x, we have

t t
/() 1(@xz, Yae, wxr)||2df < C/O 1(@xx, Yax, Cbxx)llzdf

t ~
+C(XT+50)/(; I(¢. ¥ &I, de

13
+ c(so/ \/‘ufjc
0

dr

S3
+ ‘ulx

2
+ 10, (®, ¥, W)‘
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t
+/ /qI(CI>,\I/,W)|2dxdt
0

t
+CZ/O //%W“Gﬂdvdxdr

] =2

! 1
+C(xr + 30)/ (M7, na7)||? dT + Csg.
0

Similarly, we can obtain

t t
/(; 1(@rr, Y, wrr)szT < C/O 1(@xz, Yz, a)xr)szT

t
+COtr +80) Y fo 169 (. ¥, )|* dz

lo’|=1

t
+C(xr +8o>f0 I(#, ¥, w)||I*de

! v(|v]) o~ i
+C Z/O //M—*|8“G| dvdxdr + C8; . (A.2.5)

Ja|=2

A suitable linear combination of (A.2.2), (A.2.4)—(A.2.5) gives

~ f ~ ’
(B Yo, ), ->||2+fO [||(¢”,1/fxx,cbxx>||2+ > e (¢f,1/ff,wf)||2] dr

le’|=1

t ~
< Cll(ex. Ve 1> + COtr + 30)/0 [n(qb, V)3 + (@, v, w»ﬂ dr

t
+Caof \/(uf;
0

t
~|—CZ/0 //%mmﬁdudxdr

o] =2

! 3G, G, 3y, (P Fy), 8y » (P F>))|2
+Cxr + 80) Z /0 f/V(IUI)I( , G, vll\(/[c 2), v x (Pc F2))| dvdax dr
lo'|=1 *

+ ‘MISz

X

dr

2
+ 10, [(@, ¥, W)‘

t
+/ /ql(‘b, U, W)[2dx dt + C(xr + 80)
0

t 1
/ (T, My, n2, noy, ’121:)”2(1r + C<5(O)2 +5()2> (A.2.6)
0

Step 4 Estimation on the non-fluid component.

To close the aboqu estimate, we need to estimate the derivatives on the non-fluid
component %92 (G, P.F>)(1 < |a| £ 2,0 < |B| < 2). First, applying 9, to (3.7)
and (3.10), respectively, we have
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— (LmG), = { —Pi(1Gy) — Py (I, Fay,)

+2[0(G, G + G3) + 0(GY + G%, G)]
+20(G, G) +2[0(G%, G%) + (G, G*)]

- [Pl (M) — P (M)
—p% (le)%)} +3 Rj} . (A2.7)
j=1,3 Jx
and
M
(P.Fa) + [Pc<v1sz>} + [Pc(nxavl F1>} + [<?> nz}
X X t X
=Nm(PcF2) +20(PcFa, My) +20(Far, G) +20(F2, Gy). (A2.8)

Multiplying (A.2.7) and (A.2.8) by £ and (P ). , respectively, and integrating
with respect to x, v and ¢, and also usmg Lemmas 2.1,2.2 and 2.3, we obtain

~ 2
/fKG’P;FZ)"'(x,v,t)dvdx+||nz(',t)||2

///v(|v|)|((§,PcF2)x|2dvdxdt
G,P.F).|*
SC//M()C,U,O)dUdX
2M,
+ Cllnoll?

t al 2
+C/ // v([vDI(G, PcF2)xxl dvdx dr
M,

+COr +80) Y / 13 (@, ¥, )| dr

lo']=1

t
+C /0 [(@xxs Yxxs Wix, N2y, n2xx)”2 dr
t
+C(xr + 50)/0 1(@xz, Yz, a)xr)”zdt + Céo

t
+C(Xr+50+n0)f Ina )l dz

g 2
+COr+50) Y ///U(M)'a G PFI 4 4ar.

0=|p/1=1

(A.2.9)

Note that in the above inequality, we have used the fact that
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t
—/ //Hxvalwdxdvdr
0 M.
t —
22/ /MMuwd d
_2/ /fnzvl _“‘< 1>(P¢.F2)xdxdvdt
w2 f [ [
V1 — Uy
_2/ //n2 (——1>(PCF2)xdxdvdt
+2/ /—(/lechdv> dxdr
—2/ f/nzvl _”1(——1>(P Fy), dx dv dt
—2/0 /R—0|:n21+(u1n2)x] dxdr

”% 2
< - E(x,t)derCllnzoll + C(xr + 80 + n0)

t 2
/ [Ilnz||2+//—V“v')'g“FZ)x' dxdv] dr
0 *

t
+Cltr +80) /O | @ss Y1, )] d.

(P )y dxdvdr

Similarly, one has

' P.F
_/ //HX’MUI( <2 dxdvdr
P.F
// x'M u1( Z)X dxdr
RO
V1 —Uu M
:/0 //nxr ]RO l<m_l>(PcF2)rdxdvdr
trnm
XT
+// (/UIPchdv) dx dt
T
M
f// Re (M_*_1>(Pch)xdxdvd7:
L e Ja

§—/41§;(X 1) dx + Cl[Tox: I + C (xr + 8o + o)
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t 2
/ [IIHNI|2+f/—vﬂv')'l(\l;”&)’I dxdvi|dr
0 *

t
+C(XT+30)/ (e, Yix. w0)|1* dr,
0

and further that

G,P.F),|?
//%(x,v,z)dvdw||nxf(-,t>||2
g [ v(|v]), ~
+5f0 // ML (G, P.F2),|* dvdx dt
G,P.F>), 2
gcffiK 2;/[*2)” (x, v, 0)dvdx

! G, P Fy)c|?
+C||H0Xt||2 +C/ // U(|U|)|( M & 2)x7:| dUd)C dT
0 *

t
+C(xr +80)/ (@, Qoo Ve, a)”)szT
0
t
+C80+C/ [(@xz, Ve, ©xz, 27, n2xr)”2df
0

t
+C(xr + 60) Z/O 199 (¢, ¥, @)|I* de

lo/|=1

t
+C(XT+50+'70)/ M) de
0

()| (aﬂ/(é, P.F), (G, Pch)x) B

!
+COr+80) Y. /0// o dvdx dr.

0=(p1£1

(A.2.10)

The combination of (A.2.9) and (A.2.10), and choosing 7, § suitably small yields
that

ae 2
Z//M(x,w)dvdx
M.

la|=1

t as 2
n Z/O // v(lvDI[d lii,Pch)l dvdx dr

=1

+ 2, T G 1P £ C/ fxx Yix (x, 1)| dx

! v(|v)[8% (G, P F2) |
+CZ/O// M. dvdxdzr

la|=2

t
+C(Xr+«/<§o)/0 [uﬁuw,wl,w)nu PBREACRS w)||2+||nx||2} dr

lo’|=1
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v(|v)[8# (G, P Fz)l

+ C(xr + d0) Z /// dvdxdr
0<IpI<I
t al 2
+CEWO0) +80) + C(XT+50)/ // ”“”')'(GMP“FZ)”' dvdx dr
0 *

t
+COtr + V8o + no>/0 1(n2, M) dr.
Applying d,; (j = 1, 2, 3) to the equation (3.44) and noting that (A.1.26), one has

Gy, — LmGy, = =3y, P1(01Gy) — [T (P F2)u,

4
Xk
+nx]; / (PCF2)<M>UI dv(xa)o,

+ (3, LmG — LyGy) + 20, 0(G. G)
+20,,[0(G, G5 +G%) + Q(G¥ + G5, G)]
+20,,[Q(G”, G%) + 0(G®, G™)]

_ |:P1(v1Mx) —p (Ulel) —p% (lefs)] +3, Y Re.  (A2.11)
v; k=1,3

Similarly, applying 9,; (j = 1,2, 3) to the equation (3.10) and noting (A.1.27)
implies that

8t(P F2)v,- - NM(P F2)v_,- + av_,-Pc(vlFZX) + Hvalv_/- + Hxavlvj
M
+1, (651, + G, ) + (;) ny = 20(PFy, My,)) +20,,0(F. G).
tv;

(A2.12)
Recall the following two facts:

80, Lmg — Lu(gy,) = 203, M. g) +20(g. 3, M),

( M‘g) — Ly (g0) + Lyt (av,. Lumg — LM(gvp).
v

J

PcF2)y

Gy, .
Multiplying the equations (A.2.11) and (A.2.12) by Mi and M. L respectively,
and then integrating with respect to x, v, t implies that

G,P.F), |
//K—Z)U’l(x, v,t)dx dv
M.,

! v G,PCF |2
+/ // (WhIG, PR P
0 M.,

G,P.F»),, |2
Cf/w(x,vﬁ)dxdv
M.,
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+C(Xr+50)/ [I|n2||2+ > 0%, v, w)ﬂ

lr|=1

t
+C/O | W, v, Ty mo) P de

' G.P.F, G, (P.Fy),)|?
+C50+C/ // v(JvDI( P2, Gy, (PcF2)y) dx dv dz.
0

M.
(A.2.13)

Applying 3u,-uk (j, k = 1,2, 3) to the equations (3.44) and (2.20) and using the
similar analysis as in obtaining (A.2.13), one has for || = 2 that

3B(G,P.F)?
//M(x,v,t)dxdv

B 2
/ // v(|v))|d (G P. )| dx dv dr

3P (G, P.F . !
é C//|(1w—cz)|(xvvso)dde+C/ ”(I/fx: a)x,nx»an)”sz
*

(G, P.F P.F).)?
i Z ///v(lvl)la (G, P.F2, Gy, (P.F2),)| dr dvdr
M.
018121

+C(xr + 80) Z/ /|a“<¢ ¥, )| dx dr + Cép.

la]=1

By (A.1.1), (A.1.35) and (A.1.36), it holds that
t 1
/0 W, 3. T, ) |2 dt < Cl @, ¥ @, by T 1) O + €52

t
+Cltr +30) / | Wixs S|P de

2
+C(XT+50)/ // l)(IvI)I(Gl\I/’[Fz,Gv])I dvdx de

o 2
LC Z ///v(lvl)la (G.P.F))| dvda dr.

1|2

Similarly, one has for |o'| = 1 and |8’| = 1 that

o' qB 2
//|a 9 (GPFZ)'( v, 1) dx dv

o' qp 2
///v(lvl)la 3% (G.P.F)| dx do dr

c / 19 9#'(G, PCF2>|2
< v

(x,v,0)dxdv
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t 05~PF 2
LC Z /(;//V(lvma Ii/i F)l dr dv dr

1S |a|S2

t
+C/ [ > 1%, ¥ @, )1 + [ (n2, nox o, nxr)nz] dr
0

o] =2

t
w0 Y [ 1@ vl ar

l|=1

t 3B(G, P F)?
+COr+0) Y. /Of/”(MN G PFDI v dvdr + Cso.

M,
0ZIBI=1

By (A.1.36), (A.1.37), (A.1.38) and (A.2.18), it holds that

t
/ [ E ||3a(</), v, o, ’12)”2 + [[(n2, nox, noe, er)llz] dr
0

|]=2

2
< Cll(Tx0, Yox» @ox, Poxx 120, 20x) |

t i 2
+C/I<pxxw1x(x,t)|dx+c 3 /Of[”(“")'a G PP 4 ar e

M.,
1<]al<2

t
+C(XT+~/50>/O [Z ||a“<¢,w,w>||2+||¢ﬁ1x(¢,w1,w>||2+||nx||2} dr

la]=1

t PCF 2
+C/ //‘W/Iiﬂdvdxdr—i-C(Xr-i-\/go)
0 *

. ~ ~ ~ 2
///V(|”|)|(G’vava)| dvdxdr.
0 M.

In summary, one has
097 (G, P Fy)|?
> (x,v.1)
M.,
la|=1,0<|BI=1

3 108 (G, P.Fy)|?

*

(x, v, t)i| dx dv
118122

! v(|v])[8%8F (G, PeF2)|?
X .

la|=1,05|BI=1

v(|v])]8# (G, P Fy)[?
+ Y M

i| dx dvdr
118122

1
< £20)+ c/ (Bua¥ria Cr. )] dx + €53

' v(|v)]8%(G, P Fy) |
+C Z f()// M dx dvdr

lor|=0,2
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t
+C<xf+¢§o>fo [Z 199, ¥, )II?

lr|=1

+ Vit (@, Y1, )17 + 1T + 1| (Y1xs %)HZ} dr

t
+COtr + 3o +10) / |(na, T 12 .
0

Step 5 Estimation on ||na (7, -)||%.
Now we estimate ||, ||>. Applying 9, to the equation (3.9), one has

6
noxr + Win2)xy + (KIRf@) Hx) - (K[(@) (%) )
— _<%2/U1N;41 [Pc(lex))} dv)

_ ( f uINg Pc<v1(Pch>x)} dv)
_ (/leMl l'IxG,,l]dv>

— </U1NM] & (P.F) + (%) no —2Q(F2,G)] dv) . (A2.14)
L t

XX

XX

Multiplying the equation (A.2.14) by ny, and integrating the resulting equation
with respect to x, ¢ yields that

t
In2el2(0) + /0 (2, o) I dt < +Cxr + 80)
t
/(‘) (T, n2, Yy, Oxy @xs Vixx, ¢xx)||2 dr + C(xr + o)

(PCF2)X7 (PCFZ)M évl s éle, a’ Gx) |2)

p V(Ivl)l(
f // dx dvdr
0 M.

p 2
+C/ // v(|v|)|(PcF21)\)/c[x, P.F2)y)] )ddedT
0 *

+C(lln2x 7 (0) + ). (A2.15)
By the equation (3.8), it holds that

t t
f In2xc 1? dT =/ ||/U1F2xxdv||2df
0 0
! M
=/ ||/v1<—n2+PCF2> dv|?dr
0 1% XX

! PCF XX 2
éc/ |:||n2xx||2+//—v(|v|)|(lv[ 2)ax| dxdv}dr
0 *
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t
+C(xr + 80)/ [(n2, nox, @xx, Vxx, @xx, Px, Yy, a)x)”z dr,
0

and
t t
/ Inaee |2 dr = / || / 01 Faye dof? dr
0 0
t M
=/ ||/v1(—n2+PCF2> dv||®dt
0 1Y XT

t 2
< 2 V([v)|(PeF2)xr ]
ZCfO [anlel +/f—M* dx

t
+C(xr +ao)f0 [n(nz,«mr, Ve, 0x0) |

+ Y 19, w,w,nz)nz} dr.

lo’]=1

By (A.2.15), (A.2.16) and (A.2.17), one has

t
||n2x(~,r)||2+/ [||nzx||2+ > ||a°'nz||2] dr
0

]=2

t
< Clinaoe > + COxr +80) Y /Ona“(qﬁ,w,w)nzdt

1Sjl<2
t 9*(P.F 2
+sz //V(Ivl)lM( )| dr dv dr
la)=2 70 *

t
+C<xT+ao>/ (L, n2, o) | de
0

()| (Pch», (P.F2)z, Gy, Gy, é) )

(A.2.16)

vi| dr

(A2.17)

dx dvdr.

t
+C(Xr+50)/0 // M,

By (A.9), it holds that

(A.2.18)

! ! P.5),|?
/ ||Hm||2dr§6f [||n2r||2+f/dedv]dr
0 0 M*

t
+C(Xr+50)/ (12, e Ve, o) d.
0

Step 6 Highest order estimates.

(A.2.19)

Finally, we estimate the highest order derivatives, thatis, [y [ [ W dvdxdr
with |a| = 2and || ¢y [|? in (A.2.6). Todo so, itis sufficient to study | [ % dvdx
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(Joe| = 2) in view of (A.3), (A.4) and (A.5). Applying 9% (|e| = 2) on the Vlasov—
Poisson-Boltzmann equation (2.1), one has

(0%F1); +v1 (3% F1)x + T8y, (3% F2) + 0°T1, 9y, Fa
+ ) CYM ML, 0 R
|a’|=l,a’§a
= 3°LmG +20%Q(G, G) + 0% { (L — Lygs) )(G™) + (Lt — Liygsy ) (G™?)
+2[0(G, G5 +G%) + QG5 + G5, G)]
+2[Q(G%, G%) + 0(G%, Gsl)]} (A.2.20)

and
(8aF2)t + vl(aaFZ)x + Hxavl (aan) + aOll_[xavlFl
+ > CYY ML, 07 By = 0"Nm(PeFy) + 20 Q(F), G).

le’|=1,0/ S
(A2.21)
Multiplying (A.2.20) and (A.2.21) by 2571 — S“M=MI-M%) | G .4 9°F> _
plying Y M M, M,

*

(ZM)  ge . .
L 9 (1\1;[; £) , respectively, we obtain

M.,
3% Fy 2 G ~
(' 1 ) — LG
M, ), M.
R

{HXBUI(B“FZ)—FE)"‘HXSUIFZ—F > YL, 07 P

%
lo/|=1,0'Sa

+ (3%LmG — Lm3*G) +20°0(G, G)

+ a“[(LM — Lyygs ) (G51) + (L — Lygss ) (GS) + 2[Q(G, G5

+G%) + 0(G + G%,G)] +2[0(G", GB) + 0(G*, Gsl)]]}

|a“F1|2>

L M- M5t — M%)
2M,

M.,

Lmo“G + <v1 (A.2.22)

and

Nmd* (Pe F2)

|0% F>|? +a“(PCFz>
2M,. /, M,

oth - otF2
= Ty O F) + L 200, G o)
aaF ! ’ ’
+ 22 [a“nxavlﬂ + Y CYoY M0, 0 Fy
*

lo/|=1,0'Sa
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+ ) 2CY Q0P 09T M)

lo/|=1,0/ S

0% (%m)
——=NMmd* (P F2)

20(P.F>, *M
+20(P F7, )}+ M,

9% Fy |0% F> |2
20°0(F>, G , A2.23
+20%0Q(F2, G) M. +<v1 ™M, ). ( )

Adding (A.2.22) and (A.2.23) together and noting that

30‘F1 Y F>

I, e ——0,,(3% F») + I, v —20,, (3% F)
3 F19% F, 3 F19% F>
= ("= 2 ML),
( X M, )Ul X (M*)2 ( *)v1

and then integrating the resulting equation over x, v, t implies that

IF 112 + 19 F>)? 3% Fol? + |0% Faol?
//I 17+ 0% 1| (x,v,t)dxdv—/fl 10l” +19%F2l” 4
2M, 2M.,

t 3G ~  3%(P.F
—/ //[ LMa“G+%NMa“(P0F2)] dx dv dt
*

3°‘F18°‘F2 % F1
///{ )y Mu F 0 P2

+801F1 Y CY ML, 00 Fy
M* o X PU]

lo/|=1,0/Sa
Y F}
*

+8 Fy
M.,

(LG — Lyd°G)

80‘[(LM Lysi)(G™) + (Lt — Lys; ) (G™)

+2[0(G, G +G%) + Q(GY + G%, G)]

+2[Q(G%1, G%) + 0(G%, GS»]} + 0(G.G)
9*(M — M5t — M) ~ 80‘F2
M Lymo“G + I, v B (UFS )
aaF / / i
+ 5 2y ¥, 09 F
* =10 <a

8 F aaF !’ ’ !
= 2991, 0y, F + = 2 20T Q@Y PFy. %74 M)
* lo/|=1,0'Sa
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*F

+ 222201, P>, 3°M)

*

Dt

( ) ——NMm3*(PcF2) + 20 Q(F2, G) MF

*

}d dvdr.

Then we can get

arr 2
> [||a“nx(.,z)||2+//%(x,u,t)dudx]

|ae|=2
V(I D o 2
+ = Z |a (G, P.F>) 2 dvdxdr
\ocl 2
10% (Fio, Fao)|?
< I ol1? g AT10. 72000
_clgz[na woll +/ ML dvdx

+COu ) Y / 169 @, ¥, @, m)|* dr

lo']=1

+C(XT+50)f //[

v([v]) Lo~
+ > VL (G,PCF2)|2]dvdxdr

*
lo’I=1

V(IUI)I<G P Fz)l

+C 10+ xr + %) Z/ 199(®, ¥, @, Ty, n2)|1* de

||=2

t
+C(Xr+30)f 1Mz, n2) 1> dt + Cdp.
0

Note that by (A.1.36), (A.1.38) and (A.2.19), for || = 2, it holds that

t t
f 0°T1||* dz g/ | (2, nar, Myro)|I> dz < Cllngo
0 0
t
+Clxr +80) / ML |2 d

+Cltr +0) Zf 167, . @) dx de

l]=1

o 2
Lc Z / //V(Ivl)la PcF2)| dvdx dr

lo’|=1
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! v([v)|PFy?
+ C(xr + d0) — M. dvdxdr
0 *

t C C 2
[ [ ]

Therefore, collecting all the above estimates together, we can get Proposition 3.2.

Appendix B: A Priori Estimates for Stability of Rarefaction Wave

The proof of Theorem 4.1 is shown by the continuum argument for the local solution
to the system (3.4) or equivalently the system (3.6)—(3.10), which can be proved
in a fashion similar to [10,40]. Therefore, to prove Theorem 4.1, it is sufficient to
close the a-priori assumption (4.20) and verify the a priori estimates (4.21) and the
time-asymptotic behaviors of the solution. By (3.6) and (4.14), one has

¢t + ﬁwlx + ’/_tl(px + ﬁxWI + ﬁ1x¢_: _(¢wl)x= B
_ _ 2 20 2 0 0 n»
Yir i1y + i + sox + =@ +zox | — — = ) = iy — + ¥y
3 3p 3 p P P
= —%fv%Gx dli,
Vie + 1Yy = _;fvlvti dv, i=2,3,

_ 2 2 - I,
a)t+u1wx+9xwl+§u1xw+ §9w1x+7 vifadv —uny
3
1 [v]? 1
= —;/vlTGx dv + ;Zui/vlvti dv.
i=l1
(B.1)

In fact, by the a-priori assumption (4.20), one also has from the system (B.1) that

1@, ¥, )17 + 1B, ¥, @)I* < Cxr +80),

hence, one has

o, s, O < Cll(¢r, Y, @)1 + CN(Brs it B> S C(xr + 80)*.
For || = 2, it follows from (2.2) and (2.11) that

2 o 2
I*(Fy, F
16° (p,pu,p<9+'“' ),nz> ||2§C/f—' (1\14 DIy dx < Clxr +50)2.
%

2
and
2 |u|? 2
0%(o, u, )|~ = C[|3 <p7pu,P<9+T>> l
+CZ/|8"‘/ 0, PU, p 0+ﬁ |* dx
9 9 2

l']=1

< Cxr + 80)%. (B.2)
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Therefore, for |o| = 2, we have
18%(p, ¥, w, n2)[1* < Cxr + 80)*. (B.3)

By (3.8) and a-priori assumption (4.20), it holds that

|(PeF)y]?
lInae||* < C[||n2x||2+f|n2|2|(px,ux,ex)|2dx+/f%dxdv
3

< Clxr +80). (B.4)
By (4.20), (B.3) and (B.4), for |&’| = 1, it holds that
189 (@, . @, n2) |12 < C(xr + 80)%.
By (A.7), one has

|P.F> |
||Hx,||2§6[||nz||2+/f 1”“2 dxdv | £ C(xr +80)% (B.5)
%k
By (A.7), it holds that
1
ST+ / v Fay dv = 0. (B.6)

Thus, one has

|(PeF>), |2
T ||* £ C[nnzfn%/|nz|2|(pt,ut,e,>|2dx+//“dexdv
*

< Clxr +80)% (B.7)
By (B.5), (B.4), (B.7) and (B.3), it holds that

| (T, tht)“%oo § Cl|(TTxy, M) I (2, 24 |l § Cxr + 50)2-

~ 1

P.F 2 2

<C<//|(G’ cF)l dvdx)
LY M.,

~ 1

2 2

_(/f|(G,PCFz)x| dvdx)
M,

< Cxr + 80)%.

Moreover, it holds that

H / (G, P.Fy)? q
— dv
M.,

Furthermore, for || = 1, it holds that

H / 109 (G, P.F2)|?
— = dv

(G, P ) 2
C(/:/L_i___;QLdmh>
M.

1

3% (G, P Fa), |2 2
.(//LJ;MinmMQ e s +30) < Clonr 507 (BS)

A

L

*
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Finally, by noticing the facts that F1 = M 4 G and F> = %M + P.F, and (B.2)
with |a| = 2, it holds that

9 ) 2 o 2
//I (G, P 1) dvdst/fla (F. RI”
M., M,
10*M|? + |8"‘<"2M>|
weff

< Clxr + 80)%,

dvdx

where in the last inequality we have used a similar argument as used for (B.8). We
start from the lower order estimates. First, the entropy is defined by

3
—E,oS = /MlnMdv.

Multiplying the equation (3.4) by In M and integrating over v, it holds that

3 3
(——,oS) +(——,ou1S> —i—/l‘[xavlelnMdv
2 t 2 x
+ (/ lelnMdv> =/U1G(lnM)xdv.
X

Direct computations yields
S=—Zmp+in( o)+
=—=1In n|— ,
30° 3

2 5
p= g,09 = kp3 exp(S).

Jul?
X= P, pUl, puz, pus, p 9+T s

t
Ju|?
Y=(Pul,pu%+P,,0M1u2,,0u1u3,,0'41<9+T + puyr ) .

Denote

Then the conservation law (3.6) can be rewritten as

0
4 2
gu(e)ulx — [ vi['dv
k@~ [ vrar ao
n(@)uzy — / viv3ldo

3

1 2
©(O)0: + = me)uluu + D u@uinix = [ SviloPT dv
i=2 X

XI+YX ==
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We define an entropy—entropy flux pair (77, ¢) around a local Maxwellian M ; 4,
as

- 3 3 -3 _
n==0 —EpS + EpS + EVx(pS)Ix:x (X = X)} )

| 3 3__ - 3 _
q=20 —Epuls + E'OMIS + EVX('OSNX:X (Y — Y)} .
Here, we can compute that

|u|?

5 u; 1
== - — = L= —— | = 1 2 = —
(IOS)p S + + 29 35 (IOS)WI, 9 ’ l ) & 37 (IOS)E 97

36 —aps+ gyl 25
=100 —0pS+p 5 37
=p9w<§)+%p9w g) 4p|u—u|2

g =uin+ (uy —it1)(p0 — pb).

and

Then, for X in any closed bounded regionin ) = {X: p > 0, 0 > 0}, there exists
a positive constant Cy such that

¢y IX =X £ S ColX - XP.

Direct computations yield that

5 3 -
QM(Q) 30u(6) 3pk (0)
N+ G+ ——— VY + 20 Z Vi 262 ;

i=2

- [V(p,u,g)n (P, 8) + V054 - (P 1, S)x]

30k - 3k 25 0
— () — 2"9(2 ) oy, + “(2)( or + G000 — 22Dy G,
0
+ M( )(ulx‘i‘l[/lx)ulx

3 Ha)x — Wby / [v]? 3 0wy — why
—— | yy—TIdv— =———————
2 62 2 2 92

3 _
36
Z /vlv,l"dv—i——w/v%r‘dv
P 2 0
3
2

3

3 3
Z /vlviF dv + Enxnzllﬂ + %Hxa)/v]Pchdv. (B.9)
=2

QDIQDl

First, under the a-priori assumption (4.20), one has

~[Vpasn @5+ Vi a5a- 5. 5]
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3 .2 5 _ 0
= spurx(uy —up)” + zp0uiy V| = )+ p0ucW | =
2 3 P 0
3 0 0
——p@ (uq —u1)< ln— —1In —)
o 0

> C i (@7 + YT + o)

for some positive constant C and the convex function
V(s)=s—Ins — 1.

Integrating (B.9) with respect to x, ¢ over R! x [0, ] yields that

t
/n(x, 1) dx +/0 [n(wx, o) I? + Vi1 (¢, ¥, w>||2] dr
! 30k@) - 3k( _
<c[uwoarscr [ |20+ 220+ iio|axar
0

262
t 2_ 2
+C|/ /[_ eg(e)wuﬁlﬁ “(9)<ﬁ1x+w1x)ﬁ1xw} e
0

'3 0w, — b 2
+C|/0 /E%[/ lﬂrdv—zul/vlvlrdv]dxdﬂ

' 30Y1y — i1 36
+C|/O /[5%/Ufrdv+Egguix/vlvirdv]dxdﬂ

! 3 3
+C|/ /[Enxnzl/n + Z—Hxa)/v1PcF2dvi| dxdr|
0 0

5
:C/n(x,O)dx—i—ZIi. (B.10)
i=1

First, by integration by parts and the Cauchy inequality, it holds that
I CI/ / 30k(0) - n 30Kk (6) 3 4+ 3/<(0)( 00w | drdr]
——wb — w w w X dt
1= 202 XX 202 N X 92 x
§Cf /|w|[|éxx|+|éx|2+|wx||éx|} dxde
0
t _ S _
= C/O IlelLoo[H@xxllLl + 110xll72 + Ilwx||L2||9x||L2] dr

t t
gca%f ||wx||i2dr+c5é[/ ||ﬁ||iz(l+t)_gdt+1:|. (B.11)
0 0

Similarly, one has

1 t 1 t 7
12§Cb‘§/ ||(wx,w1x)||izdr+cas[/ ||ﬁ||iz<1+r>—6dr+1}
0 0
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and

t
I < o/ (@ )| dr

v [ J[|f oo

with some small positive constant o > 0 to be determined and the positive constant
C, depending on o. Note that by (2.14), it holds that

2
viv; [N dv i| dxdrz, (B.12)

2 2
‘/ llrd‘ ‘/ luLM[Gz+P1(v1Gx>

+P1(Hxav1 F2) - 2Q(G, G)] dv| ;=

4
213,-. (B.13)
i=1

Choose the global Maxellian M, = M|, ., 6,] such that

1
px >0, 59(t,x) < 0, <0(t, x) (B.14)

and

lo(x, 1) = pu| 4 [ux, 1) — x| +10(x, 1) — Oi| < no, (B.15)

with 1o being the small positive constant in Lemma 2.2. Then with such a chosen
M.,,, it holds that
1
V(o) Ly G/ 2 2
g(/ (IvD Ly Gl dv)
M.

2\2 N2
</M*v(|v|)1(vl%) du)2

1 2 3
ot ) oo

2
I3 = ‘,/‘vlﬁL IG,« dv

and

2
I3 = ’/UILL [P1(v1Gy)]dv

< C(/ v(lo)7HP (01 Gy dv)
- My, u,.20.]

Furthermore, one has

M[P* 1y,204]

(/vuvn NG, P )5
M U .

e < v(|v|>|LM[P1<v1Gx>]| v)l
1

2

C

A

B.17)
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v]?
I = ‘ / vl—LM [Py (IT, 8y, F>)] dv

gmel(/qunw P1<v1Gx>]|2 )

M,
v(u) 2 My, + 8y, (P P> 2
< o, | f o dv
1
113, (P F)|? 2
§C|Hx||n2|+C|Hx|(/v(|v|) |1v;l( F2)l dv) (B.18)
%

and

2 1 b %
Iy = ‘/m'lL [40(G, G)]dv C(/ v(vhLy 26, O] dv)

M.

C(/ v(lvD10Q(G, G)? dv)2 gc(/ v(|v|)|G|2 ) ( |G|2 )
M.,

2 2 1 2 1

C(/v(|v|)|G| ) ( G| )2+C|(9x’ lx)|</v<|a;\|4)|G| dv)Z

+C|(9xv”lx)| . (B.19)

A

A

Substituting (B.16)—(B.19) into (B.13) and then into (B.12), one can arrive at
1 ! 1 ! 7
I < (a + C88> / ||a)x||iz dr + C88|:/ ||\/ﬁ||iz(l + 1) 6dr + 1]

1 2
fc, / //”('”D (G, Gy dvdxdr—i—CxT/ (M, no)|? de

2
ver ///v(lvl)lP i o de

1 2
+C(XT+6)/ //Mdvdxd,_ (B.20)
0 M.

Similar estimates hold for I4. Then /s can be estimated by

t t P.F 2
Is < cXT/ ||(Hx,n2)||2dt+CxT/ //‘W/I—‘zldvdxdt. (B.21)
0 0 *

Substituting the estimates for [; (i = 1, 2, 3,4, 5) in (B.11)—(B.21) into (B.10) and
applying Gronwall inequality yields the first-step lower order estimates

t t
||<¢,w,w><-,r>||2+/0 ||<1/fx,wx>||2dr+/0 Vi1 (¢, Y1, )||* dr
< Cl(g, ¥, o)(-, 0|12

t —1 2
+ca§+c/ //”(M) G, GO 4, g ar
0 M,
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t ol 2
Y o A AT
0 M

*

t
+Cxr f II(Tx, n2) |1 dz. (B.22)
0

Next we want to get the estimation of ||¢, [|%. By (4.16), and (4.16),, it holds that

4u(0) 2 20 _ -
— @yt + VU1 + s0x + o= by F U1y + Ui
3pp 3 3p

2 (6 6 ny
+ ol —— = _Hx_+w1w1x
o P P

3
4 ) 4 Urpx +u1x® + px¥1 + (¢W1)x}
p x

—Q(T)x@ 3, [M(Q)

4 _ 1 2
+ — | u@uix )] —— [ vilxdv.
3p x P

Multiplying the above equation by ¢,, one has

21(0)

(2M(9)
3pp

—¢2+¢¢)+2—é¢2—(
3pp ) T3

2 2 -
) ¢x + ga)xﬁbx + Ui Pr Y
t
+ 1//1/\6 |:/3wa + ﬁ1x¢ + ﬁxwl + (¢I//1)xi|

2 o 0 4 0
- gpxqsx(— - —_) F L 2+ Y Y — (—“(_ )> bibx
p P b ).

3 3p
4 ﬁl¢x+ﬁ1x¢+:5x‘//1¢x+(¢wl)x
3, wn(@) = O«
o p .
4 3 1[5
e GO R (B.23)
o . o
Note that
! P > ! V(v g !
| [ vifedofPdxdr £C ) ——19°G|* dvdx dt + C$2
0 lel=2 0 M*

t
+C(xr+6>/0 [||(Hx,nz,¢x,x/fx,wx>||2

 aad 2
n Z [/V(|U|)|(l(\}/[,*3 G)| dvdx

lo'|=1

2
+//1%Mdvdx] dr (B.24)

and
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t 7 t i
|/ /—i(u(e)%> b dx de| =|/ fu(m%(%‘) dx dr|
0 3p P X 0 P 3p x
_ d Uiy 4¢xx 4¢x,0x
o [ (-
t ~ 2
_ |/ /|: (9)u1¢x 4¢y px . <4/,L(9)_M1> d) ]d dr|
0 o 3p? 3pp )y 2

t
< Clxr +9) /O b1 d. (B.25)

Integrating the equation (B.23) with respect to x, ¢, then using Cauchy inequality
and (B.24)-(B.25) and choosing x;, é suitably small, one can obtain

t
||¢x(~,t>||2+/0 el dr < C[||w1<~,t)||2+ ||(¢0x,%0)||2+55}
t
+C/O (W1, 00)|1* de

t
- C(\/S-i- XT)/ |(T1x, n2, Yixx, ¢xx)||2df

+cC Z/ f/V(|”|)|a“G|2d dxdr

la|=2

t
+c<xr+d§>/0 Wi (W, ¢, )2 dr
t 2
+c<a+xr)/ // v(|v|)|<Pch>U1| dede

+CGE+xr) Y /f ﬁuc 3% G)|2 dvdx dt. (B.26)

la’|=1

Then we estimate || (¢, ¥, );||>. For this, we use the system (B.1). By the equation
(B.1),, one has

t t
/0 Y1, 11* de §C/O (s, ¥es 0x) 12 dT + C(xr + 8)
t
/ |:||\/121x(1/f11¢,60)||2+||”2||2] dr

+C/ //”(|”')|G 12 dv dx dr.

Similar estimates hold for ¢;, VY2, W3, and w,. Therefore, one can arrive at

t t
fo (e, Ve, )% de §Cf0 (b, Y, 02) || d
t
‘f‘C(XT‘f‘(S)/O [n\/mxwmwn% ||n2||2] dr
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t
+c/ //MlGx|2dvdxdt+C(Xr+8)
0 M

! v(|v]) 2
/0.// M. |P.F>|“dvdxdr. (B.27)

By (B.22), (B.26) and (B.27), it holds that

16, v, @, 6, DI + Z/ 169, v, @) dr+/ IV @, v1, o) de

la|=1
< Cl(g. ¥, @, ), 0> + €55

2
+c(xT+5)/ //V“U')'(G PI\? PeFDo) ) 4x de

l1qo 32
+C Z ///v(lvl) I3G|dddr

1S £2

t
+C(xT+J5>/O (ML 12, Wi, o) I .

Next we do the microscopic estimates for the Vlasov—P01sson—B01tzmann system.
Multiplying the equation (4.19) and the equation (3.10) by M, and PC

tively, one has

6P\ _ &, & S patlp b —ul L v ) |M
— = — — v w v -
oM, ), ™ e N g

—P1(viGy) — P (I10y, F2)

, respec-

~

+20(G,G) — G,}ME, (B.28)

and

|P.F>|? P.F> ny
— NP ) = | —vi0,FHh — | —M
( ™M, ) ™, M(PcF2) V10, 2 p t

P.F
=P (I 0y, F1) +20Q(F2, G)i| M

*

(B.29)

By using methods similar to those for obtaining (A.1.31), one can derive from
(B.28) and (B.29) that

~ 2
//m%(x,v,t)dxdv+||(1'[x,n2)(wf)||2

/ // V(IvI)I<G P F2>I2

dvdxdr
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G.P.F)?
éc//'(M—‘Z)'(x, v, 0) dx dv + | (TTox, n20)|
*

1
+ Cll(¢o, Yo, wo) 1> 4 €83

t
+C(xr +4+ 770)/ I(Mx., n2, n20) |12 AT + C(xr + 8)

/ [Inzll + ) 10, v, 0| }dr

la|=1

o (32
+CZ/[/V(|U|)|8 G| dv dx de.

lo’|=1

Similarly to (A.1.35) and (A.1.36), one has

t
ITL, [1%() +/ (T, n2) |* dz < C||TL||*(0)

FCGtr +0) Z/ 16%(, . @) dx de

|a|=1

o 2
e Z / //V(Ivl)la (PcF2))| dvdx dr

lo']=1

2
+C(Xr+5)[/ /fV(IUI)I(GPFz)I dv dx d

f/fV(Ivl)IGull2d dx d]

and

t
Inall?(6) + / | (ax, na, Vitren2) 1> dr < Cllngoll?
0
t
+C(xf+a>/ I |2 d

+C(xr +9) Z/ 19% (@, ¥, )|* dx de

la|=1

o 2
ic Z///V(Ivl)la (PcF2)) dvdx dr

/ll

2
t ~ =~ 0
+/ /‘/Wdudxdr].
0 M.,
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By (B.6), it holds that

t t PF 2
/ ||sz||2dr§0f |:||”2||2+//U(|U|;|/I—Lﬂdxdv:|dt
0 0 *

By the equation (3.8), one has

t t t M
/ llnae | dz =f ||fv1sz dv|? dr =f ||fv1(—n2+Pch> dv||>dt
0 0 0 1% x
t P.F 2
<C/ [||n2x||2+//v<|v|>|< cF2)x| dxdv} i
0 M*

t
+C(XT+5)/0 (2, Px, V¥, wx)||* dr.

In summary, collecting all the above lower order estimates and choosing suitably
small 7, 6 and 19, we arrive at

G, P.F)?
/M(}C’ v’t) dx dv
M

||<¢,w,w,¢x,nx,nz)(.,;)”u/
t
+f Vi1 (¢, V1, )| dt
+ > / 10 (¢, ¥, @, n2) % dz

lo’]=1

! G.P.F>)|?
+f ||(nx,nxt,n2>||2dr+f //”('”')'( PFIE G dvdr
0 0 M*

1
< Cll(o, Yo, @0, Pox, Moy, n20)||I* + C83
Go, P.Fx)|?

C/fl( 0, PeF20)] (x. v) dx dv
M.

t
+C(xr +9) / [n(wm,@x)n?

2
// v(vDI(G, PeFa)y | dx dv] dr
M.,

i Z/ //v(|v|)|a“G|2

la|=2

o 2
+CZ///U(|U|)|8 (G, P:.F)| dx do dr.

/|1

The higher order estimates can be done similarly as to “Appendix A” and will be
skipped for brevity.
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