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We propose a dynamically bi-orthogonal method (DyBO) to solve time dependent stochas-
tic partial differential equations (SPDEs). The objective of our method is to exploit some
intrinsic sparse structure in the stochastic solution by constructing the sparsest represen-
tation of the stochastic solution via a bi-orthogonal basis. It is well-known that the
Karhunen–Loeve expansion (KLE) minimizes the total mean squared error and gives the
sparsest representation of stochastic solutions. However, the computation of the KL
expansion could be quite expensive since we need to form a covariance matrix and solve
a large-scale eigenvalue problem. The main contribution of this paper is that we derive
an equivalent system that governs the evolution of the spatial and stochastic basis in the
KL expansion. Unlike other reduced model methods, our method constructs the reduced
basis on-the-fly without the need to form the covariance matrix or to compute its eigende-
composition. In the first part of our paper, we introduce the derivation of the dynamically
bi-orthogonal formulation for SPDEs, discuss several theoretical issues, such as the
dynamic bi-orthogonality preservation and some preliminary error analysis of the DyBO
method. We also give some numerical implementation details of the DyBO methods,
including the representation of stochastic basis and techniques to deal with eigenvalue
crossing. In the second part of our paper [11], we will present an adaptive strategy to
dynamically remove or add modes, perform a detailed complexity analysis, and discuss
various generalizations of this approach. An extensive range of numerical experiments will
be provided in both parts to demonstrate the effectiveness of the DyBO method.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Uncertainty arises in many complex real-world problems of physical and engineering interests, such as wave, heat and
pollution propagation through random media [30,19,17,52] and flow driven by stochastic forces [25,27,49,41,36]. Additional
examples can be found in other branches of science and engineering, such as geosciences, statistical mechanics, meteorology,
biology, finance, and social science. Stochastic partial differential equations (SPDEs) have played an important role in our
investigation of uncertainty quantification (UQ). However, it is very challenging to solve stochastic PDEs efficiently due to
the large dimensionality of stochastic solutions. Although many numerical methods have been proposed in the literature
(see e.g. [51,9,12,13,23,29,37,53,4,5,54,35,50,27,47,1,38,24,45,14,33,15,16,39,43]), it is still very expensive to solve a time
dependent nonlinear stochastic PDEs with high dimensional stochastic input variables. This limits our ability to attack some
challenging real-world applications.
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In this paper, we propose a dynamically bi-orthogonal method (DyBO) to solve time-dependent stochastic partial differ-
ential equations. The dynamic bi-orthogonality condition that we impose on DyBO is closely related to the Karhunen–Loeve
expansion (KLE) [28,31]. The KL expansion has received increasing attention in many fields, such as statistics, image process-
ing, and uncertainty quantification. It yields the best basis in the sense that it minimizes the total mean squared error and
gives the sparsest representation of stochastic solutions. However, computing KLE could be quite expensive since it involves
forming a covariance matrix and solving the associated large-scale eigenvalue problem. One of the attractive features of our
DyBO method is that we construct the sparsest bi-orthogonal basis on-the-fly without the need to form the covariance ma-
trix or to compute its eigendecomposition.

We consider the following time-dependent stochastic partial differential equations:
@u
@t
ðx; t;xÞ ¼ Luðx; t;xÞ; x 2 D � Rd; x 2 X; t 2 ½0; T�; ð1aÞ

uðx;0;xÞ ¼ u0ðx;xÞ; x 2 D; x 2 X; ð1bÞ

Bðuðx; t;xÞÞ ¼ hðx; t;xÞ; x 2 @D; x 2 X; ð1cÞ
where L is a differential operator and may contain random coefficients and/or stochastic forces and B is a boundary operator.
The randomness may also enter the system through the initial condition u0 and/or the boundary conditions B.

We assume the stochastic solution uðx; t;xÞ of the system (1) is a second-order stochastic process, i.e.,
uð�; t; �Þ 2 L2ðD �XÞ. The solution uðx; t;xÞ can be represented by its KL expansion as follows:
uðx; t;xÞ ¼ �uðx; tÞ þ
X1
i¼1

uiðx; tÞYiðx; tÞ; ð2Þ
where �uðx; tÞ ¼ E uðx; t;xÞ½ �;ui’s are the eigenfunctions of the associated covariance function Covuðx; yÞ ¼ E ðuðx; t;xÞ�½
�uðx; tÞÞðuðy; t;xÞ � �uðy; tÞÞ�. Thus ui are orthogonal to each other, i.e., ui; uj

� �
¼ kidij, where ki are the corresponding eigen-

values of the covariance function. The random variables Yi have zero-mean and are mutually orthogonal, i.e. E YiYj
� �

¼ dij.
They are defined as follows:
Yiðx; tÞ ¼
1

kiðtÞ

Z
D
ðuðx; t;xÞ � �uðx; tÞÞuiðx; tÞdx; for i ¼ 1;2;3; . . . :
For many physical and engineering problems, the dimension of the input stochastic variables may appear to be high, but
the effective dimension of the stochastic solution may be low due to the rapid decay of the eigenvalues ki [47]. For this type
of problems, the KLE provides the sparest representation of the solution through an optimal set of bi-orthogonal spatial and
stochastic basis. Since this bi-orthogonal basis is constructed at each time, both the spatial basis ui and the stochastic basis Yi

are time-dependent to preserve bi-orthogonality. This is very different from other reduced-order basis in which either the
spatial or the random basis is time-dependent, but not both of them are time-dependent. The traditional way to construct
the KL expansion is to first solve SPDE by some conventional method, and then form the covariance function to construct the
KL expansion. As we mentioned earlier, this post-processing approach is very expensive which would offset the benefit of
giving a sparsest representation of the stochastic solution.

The main objective of this paper is to derive a well-posed system that governs the dynamic evolution of the KL expansion
without the need of forming the covariance function explicitly. To illustrate the main idea, we assume that the eigenvalues ki

decay rapidly and an m-term truncation in the KL expansion would give an accurate approximation of the stochastic solu-
tion. We substitute the m-term truncated expansion (2), denoted as ~u, into the stochastic PDE (1a). After projecting the
resulting equation into the spatial and stochastic basis and using the bi-orthogonality of the basis, we obtain
@�u
@t
¼ E L~u½ �; ð3aÞ

@U
@t
¼ UK�1

U UT ;
@U
@t

� �
þ GUð�u;U;YÞ; ð3bÞ

dY
dt
¼ YE YT dY

dt

� 	
þ GYð�u;U;YÞ; ð3cÞ
where E �½ � is the expectation, f ; gh i ¼
R

f ðxÞgðxÞdx, Uðx; tÞ ¼ ðu1ðx; tÞ;u2ðx; tÞ; . . . ;umðx; tÞÞ, Yðx; tÞ ¼ ðY1ðx; tÞ;Y2ðx; tÞ; . . . ;

Ymðx; tÞÞ, ~u ¼ �uþ UYT , KU ¼ diagð UT ; U
D E

Þ;GUð�u;U;YÞ and GYð�u;U;YÞ are defined in (11a) and (11b) respectively. The initial

condition of (3) is given by the KL expansion of u0ðx;xÞ.
A close inspection shows that the evolution system (3b) and (3c) does not determine the time derivative @U

@t or dY
dt uniquely.

In fact, (3b) only determines the projection of @U
@t into the orthogonal complement set of U uniquely, which is GU. Similarly,

(3c) only determines the projection of dY
dt into the orthogonal complement set of Y uniquely, which is GY . Thus, the evolution

system (3) can be rewritten as follows:
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@�u
@t
¼ E L~u½ �; ð4aÞ

@U
@t
¼ UCþ GUð�u;U;YÞ; ð4bÞ

dY
dt
¼ YDþ GYð�u;U;YÞ; ð4cÞ
where C and D are m�m matrices which represent the projection coefficients of @U
@t and dY

dt into U and Y respectively. These
two matrices characterize the large degrees of freedom in choosing the spatial and stochastic basis dynamically. They cannot
be chosen independently. Instead, they must satisfy a compatibility condition to be consistent with the original SPDE and
satisfy the bi-orthogonality condition of the spatial and the stochastic basis. By introducing two types of antisymmetric oper-
ators to enforce the bi-orthogonality condition, we derive two constraints for C and D. When combining these two con-
straints with the compatibility condition, we show that these two matrices can be determined uniquely provided that the
eigenvalues of the covariance matrix are distinct.

We prove rigorously that the system of governing equations indeed preserve the bi-orthogonality condition dynamically.

More precisely, if we write vðtÞ ¼ ð ui; uj
� �

i>jÞ as a column vector in R
mðm�1Þ

2 �1, then vðtÞ satisfies a linear ODE system
dvðtÞ

dt ¼ WðtÞvðtÞ for some anti-symmetric matrixWðtÞ. The fact thatWðtÞ is anti-symmetric is important because this implies
that the dynamic preservation of bi-orthogonality condition is very stable to perturbation and any deviation from the bi-
orthogonal form will not be amplified.

The breakdown in deriving a well-posed system for the KL expansion when two distinct eigenvalues coincide dynamically
is associated with additional degrees of freedom in choosing orthogonal eigenvectors. To overcome this difficulty, we design
a strategy to handle eigenvalue crossings. When two distinct eigenvalues become close, we temporarily freeze the stochastic
basis and evolve only the spatial basis. By doing so, we still maintain the dynamic orthogonality of the stochastic basis, which
allows us to compute the covariance matrix relatively easily. After the two eigenvalues separate in time, we can reinitialize
the DyBO method by reconstructing the KL expansion without forming the covariance matrix. Similarly, we can freeze the
spatial basis and evolve the stochastic basis for a short time until the two eigenvalues are separated.

We remark that the low-dimensional or sparse structures of SPDE solutions have been explored partially in some meth-
ods, such as the proper orthogonal decomposition (POD) methods [3,48,49], reduced-basis (RB) methods [7,34,44,21], and
dynamical orthogonal method (DO) [45,46]. Our method shares some common feature with the dynamically orthogonal
method since both methods use time-dependent spatial and stochastic basis. An important ingredient in POD and RB meth-
ods is how to choose the reduced basis from some limited information of the solution that we learn offline. The main dif-
ference between our method and other reduced basis methods is that we bypass the step of learning the basis offline,
which in general can be quite expensive. We construct the reduced basis on the fly as we solve the SPDE.

We have performed some preliminary error analysis for our method. In the case when the differential operator is linear
and deterministic and the randomness enters through the initial condition or forcing, we show that the error is due to the
projection of the initial condition or the random forcing into the bi-orthogonal basis. In the special case when the initial con-
dition has exactly m modes in the KL expansion, the m-term DyBO method will reproduce the exact solution without any
error. For general nonlinear stochastic PDEs, the number of effective modes in the KL expansion will increase dynamically
due to nonlinear interaction. In this case, even if the initial condition has an exactly m-mode KL expansion, we must dynam-
ically increase modes to maintain the accuracy of our computation.

We have developed an effective adaptive strategy for DyBO to add or remove modes dynamically to maintain a desirable
accuracy. If the magnitude of the last mode falls below a prescribed tolerance, we can remove this mode dynamically. On the
other hand, when the magnitude of the last mode rises above a certain tolerance, we need to add a new mode pair. The meth-
od we propose to add new modes dynamically is to use the DyBO solution as the initial condition and compute a DyBO solu-
tion and a generalized Polynomial Chaos (gPC) solution respectively for a short time. We then compute the KL expansion of
the difference between the DyBO solution and the gPC solution. We add the largest mode from the KL expansion of the dif-
ference to our DyBO method. This method works quite effectively. More details will be reported in the second part of our
paper [11].

As we will demonstrate in our paper, the DyBO method could offer accurate numerical solutions to SPDEs with significant
computational saving over traditional stochastic methods. We have performed numerical experiments for 1D Burgers equa-
tions, 2D incompressible Navier–Stokes equations, and Boussinesq equations with approximated Brownian motion forcing.
In all these cases, we observe considerable computational saving. The specific rate of saving will depend on how we discret-
ize the stochastic ordinary differential equations (SODEs) governing the stochastic basis. We can use three methods to dis-
cretize the SODEs, i.e. (i) Monte Carlo methods (MC), (ii) generalized stochastic collocation methods (gSC), (iii) generalized
polynomial chaos methods (gPC). In the numerical experiments we present in this paper, we use gPC to discretize the SODE.
Our numerical results show that the DyBO method gives much faster decay rate for its error compared with that of the gPC
method. To illustrate this point, we show the sorted energy spectrum of the solution of the stochastically forced Burgers
equation computed by our DyBO method and that of the gPC method respectively in Fig. 1. We can see that the eigenvalues
of the covariance matrix decay much faster than the corresponding sorted energy spectrum of the gPC solution, indicating
the effective dimension reduction induced by the bi-orthogonal basis. If we denote m as the number of modes used by DyBO



Fig. 1. Stochastically forced Burgers equations computed by DyBO and gPC. Left: (Sorted) Energy spectrum of gPC and DyBO solutions. Right: Relative errors
of STD, DyBO (e�0:62m) vs gPC (e�0:065Np ).
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and Np the number of modes used by gPC, our complexity analysis shows that the ratio between the computational complex-
ities of DyBO and gPC is roughly of order Oðm=NpÞ3 for a two-dimensional quadratic nonlinear SPDE. Typically m is much
smaller than Np, as illustrated in Fig. 1. More details can be found in part II of our paper where we also discuss the parallel
implementation of DyBO [11].

This paper is organized as follows. In Section 2, we provide the detailed derivation of the DyBO formulation for a time-
dependent SPDE. Some important theoretic aspects of the DyBO formulation, such as bi-orthogonality preservation and the
consistency between the DyBO formulation and the original SPDE are discussed in Section 3. In Section 4, we discuss some
detailed numerical implementations of the DyBO method, such as the representation of the stochastic basis Y and a strategy
to deal with eigenvalue crossings. Three numerical examples are provided in Section 5 to demonstrate computational advan-
tage of our DyBO method. Finally, some remarks will be made in Section 6.

2. Derivation of dynamically bi-orthogonal formulation

In this section, we introduce the derivation of our dynamically bi-orthogonal method. For the ease of future derivations,
we use extensively vector and matrix notations.
Uðx; tÞ ¼ ðu1ðx; tÞ;u2ðx; tÞ; . . . ;umðx; tÞÞ; ~Uðx; tÞ ¼ ðumþ1ðx; tÞ;umþ2ðx; tÞ; . . .Þ;
Yðx; tÞ ¼ ðY1ðx; tÞ;Y2ðx; tÞ; . . . ;Ymðx; tÞÞ; ~Yðx; tÞ ¼ ðYmþ1ðx; tÞ;Ymþ2ðx; tÞ; . . .Þ:
Correspondingly, E½YT Y� and UT ; U
D E

are m-by-m matrices and the bi-orthogonality condition can be rewritten compactly as
E YT Y
h i

ðtÞ ¼ ðE YiYj
� �

Þ ¼ I 2 Rm�m; ð5aÞ

UT ; U
D E

ðtÞ ¼ ui; uj
� �
 �

¼ KU 2 Rm�m; ð5bÞ
where KU ¼ diag UT ; U
D E� 


¼ ðkidijÞm�m. Therefore, the KL expansion (2) of u at some fixed time t reads
u ¼ �uþ UYT þ ~U~YT : ð6Þ
Furthermore, we assume that the solution of the SPDE (1) enjoys a low-dimensional structure in the sense of KLE, or pre-
cisely, the eigenvalue spectrum fkiðtÞg1i¼1 decays fast enough, allowing for a good approximation with a truncated KL expan-
sion (2). We denote by ~u as the m-term truncation of the KL expansion of u,
~u ¼ �uþ UYT : ð7Þ
We introduce the following orthogonal complementary operators with respect to the orthogonal basis U in L2ðDÞ or Y in
L2ðXÞ to simplify notations,
PUðvÞ ¼ v � UK�1
U UT ; v
D E

for vðxÞ 2 L2ðDÞ;

PYðZÞ ¼ Z � YE YT Z
h i

for ZðxÞ 2 L2ðXÞ:
We also define an anti-symmetrization operator Q : Rk�k ! Rk�k and a partial anti-symmetrization operator ~Q : Rk�k ! Rk�k,
which are defined as follows:
QðAÞ ¼ 1
2

A� AT
� 


; ~QðAÞ ¼ 1
2

A� AT
� 


þ diagðAÞ;
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where diagðAÞ denotes a diagonal matrix whose diagonal entries are equal to those of matrix A.
In the DyBO formulation it is crucial to dynamically preserve the bi-orthogonality of the spatial basis U and the stochastic

basis Y. We begin the derivation by substituting the KLE (2) into the SPDE (1a) and get
@�u
@t
þ @U
@t

YT þ U
dYT

dt
¼ L~uþ fLu� L~ug � @ ~U

@t
~YT þ ~U

d~YT

dt

( )
:

If the eigenvalues in the KL expansion decay fast enough and the differential operator is stable, the last two terms on the
right hand side will be small, so we can drop them and obtain the starting point for deriving our DyBO method,
@�u
@t
þ @U
@t

YT þ U
dYT

dt
¼ L~u: ð8Þ
Taking expectations on both sides of Eq. (8) and taking into account the fact that Yi’s are zero-mean random variables, we
have
@�u
@t
¼ E L~u½ �;
which gives the evolution equation for the mean of the solution u. Multiplying both sides of Eq. (8) by Y from the right and
taking expectations, we obtain
@U
@t

E YT Y
h i

þ UE
dYT

dt
Y

" #
¼ E ðL~u� @

�u
@t
ÞY

� 	
:

After using the orthogonality of the stochastic basis Y, we have
@U
@t
¼ E ~L~uY

� �
� UE

dYT

dt
Y

" #
;

where ~L~u ¼ L~u� E L~u½ �. Similarly we obtain an evolution equation for dY
dt . Therefore, this gives rise to the following evolution

system:
@�u
@t
¼ E L~u½ �; ð9aÞ

@U
@t
¼ E ~L~uY

� �
� UE

dYT

dt
Y

" #
; ð9bÞ

dY
dt

KU ¼ ~L~u; U
� �

� Y
@UT

@t
; U

* +
: ð9cÞ
However, the above system does not give explicit evolution equations for dY
dt and @U

@t . To further simplify the evolution system,
we substitute Eq. (9c) into Eq. (9b) and get
@U
@t
¼ E ~L~uY

� �
� UK�1

U UT ; E ~L~uY
� �D E

þ UK�1
U UT ;

@U
@t

� �
;

where we have used the orthogonality of the stochastic basis, i.e., E YT Y
h i

¼ I. Similar steps can be repeated by substituting
Eq. (9b) into Eq. (9c). Thus, the system (9) can be re-written as
@�u
@t
¼ E L~u½ �; ð10aÞ

@U
@t
¼ UK�1

U UT ;
@U
@t

� �
þ GUð�u;U;YÞ; ð10bÞ

dY
dt
¼ YE YT dY

dt

� 	
þ GYð�u;U;YÞ; ð10cÞ
where we have used the orthogonality condition of the spatial and stochastic modes, and
GUð�u;U;YÞ ¼ PUðE ~L~uY
� �

Þ ¼ E ~L~uY
� �

� UK�1
U UT ; E ~L~uY

� �D E
; ð11aÞ

GYð�u;U;YÞ ¼ PYð ~L~u; U
� �

ÞK�1
U ¼ ~L~u; U

� �
K�1

U � Y E ~L~uYT
h i

; U
D E

K�1
U : ð11bÞ
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Note that GU is the projection of E ~L~uY
� �

into the orthogonal complementary set of U and GY is the projection of ~L~u; U
� �

into
the orthogonal complementary set of Y. Thus, we have
GUð�u;U;YÞ ? spanU inL2ðDÞ; GYð�u;U;YÞ ? spanY inL2ðXÞ:
The above observation will be crucial in the later derivations.
We note that the system (10b) and (10c) does not determine the time derivative @U

@t or dY
dt uniquely. In fact, if @U

@t is a solution
of (10b), then @U

@t þ UC for any m�m matrix C is also a solution of (10b). Similar statement can be made for dY
dt . In Appendix A,

we will show that the evolution system (3) can be rewritten as follows:
@�u
@t
¼ E L~u½ �; ð12aÞ

@U
@t
¼ UCþ GUð�u;U;YÞ; ð12bÞ

dY
dt
¼ YDþ GYð�u;U;YÞ; ð12cÞ
where C and D are m�m matrices which represent the projection coefficients of @U
@t and dY

dt into U and Y respectively. More-
over, we show that by enforcing the bi-orthogonality condition of the spatial and stochastic basis and a compatibility con-
dition with the original SPDE, these two matrices can be determined uniquely provided that the eigenvalues of the
covariance matrix are distinct. The results are summarized in the following theorem.

Theorem 2.1 (Solvability of matrices C and D). If ui; uih i – uj; uj
� �

for i – j; i; j ¼ 1;2; . . . ;m, the m-by-m matrices C and D can be
solved uniquely from the following linear system
C� K�1
U

~QðKUCÞ ¼ 0; ð13aÞ
D�QðDÞ ¼ 0; ð13bÞ
DT þ C ¼ G�ð�u;U;YÞ; ð13cÞ
where G�ð�u;U;YÞ ¼ K�1
U UT ; E ~L~uY

� �D E
2 Rm�m. The solutions are given entry-wisely as follows:
Cii ¼ G�ii; ð14aÞ

Cij ¼
kujk2

L2ðDÞ

kujk2
L2ðDÞ � kuik2

L2ðDÞ
ðG�ij þ G�jiÞ; for i – j; ð14bÞ

Dii ¼ 0; ð14cÞ

Dij ¼
1

kujk2
L2ðDÞ � kuik2

L2ðDÞ
ðkujk2

L2ðDÞG�ji þ kuik2
L2ðDÞG�ijÞ; for i – j: ð14dÞ
To summarize the above discussion, the DyBO formulation of SPDE (1) results in a set of explicit equations for all the un-
knowns quantities. In particular, we reformulate the original SPDE (1) into a system of m stochastic ordinary differential
equations for the stochastic basis Y coupled with mþ 1 deterministic PDEs for the mean solution �u and spatial basis U. Fur-
ther, from the definition of G� given in Theorem 2.1, we can rewrite GU and GY as
GU ¼ E ~L~uY
� �

� UG�; GY ¼ ~L~u; U
� �

K�1
U � YGT

� :
From the above identities, we can rewrite the DyBO formulation (12) as follows:
@�u
@t
¼ E L~u½ �; ð15aÞ

@U
@t
¼ �UDT þ E ~L~uY

� �
; ð15bÞ

dY
dt
¼ �YCT þ ~L~u; U

� �
K�1

U ; ð15cÞ
where we have used the compatibility condition Eq. (13c) for C and D, i.e., DT þ C ¼ G�. The initial conditions of �u;U and Y are
given by the KL expansion of u0ðx;xÞ in Eq. (1b). We can derive the boundary condition of �u and the spatial basis U by taking
expectation on the boundary condition. For example, if B is a linear deterministic differential operator, we have
Bð�uðx; t;xÞÞjx2@D ¼ E hðx; t;xÞ½ � and Bðuiðx; t;xÞÞjx2@D ¼ E hðx; t;xÞYiðx; tÞ½ �. If the periodic boundary condition is used in Eq.
(1c), �u and the spatial basis U satisfy the periodic boundary condition.
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Remark 2.1. In the event that two eigenvalues approach each other and then separate as time increases, we refer to this as
eigenvalue crossings. The breakdown in determining matrices C and D when we have eigenvalue crossings represents the
extra degrees of freedom in choosing a complete set of orthogonal eigenvectors for repeated eigenvalues. To overcome this
difficulty associated with eigenvalue crossings, we can detect such an event and temporarily freeze the spatial basis U or the
stochastic basis Y and continue to evolve the system for a short duration. Once the two eigenvalues separate, the solution can
be recast into the bi-orthogonal form via KL expansion. Recall that one of U and Y is always kept orthogonal even during the
‘‘freezing’’ stage. We can devise a KL expansion algorithm which avoids the need to form the covariance function explicitly.
More details will be discussed in the section about numerical implementation.
3. Theoretical analysis

3.1. Bi-orthogonality preservation

In the previous section, we have used the bi-orthogonal condition in deriving our DyBO method. Since we have made a
number of approximations by using a finite truncation of the KL expansion and performing various projections, these formal
derivations do not necessarily guarantee that the DyBO method actually preserves the bi-orthogonal condition. In this sec-
tion, we will show that the DyBO formulation (15) preserves the bi-orthogonality of the spatial basis U and the stochastic
basis Y for t 2 ½0; T� if the bi-orthogonality condition is satisfied initially.

Theorem 3.1 (Preservation of Bi-Orthogonality in DyBO formulation). Assume that there is no eigenvalue crossing up to time
T > 0, i.e. kujkL2ðDÞ – kuikL2ðDÞfor i – j. The solutions U and Y of system (15) satisfy the bi-orthogonality condition (5) exactly as

long as the initial conditions Uðx;0Þ and Yðx;0Þ satisfy the bi-orthogonality condition (5). Moreover, if we write

vði;jÞðtÞ ¼ ui; uj
� �

ðtÞ for i > j and denote vðtÞ ¼ ðvði;jÞðtÞÞi>j as a column vector in R
mðm�1Þ

2 �1, then there exists an anti-symmetric

matrix WðtÞ 2 R
mðm�1Þ

2 �mðm�1Þ
2 such that
dvðtÞ
dt
¼ WðtÞvðtÞ; ð16aÞ

vð0Þ ¼ 0: ð16bÞ
Similar results also hold for the stochastic basis Y.
Remark 3.1. The fact that WðtÞ is anti-symmetric is important for the stability of our DyBO method in preserving the
dynamic bi-orthogonality of the spatial and stochastic basis. Due to numerical round-off errors, discretization errors, etc.,
U and Y may not be perfectly bi-orthogonal at the beginning or become so later in the computation. The above theorem
sheds some lights on the numerical stability of DyBO formulation in this scenario. Since the eigenvalues of an anti-symmetric
matrix are purely imaginary or zero and their geometric multiplicities are always one (see page 115, [22]), so any deviation
from the bi-orthogonal form will not be amplified.
Proof. Proof of Theorem 3.1] We only give the proof for the spatial basis U, since the proof for the stochastic basis Y is sim-
ilar. Direct computations give
d
dt
hUT ; Ui ¼ @UT

@t
; U

* +
þ UT ;

@U
@t

� �
¼ �D UT ; U

D E
þ E ~L~uYT

h i
; U

D E
� UT ; U
D E

DT þ UT ; E ~L~uY
� �D E

¼ �D UT ; U
D E

� UT ; U
D E

DT þ GT
�KU þ KUG�; ð17Þ
where we have used the definition of G� (see Theorem 2.1 and (A.13)) in the last equality. For each entry with i – j in (17), we
get,
d
dt

ui; uj
� �

¼ �
Xm

k¼1

Dik uk; uj
� �

�
Xm

l¼1

ui; ulh iDjl þ G�jikujk2
L2ðDÞ þ G�ijkuik2

L2ðDÞ

¼ �
Xm

k¼1;k–j

Dik uk; uj
� �

�
Xm

l¼1;l–i

ui; ulh iDjl � Dijkujk2
L2ðDÞ � Djikuik2

L2ðDÞ þ ðkujk2
L2ðDÞ � kuik2

L2ðDÞÞDij

¼ �
Xm

k¼1;k–i;j

Dik uk; uj
� �

�
Xm

l¼1;l–i;j

Djl ui; ulh i; ð18Þ
where Eq. (14d) and the anti-symmetric property of matrix D are used. From Eq. (18), we see that vðtÞ satisfies a linear ODE
system in the form of (16) with matrixWðtÞ given in terms of Dij and the initial condition comes from the fact that Uðx; 0Þ are
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a set of orthogonal basis. It is easy to see that, as long as the solutions of system (15) exist,WðtÞ is well-defined and the ODE
system admits only zero solution, i.e., orthogonality of U is preserved for t 2 ½0; T�. Similar arguments can be used to show Y
remains orthonormal for t 2 ½0; T�.

Next, we show that the matrixW in ODE system (16) is anti-symmetric. Consider two pairs of indices ði; jÞ and ðp; qÞ with
i > j and p > q. The corresponding equations for vði;jÞ and vðp;qÞ are
dvði;jÞ
dt
¼ �

Xm

k¼1;k–i;j

Dikvðk;jÞ �
Xm

l¼1;l–i;j

Djlvði;lÞ; ð19aÞ

dvðp;qÞ
dt

¼ �
Xm

k¼1;k–p;q

Dpkvðk;qÞ �
Xm

l¼1;l–p;q

Dqlvðp;lÞ; ð19bÞ
where we have identified vði;jÞ with vðj;iÞ. First, we consider the case two index pairs are identical. We see from Eq. (19a) that
there is no vði;jÞ on the right side, soWði;jÞ;ði;jÞ ¼ 0. Next, we consider the case none of indices in one index pair is equal to any in
the other, i.e., i – p; q and j – p; q. It is obvious that no vðp;qÞ appears in the summations on the right side of Eq. (19a), which
impliesWði;jÞ;ðp;qÞ ¼ 0. Similarly, we haveWðp;qÞ;ði;jÞ ¼ 0. Last, we consider the case in which one index in one index pair is equal
to one index in another index pair but the remaining two indices from two index pair are not equal. Without loss of gener-
ality, we assume i ¼ p and j – q. From Eq. (19a), we have
dvði;jÞ
dt
¼ � � � � Djqvði;qÞ � � � � ¼ � � � � Djqvðp;qÞ � � � � ;
where we have intentionally isolated the relevant term from the second summation and the last equality is due to i ¼ p. Sim-
ilarly, from Eq. (19b), we have
dvðp;qÞ
dt

¼ � � � � Dqjvðp;jÞ � � � � ¼ � � � � Dqjvði;jÞ � � � � :
The above two equations imply that Wði;jÞ;ðp;qÞ ¼ �Wðp;qÞ;ði;jÞ. Similar arguments apply to other cases. This completes the
proof. h
3.2. Error analysis

In this section, we will consider the convergence of the solution obtained by the DyBO formulation (15) to the original
SPDE (1). Theorem 3.2 gives the error analysis of the DyBO formulation.

Theorem 3.2 (The consistency between the DyBO formulation and the original SPDE)). The stochastic solution of system (15)
satisfies the following modified SPDE
@~u
@t
¼ L~uþ em; ð20Þ
where em is the error due to the m-term truncation and
em ¼ �PYðPUð~L~uÞÞ: ð21Þ
Proof. We show consistency by computing directly from Eqs. (15b) and (15c)
U
dYT

dt
¼ ~L~uþ UDT YT � ð~L~u� UK�1

U UT ; ~L~u
D E

Þ � UK�1
U UT ; E ~L~uY

� �D E
YT ;

@U
@t

YT ¼ UCYT þ YE ~L~uYT
h i

� Y E ~L~uYT
h i

; U
D E

K�1
U UT :
Combining the above two, we have
U
dYT

dt
þ @U
@t

YT ¼ ~L~uþ em;
where
em ¼ �ð~L~u� UK�1
U UT ; ~L~u
D E

Þ þ UðDT þ CÞYT � UK�1
U UT ; E ~L~uY

� �D E
YT

¼ �ð~L~u� UK�1
U UT ; ~L~u
D E

Þ þ E ð~L~u� UK�1
U UT ; ~L~u
D E

ÞY
h i

YT ;
where Eq. (13c) has been used in deriving the first equality. By noticing ~L~u ¼ L~u� E L~u½ �, we prove Eq. (20). h
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Remark 3.2. According to Theorem 3.1, the bi-orthogonality of U and Y are preserved for all time. Because both Hilbert
space L2ðDÞ and L2ðXÞ are separable, the spatial basis U and the stochastic basis Y become a complete basis for L2ðDÞ and
L2ðXÞ as m! þ1, respectively, which implies limm!þ1em ¼ 0.

Next we consider a special case where the differential operator L is deterministic and linear, such as Lv ¼ cðxÞ @v
@x, or

Lv ¼ � @
@xi
ðaijðxÞ @v@xj

Þ, where cðxÞ and ðaijðxÞÞ are deterministic functions. Only initial conditions are assumed to be random,

i.e., the randomness propagates into the system only through initial conditions.

Corollary 3.3. Let the differential operator L be deterministic and linear. The residual in Eq. (20) is zero for all time, i.e.,
emðtÞ � 0; t > 0:
Proof. This can be seen by directly computing the truncation error em. First we substitute ~L~u ¼ L~u� E L~u½ � into Eq. (21),
em ¼ �PYðL~u� E L~u½ � � UK�1
U UT ; L~u� E L~u½ �
D E

Þ:
Since the differential operator L is deterministic and linear, we have L~u ¼ L�uþ LUYT , where LU ¼ ðLu1;Lu2; � � � ;LumÞ. This
gives
em ¼ �PYðL�uþ LUYT � E L�uþ LUYT
h i

� UK�1
U UT ; L~u� E L~u½ �
D E

Þ ¼ �PYðLUYT � UK�1
U UT ; LU
D E

YTÞ

¼ �PYðYðLUT � LUT ; U
D E

K�1
U UTÞÞ ¼ 0:
The last line is due to the orthogonal complementary project. h

The above corollary implies that DyBO is exact if the randomness can be expressed in a finite-term KL expansion. The next
corollary concerns a slightly different case where the differential operator L is affine in the sense that Lu ¼ L�uþ f ðx; t;xÞ
and the differential operator L�is linear and deterministic. The stochastic force f ð�; t; �Þ 2 L2ðD �XÞ for all t.

Corollary 3.4. If the differential operator L is affine, i.e., Lu ¼ L�uþ f ðx; t;xÞ, and f is a second-order stochastic process at each
fixed time t, the residual in Eq. (21) is given below
em ¼ �PYPUðf Þ:
Proof. Again by directly computing, we have by the linearity of the differential operator L�

L~u ¼ L��uþ L �UYT þ f :
Simple calculation shows that
~L~u ¼ L~u� E L~u½ � ¼ L �UYT þ f � E½f �:
Substituting into Eq. (21), we complete the proof. h
Remark 3.5. For this special case, Corollary 3.4 implies that numerical solutions are accurate as long as the spatial basis U
and the stochastic basis Y provide good approximations to the external forcing term f, which is not surprising at all.
4. Numerical implementation

4.1. Representation of stochastic basis Y

The DyBO formulation (15) is a combination of deterministic PDEs (15a) and (15b) and SODEs (15c). For the deterministic
PDEs in the DyBO formulation, we can apply suitable spatial discretization schemes and numerical integrators to solve them
numerically. One of the conceptual difficulties, from the viewpoint of the classical numerical PDEs, involves representations
of random variables or functions defined on abstract probability space X. Essentially, there are three ways to represent
numerically stochastic basis Yðx; tÞ: ensemble representations in sampling methods, such as Monte carlo method, sparse
grid based stochastic collocation method [1,8] and spectral representations, such as the generalized Polynomial Chaos meth-
od [53,54,50,27,33] or Wavelet based Chaos method [35].

4.1.1. Ensemble representation (DyBO-MC)
In the MC method framework, the stochastic basis Yðx; tÞ are represented by an ensemble of realizations, i.e.,
Yðx; tÞ 	 fYðx1; tÞ;Yðx2; tÞ;Yðx3; tÞ; � � � ;YðxNr ; tÞg;
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where Nr is the total number of realizations. Then the expectations in the DyBO formulation (15) can be replaced by ensem-
ble averages, i.e.,
@�u
@t
ðx; tÞ ¼ 1

Nr

XNr

i¼1

L~uðx; t;xiÞ; ð22aÞ

@U
@t
ðx; tÞ ¼ �Uðx; tÞDðtÞT þ 1

Nr

XNr

i¼1

~L~uðx; t;xiÞYðxi; tÞ; ð22bÞ

dY
dt
ðxi; tÞ ¼ �Yðxi; tÞCðtÞT þ ~L~uðx; t;xiÞ; Uðx; tÞ

� �
KUðtÞ�1

; ð22cÞ
where CðtÞ and DðtÞ can be solved from (14) with
G�ð�u;U;YÞ ¼ K�1
U UT ;

1
Nr

XNr

i¼1

~L~uðx; t;xiÞYðxi; tÞ
* +

ð23Þ
and
~L~uðx; t;xiÞ ¼ L~uðx; t;xiÞ �
1
Nr

XNr

i¼1

L~uðx; t;xiÞ: ð24Þ
The above system is the MC version of DyBO method and we denote it as DyBO-MC. Close examinations reveal that Eq. (22a)
for expectation and Eq. (22b) for spatial basis are only solved once for all the realizations at each time iteration while Eq.
(22c) for the stochastic basis is decoupled from realization to realization and can be solved simultaneously across all real-
izations. In this sense, we see that DyBO-MC is semi-sampling and it preserves some desirable features of MC method, for
example, the convergence rate does not depend on stochastic dimensionality and the solution process of Yðxi; tÞ’s are decou-
pled. Clearly, not only the number of realizations, but also how these realizations fxigNr

i¼1 are chosen in X affects the numer-
ical accuracy and the efficiency. Quasi Monte Carlo method [42,40], variance reduction and other techniques may be
combined into DyBO-MC to further improve its efficiency and accuracy. However, the disadvantage of MC method is its slow
convergence. Developing effective sampling version of DyBO method such as the multi-level Monte Carlo method [24] is cur-
rently under investigation.

4.1.2. Spectral representation (DyBO-gPC)
In many physical and engineering problems, randomness generally comes from various independent sources, so random-

ness in SPDE (1) is often given in terms of independent random variables niðxÞ. Throughout this paper, we assume only a
finite number of independent random variables are involved, i.e., nðxÞ ¼ ðn1ðxÞ; n2ðxÞ; � � � ; nrðxÞÞ, where r is the number
of such random variables. Without loss of generality, we can further assume they all have identical distribution qð�Þ. Thus,
the solution of SPDE (1) is a functional of these random variables, i.e., uðx; t;xÞ ¼ uðx; t; nðxÞÞ. When SPDE is driven by some
known stochastic process, such as Brownian Motion Bt , by Cameron-Martin theorem [9], the stochastic solution can be
approximated by a functional of identical independent standard Gaussian variables, i.e., uðx; t;xÞ 	 uðx; t; nðxÞÞwith ni being
a standard normal random variable.

In this paper, we only consider the case where randomness is given in terms of independent standard Gaussian random
variables, i.e., ni 
 Nð0;1Þ and H are a set of tensor products of Hermite polynomials. In this case, the method described
above is also known as the Wiener-Chaos Expansion [51,9,12,13,27]. When the distribution of ni is not Gaussian, the discus-
sions remain almost identical and the major difference is the set of orthogonal polynomials.

We denote by fHiðnÞg1i¼1 the one-dimensional polynomials orthogonal to each other with respect to the common distri-
bution qðzÞ, i.e.,
Z 1

�1
HiðnÞHjðnÞqðnÞdn ¼ dij:
For some common distributions, such as Gaussian or uniform distribution, such polynomial sets are well-known and well-
studied, many of which fall in the Ashley scheme, see [53]. For general distributions, such polynomial sets can be obtained by
numerical methods, see [50]. Furthermore, by a tensor product representation, we can use the one-dimensional polynomial
HiðnÞ to construct a complete orthonormal basis HaðnÞ’s of L2ðXÞ as follows
HaðnÞ ¼
Yr

i¼1

Hai
ðniÞ; a 2 J1r ;
where a is a multi-index, i.e., a row vector of non-negative integers,
a ¼ ða1;a2; � � � ;arÞ ai 2 N; ai P 0; i ¼ 1;2; � � � ; r
and J1r is a multi-index set of countable cardinality,
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J1r ¼ a ¼ ða1;a2; � � � ;arÞ jai P 0;ai 2 Nf g n f0g:
We have intentionally removed the zero multi-index corresponding to H0ðnÞ ¼ 1 since it is associated with the mean of the
stochastic solution and it is better to deal with it separately according to our experience. When no ambiguity arises, we sim-
ply write the multi-index set J1r as J1. Clearly, the cardinality of J1r is infinite. For the purpose of numerical computations,
we prefer a polynomial set of finite size. There are many choices of truncations, such as the set of polynomials whose total
orders are at most p, i.e.,
Jp
r ¼ a ja ¼ ða1;a2; � � � ;arÞ;ai P 0;ai 2 N; jaj ¼

Xr

i¼1

ai 6 p

( )
n f0g
and sparse truncations proposed in [27], see also Luo’s thesis [32]. Again, we may simply write such a truncated set as J

when no ambiguity arises. The cardinality of J, or the total number of polynomial basis functions, denoted by Np ¼ jJj, is

equal to ðpþrÞ!
p!r!

. As we can see, Np grows exponentially fast as p and r increase. This is also known as the curse of dimensionality.

By the Cameron–Martin theorem [9], we know that the solution of SPDE (1) admits a generalized Polynomial Chaos
expansion (gPCE)
uðx; t;xÞ ¼ �vðx; tÞ þ
X
a2J1

vaðx; tÞHaðnðxÞÞ 	 �vðx; tÞ þ
X
a2J

vaðx; tÞHaðnðxÞÞ: ð25Þ
If we write
HJðnÞ ¼ ðHa1 ðnÞ;Ha2 ðnÞ; � � � ;HaNP
ðnÞÞai2J;

Vðx; tÞ ¼ ðva1 ðx; tÞ; va2 ðx; tÞ; � � � ;vaNp
ðx; tÞÞai2J;
both of which are row vectors, the above gPCE can be compactly written in a vector form
ugPCðx; t;xÞ ¼ vðx; t;xÞ ¼ �vðx; tÞ þ Vðx; tÞHðnÞT : ð26Þ
By substituting the above gPCE into Eq. (1a), it is easy to derive the gPC formulation for SPDE (1),
@�v
@t
¼ E Lv½ �; ð27aÞ

@V
@t
¼ E ~LvH

� �
: ð27bÞ
Now, we turn our attention to the gPC version of DyBO formulation (DyBO-gPC). The Cameron–Martin theorem also im-
plies the stochastic basis Yiðx; tÞ’s in the KL expansion (7) can be approximated by the linear combination of polynomials
chaos, i.e.,
Yiðx; tÞ ¼
X
a2J

HaðnðxÞÞAaiðtÞ; i ¼ 1;2; � � � ;m; ð28Þ
or in a matrix form,
Yðx; tÞ ¼ HðnðxÞÞA; ð29Þ
where A 2 RNp�m. The expansion (7) now reads
~u ¼ �uþ UAT HT :
We can derive equations for �u;U and A, instead of �u;U and Y. In other words, the stochastic basis Y are identified with a ma-
trix A 2 RNp�m in DyBO-gPC. Substituting Eq. (29) into Eq. (15c) and using the identity E HT H

h i
¼ I, we get the DyBO-gPC for-

mulation of SPDE (1),
@�u
@t
¼ E L~u½ �; ð30aÞ

@U
@t
¼ �UDT þ E ~L~uH

� �
A; ð30bÞ

dA
dt
¼ �ACT þ E HT ~L~u

h i
; U

D E
K�1

U ; ð30cÞ
where CðtÞ and DðtÞ can be solved from (14) with
G�ð�u;U;YÞ ¼ K�1
U UT ; E ~L~uY

� �D E
¼ K�1

U UT ; E ~L~uH
� �D E

A: ð31Þ

By solving the system (30), we have an approximate solution to SPDE (1)
uDyBO-gPC ¼ �uþ UAT HT ;
or simply uDyBO when no ambiguity arises.
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4.1.3. gSC representation (DyBO-gSC)
In our DyBO-gPC method, the stochastic process YiðnðxÞ; tÞ is projected onto the gPC basis H and replaced by gPC coef-

ficients, i.e., Aai, which can be computed by
Aai ¼ E YiðxÞHaðnðxÞÞ½ �:
Numerically, the above integral can be evaluated with high accuracy on some sparse grid. In other words, the stochastic basis
Y can also be represented as an ensemble of realizations YðxiÞwhere nðxiÞ’s are nodes from some sparse grid and associated
with certain weight wi. The gSC version of DyBO formulation, which we denote as DyBO-gSC, is
@�u
@t
ðx; tÞ ¼

XNs

i¼1

wiL~uðx; t;xiÞ; ð32aÞ

@U
@t
ðx; tÞ ¼ �Uðx; tÞDðtÞT þ

XNs

i¼1

wi
~L~uðx; t;xiÞYðxi; tÞ; ð32bÞ

dY
dt
ðxi; tÞ ¼ �Yðxi; tÞCðtÞT þ ~L~uðx; t;xiÞ; Uðx; tÞ

� �
KUðtÞ�1

; i ¼ 1;2; . . . ;Ns; ð32cÞ
where fxigNs
i¼1 are the sparse grid points, fwigNs

i¼1 are the weight, Ns is the number of sparse grid points and CðtÞ;DðtÞ can be
solved from (14) with
G�ð�u;U;YÞ ¼ K�1
U UT ;

XNs

i¼1

wi
~L~uðx; t;xiÞYðxi; tÞ

* +
: ð33Þ
The primary focus of this paper is on DyBO-gPC methods. We will provide details and numerical examples of DyBO-gSC
methods in our future work.

4.2. Eigenvalue crossings

As the system evolves, eigenvalues of different basis in the KL expansion of the SPDE solution may increase or decrease.
Some of them may approach each other at some time, cross and then separate as illustrated in Fig. 2. In the figure, k1 and k2

cross each other at t�1 and k1 and k3 cross each other at t�2. In this case, if C and D continue to be solved from the linear system
(13) via (14), numerical errors will pollute the results. Here, we propose to freeze U or Y temporarily for a short time and
continue to evolve the system using different equations as derived below. At the end of this short duration, the solution
is recast into the bi-orthogonal form via the KL expansion, which can be achieved efficiently since U or Y is still kept orthog-
onal in this short duration. We are also currently exploring alternative approach to overcome the eigenvalue crossing prob-
lem, and will report our result in a subsequent paper.

In order to apply the above strategy, we have to be able to detect that two eigenvalues may potentially cross each other in
the near future. There are several ways to detect such crossing. Here we propose to monitor the following quantity
s ¼min
i–j

jki � kjj
maxðki; kjÞ

: ð34Þ
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Fig. 2. Illustration of Eigenvalue Crossing.
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Once this quantity drops below certain threshold din
s 2 ð0;1Þ, we adopt the algorithm of freezing U or Y to evolve the system

and continue to monitor this quantity s. When s exceeds some pre-specified threshold dout
s 2 ð0;1Þ, the algorithm recasts the

solution in the bi-orthogonal form via an efficient algorithm detailed in the next two sub-sections and continues to evolve
the DyBO system. Threshold din

s and dout
s may be problem-dependent. In our numerical experiments, we found din

s ¼ 1% and
dout
s ¼ 1% gave accurate results.

Here we only describe the basic idea of freezing stochastic basis Y or Y-Stage algorithm. The method of freezing the spa-
tial basis U or U-Stage algorithm can be obtained analogously, see [10] for more details. Suppose at some time t ¼ s, potential
eigenvalue crossing is detected and the stochastic basis Y are frozen for a short duration Ds, i.e., Yðx; tÞ � Yðx; sÞ for
t 2 ½s; sþ Ds�, which we call Y-stage. Because Y are orthonormal, the solution of SPDE (1) admits the following approximation
of a truncated expansion.
~uðx; t;xÞ ¼ �uðx; tÞ þ
Xm

i¼1

uiðx; tÞYiðx; sÞ ¼ �uðx; tÞ þ Uðx; tÞYðx; sÞT : ð35Þ
It is easy to derive a new evolution system for this stage,
@�u
@t
¼ E L~u½ �; ð36aÞ

@U
@t
¼ E ~L~uY

� �
: ð36bÞ
During this stage, Y is unchanged and orthogonal, but U changes in time and would not maintain its orthogonality. The solu-
tion is no longer bi-orthogonal, so eigenvalues cannot be computed via ki ¼ kuik2

L2ðDÞ any more. Next, we derive formula for
eigenvalues in this stage and then show how the solutions are recast into the bi-orthogonal form at the end of the stage, i.e.,
t ¼ sþ Ds.

The covariance function can be computed as
Cov~uðx; yÞ ¼ E ð~uðxÞ � �uðxÞÞð~uðyÞ � �uðyÞÞ½ � ¼ E UðxÞYT YUTðyÞ
h i

¼ UðxÞUTðyÞ;
where t is omitted for simplicity and E YT Y
h i

¼ I is used. By some stable orthogonalization procedures, such as the modified
Gram-Schmidt algorithm, UðxÞ can be written as
UðxÞ ¼ Q ðxÞR; ð37Þ
where Q ðxÞ ¼ ðq1ðxÞ; q2ðxÞ; � � � ; qmðxÞÞ; qiðxÞ 2 L2ðDÞ for i ¼ 1;2; � � � ;m; Q TðxÞ; Q ðxÞ
D E

¼ I and R 2 Rm�m. Here RRT 2 Rm�m is a
positive definite symmetric matrix and its SVD decomposition reads
RRT ¼WKRWT ; ð38Þ
where W 2 Rm�m is an orthonormal matrix, i.e., WWT ¼WT W ¼ I, and KR is a diagonal matrix with positive diagonal entries.
The computational cost of W and KR is negligible compared to other parts of the algorithm. The covariance function can be
rewritten as
Cov~uðx; yÞ ¼ Q ðxÞRRT Q TðyÞ ¼ Q ðxÞWKRWT Q TðyÞ:
Now, it is easy to see that the eigenfunctions of covariance function Cov~uðx; yÞ are
~UðxÞ ¼ Q ðxÞWK
1
2
R; ð39Þ
and eigenvalues are diagðKRÞ because
~UT ; ~U
D E

¼ K
1
2
RWT Q T ; QWK

1
2
R

D E
¼ KR;
where we have used the orthogonality of Q and W. To compute ~Y, we start with the identity
~Y ~UT ¼ YUT ;
and multiply row vector ~U on both sides from the right and take inner product �; �h i,
~Y ~UT ; ~U
D E

¼ Y UT ; ~U
D E

;

where
~UT ; ~U
D E

¼ KR;

UT ; ~U
D E

¼ RT Q TðxÞ; Q ðxÞWK
1
2
R

D E
¼ RT WK

1
2
R:
So we obtain the stochastic basis ~Y, which is given by
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~Y ¼ YRT WK
�1

2
R : ð40Þ
If a generalized polynomial basis H is adopted to represent Y, we freeze A instead, i.e., AðtÞ � AðsÞ and the system (36) is
replaced by
@�u
@t
¼ E L~u½ �; ð41aÞ

@U
@t
¼ E ~L~uH

� �
A; ð41bÞ
where AðtÞ � AðsÞ. At the exiting point, Eq. (40) is replaced by
~A ¼ ART WK
�1

2
R : ð42Þ
As we can see, the computation of eigenvalues in this stage is not trivial, so we do not want to compute s every time iter-
ation. Instead, s is only evaluated every kY time steps to achieve a balance between computational efficiency and accuracy.
See the zoom-in figure in Fig. 2 for illustration.

5. Numerical examples

Previous sections highlight the analytical aspects of the DyBO formulation and its numerical algorithm. In this section, we
demonstrate the effectiveness of this method by several numerical examples with increasing level of difficulties, each of
which emphasizes and verifies some of analytical results in the previous sections. In the first example, we consider a SPDE
which is driven purely by stochastic forces. The purpose of this example is to show that the DyBO formulation tracks the KL
expansion. Corollary 3.3 regarding the error propagation of the DyBO method is numerically verified in the second numerical
example where a transport equation with a deterministic velocity and random initial conditions is considered. In the last
example, we consider Burgers’ equation driven by a stochastic force as an example of a nonlinear PDE driven by stochastic
forces. We demonstrate the convergence of the DyBO method with respect to the number of basis pairs, m. In the second part
of this paper [11], we will consider the more challenging Navier–Stokes equations and the Boussinesq approximation with
random forcings. Some important numerical issues, such as adaptivity, parallelization and computational complexity, will be
also studied in details.

5.1. SPDE purely driven by stochastic force

To study the convergence of our DyBO-gPC algorithms, it is desirable to construct a SPDE whose solution and KL expan-
sion are known analytically. This would allow us to perform a thorough convergence study for our algorithm especially when
we encounter eigenvalue crossings. In this example, we consider a SPDE which is purely driven by a stochastic force f, i.e.,
@u
@t ¼ Lu ¼ f ðx; t;xÞ. The solution can be obtained by direct integration, i.e., uðx; t;xÞ ¼ uðx;0;xÞ þ

R t
0 f ðx; s;xÞds. Specifically,

in this section, we consider the SPDE
@u
@t
¼ Lu ¼ f ðx; t; nðxÞÞ; x 2 D ¼ ½0;1�; t 2 ½0; T�; ð43Þ
where n ¼ ðn1; n2; � � � ; nrÞ are independent standard Gaussian random variables, i.e., ni 
 Nð0;1Þ; i ¼ 1;2; � � � ; r. The exact solu-
tion is constructed as follows
uðx; t; nÞ ¼ �vðx; tÞ þ Vðx; tÞZTðn; tÞ; ð44Þ
where Vðx; tÞ ¼ V�ðxÞWVðtÞK
1
2
VðtÞ;Zðn; tÞ ¼ Z�ðnÞWZðtÞ;V�ðxÞ ¼ ðv�1ðxÞ; � � � ;v�mðxÞÞ with v�iðxÞ; v�jðxÞ

� �
¼ dij and Z�ðnÞ ¼ ðZ�1ðnÞ; � � � ;

Z�mðnÞÞ with E Z�iZ�j
� �

¼ dij for i; j ¼ 1;2; � � � ;m. WVðtÞ and WZðtÞ are m-by-m orthonormal matrices, and K
1
2
VðtÞ is a diagonal

matrix.
Clearly, the exact solution u is intentionally given in the form of its finite-term KL expansion and the diagonal entries of

matrix KVðtÞ are its eigenvalues. By carefully choosing the eigenvalues, we can mimic various difficulties which may arise in
more involved situations and devise corresponding strategies. The stochastic forcing term on the right hand side of Eq. (43)
can be obtained by differentiating the exact solution, i.e.,
Lu ¼ f ¼ @
�v
@t
þ @V
@t

ZT þ V
dZT

dt
: ð45Þ
The initial condition of SPDE (40) can be obtained by simply setting t ¼ 0 in Eq. (44). From the general DyBO-gPC formulation
(15), simple calculations give the DyBO-gPC formulation for SPDE (43)
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@�u
@t
¼ @

�v
@t
; ð46aÞ

@U
@t
¼ �UDT þ ð@V

@t
WT

Z þ V
dWT

Z

dt
ÞE Z�T H
� �

A; ð46bÞ

dA
dt
¼ �ACT þ E HT Z�

h i
WZ

@VT

@t
þ dWZ

dt
VT ; U

* +
K�1

U ; ð46cÞ
and
G�ðu;U;AÞ ¼ K�1
U U; @V

@t
WT

Z þ V
dWT

Z

dt

* +
E Z�T H
� �

A:
The initial conditions are simply
�uðx;0Þ ¼ �vðx;0Þ; Uðx;0Þ ¼ Vðx;0Þ; Að0Þ ¼ E HT Zðn;0Þ
h i

¼ E HT Z�
h i

WZð0Þ:
In the event of eigenvalue crossings, we have the Y-stage system from (41),
@�u
@t
¼ @

�v
@t
; ð47aÞ

@U
@t
¼ @V

@t
WT

Z þ V
dWT

Z

dt

 !
E Z�T H
� �

A; ð47bÞ
or the U-stage system,
@�u
@t
¼ @

�v
@t
; ð48aÞ

dA
dt
¼ E HT Z�

h i
WZ

@VT

@t
þ dWZ

dt
VT ; U

* +
K�1

U : ð48bÞ
In the numerical examples presented in this section, we consider a small system m ¼ 3 and use the following settings,
V�ðxÞ ¼ ð
ffiffiffi
2
p

sinðpxÞ;
ffiffiffi
2
p

sinð5pxÞ;
ffiffiffi
2
p

sinð9pxÞÞ; Z�ðxÞ ¼ ðH1ðn1Þ;H2ðn1Þ;H3ðn1ÞÞ;

WVðtÞ ¼ PV

cos bVt � sin bVt 0
sin bVt cos bVt 0

0 0 1

0
B@

1
CAPT

V; WZðtÞ ¼ PZ

cos bZt � sin bZt 0
sin bZt cos bZt 0

0 0 1

0
B@

1
CAPT

Z;
where bV ¼ 2:0; bZ ¼ 2:0; PV and PZ are two orthonormal matrices generated randomly, and HðnÞ ¼ ðH1ðn1Þ;
H2ðn1Þ; � � � ;H5ðn1ÞÞ. Eigenvalues in the KL expansion of an SPDE solution may increase or decrease as time increases. Some
of them may approach each other at some time, cross and then separate later. When two eigenvalues are close or equal
to each other, numerical instability may arise in solving matrices C and D via (14). In Section 4.2, we have proposed a U-Stage
by freezing the spatial basis U or a Y-Stage by freezing the stochastic basis Y temporarily to resolve this issue. Here, we dem-
onstrate the success by incorporating such strategies into the DyBO algorithm. To this end, we choose T ¼ 1:2 and
eigenvalues
K
1
2
V ¼ diagðsin 2pt þ 2; cos 2pt þ 1:5;1:8Þ;
where eigenvalues cross each other at t 	 0:0675;0:2015;0:5320;0:7985;0:9650;1:0675, see Fig. 5.
In this numerical example, the time step Dt ¼ 1:0� 10�3 and kU ¼ 20 in the U-stage, i.e., the exiting condition is checked

every 20 time iterations when the system is in the U-stage. The mean E u½ �, the standard deviation (STD)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðuÞ

p
and the

three spatial basis in KLE at time t ¼ T are shown in Fig. 3 and Fig. 4, respectively. Clearly, the results given by DyBO almost
perfectly match the exact ones with L2 relative errors of mean and STD below 10�10 since only the spatial and temporal dis-
cretizations contribute to the numerical errors in this example. In Fig. 5, eigenvalues are plotted as functions of time and
zoom-in figures are given at t ¼ 0:0675 and t ¼ 0:7985 to show eigenvalue crossings and invoking of the U-stage algorithm.

We also check the deviation of the computed spatial and stochastic basis from the bi-orthogonality by monitoring
ui ; ujh i

kuikL2 ðDÞkujkL2ðDÞ
for the spatial basis and E YiYj

� �
for the stochastic basis. The results are shown in Fig. 6. We observe that the devi-

ation of the spatial basis from orthogonality is very small ð< 10�10Þ throughout the computation. Large deviations of the sto-
chastic basis from the orthogonality only occur when eigenvalues cross each other since the DyBO algorithm is not designed
to preserve the orthogonality of Y during the U-stage and orthogonality is only restored once the algorithm exits from the U-
stage. We have also applied the Y-stage to overcome eigenvalue-crossing issues in this numerical examples and the results
are very similar.
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5.2. Linear deterministic differential operators with random initial conditions

In this section, we consider a linear PDE with random initial conditions, i.e., the differential operator L is deterministic
and linear. For simplicity, we assume periodic boundary conditions.
@u
@t
¼ Lu; x 2 ½0;1�; t 2 ½0; 0:4�; ð49aÞ

uð0; t; nÞ ¼ uð1; t; nÞ; ð49bÞ

uðx;0; nÞ ¼ u�ðx; nÞ; ð49cÞ
where n ¼ ðn1; n2; � � � ; nrÞ are independent standard Gaussian random variables.
Consider the gPC expansion of solution u ¼ �v þ VHT . From Eq. (27), it is easy to obtain the gPC formulation of this SPDE,
@�v
@t
¼ L�v ; ð50aÞ

@V
@t
¼ LV; ð50bÞ
where the initial conditions �vðx;0Þ ¼ E u�½ � and Vðx;0Þ ¼ E u�ðxÞH
h i

. Clearly, the gPC formulation (50) is linear and provides the

exact solution to the original SPDE (49) if the finite-term gPC expansion of the initial condition is exact, i.e.,

u�¼E u�½ � þ E u�H
h i

HT .

Now consider the KL expansion of the solution, u ¼ �uþ UYT ¼ �uþ UAT HT . From the general DyBO-gPC formulation (15),
simple calculations give the DyBO-gPC formulation for the SPDE (49)
@�u
@t
¼ L�u; ð51aÞ

@U
@t
¼ �UDT þ LU; ð51bÞ

dA
dt
¼ �ACT þ A LUT ; U

D E
K�1

U ; ð51cÞ
where C and D can be computed via Eq. (14) from G� ¼ K�1
U UT ; LU
D E

.
If we compare the DyBO formulation (51) and the gPC formulation (50) for the linear SPDE (49), we observe the following

interesting phenomenon. Although the original SPDE is linear and the gPC formulation remains linear, the DyBO formulation
is clearly not linear. However, this is not surprising because KL expansion is not a linear procedure. On the other hand, the
gPC expansion is indeed a linear procedure. As we argue in Section 3.2, our DyBO formulation essentially tracks the KL
expansion of the exact solution. Therefore, the non-linearity of KLE must be naturally built into the DyBO formulation to en-
able such tracking.

Corollary 3.3 implies that the solution given by the DyBO formulation is exact if the initial condition u�can be expressed
exactly by a finite-term KL expansion. To verify this numerically, we consider a transport equation, i.e.,
L ¼ � sinð2pðxþ 2tÞÞ @

@x and the initial condition is a functional of three standard Gaussian random variables, i.e., r ¼ 3,
u�ðx; nÞ ¼ cosð2pxÞ þ ðsinð2pxÞ;1
2

sinð4pxÞ;1
3

sinð6pxÞÞA�T HT
J;
where J ¼ fa ja 2 J4
3;a3 6 3g n f0g. Matrix A� is an orthonormal matrix generated randomly at the beginning of our

simulation.
With time step Dt ¼ 1:0� 10�3 and spatial grid size Dx ¼ 1=128, the elements in the spatial basis computed by DyBO

match perfectly the exact ones given by gPC as shown in Fig. 7. In Fig. 8, the L2 relative error of STD is plotted as a function
of time t and remains very small ð6 10�8Þ. To confirm such errors are introduced mainly by the spatial and the temporal dis-
cretizations, we use another two sets of finer grid sizes, Dt ¼ 0:5� 10�3;Dx ¼ 1=256, and Dt ¼ 0:25� 10�3;Dx ¼ 1=512, and
repeat the computations. The STD error drops significantly since we use spectral methods and a fourth order RK method,
which essentially verifies numerically Corollary 3.3.

5.3. Burgers’ equation driven by stochastic forces

In the next example, we consider the stochastic Burgers equation. Stochastic Burgers equation is well known for its rich
structures due to the interaction between nonlinearity and randomness and their applications in statistical mechanics, such
as interfacial dynamics and directed polymers in random media and in the context of turbulence. For more discussion
regarding stochastic Burgers equation and its applications, please see [6,18,27,32] and the reference therein.

Consider a one-dimensional Burgers equation driven by a zero-mean stochastic force f ðx; t; nðxÞÞ,
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@u
@t
¼ Lu ¼ L�uþ f ¼ �u

@u
@x
þ m

@2u
@x2 þ f ; x 2 ½0;1�; t 2 ½0; T�; ð52aÞ
uðx;0; nÞ ¼ u�ðxÞ; ð52bÞ
uð0; t; nÞ ¼ uð1; t; nÞ; ð52cÞ
where the initial condition is deterministic and the boundary condition is periodic. Here, we call L�u ¼ �u @u
@x þ m @2u

@x2 the deter-
ministic Burgers’ differential operator or Burgers’ operator in short. To ensure the stochastic solution does not blow up in a
finite time, we assume that f ðx; t; nÞ 2 L2ðD �XÞ at any fixed time t and the stochastic force admits a finite-term gPC expan-
sion, i.e., f ðx; t; nÞ ¼ Fðx; tÞHðnÞT , where the row vector F ¼ ðFaÞa2J for some multi-index set J with jJj ¼ Np.

When Burgers’ equation is driven by stochastic processes, such as the Brownian motion, the above formulation still pro-
vides a good approximate model. The exact form of the stochastic force f can be obtained by choosing certain orthonormal
basis on L2ð½0; T�Þ and projecting the Brownian path onto such basis. See [27,32] for details. We choose the stochastic force as
f ¼ rðxÞ dBt

dt with rðxÞ ¼ 1
2 cosð4pxÞ and
dBt

dt
	
Xr

i¼1

1ffiffiffi
T
p Mi

t
T

� �
ni ¼

Xr

i¼1

1ffiffiffi
T
p Mi

t
T

� �
Hei
¼ 1ffiffiffi

T
p M1

t
T

� �
;

1ffiffiffi
T
p M2

t
T

� �
; � � � ; 1ffiffiffi

T
p Mr

t
T

� �
;0;0; � � � ;0

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Npterms

HT ; ð53Þ
where ei is a multi-index of length r whose ith entry is one and others are zeros, fMiðtÞg1i¼1 are a complete orthonormal basis
of L2ð½0;1�Þ and ni’s are i.i.d. independent standard Gaussian random variables. Further, we use the following orthonormal
basis for L2ð½0; T�Þ,
M1ðtÞ ¼ 1; MiðtÞ ¼
ffiffiffi
2
p

cosðði� 1ÞptÞ; i ¼ 2;3; � � � :
Consider the gPC expansion of the stochastic solution u ¼ �v þ VHT . Simple calculations give the gPC formulation for the
stochastic Burgers’ Eq. (52),
@�v
@t
¼ L��v � V

@VT

@x
; ð54aÞ

@V
@t
¼ m

@2V
@x2 �

@ð�vVÞ
@x

 !
� va

@vb

@x
T
ðHÞ
abc

� �
1c

þ F; ð54bÞ
where TðHÞ is a third-order Np-by-Np-by-Np tensor, i.e., T
ðHÞ
abc ¼ E HaHbHc

� �
; a; b; c 2 J.
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From the derivation of the gPC formulation, it is easy to see that the use of vector and tensor notations not only greatly
reduces the complexity of the derivation, but also clearly reveals the structure of the gPC formulation and its relation to the
deterministic Burgers’ equation. For example, the mean flow �v is still driven by the deterministic Burgers’ differential oper-

ator L�and exchanges energy with the stochastic flows V through the term �V @VT

@x . The stochastic flows V are convected by

the mean flow through term � @ð�vVÞ
@x , dissipate through term m @2V

@x2 and interact with each others through �ðva
@vb

@x T
ðHÞ
abcÞ1c.

Next we consider the m-term truncated KL expansion of the solution u ¼ �uþ UYT ¼ �uþ UAT HT . The DyBO-gPC formula-
tion of the stochastic Burgers Eq. (52) is (see Appendix B for its derivation):
@�u
@t
¼ L��u� U

@UT

@x
; ð55aÞ

@U
@t
¼ �UDT þ m

@2U
@x2 �

@ð�uUÞ
@x

 !
� ui

@uj

@x
AaiAbjAckT

ðHÞ
abc

� �
1k

þ FA; ð55bÞ

dA
dt
¼ A �CT þ m

@2UT

@x2 �
@ð�uUTÞ
@x

; U

* +
K�1

U

 !
� AaiAbjT

ðUÞ
ijk T

ðHÞ
abc

� 

ck

K�1
U þ FT ; U

D E
K�1

U ; ð55cÞ
where matrices C and D can be solved from the linear system (13) with
KUG�ðu;U;YÞ ¼ UT ; m
@2U
@x2 �

@ð�uUÞ
@x

* +
� ðTðUÞijl AaiAbjAckT

ðHÞ
abcÞlk þ UT ; F

D E
A:
In the following numerical examples, the classical fourth-order RK method is used as the ODE solver and a pseudo-spectral
method is applied for the spatial discretizations. We choose r ¼ 6 in the stochastic force (53) and multi-index set
J ¼ J3

6 n f0g, which results in totally 83 terms in the gPC expansion, i.e., jJj ¼ 83. The spatial grid size Dx is set to 1=128
and the time step Dt is set to 0:5� 10�3for both gPC and DyBO, both of which are numerically integrated to time
t ¼ T ¼ 1:0. 106 realizations are computed in the MC method to approximate the exact solution with an error of order less
than 10�3 according to the Central Limit theorem. We choose the initial condition of the stochastic Burgers Eq. (52b) as
u�ðxÞ ¼ 1

2 ðecosð2pxÞ � 1:5Þ sinð2pðxþ 0:37ÞÞ and set the viscosity m ¼ 0:005.
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Fig. 9. L2 relative errors of mean and STD as functions of time.
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To understand the source of errors in the DyBO method, we decompose the error into two parts. The first part of error is
the difference between the DyBO solution uðDyBO;Jp

r ;mÞ and the gPC solution uðgPC;Jp
r Þ. The second part of error is the difference

between the exact solution uðExactÞ and the gPC solution, uðgPC;Jp
r Þ. More precisely, we have
Table 1
Relative

Meth

NA

DyBO
DyBO
DyBO
DyBO
DyBO
� ¼ uðDyBO;Jp
r ;mÞ � uðExactÞ ¼ fuðDyBO;Jp

r ;mÞ � uðgPC;Jp
r Þg þ fuðgPC;Jp

r Þ � uðExactÞg ¼ �m þ �J:
The first part of the error �m diminishes as m!1, while the second part �J is controlled by the multi-index set J and goes to
0 as J! J11. Thus, there is no need to increase m any further once �m � �J. We write m� for such m and will verify the con-
vergence of �m and calculate m� later.

Computational complexity of the DyBO system (55) involves considerably less work than that of the gPC system (54).
Roughly speaking, for the gPC method, Np gPC coefficients, which are functions of spatial variable x, are updated at each time
iteration. However, for the DyBO method, only m spatial basis functions and one Np-by-m matrix are updated at each time
iteration. When the eigenvalues of the covariance matrix decays rapidly which is true under certain assumptions [47], m is
much smaller than Np and spatial grid number, leading to considerable computational saving.

Convergence to uðgPC;Jp
r Þ - Error �m. In Fig. 9, we plot the L2 relative errors of mean and STD computed by DyBO with

m ¼ 4;6;8;10;12 with respect to the gPC solution uðgPC;Jp
r Þ. Indeed, as the number of mode pairs in DyBO increases, the L2

errors of mean and STD decreases, indicating the convergence of uðDyBO;Jp
r ;mÞ to uðgPC;Jp

r Þ. The relative errors of mean and
STD at time t ¼ 1:0 are also tabulated in the second and the third columns of Table 1. With m ¼ 12, both errors are below
0:3%. We should point out that the DyBO-adaptive is the adaptive algorithm of DyBO method which further reduces the
computational cost and improve the accuracy. The adaptive strategy will be discussed in details in the second part of our
paper [11].

Direct Tracking of the KL Expansion. In Fig. 10, the first nine spatial basis at time t ¼ T , i.e., uiðx; TÞ; i ¼ 1;2; � � � ;9, are
plotted and compared with the ones computed from uðgPC;Jp

r Þ. Very good agreements are observed for the first six eigenfunc-
tions (the first two rows in Fig. 10). Although the 7th, 8th and 9th spatial basis are under more influences of the unresolved
mode pairs, i.e., mþ 1;mþ 2, etc. We still observe good agreements for these spatial basis (the last row in Fig. 10). This is
because the eigenvalues corresponding to the 7th, 8th and 9th spatial basis are small.

In Fig. 11, we also plot the stochastic basis Y ¼ HA. Since we never use directly the polynomial chaos set H in our com-
putation, we plot in Fig. 11(b) the Np-by-m matrix A computed in our DyBO method and in Fig. 11(c) the one computed from
the gPC solution, respectively. The stochastic basis are plotted for time t ¼ T. The meaning of both figures may deserve some
further explanations (see Fig. 11(a)). The vertical axis from the top to the bottom is the multi-index a 2 J, while the hori-
zontal axis from the left to the right is the index of stochastic mode i ¼ 1;2; � � � ;m. In this setting, each column of such plot
represents a single column aj of matrix A, i.e., a stochastic mode Yj ¼ Haj. Similarly, each row of such plot represents the
projections of all stochastic basis Y on a certain polynomial basis Hb, i.e., E YHb

� �
. From Fig. 10 and Fig. 11, we see that

the solution of DyBO can effectively track the truncated KL expansion of the stochastic Burgers’ solution even if the differ-
ential operator is nonlinear.

Computational Speedup compared to gPC. Next we consider the efficiency of DyBO compared to gPC. In the fourth and
fifth columns of Table 1, we also tabulate the relative errors of mean and STD computed by DyBO, with m ¼ 4;6;8;10;12 and
adaptive strategy, with respect to the ‘‘exact’’ solution uðgPC;J1r Þ obtained by MC method with 106 realizations. The relative
errors of mean and STD computed by the gPC method with respect to uðgPC;J1r Þ are also given in the first row. Clearly, when
m ¼ 10 or m ¼ 12, the errors of DyBO are comparable to those of gPC listed in the fist row. These results show that �m � �J

when m ¼ 10 or m ¼ 12, further increasing m will not decrease the overall error �, i.e., m� ¼ 10 or m� ¼ 12 in this numerical
example. In this case, we achieve 9:6X 
 12:7X speedup.

Numerical confirmation of invariant measure. Finally we use the DyBO method to numerically confirm the invariance
measure of stochastic Burgers equation. We choose r ¼ 8 in the stochastic force (53) and multi-index set J ¼ J4

8 n f0g. Sparse
truncation [32] is used and results in totally 96 terms in gPC expansion, i.e., jJj ¼ 96. Spatial grid size Dx is set to 1=128 and
time step Dt is set to 2:5� 10�3 for both gPC and DyBO, both of which are numerically integrated to time t ¼ T ¼ 6:0. We
choose the initial condition of the stochastic Burgers Eq. (52b) as u�ðxÞ ¼ 0:5 cosð4pxÞ, the spatial part of the stochastic force
as rðxÞ ¼ 0:5 cosð2pxÞ and set the viscosity m ¼ 0:005. It has been shown that the stochastic Burgers equation with Brownian
forcing (52) has solutions with invariant measure if

R 1
0 rðxÞdx ¼ 0 (see e.g. [18]). In Fig. 12, we plot the evolution history of
errors of statistical quantities computed by DyBO and gPC at time t ¼ 1:0.

ods Compared to uðgPC;Jp
r Þ Compared to uðgPC;J1r Þ Time (min)

Mean STD Mean STD

NA 1.1619% 2.1398% 42.1

m = 4 3.219% 5.144% 3.096% 5.556% 1.32
m = 6 2.855% 4.522% 2.935% 4.512% 2.01
m = 8 0.930% 2.112% 1.333% 2.890% 2.64
m = 10 0.444% 0.983% 1.222% 2.375% 3.32
m = 12 0.171% 0.259% 1.109% 2.122% 4.37
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Fig. 11. Stochastic basis HA computed by DyBO at time t ¼ 1:0.
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the mean and STD of the solution. One can see that the mean and STD profiles converge to a steady state. We should
point out that the adaptive DyBO method has been used in this example. Initially, we choose m ¼ 4 elements in the spatial
and stochastic basis, eventually we have m ¼ 10. Once we reach the invariant measure, the number of modes remains the
same.
6. Summary

In this paper, we have proposed and developed the DyBO method for a class of time-dependent SPDEs, whose solutions
enjoy a low-dimensional structure in the sense of KL expansions. Unlike other traditional methods, such as MC, qMC, gPC,
gSC, our DyBO method explores the inherent low-dimensional structure of the stochastic solution and essentially tracks the
KL expansion dynamically. Thus, without the need of performing additional post-processing, the DyBO methods reveal di-
rectly the intrinsic low-dimensional structures/dynamics of related physical processes. We have proved rigorously the pres-
ervation of bi-orthogonality in DyBO methods and verified it numerically in several examples. Depending on the numerical
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representations of the stochastic basis Y, three versions of DyBO methods have been proposed, i.e., DyBO-MC, DyBO-gSC,
DyBO-gPC. We have primarily focused on DyBO-gPC in this paper. Fig. 12.

By exploring the low-dimensional structure of the solution, our DyBO methods offer considerable computational savings
over other traditional methods. An important advantage of DyBO methods over other reduced basis methods is that we con-
struct the sparsest set of spatial basis on the fly without invoking any expensive offline computations. From the perspective
of gPC/gSC methods, our DyBO methods automatically use the linear combinations of polynomial chaos basis as the best set
of stochastic basis on the fly without introducing any heuristics to select multi-indices.

To the best of our knowledge, the DyBO method presented in this paper is the first systematic attempt to directly
target KL expansions and fully explore the bi-orthogonality. To make DyBO a feasible computational method, we have
overcome several challenges in both theory and numerical implementations. From the theoretical consideration, one
of the main difficulties is how to eliminate the extra degrees of freedom induced by allowing both the spatial and
the stochastic basis to change in time. From numerical implementation point of view, the adoptation of tensor/matrix
notations enables us to present the DyBO formations in a very concise form. The vector/matrix notations also greatly
simplify the codings and allow us to proceed in an intuitive way, especially for object-oriented programming languages.
Temporarily freezing spatial basis U or stochastic basis Y was proposed to deal with the special moments when eigen-
values cross each other.

There are still some limitations of the DyBO method in its present form. The most important issue is how to deal with
multiscale stochastic PDEs. When small scale features are important in our problem, the number of effective modes required
to resolve the stochastic solution increases inversely proportional to the smallest correlation length. In this case, the effective
dimension of the stochastic problem is large even if we use the KL expansion. We are currently investigating a multiscale
version of the DyBO method. The main idea is to combine multiscale techniques [2,20,26] in solving deterministic PDE with
the DyBO method to further reduce the computational complexity for solving multiscale SPDEs. The result will be presented
in a subsequent paper. Another issue is to explore the freedom in choosing the dynamic basis to avoid the numerical diffi-
culty associated with eigenvalue crossing. By working on an equivalent basis, we could work on a transformed space in
which we can derive an evolution system without suffering from the degeneracy imposed by bi-orthogonality. By tracking
this mapping dynamically, we could restore the bi-orthogonal basis on the fly. Finally, the success of our method depends
critically on our ability to adaptively add or remove modes dynamically. This is one of the main topics in the second part of
our paper.
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Appendix A. Derivation of the DyBO formulation

In this appendix, we will complete the derivation of the DyBO formulation which we began in Section 2. We continue our
derivation starting from Eq. (10). Note that Eq. (10) gives an implicit evolution system for the mean solution �u, the spatial
basis U and the stochastic basis Y of the KL expansion. On the other hand, since @U

@t and dY
dt appear on both sides of Eq. (10), we

cannot use it to update the spatial basis U and the stochastic basis Y. In this subsection, we demonstrate that the partial anti-

symmetrization ~Q of UT ; @U
@t

D E
in Eq. (10b) and the anti-symmetrization Q of E YT dY

dt

h i
in Eq. (10c) do produce an equivalent

system to the system (10) as long as U and Y are bi-orthogonal. This can be seen by taking the temporal derivative of orthog-
onality conditions (5a) and (5b),
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d
dt

UT ; U
D E

¼ dUT

dt
; U

* +
þ UT ;

dU
dt

� �
; ðA:1aÞ

d
dt

E YT Y
h i

¼ E
dYT

dt
Y

" #
þ E YT dY

dt

� 	
: ðA:1bÞ
Obviously, the off-diagonal elements of both matrices d
dt UT ; U
D E

and d
dt E YT Y
h i

are zeros due to the bi-orthogonality condition

(5), which in turn implies both matrices dUT

dt ; U
D E

and E dYT

dt Y
h i

are invariant under partial anti-symmetrization ~Q. Further-

more, Y being orthonormal implies E dYT

dt Y
h i

is anti-symmetric. On the other hand, bi-orthogonality (5) is preserved if it is

satisfied initially at t ¼ 0 and such invariance is satisfied at any later time t > 0. Thus, we conclude that the bi-orthogonality
condition (5) is preserved for all time if and only it is true initially and the following conditions hold for any t > 0:
~Qð UT ;
@U
@t

� �
Þ ¼ UT ;

@U
@t

� �
; ðA:2aÞ

QðE YT dY
dt

� 	
Þ ¼ E YT dY

dt

� 	
: ðA:2bÞ
In other words, anti-symmetrization enforces the bi-orthogonality condition, which essentially characterizes KL expansions.
After applying this result to the system (10), we arrive at
@�u
@t
¼ E L~u½ �; ðA:3aÞ

@U
@t
¼ UK�1

U
~Q UT ;

@U
@t

� �� �
þ GUð�u;U;YÞ; ðA:3bÞ

dY
dt
¼ YQ E YT dY

dt

� 	� �
þ GYð�u;U;YÞ: ðA:3cÞ
Next, we will eliminate the time derivatives from the right hand sides in Eq. (A.3b) and Eq. (A.3c). We first observe that Eq.

(A.3b) does not determine @U
@t uniquely. In fact, @U

@t � UK�1
U

~Qð UT ; @U
@t

D E
Þ is the projection of @U

@t into the orthogonal complemen-

tary set of U. Thus, we cannot determine the projection of @U
@t into the space spanned by U from Eq. (A.3b). Notice that ðU; ~UÞ

forms a complete orthogonal basis in the physical space for any given time. To determine the projection of @U
@t in the space

spanned by U, we express @U
@t in terms of the complete orthogonal basis given by ðU; ~UÞ:
@U
@t
¼ UCþ ~U~C; ðA:4Þ
where CðtÞ 2 Rm�m and ~CðtÞ 2 R1�m . We will show that ~U~C ¼ GUð�u;U;YÞ. We note that UC is the projection of @U
@t into U. The

matrix C represents the extra degrees of freedom in evolving @U
@t . We will determine these extra degrees of freedom by enforc-

ing the bi-orthogonal condition and a compatibility condition. Note that
UT ;
@U
@t

� �
¼ UT ; UCþ ~U~C
D E

¼ UT ; U
D E

Cþ UT ; ~U
D E

~C ¼ UT ; U
D E

C: ðA:5Þ
Substituting Eq. (A.5) and Eq. (A.4) into Eq. (A.3b) gives
UðC� K�1
U

~QðKUCÞÞ ¼ GUð�u;U;YÞ � ~U~C: ðA:6Þ
Recall that the left side of Eq. (A.6) is in spanðUÞ � L2ðDÞ while the right side is in its orthogonal complement. We obtain
C� K�1
U

~QðKUCÞ ¼ 0; ðA:7aÞ
~U~C ¼ GUð�u;U;YÞ: ðA:7bÞ
Similarly, the change of the stochastic basis, dY
dt , can be written in the form of
dY
dt
¼ YDþ ~Y ~D; ðA:8Þ
where DðtÞ 2 Rm�m and ~DðtÞ 2 R1�m. We will show that ~Y ~D ¼ GYð�u;U;YÞ. We note that YD is the projection of dY
dt into the

space spanned by Y. The matrix D represents the extra degrees of freedom in evolving dY
dt . First, we observe that
E YT dY
dt

� 	
¼ E Y½ �T YDþ E YT ~Y

h i
~D ¼ D: ðA:9Þ
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Substituting Eq. (A.9) and Eq. (A.8) into Eq. (A.3c), we get
YðD�QðDÞÞ ¼ GYð�u;U;YÞ � ~Y ~D: ðA:10Þ
Note that the left side of Eq. (A.10) is in spanðYÞ � L2ðXÞ and the right side is in its orthogonal complement. This gives rise to
the following equations:
D�QðDÞ ¼ 0; ðA:11aÞ
~Y ~D ¼ GYð�u;U;YÞ: ðA:11bÞ
However, Eq. (A.7a) and Eq. (A.11a) are not sufficient to determine matrices C and D. To find additional equations for C and D,
we substitute Eq. (A.4) and Eq. (A.8) back into the original stochastic partial differential Eq. (1a) and get
UðDT þ CÞYT þ U~DT ~YT þ ~U~CYT ¼ ~L~u: ðA:12Þ
Multiplying UT from the left and Y from the right on both sides of Eq. (A.12) and taking inner products �; �h i and expectations
E �½ �, we obtain the following compatibility condition for C and D:
DT þ C ¼ G�ð�u;U;YÞ; ðA:13Þ
where we have used (5a), (5b) and G�ð�u;U;YÞ ¼ K�1
U UT ; E ~L~uY

� �D E
2 Rm�m. Using Eq. (A.7a), Eq. (A.11a), and the compatibility

condition (A.13), we can determine C and D uniquely provided that ui; uih i– uj; uj
� �

for i – j. This completes our derivation
of the DyBO formulation.

Appendix B. Derivation of the DyBO-gPC formulation of stochastic burgers equation

In this appendix, we provide a detailed derivation of Eq. (52). Consider the m-term truncated KL expansion of the stochas-
tic Burgers equation solution ~u ¼ �uþ UYT ¼ �uþ UAT HT . Simple calculations give
L~u ¼ � �uþ UYT
� 
 @�u

@x
þ @U
@x

YT
� �

þ m
@2�u
@x2 þ

@2U
@x2 YT

 !
þ f ¼ L��uþ m

@2U
@x2 �

@ð�uUÞ
@x

 !
YT � UYT Y

@UT

@x
þ f :
Thus, we have
E L~u½ � ¼ L��u� U
@UT

@x
;

where we have used E YT Y
h i

¼ I; E Y½ � ¼ 0, and E½f � ¼ 0. Direct calculations give
~L~u ¼ m
@2U
@x2 �

@ð�uUÞ
@x

 !
YT � UYT Y

@UT

@x
þ U

@UT

@x
þ f ;E ~L~uY

� �
¼ m

@2U
@x2 �

@ð�uUÞ
@x

 !
þ E f Y½ � � E UYT Y

@UT

@x
Y

" #
;

~L~u; U
� �

¼ Y m
@2UT

@x2 �
@ð�uUTÞ
@x

; U

* +
þ f ; Uh i þ U

@UT

@x
; U

* +
� UYT Y

@UT

@x
; U

* +
;

KUG�ð�u;U;YÞ ¼ UT ; m
@2U
@x2 �

@ð�uUÞ
@x

* +
þ UT ; E f Y½ �
D E

� UT ; E UYT Y
@UT

@x
Y

" #* +
;

where the last terms on the right hand sides of the last three equations can be written in component forms, for
i; j; k ¼ 1;2; � � � ;m,
E UYT Y
@UT

@x
Y

" #
¼ E uiYiYj

@uj

@x
Yk

� 	� �
1k

¼ ui
@uj

@x
E YiYjYk
� �� �

1k

; UYT Y
@UT

@x
; U

* +
¼ uiYiYj

@uj

@x
; uk

� �� �
1k

¼ YiYj ui
@uj

@x
; uk

� �� �
1k

; UT ; E UYT Y
@UT

@x
Y

" #* +
¼ ui

@uj

@x
; ul

� �
E YiYjYk

� �� �
lk

;

where ð�Þ1k and ð�Þlk emphasize row vector and m-by-m matrix, respectively. We write third-order m-by-m-by-m tensors
T
ðYÞ
ijk ¼ E YiYjYk

� �
and T

ðUÞ
ijl ¼ ui

@uj

@x
; ul

� �
i; j; k; l ¼ 1;2; � � � ;m:
Clearly, TðYÞ is symmetric with respect to all three indices, i.e., TðYÞijk ¼ T
ðYÞ
permðijkÞ for 8i; j; k 2 f1;2; � � � ;mg, where permðijkÞ is any

permutation of indices i; j; k, and TðUÞ is symmetric with respect to the first and the third indices, i.e., T
ðUÞ
ijk ¼ T

ðUÞ
kji for

8i; k 2 f1;2; � � � ;mg. Such symmetries can be explored in numerical implementations to achieve further computational
reductions. Using Eq. (15), we obtain the DyBO formulation,
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@�u
@t
¼ L��u� U

@UT

@x
; ðB:1aÞ

@U
@t
¼ �UDT þ m

@2U
@x2 �

@ð�uUÞ
@x

 !
� ui

@uj

@x
T
ðYÞ
ijk

� �
1k

þ E f Y½ �; ðB:1bÞ

dY
dt
¼ Y �CT þ m

@2UT

@x2 �
@ð�uUTÞ
@x

; U

* +
K�1

U

 !
þ T

ðUÞ
iik

� 

1k

K�1
U ðB:1cÞ
where
KUG�ð�u;U;YÞ ¼ UT ; m
@2U
@x2 �

@ �uUð Þ
@x

* +
� T

ðUÞ
ijl T

ðYÞ
ijk

� 

lk
þ UT ; E f Y½ �
D E

: ðB:2Þ
Similarly, the DyBO-gPC formulation can be obtained by substituting Y ¼ HA into (B.1a)(B.2) and using the face

E YT Y
h i

¼ AT A ¼ I.
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