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This is part II of our paper in which we propose and develop a dynamically bi-orthogonal
method (DyBO) to study a class of time-dependent stochastic partial differential equations
(SPDEs) whose solutions enjoy a low-dimensional structure. In part I of our paper [9], we
derived the DyBO formulation and proposed numerical algorithms based on this formula-
tion. Some important theoretical results regarding consistency and bi-orthogonality pres-
ervation were also established in the first part along with a range of numerical examples to
illustrate the effectiveness of the DyBO method. In this paper, we focus on the computa-
tional complexity analysis and develop an effective adaptivity strategy to add or remove
modes dynamically. Our complexity analysis shows that the ratio of computational com-
plexities between the DyBO method and a generalized polynomial chaos method (gPC) is
roughly of order Oððm=NpÞ3Þ for a quadratic nonlinear SPDE, where m is the number of
mode pairs used in the DyBO method and Np is the number of elements in the polynomial
basis in gPC. The effective dimensions of the stochastic solutions have been found to be
small in many applications, so we can expect m is much smaller than Np and computational
savings of our DyBO method against gPC are dramatic. The adaptive strategy plays an
essential role for the DyBO method to be effective in solving some challenging problems.
Another important contribution of this paper is the generalization of the DyBO formulation
for a system of time-dependent SPDEs. Several numerical examples are provided to dem-
onstrate the effectiveness of our method, including the Navier–Stokes equations and the
Boussinesq approximation with Brownian forcing.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

This is the second part of the paper in developing a dynamically bi-orthogonal (DyBO) method for solving time-dependent
stochastic partial differential equations (SPDEs). It is well known that solving SPDEs is very challenging due to the introduc-
tion of random variables and/or stochastic processes. The computational cost increases exponentially fast as the number of
random variables increases, which is also known as the curse of dimensionality. In the past two decades, there has been tre-
mendous progress in numerical simulations of the SPDEs. To our knowledge, these methods can be classified into two major
groups, Monte Carlo methods [25,26,12,2] and polynomial chaos methods [31,5,11,32,33,20,14]. Monte Carlo methods are
very robust and have the advantage of being independent of the dimensionality of random variables, but they suffer from
slow convergence due to their sampling nature. Polynomial chaos methods provide more accurate approximations because
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of their spectral representation property. However, they suffer from the curse of dimensionality when the number of inde-
pendent random variables is high.

Many of physical and engineering simulation problems that appear to be high-dimensional have some hidden low-
dimensional or sparse structures. In recent years, we have witnessed a surge of interests in exploring sparse structures pre-
vailing in many physical and engineering problems. These methods include compressed sensing in signal reconstruction
[6,10], hierarchical matrix in discretization of integral operators [13], adaptive data analysis in signal processing [17,18], sig-
nal processing for speech and music via l1 minimization [23,34], proper orthogonal decomposition (POD) methods [3,30],
reduced basis (RB) methods [4,24,27] in solving parameterized PDEs, and the dynamically Orthogonal (DO) method in solv-
ing SPDEs [28,29]. Most of these methods emphasize the use of spatial basis, but ignore stochastic basis. Thus they do not
preserve the bi-orthogonality of the spatial and the stochastic basis in their expansions.

The dynamically bi-orthogonal method (DyBO) that we proposed and developed in [9] and this paper (see also [8]) aims
at preserving the dynamic bi-orthogonality, thus essentially tracking the Karhunen–Loeve expansions [19,21] of stochastic
solutions. The Karhunen–Loeve expansion provides the optimal spatial and stochastic basis in the sense that it minimizes the
total mean squared error and gives the sparsest representation of stochastic solutions. One important advantage of DyBO
over other reduced basis methods is that we construct our reduced basis on the fly without the need to compute the reduced
basis offline by sampling the stochastic solution. Another advantage of our method is that we do not need to compute the
covariance matrix, which could be very computationally expensive especially for high-dimensional problems. By solving an
equivalent system that governs the evolution of the spatial and stochastic basis, our method explores the low-dimensional
structure intrinsically hidden in a wide range of time-dependent SPDEs.

In part I of our paper [9], we introduced the derivation of dynamically bi-orthogonal formulation for time-dependent
SPDEs, and proved several theoretical properties, such as the dynamically bi-orthogonality preservation and the consis-
tency between the DyBO formulation and the original SPDE. We also gave some details on the numerical implementation
of the DyBO methods, including the representation of stochastic basis and how to deal with eigenvalue crossing. One of
the purposes of this paper is to study several important issues concerning the numerical performance of the DyBO
method. These include the computational complexity analysis and an adaptive strategy for adding or removing spatial
and stochastic basis on the fly. We also generalize the dynamically bi-orthogonal formulation for a system of SPDEs
and propose an effective parallel algorithm for DyBO. The parallel implementation is important for industrial-scale
applications.

Our complexity analysis gives a detailed comparison between the complexity of our DyBO method and that of gPC. Our
analysis shows that the ratio between the complexity of DyBO and that of gPC is of order Oðm=Nd

h þ ðm=NpÞ3Þ for a quadratic
nonlinear SPDE. Here m is the number of modes used in DyBO, Np is the number of polynomial basis functions used in gPC,
and Nd

h is the total number of spatial grid points in a d-dimensional problem. Typically, we expect m� Np and
m=Nd

h � ðm=NpÞ3. Thus the ratio of complexities between DyBO and gPC is roughly of order Oððm=NpÞ3Þ. This has been con-
firmed by our numerical experiments. Our complexity analysis also indicates that DyBO consumes less memory compared
with gPC. The ratio of memory consumptions between DyBO and gPC is of order Oðm=NpÞ.

The ability to add or remove modes dynamically is crucial for the successful applications of our DyBO method to more
challenging SPDEs. The adaptive strategy that we develop in this paper is based on solving both DyBO and gPC solutions with
the same initial condition for a short time. We then extract the dominating spatial and stochastic modes by performing KL
expansion on the difference of the two solutions. By adding these dominant modes back to the DyBO formulation, we recap-
ture previously unresolved dynamics and maintain the accuracy of our method as these unresolved components become
important later in time. We have applied this adaptive strategy to solve the 1D stochastic Burgers equation, the 2D incom-
pressible Navier–Stokes equation and the Boussinesq approximation with Brownian motion forcing. Our numerical results
indicate that the adaptive strategy indeed works quite effectively. The adaptive method gives the results that are almost
indistinguishable from those obtained by using a large m from the beginning. Further, we demonstrate the convergence
of our method as the number of modes increases.

This paper is organized as follows. In Section 2, we provide a brief overview of the DyBO formulation. We perform the
computational complexity analysis of our DyBO method in gPC version in Section 3, and compare the complexity of DyBO
with that of gPC. A parallel strategy is also proposed. In Section 4 a local error analysis between DyBO method and gPC meth-
od is conducted and an adaptivity strategy in changing the number of the spatial and stochastic basis is proposed. We gen-
eralize the DyBO formulation for a system of time-dependent SPDEs in Section 5. Several numerical examples are provided in
Section 6 to demonstrate these ideas. Finally, some conclusion remarks will be made in Section 7.

2. Overview of the DyBO formulation for SPDEs

In order to set up notations for discussion and ease readers for further reading, we give a brief overview of the DyBO for-
mulation in this section. Further details can be found in part I of this paper [9]. Consider the following time-dependent SPDE:
@u
@t
ðx; t;xÞ ¼ Luðx; t;xÞ; x 2 D � Rd; t 2 ½0; T�; x 2 X; ð1aÞ

uðx;0;xÞ ¼ u0ðx;xÞ; x 2 D; x 2 X; ð1bÞ
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Bðuðx; t;xÞÞ ¼ hðx; t;xÞ; x 2 @D; x 2 X; ð1cÞ
where L is a differential operator that may contain random coefficients and/or stochastic forces and B is a linear differential
operator. The randomnesses may also enter the system through initial u0 and/or boundary conditions B.

We assume the stochastic solution uðx; t;xÞ of the system (1) is a second-order stochastic process at each fixed time t > 0,
i.e., uð�; t; �Þ 2 L2ðD�XÞ. We consider the following truncated KL expansion,
euðx; t;xÞ ¼ �uðx; tÞ þ
Xm

i¼1

uiðx; tÞYiðx; tÞ ¼ �uðx; tÞ þ Uðx; tÞYTðx; tÞ � uðx; t;xÞ; ð2Þ
where U ¼ ðu1;u2; � � � ;umÞ and Y ¼ ðY1;Y2; � � � ;YmÞ. Define an anti-symmetrization operator Q : Rk�k ! Rk�k and a partial
anti-symmetrization operator ~Q : Rk�k ! Rk�k as follows:
QðAÞ ¼ 1
2
ðA� ATÞ; ~QðAÞ ¼ 1

2
ðA� ATÞ þ diagðAÞ;
where A 2 Rk�k and diagðAÞ is a diagonal matrix whose diagonal entries are equal to those of matrix A.
By enforcing the bi-orthogonal condition via Q and ~Q and a compatibility condition, we obtain the DyBO formulation for

the SPDE (1)
@�u
@t
¼ E½Leu�; ð3aÞ

@U
@t
¼ �UDT þ E½~LeuY�; ð3bÞ

dY
dt
¼ �YCT þ ~Leu;U� �

K�1
U ; ð3cÞ
where KU ¼ diag UT ;U
D E� �

¼ ui;uj
� �

dij
� �

2 Rm�m and ~Leu ¼ Leu � E½Leu� and the m-by-m matrices C and D can be solved un-
iquely from the following linear system,
C� K�1
U

~QðKUCÞ ¼ 0; ð4aÞ
D�QðDÞ ¼ 0; ð4bÞ
DT þ C ¼ G	ð�u;U;YÞ; ð4cÞ
where the matrix G	ð�u;U;YÞ ¼ K�1
U UT ; E½~LeuY�
D E

2 Rm�m.
The first two equations in the DyBO formulation (3) are time-dependent deterministic PDEs for the mean solution �u and

the spatial basis function U and they are coupled to the third equation, a system of stochastic ODEs for the stochastic basis
function Y. Various spatial discretization schemes, such as finite difference schemes or spectral methods, along with ODE
solvers, such as the fourth-order Runge–Kutta method can be used to solve the first two deterministic PDEs. For the numer-
ical simulations of the stochastic ODEs (3c), three representations of the stochastic modes Y have been proposed in the first
part of the paper [9], leading to three variants of DyBO method, i.e., DyBO-MC, DyBO-gSC and DyBO-gPC. In this paper, we
primarily focus on DyBO-gPC methods, although similar arguments can also be applied to DyBO-MC and DyBO-gSC.

The Cameron–Martin theorem [5] implies the stochastic modes Yiðx; tÞ’s in the KL expansion (2) can be approximated by
the linear combination of polynomial chaos, i.e.,
Yiðx; tÞ ¼
X
a2J

HaðnðxÞÞAaiðtÞ; i ¼ 1;2; � � � ;m; ð5Þ
or in a matrix form, if we write HðnÞ ¼ ðHaðnÞÞa2J as a row vector,
Yðx; tÞ ¼ HðnðxÞÞA; ð6Þ
where A 2 RNp�m and Np is the number of polynomial basis functions. The expansion (2) now reads
eu ¼ �uþ UAT HT :
We can derive equations for �u;U and A, instead of �u;U and Y. In other words, the stochastic modes Y are identified with a
matrix A 2 RNp�m, which leads to the DyBO-gPC formulation of SPDE (1),
@�u
@t
¼ E½Leu�; ð7aÞ

@U
@t
¼ �UDT þ E½~LeuH�A; ð7bÞ

dA
dt
¼ �ACT þ E½HT ~Leu�;UD E

K�1
U ; ð7cÞ
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where CðtÞ and DðtÞ can be solved from the linear system (4) with
G	ð�u;U;YÞ ¼ K�1
U UT ;E½~LeuY�
D E

¼ K�1
U UT ; E½~LeuH�
D E

A: ð8Þ
By solving the system (7), we have an approximate solution to SPDE (1)
uDyBO-gPC ¼ �uþ UAT HT :
The orthonormal property of Y implies that the columns of A are orthonormal, i.e., AT A ¼ I 2 Rm�m. We would like to point
out that AAT 2 RNp�Np in general is not an identity matrix as m� Np if the SPDE solution has a low-dimensional or sparse
structure.
3. Computational complexity analysis

As we discussed in the previous sections, the DyBO method explores the low-dimensional structure of the stochastic solu-
tions of time-dependent SPDE and represents the solution in the most compact form in the L2 sense. The DyBO method not
only offers savings in memory consumption, but also reduces the computational cost since we have much fewer entries to
update in each step time compared to gPC methods. In this section, the storage complexity and the computational cost be-
tween the DyBO-gPC method and the gPC method will be analysed and compared. We provide the analysis for a typical sce-
nario, i.e., the quadratic nonlinear PDE driven by stochastic forces. Examples of this type of SPDEs include the stochastic
Burgers equation and the stochastic Naiver–Stokes equation. In Section 6, numerical examples will be provided to confirm
the complexity analysis.

To make the discussion concrete, we assume throughout this section that the randomness is given in terms of r indepen-
dent random variables niðxÞ of the same distribution qð�Þ, and the set of polynomial chaos basis H has Np elements, i.e., the
cardinality of multi-index set jJj ¼ Np. Furthermore, Nh grid nodes are used along each direction of the hyper-cube D 2 Rd,
which results in a spatial grid of total Nd

h nodes. Such discretizations generally lead to large systems for both gSC and gPC. As
a reminder, we have assumed throughout this paper that the solutions of SPDEs under consideration enjoy low-dimensional
structures, i.e., m� Np.

3.1. Storage complexity

Consider the gPC expansion of the stochastic solution, i.e.,
ugPCðx; t; nÞ ¼ �vðx; tÞ þ
X
a2J

vaðx; tÞHaðnÞ ¼ �vðx; tÞ þ Vðx; tÞHTðnÞ; ð9Þ
where Vðx; tÞ ¼ ðvaðx; tÞÞa2J is a row vector of length Np. It is easy to derive the gPC formulation of the SPDE (1),
@�v
@t
¼ E½Lv �; ð10aÞ

@V
@t
¼ E½~LvH�: ð10bÞ
From the above gPC formulation (10), it is clear that �v and V have to be updated in each time iteration. Thus, the storage
cost of the gPC solution is proportional to OðNd

hÞ þ OðNpNd
hÞ ¼ OðNpNd

hÞ.
On the other hand, the mean �uðx; tÞ, the spatial modes Uðx; tÞ ¼ ðu1ðx; tÞ;u2ðx; tÞ; � � � ;umðx; tÞÞ and the stochastic modes

AðtÞ 2 RNp�m in the DyBO-gPC formulation (7) are updated every time iteration, which implies the memory consumption
is proportional to OðNd

hÞ þ OðmNd
hÞ þ ðOðmNpÞ ¼ OðmNd

h þmNpÞ. Here we have ignored the storage cost of axillary matrices
in the DyBO formulation, i.e., matrices C;D and G	 2 Rm�m, which are just Oðm2Þ.

The above discussion regarding the storage complexity is summarized in Table 1. Typically, the number of spatial grid

nodes is much larger than the number of polynomial basis, i.e., Nd
h 
 Np. Thus, the reduction of DyBO-gPC compared to

gPC in terms of memory consumption is O m
Np

� �
.

Table 1
Storage complexity comparison between gPC and DyBO-gPC methods.

Method Variables to update Storage complexity Reduction

gPC (10) �v ;V OðNpNd
hÞ NA

DyBO-gPC (7) �u;U;A OðmNd
h þmNpÞ O m

Np

� �
þ O m

Nd
h

� 	
� O m

Np

� �
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3.2. Computational costs for the quadratic nonlinear PDE driven by stochastic forces

We next consider the computational complexity in terms of computational time. Unlike the analysis of the storage com-
plexity in the previous section, the analysis of computational time requires knowing the specific form of the stochastic dif-
ferential operator L. Here, we consider a typical scenario, i.e., the quadratic nonlinear PDE driven by stochastic forces, where
quadratic nonlinear PDEs are defined as second-order polynomials of the solution u and its partial derivatives of any orders.

As has been shown in the first part of our paper [9], the DyBO-gPC formulation is a good approximation to the gPC for-
mulation if m is chosen properly. This in turn implies the computational time step sizes used to numerically integrate both
systems should be comparable. Thus, to compare the total computational time, we only need to compare the time required
to evaluate the right-hand sides if the same explicit ODE solver is adopted for both gPC and DyBO-gPC formulations. Before
we consider each case, we make the following two assumptions regarding the computational complexity of the spatial deriv-
atives and the stochastic forces.

Assumption 1. In our complexity analysis, we assume that the spatial derivative can be computed in linear time and the gPC
expansion of stochastic force F can be evaluated in linear time.

Under Assumption 1, any quadratic nonlinear PDE driven by stochastic forces is equivalent to the following SPDE in re-
gard to computational cost
Table 2
The com

Term

Time
@u
@t
¼ Lu ¼ ðL

�
uÞ2 þ f ¼ ðL

�
uÞ2 þ FHT ; ð11Þ
where L
�

is a deterministic linear differential operator.
We first consider the computational complexity of the gPC formulation (10). With the gPC expansion of the solution

v ¼ �v þ VHT , simple calculations give the gPC formulation for SPDE (11)
@�v
@t
¼ ðL

�
�vÞ2 þ L

�
VL
�

VT ; ð12aÞ

@V
@t
¼ 2L

�
�v L
�

V þ L
�

va L
�

vbT
ðHÞ
abc

� 	
1�c

þ F; ð12bÞ
where the third-order tensor TðHÞ ¼ ðE½HaHbHc�Þabc . The computational cost of some typical terms on the right hand sides of

(12) is listed in Table 2. Note that the third-order tensor TðHÞ only depends on the polynomial basis H and can be pre-com-

puted, so its computational cost is ignored in this analysis. To evaluate a single entry of row vector L
�

va L
�

vbT
ðHÞ
abc

� 	
1�c

, we

have to compute the summation
P

a;b2J L
�

va L
�

vbT
ðHÞ
abc, which costs OðN2

pNd
hÞ, because a single evaluation of L

�
va costs OðNd

hÞ
and a total of N2

p terms are summed up. Therefore, the total cost of the whole row vector is OðN3
pNd

hÞ.
Next we consider the computational cost of DyBO-gPC. With the truncated KL expansion of the solution eu ¼ �uþ UAT HT ,

simple calculations give the DyBO-gPC formulation for SPDE (11),
@�u
@t
¼ ðL

�
�uÞ2 þ L

�
UL
�

UT ; ð13aÞ

@U
@t
¼ �UDT þ 2L

�
�uL
�

Uþ L�uiL
�ujAaiAbjAckT

ðHÞ
abc

� �
1�k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term A

þFA; ð13bÞ

@A
@t
¼ �ACT þ 2A L

�
�uL
�

UT ;U
� �

K�1
U þ T

ðUÞ
ijk AaiAbjT

ðHÞ
abc

� �
c�k|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term B

þ FT ;U
D E

K�1
U ; ð13cÞ
where the third-order m-by-m-by-m tensor TðUÞ ¼ L
�

ui L
�

uj;uk

� �� 	
ijk

, and matrices C and D can be solved from the linear
system (4) with
putational cost of the gPC formulation.

ðL
�

�vÞ2 L
�

V L
�

VT
L
�

va L
�

vbT
ðHÞ
abc

� 	
1�c

F Total

OðNd
hÞ OðNpNd

hÞ OðN3
pNd

hÞ OðmNd
hÞ OðN3

pNd
hÞ



Table 3
The computational costs of the DyBO-gPC formulation.

Term
L
�

UL
�

UT UT ;L
�

�uL
�

U
� �

TðUÞ Term A;B or C Total

Time mNd
h m2Nd

h m3Nd
h mN3

p þm3Nd
h mN3

p þm3Nd
h
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KUG	 ¼ 2 UT ;L
�

�uL
�

U
� �

þ T
ðUÞ
ijk AaiAbjAclT

ðHÞ
abc

� �
k�l|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Term C

þ UT ;FA
D E

: ð14Þ
Please note that the Einstein summation convention is implicitly assumed and the matrix-tensor product should be com-
puted in a recursive way, i.e., AaiAbjAckT

ðHÞ
abc ¼ Aai Abj AckT

ðHÞ
abc

� �� �
. It is not difficult to find out such products can be computed in

order of OðmN3
pÞ.

The computational costs of some typical terms on the right hand side of the DyBO-gPC formulation (13) are given in Ta-

ble 3, where the estimate of term B goes as follows. The computation of TðUÞ in term B costs Oðm3Nd
hÞ, while the computation

of the matrix-tensor product AaiAbjT
ðHÞ
abc costs OðmN3

pÞ. The last step of computing tensor–tensor product costs OðNpm3Þ. Thus,

the total computational cost of term B in Eq. (13c) is Oðm3Nd
hÞ þ OðmN3

pÞ þ OðNpm3Þ 6 Oðm3Nd
hÞ þ OðmN3

pÞ since m� Np.
In light of the above discussions, the ratio of the computational costs between DyBO-gPC and gPC for the quadratic non-

linear PDE driven by stochastic force is
O
m

Nd
h

 !
þ O

m
Np

� 	3
 !

� O
m
Np

� 	3
 !

¼ O maN�b
p

� �
; ð15Þ
where the exponents a ¼ 3 and b ¼ 3. In Section 6.2, we will numerically verify these two exponents for the Navier–Stokes
equation driven by stochastic forces.

Remark 1. If the distribution of ni’s is Gaussian, the tensor TðHÞ can be quite sparse, i.e., a few non-zero entries out of total N3
p

entries. However, this may not be the case for general distributions, so we do not explore this sparsity in the above analysis.
Later in numerical results, we will show that even if such sparsity is explored in numerical implementations of the gPC method,
our DyBO-gPC method is still superior. We should also emphasize that gPC is a forward-model independent procedure while
DyBO is derived from the forward model. In this sense, DyBO uses more information about the forward model than gPC.
3.3. Parallel computation strategy

Nowadays, parallelization almost becomes an indispensable tool for successful numerical simulations of PDEs in indus-
trial applications. Although the proposed DyBO methods have explored the inherent sparsity within SPDEs themselves, fur-
ther computational reductions by parallelization are still necessary, especially for spatially three-dimensional SPDEs with
multiple physical components. Based on the computational complexity analysis in the previous section, we propose a par-
allelization strategy based on domain decomposition for the quadratic nonlinear PDE driven by a stochastic force. Specifi-
cally, the computation costs of the third-order tensor TU, term A;B and C, dominate others and bear prohibitive costs of
Oðm3Nd

hÞ. Without resorting to other fancy parallelization techniques, the definitions of these terms actually suggest a simple
strategy. We explain this in details for the computation of the third-order tensor TðUÞ while the same strategy applies to other
three terms similarly.

Suppose the whole spatial domain D is partitioned to Q disjoint subdomains Dq’s, i.e., [Q
q¼1Dq ¼ D and Dq1 \Dq2 ¼ ; for

q1 – q2. From the definition of TðUÞ, each entry
T
ðUÞ
ijk ¼

Z
D

L
�

uiL
�

ujukdx ¼
XQ

q¼1

Z
Dq

L
�

uiL
�

ujukdx ¼
XQ

q¼1

T
ðU;qÞ
ijk ; ð16Þ
where TðU;qÞ is the portion of TðUÞ on the q’th subdomain.
Assume Q processors or computational nodes are available and the qth processor is assigned to the subdomain Dq . On the

qth processor, only the solutions constrained to the subdomain Dq, i.e., �ujDi
and UjDi

, are stored in in-core memory. Thus, each
process can compute its own portion of the third-order tensor TðU;qÞ via Eq. (16). The result on each subdomain will be com-
bined at the end to get TðUÞ. The partition of domain may be problem-dependent. Numerical examples that confirm the
speedup of the parallel computation strategy will be given in Section 6.

4. Adaptive DyBO algorithms

So far, we assume that the number of the spatial and stochastic basis pairs, fui;Yig’s, in the DyBO formulation is fixed to
some integer m, which determines the number of functions U and the size of matrix A. Fixing m for all times is not a good
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strategy for practical applications. For example, some spatial and stochastic basis pairs may become negligibly small as the
system evolves. Keeping such pairs in computation not only wastes computational resource and increases computational
time, but may also bring in unexpected numerical instability since extremely small spatial modes may lead to ill-condition
of the evolution system. On the other hand, some previously neglected mode pairs may become important later on. Ignoring
them may introduce Oð1Þ numerical errors. Therefore, developing an adaptive strategy to add or remove mode pairs dynam-
ically is important for the success of DyBO method. In this section, we propose an adaptive strategy to remove and add basis
pairs on the fly for the DyBO-gPC formulation (7).

4.1. Type-KL error analysis

Our adaptive strategy is based on the analysis of a special type of error, which we call Type-KL error and is defined as
follows
�� ¼ �u� �v ; ð17aÞ
� ¼ U� VA; ð17bÞ
where v ¼ �v þ VHT is the gPC solution defined in (10). Simple calculations give
@��
@t
¼ E½Leu � Lv �; ð18aÞ

@�
@t
¼ E ð~Leu � ~LvÞH


 �
Aþ �Dþ VðAAT � IÞ E ~LeuHT

h i
; U

D E
K�1

U ; ð18bÞ
where Eq. (7b) (7c) and Eq. (4c) are used.

4.2. The adaptive algorithm

The strategy to remove modes is simple. Since the stochastic basis Y is orthonormal, i.e., E½Y2
i � ¼ 1, we only need to check

the norm of uiðx; tÞ to evaluate the importance of the mode pair ðui;YiÞ. At the end of each time step, we compute ki ¼ kuik2

and drop the ith pair fui; Yig if ki < gkmax, where g 2 ð0;1Þ is a pre-selected threshold and kmax ¼maxi¼1;2;...;mki.
The situation to add mode pairs is more involved. Essentially, we want an algorithm to know when and what to add with-

out sacrificing too much computational efficiency. A naive approach would be adding some spatial and stochastic mode pair
if the smallest eigenvalue rises above some threshold, i.e., kmin > gkmax. An immediate question is what spatial function and
random variable should be used as the initial conditions for the new spatial mode umþ1ðx; tÞ and the stochastic mode Hamþ1ðtÞ
with amþ1ðtÞ 2 RNp�1 at some time t ¼ s. What’s more, the newly added mode pair may remain small and be removed later,
which may happen repeatedly and should be avoided. In other words, we should estimate the growth rate of the largest

unresolved eigenvalue, i.e., dkmþ1
dt or

d
ffiffiffiffiffiffiffiffi
kmþ1

p
dt and check if it may potentially grow above the threshold, i.e.,

d
ffiffiffiffiffiffiffiffi
kmþ1

p
dt DT P

ffiffiffiffiffiffiffiffiffiffiffiffi
gkmax

p
after some finite time interval DT . It turns out that these two questions are related.

The basis idea for adding mode pairs is to start from the same initial condition, evolve the SPDE system by gPC and DyBO-
gPC methods for a short time Ds, respectively. We use the solution discrepancy at final time to estimate the growth rate of
unresolved eigenvalues. If the growth rate is above certain threshold, we will use the dominant mode pair as the initial con-
ditions for the new spatial and stochastic modes. This heuristic conjecture can be made more rigorous by looking at the type-
KL errors that we discussed in the previous subsection.

Suppose at time t ¼ s, the DyBO-gPC solution
euðx; s; nÞ ¼ �uðx; sÞ þ Uðx; sÞAðsÞT HðnÞT ; ð19Þ
remains a good approximation to the gPC solution, i.e.,
vðx; s; nÞ � euðx; s; nÞ: ð20Þ
However, as the system continues to evolve for a short time, discrepancy between these two solutions arises and cannot
be ignored any more. We should enrich the DyBO-gPC basis to capture this discrepancy, otherwise the type-KL error will
accumulate significantly and affect the accuracy of the DyBO-gPC solution. Specifically, we can add one pair of spatial modeffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

kmþ1ðtÞ
p

�umþ1ðx; tÞ and stochastic modes HðnðxÞÞamþ1ðtÞ to compensate such discrepancy, i.e., at time t ¼ s,
euðx; s; nÞ ¼ �uðx; sÞ þ ðUðx; sÞ; umþ1ðx; sÞÞðAðsÞ; amþ1ðsÞÞT HðnÞT

¼ �uðx; sÞ þ ðUðx; sÞ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmþ1ðsÞ

p
�umþ1ðx; sÞÞðAðsÞ; amþ1ðsÞÞT HðnÞT ; ð21Þ
where kmþ1 � 0; Uðx; sÞ; �umþ1ðx; sÞh i ¼ 0; k�uðx; sÞkL2ðDÞ ¼ 1;AðsÞT amþ1ðsÞ ¼ 0. Both
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmþ1ðtÞ

p
�umþ1ðx; tÞ and HðnðxÞÞamþ1ðtÞ are

unknown at this moment t ¼ s and will be derived later. After including the unresolved ðmþ 1Þth basis pair, the type-KL
error is given by Eq. (18b). Now let’s estimate both sides at time t ¼ s. From Eq. (20), we know that Vðx; sÞ ¼ Uðx; sÞAðsÞT , so
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�ðx; sÞ ¼ Uðx; sÞ;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmþ1ðsÞ

p
�umþ1ðx; sÞ

� �
� Uðx; sÞAðsÞT AðsÞ; amþ1ðsÞð Þ ¼ 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kmþ1ðsÞ

p
�umþ1ðx; sÞ

� �
¼ 0 as kmþ1 ! 0;
where we have used orthogonality of AðsÞ and amþ1ðsÞ in the first equality. This simply implies that the second term �D on the
right hand side of Eq. (18b) is zero at time t ¼ s. Similar calculations reveal the third term on the right hand side is also zero
as kmþ1 ! 0, i.e.,
Vðx; sÞ AðsÞ; amþ1ðsÞð ÞðAðsÞ; amþ1ðsÞÞT � I
� �

¼ Uðx; sÞAðsÞT AðsÞ; amþ1ðsÞð ÞðAðsÞ; amþ1ðsÞÞT � I
� �

¼ 0:
Therefore, only the first term on the right hand side of Eq. (18b) really contributes, which can be approximated to the
first-order accuracy OðDsÞ as follows,
E½~Lvðx; s; nÞH� ¼ E
vðx; sþ Ds; nÞ � vðx; s; nÞ

Ds
H

� �
;

E½~Leuðx; s; nÞH� ¼ E
euðx; sþ Ds; nÞ � euðx; s; nÞ

Ds
H

� �
:

Because eujt¼s ! v jt¼s as kmþ1 ! 0,
E½ð~Leu � ~LvÞH�ðA; amþ1Þjt¼s � E
euðx; sþ Ds; nÞ � vðx; sþ Ds; nÞ

Ds
H

� �
AðsÞ; amþ1ðsÞð Þ:
The last component of the above equality is
E ð~Leu � ~LvÞH

 �

amþ1jt¼s ¼ E
euðx; sþ Ds; nÞ � vðx; sþ Ds; nÞ

Ds
H

� �
amþ1ðsÞ þ OðDsÞ: ð22Þ
Now we calculate the last component on the left hand side of Eq. (18b), i.e., @�mþ1
@t ðx; s; nÞ. As kmþ1 ! 0, we have
@�mþ1

@t

����
t¼s

¼
@

ffiffiffiffiffiffiffiffiffiffi
kmþ1
p

�umþ1
� �

@t

����
t¼s

¼ d
ffiffiffiffiffiffiffiffiffiffi
kmþ1
p

dt
�umþ1

����
t¼s

þ
ffiffiffiffiffiffiffiffiffiffi
kmþ1

p @�umþ1

@t

����
t¼s

¼ d
ffiffiffiffiffiffiffiffiffiffi
kmþ1
p

dt
ðsÞ�umþ1ðx; sÞ: ð23Þ
Combining the above discussion, we have the following equality from Eq. (17),
d
ffiffiffiffiffiffiffiffiffiffi
kmþ1
p

dt
ðsÞ�umþ1ðx; sÞ � E

euðx; sþ Ds; nÞ � vðx; sþ Ds; nÞ
Ds

H
� �

amþ1ðsÞ: ð24Þ
Now consider the KL expansion of the solution discrepancy at time t ¼ sþ Ds, i.e.,
Deuðx; sþ Ds; nÞ ¼ euðx; sþ Ds; nÞ � vðx; sþ Ds; nÞ ¼
ffiffiffiffiffi
h1

p
w1ðxÞbT

1HT þ � � � ; ð25Þ
where h1;w1ðxÞ and Hb1 are the largest eigenvalue, normalized spatial and stochastic basis, respectively. The above equality
implies that the growth rate of the largest unresolved eigenvalue kmþ1 can be estimated from the largest eigenvalue of Deu.
What’s more, a sensible choice of initial conditions for the newly added basis pair umþ1ðx; sÞ and amþ1ðsÞ would be the largest
spatial and stochastic mode of Deuðx; sþ Ds; nÞ, i.e.,

ffiffiffiffiffi
h1
p

w1ðxÞ and Hb1. This strategy involves computation of gPC solutions for
a short time Ds, which can be expensive. Instead of invoking such strategy every time step, we invoke such procedure every
duration DT;DT 
 Ds. See Fig. 1 for illustrations.
Fig. 1. Illustration of strategies of adding and removing basis pairs.
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We remark that a similar strategy of removing and adding spatial and stochastic basis pairs may be developed for DyBO-
gSC and DyBO-MC. The adaptive algorithm can be generalized to add more than one pair of spatial and stochastic basis at a
time. The corresponding spatial and stochastic basis pairs can be obtained from the KL expansion of Deuðx; t; nÞ in (25). More-
over, we note that the new spatial basis umþ1 and new stochastic basis Hamþ11ðtÞ may not be perfectly orthogonal to other
basis Uðx; tÞ and HA at time t ¼ s. Due to the bi-orthogonality-preserving property of the DyBO method (see Theorem 3.1 in
[9]), such deviation from the bi-orthogonality will not be amplified.

5. Generalization of the DyBO method to a SPDE system

In addition to computational complexity analysis and adaptivity in changing basis number, the generalizations of the
DyBO method will be another focus of this paper. In this section, we will discuss the generalization of the DyBO formulation
for SPDE systems.

Many applications involve multiple physical fields, or physical components, for instance, the standard three-dimensional
incompressible Naiver-Stokes equations involve four physical components, three velocity components along x-, y-, z-axis and
pressure. When compressibility cannot be ignored, e.g., in aerodynamic [1], two additional components, typically density
and temperature fields, get involved. Therefore, generalizing the DyBO method for a system of time-dependent SPDEs is
important and necessary. More precisely, we consider a system of time-dependent SPDEs as follows:
@ul

@t
ðx; t;xÞ ¼ Llfu1;u2; � � � ;uNg; l ¼ 1;2; � � � ;N; x 2 D � Rd; t 2 ½0; T�; ð26Þ
where each Ll is a stochastic differential operator acting on the physical components u1;u2; � � � ;uN and N is the total number
of physical components. To simplify the notation, we omit the boundary condition and initial condition for each component.
When no ambiguity arises, we simply use shorthand notation
u ¼ fu1;u2; � � � ;uNg and Llu ¼ Llfu1;u2; � � � ; uNg:
Unlike a single SPDE, randomness in (26) introduced through initial conditions, boundary conditions, stochastic forcing
terms propagates not only in space and time, but also among different physical components. Randomness introduced by
one physical component may affect other components. In general, different physical components may have different sto-
chastic properties. Thus, using a common basis, such as the orthonormal polynomial basis, may not be the most efficient
way to represent the solution of a stochastic system. The most compact representations in L2 sense are the KL expansions
of each physical component, which is our starting point to derive the DyBO formulation for the SPDE system (26).

Consider the ml-term truncated KL expansion of the lth physical component ulðx; t;xÞ,
eul ¼ �ul þ
Xml

i¼1

uliYli ¼ �ul þ UlY
T
l � ul; ð27Þ
where Ul is a row vector of functions of spatial coordinate x and temporal coordinate t,
Ulðx; tÞ ¼ ðul1ðx; tÞ; ul2ðx; tÞ; � � � ;ulml
ðx; tÞÞ 2 R1�ml
and Yl is a row vector of random variables,
Ylðx; tÞ ¼ ðYl1ðx; tÞ; Yl2ðx; tÞ; � � � ;Ylml
ðx; tÞÞ 2 R1�ml :
With these preparations, we are now ready to derive our DyBO method for a system of SPDEs. We follow the steps in the
derivation of DyBO method for a single SPDE (see Section 2 of [9]) by substituting the expansion (27) into the system (26)
and using anti-symmetrization operators Q and ~Q to enforce the bi-orthogonality of the spatial and stochastic modes Ul and
Yl of each physical component ul. After projecting the growth rate of the spatial and stochastic modes @Ul

@t and dYl
dt onto them-

selves, we arrive at the generalized DyBO formulation for SPDE system (26) (see Cheng’s thesis [8] for details).
@�ul

@t
¼ E½Lleu�; ð28aÞ

@Ul

@t
¼ �UlD

T
l þ E½~LleuYl�; ð28bÞ

dYl

dt
¼ �YlC

T
l þ ~Lleu;Ul

� �
K�1

Ul
; ð28cÞ
where l ¼ 1;2; � � � ;N and eu ¼ feu1; . . . ; euNg. The matrices Cl’s and Dl’s can be solved from linear systems
Cl � K�1
Ul

~QðKUl
ClÞ ¼ 0; ð29aÞ

Dl �QðDlÞ ¼ 0; ð29bÞ
DT

l þ Cl ¼ G	lð�ul;Ul;YlÞ; ð29cÞ
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with G	lð�ul;Ul;YlÞ ¼ K�1
Ul

UT
l ; E½~LleuYl�

D E
2 Rml�ml . The boundary conditions and initial conditions for each physical components

can be obtained correspondingly. We assume the randomnesses of the SPDE system follows the same distribution, then we
can derive the DyBO-gPC formulation for the SPDE system. For DyBO-gPC, the stochastic modes Yl are presented in the form
of gPC expansions, i.e., Ylðx; tÞ ¼ HðnðxÞÞAl, where Al 2 RNp�ml . The DyBO-gPC formulation for each component is given by
@�ul

@t
¼ E½Lleu�; ð30aÞ

@Ul

@t
¼ �UlD

T
l þ E½~LleuH�Al; ð30bÞ

dAl

dt
¼ �AlC

T
l þ E½HT ~Lleu�;Ul

D E
K�1

Ul
; ð30cÞ
where ClðtÞ and DlðtÞ can be solved from
G	lð�ul;Ul;YlÞ ¼ K�1
Ul

UT
l ; E½~LleuYl�

D E
¼ K�1

Ul
UT

l ; E½~LleuH�
D E

Al: ð31Þ
Various theoretical results of the DyBO formulation for single SPDE, such as the preservation of bi-orthogonality and error
analysis can be generalized to the DyBO formulation for a SPDE system. The strategies proposed for a single SPDE such as
eigenvalues crossings and adding or removing basis pairs can also be generalized to a system of SPDE. Similar results can
be obtained for the DyBO-gSC version and DyBO-MC version. More details about the numerical implementation will be given
in the next section.

6. Numerical examples

Previous sections highlight the analytical aspects of the DyBO formulation and algorithm, this section demonstrates its
success by several numerical examples, each of which emphasizes and verifies some of analytical results in the previous sec-
tions. In the first example, a SPDE driven purely by stochastic forces is considered, which shows the necessity of adaptivity in
the DyBO method. More involved numerical examples, such as spatially two-dimensional SPDE and/or a system of SPDEs,
which require adaptivity, parallelization strategy and other numerical techniques, will also be reported in this section.

6.1. SPDE purely driven by stochastic forces

In the first numerical example, we consider the SPDE driven purely by a stochastic force f, i.e.,
@u
@t
¼ Lu ¼ f ðx; t; nðxÞÞ; x 2 D ¼ ½0;1�; t 2 ½0; T�; ð32Þ
where n ¼ ðn1; n2; � � � ; nrÞ are independent standard Gaussian random variables, i.e., ni � N ð0;1Þ. A similar example has been
used in the first part of the paper [9] for eigenvalue crossing. Here we consider a different stochastic force f to test the adap-
tive strategy proposed in Section 4. To construct such force, we consider an exact solution given in the following form,
uðx; t; nÞ ¼ �vðx; tÞ þ Vðx; tÞZTðn; tÞ; ð33Þ
where Vðx; tÞ ¼ V�ðxÞWVðtÞK
1
2
VðtÞ;Zðn; tÞ ¼ Z�ðnÞWZðtÞ;V�ðxÞ ¼ ðv�1ðxÞ; � � � ;v�mðxÞÞ with v�iðxÞ; v�jðxÞ

� �
¼ dij and

Z�ðnÞ ¼ ðZ�1ðnÞ; � � � ;Z�mðnÞÞ with E½Z�iZ�j� ¼ dij for i; j ¼ 1;2; � � � ;m. WVðtÞ and WZðtÞ are m-by-m orthonormal matrices, and

K
1
2
VðtÞ is a diagonal matrix. By differentiation, we can get the corresponding stochastic force
f ¼ @
�v
@t
þ @V
@t

ZT þ V
dZT

dt
: ð34Þ
By substituting the above equalities into DyBO-gPC system (7), we arrive at the DyBO-gPC formulation for SPDE (32)
@�u
@t
¼ @

�v
@t
; ð35aÞ

@U
@t
¼ �UDT þ @V

@t
WT

Z þ V
dWT

Z

dt

 !
E½Z�T H�A; ð35bÞ

dA
dt
¼ �ACT þ E½HT Z�� WZ

@VT

@t
þ dWZ

dt
VT ;U

* +
K�1

U ð35cÞ
and
G	ðu;U;AÞ ¼ K�1
U U; @V

@t
WT

Z þ V
dWT

Z

dt

* +
E½Z�T H�A:
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Fig. 2. Eigenvalues are plotted as function of time. k3 becomes small near t ¼ 0:25.
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dt . Solid line is the exact solution, while the dotted line are computed the adaptive algorithm

based on type-KL error analysis.
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We consider a small system m ¼ 3 and use the following settings,
V�ðxÞ ¼ ð
ffiffiffi
2
p

sinðpxÞ;
ffiffiffi
2
p

sinð5pxÞ;
ffiffiffi
2
p

sinð9pxÞÞ; Z�ðxÞ ¼ ðH1ðn1Þ;H2ðn1Þ;H3ðn1ÞÞ;

WVðtÞ ¼ PV

cos bVt � sin bVt 0
sin bVt cos bVt 0

0 0 1

0B@
1CAPT

V; WZðtÞ ¼ PZ

cos bZt � sin bZt 0
sin bZt cos bZt 0

0 0 1

0B@
1CAPT

Z;
where bV ¼ 2:0; bZ ¼ 2:0;PV and PZ are two orthonormal matrices generated randomly at the beginning, and
HðnÞ ¼ ðH1ðn1Þ;H2ðn1Þ; � � � ;H5ðn1ÞÞ. To simulate the scenario where adding and removing mode pairs are necessary, we con-
sider the following eigenvalues
K
1
2
V ¼ diagð3:0001þ sinð2ptÞ;2:0001þ sinð2ptÞ;1:0001þ sinð2ptÞÞ;
where k3 becomes very small � 10�8 near t ¼ 0:25. See Fig. 2. We use this example to test the effectiveness of our first adap-
tive method based on the type-KL error analysis. When the adaptive strategy for adding mode pairs is invoked, it is crucial to
know the growth rate of the largest unresolved eigenvalue and avoid adding such mode pair if it continues to be small in the
near future DT . This is accomplished by computing solutions by DyBO and gPC for a short time Ds and estimating the growth

rate
d
ffiffiffiffiffiffiffiffi
kmþ1

p
dt from the difference of the two solutions.

In Fig. 3, we verify the accuracy of such estimates, where the third mode pair is intentionally dropped at t ¼ 0:2 when it
becomes small ð� 10�3Þ and never put back in the remaining computation. The solid line is the exact growth rate of the larg-

est unresolved eigenvalue, i.e., d
ffiffiffiffi
k3

p
dt , while the dotted line is the estimate. In computations, we actually use different short

time duration Ds ¼ 8dt;4dt;2dt; dt to verify the convergence of such estimate. However, all of theses estimates cluster to-
gether and cannot be distinguished from the figure. As we can see from Fig. 3, such estimates are very accurate when the
largest unresolved eigenvalue is indeed small and become less accurate when the largest unresolved eigenvalue is not so
small compared to the resolved ones.

In Fig. 4, we consider the effect of the invoking frequency for adding mode pairs, i.e., 1
DT. If no mode pair is added, the rel-

ative error of STD at t ¼ 1:0 is about 26%. When the adaptive algorithm is incorporated, the error can be brought down to
6 1:5% depending on the invoking frequency. The threshold g in the adaptive algorithm is taken to be 10�4 and

ffiffiffigp ¼ 10�2,
so we see such difference is relatively marginal. We will continue to demonstrate the effectiveness of the adaptive algorithm
in more involved numerical examples in the following subsections.
6.2. 2D stochastic flow

As a model to test numerically the proposed DyBO formulation for a spatially two-dimensional nonlinear SPDE, we con-
sider the incompressible Navier–Stokes equations driven by stochastic forces. Specifically, we consider the stochastic flow in
an unit square, i.e., D ¼ ½0;1� � ½0;1�, with periodic boundary conditions on both spatial directions x and y (see Fig. 5(a)). The
governing equation of this stochastic flow is the Stochastic Navier–Stokes equations (SNSEs). For spatially two-dimensional
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Fig. 5. Stochastic flows driven by stochastic force f in 2D unit square.
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incompressible flow problems, it is more convenient to use the vorticity-stream function formulation. The vorticity-stream
function formulation gives w ¼ @v

@x � @u
@y and w, with velocity u ¼ @w

@y and v ¼ � @w
@x. The vorticity-stream formulation is given by
@w
@t
¼ Lw ¼ � u

@

@x
þ v @

@y

� 	
wþ mDwþ @f2

@x
� @f1

@y

� 	
; ð36Þ

� Dw ¼ w; ð37Þ

u ¼ @w
@y

; v ¼ � @w
@x

: ð38Þ
We assume the randomness is given in terms of r independent standard Gaussian random variables, n ¼ ðn1; n2; � � � ; nrÞ,
and the initial vorticity is deterministic, i.e., wðx; y;0; nÞ ¼ w�ðx; yÞ. That is to say, the randomness is injected into the system
only through the stochastic force f ¼ ðf1; f2Þ. In the following numerical example, we choose m ¼ 2:0� 10�4 and adopt the
initial vorticity field used in [14,22],
w�ðx; yÞ ¼ const � 1
2d1

exp � IðxÞðy� 0:5Þ2

2d2
1

 !
;

where IðxÞ ¼ 1þ d2ðcosð4pxÞ � 1Þ and the constant is taken such that
R
D

w�dxdy ¼ 0. d1 ¼ 0:025 and d2 ¼ 0:3, so the initial
vorticity concentrates in a narrow band along y ¼ 0:5 as shown in Fig. 5(b), which models a perturbed flat vortex sheet in
the limit that d1 ! 0. For the driving stochastic force f, we consider an approximated version of Brownian force
f ¼ ðr1ðx; yÞB1ðtÞ;r2ðx; yÞB2ðtÞÞ (see [8,9,22,14] for the details of the construction)
@f2

@x
� @f1

@y

� 	
¼ � @r1

@y

X4

i¼1

1ffiffiffi
T
p Mi

t
T

� 	
ni þ

@r2

@x

X8

i¼5

1ffiffiffi
T
p Mi�4

t
T

� 	
ni ¼ FHT : ð39Þ
The functions r1 and r2 are chosen such that
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@r1

@y
¼ 0:3p cosð2pxÞ cosð2pyÞ; @r2

@x
¼ 0:3p sinð2pxÞ sinð2pyÞ:
The derivations of gPC or DyBO-gPC formulations of SNSE is standard. By considering the gPC expansion w ¼ �wþWHT ,
we can derive the gPC formulation of SNSE (36),
@ �w
@t
¼ mD�w�Dð�u;�vÞ�w �DðU;VÞW; ð40aÞ

@W
@t
¼ mDW�Dð�u;�vÞWT �DðU;VÞ�w � Dðua ;vaÞwb

T
ðHÞ
abc

� �
1�c
þ F; ð40bÞ
where Dð�;�Þð�Þ is a generalized material derivative defined as follows. For a scalar or row-vector field h under scalar or row-
vector velocity field u and v,
Dðu;vÞh ¼

u @h
@xþ v @h

@y ; u;v ; h are scalars;

u @h
@xþ v @h

@y ; u;v are scalars and h is a row vector;
@h
@x uþ @h

@y v; u;v are row vectors and h is a scalar;

u @hT

@x þ v @hT

@y ; u;v ; h are row vectors;

8>>>>><>>>>>:
ð41Þ
where u and v can be row vectors of the same length and the right hand side is understood in the usual sense of vector-vector
multiplications or scalar-vector multiplications.

The DyBO-gPC formulation of SNSE (36) can be obtained by considering the m-term truncated KL expansion
w ¼ �wþWAT HT , see A for more details about its derivation.
@ �w
@t
¼ mD�w�Dð�u;�vÞ �w �DðU;VÞW; ð42aÞ

@W
@t
¼ �WDT

w þ mDW�Dð�u;�vÞW �DðU;VÞ �w

 �

� Dðui ;v iÞwj
AaiAbjAckT

ðHÞ
abc

h i
1�k
þ FA; ð42bÞ

dA
dt
¼ A �CT

w þ mDWT � Dð�u;�vÞW
� �T � DðU;VÞ�w

� �T
;W

D E
K�1

W

� �
� T

ðWÞ
ijk AaiAbjT

ðHÞ
abc

h i
c�k

K�1
W þ FT ;W

D E
K�1

W ; ð42cÞ
where matrices Cw and Dw can be solved from the linear system (4) from G	w,
KWG	w ¼ WT ; mDW�Dð�u;�vÞW �DðU;VÞ �w

D E
� ½TðWÞijk AaiAbjAclT

ðHÞ
abc�k�l þ WT ; F

D E
A:
For notation compactness, the spatial basis W in DyBO-gPC formulation should not be confused with the notation in gPC
formulation (39).

Both the gPC system and DyBO-gPC systems are numerically solved by the fourth-order RK method with time step
Dt ¼ 10�3 on a 128� 128 spatial grid. The pseudo-spectral method with the 36-dealiasing rule [15,16] is used to compute
spatial derivatives. Various numerical results are presented in the following.

Verification of complexity analysis. Clearly, SNSE (36) is a quadratic nonlinear PDE driven by stochastic forces, so the com-
putational complexity analysis in Section 3 is applicable. Before presenting computational results, we first verify the com-
plexity analysis, i.e., Eq. (15). To this end, we record the wall time of a single time step when the gPC system (39) or the
DyBO-gPC system (41) is numerically integrated by the fourth-order Runge–Kutta method. For Np ¼ 80;100;120 and
m ¼ 4;8;12;16, the computational times are summarized in Table 4. To improve the accuracy of recorded wall times, we
actually compute the average wall time of 10 time iterations.

In Table 4, the exponents a and b in Eq. (15) are estimated by linear regression. The last column uses wall times corre-
sponding to m ¼ 8;12;16 , while the second to last column uses all four values of m. As we can see from the fourth column of
the table, the computational time is relatively small when m ¼ 4. In this case, the dominant terms in our previous analysis
may not truly dominate other terms and some inevitable programming overheads, such as memory allocations and function
ison of wall times of a single RK step of gPC and DyBO-gPC systems.

gPC (sec) DyBO-gPC (sec) a

Sparse Non-Sparse m ¼ 4 m ¼ 8 m ¼ 12 m ¼ 16 a1 a2

17.242 772.10 0.3946 1.6238 4.8850 10.5483 2.3670 2.7006
26.302 1482.7 0.4221 1.5666 4.9577 10.7119 2.3334 2.7779
36.440 2558.3 0.4246 1.6567 5.0451 10.8200 2.3342 2.7099

b-Sparse 1.6621 1.8056 1.7683 1.7844
b-Non-Sparse 2.7683 2.9117 2.8744 2.8905
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Fig. 6. Wall times of a single RK step of the DyBO-gPC system. The horizontal axis is the number of mode pairs, m.
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calling overheads, may kick in. In Fig. 6 accompanying Table 4, the computational times corresponding to m ¼ 8;12;16 align
nicely into a straight line for each Np ¼ 80;100;120, respectively, but the computational times corresponding to m ¼ 4 drift
up. If we remove these points from our fitting, the linear regression estimate of the exponent a in Eq. (15) would be approx-
imately equal to 2.73, close to the theoretically predicated value 3.

As we mentioned in Remark 1, TðHÞ is very sparse when Hermite polynomials are used for Gaussian random variables. In
Table 4, we also report the wall times of gPC in the second and third columns, respectively, depending on whether such
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Fig. 7. Mean and STD of the vorticity field at time t ¼ 1:0. The left column is computed by DyBO-gPC, while the right column is computed by gPC.
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sparsity is explored or not in the numerical implementation of gPC methods. Clearly, the computational cost is significantly
smaller if such sparsity is considered. However, we may not have such luxury for arbitrary non-Gaussian random variables,
i.e., general distributions. In the last two rows of Table 4, the exponent b is estimated by linear regression, respectively, when
sparsity is explored or not. The last row gives � 2:9 for the exponent b confirming our analysis in Eq. (15).

Numerical errors of DyBO-gPC. The number of polynomial basis functions Ha grows exponentially fast as the number of
random variables r and the total order p increase. The scheme of sparse truncation proposed in Luo’s thesis [22] (see also
[14]) proves to be a relatively effective method to alleviate the situation. In the following computation, we follow this
scheme and choose a multi-index set J obtained from a sparse truncation of the multi-index set J3

8,
0.

0.

0.

0.

0.

0.

0.

0.
J ¼ fa 2 J3
8 and if j a j¼ 3; then a2 6 2;a3 6 1;a4 6 1;a6 6 2;a7 6 1;a8 6 1g n f0g;
which still results in total 130 multi-indices!
The mean and the STD of the vorticity field and the first four spatial modes in the KL expansion of the vorticity field at

time t ¼ 1:0 are given in Fig. 7 and Fig. 8, respectively. In both figures, the results by our DyBO-gPC method with m ¼ 8 are
given in the left column and compared to the results by the gPC method in the right column. The results are almost indis-
tinguishable. We further confirm the convergence of DyBO-gPC to gPC by plotting the relative errors of both mean and STD of
the vorticity field as functions of time in the top two subplots of Fig. 9.

In the same figure, we also report the relative errors as functions of time when the adaptive strategy of adding and/or
removing basis pairs is enacted. Two numerical examples are provided: one starts with four basis pairs, i.e., m0 ¼ 4 and
the other starts with six basis pairs, i.e., m0 ¼ 6. In Fig. 9(c), the number of basis pairs in the DyBO-gPC method is plot-
ted against time t. Because of the special form of the stochastic force f considered in this numerical example, the ran-
domness is only introduced through low-order gPC coefficients and then spread to the mean and other high-order gPC
coefficients. At the beginning of the evolution of the stochastic flow, the randomness is not strong and the adaptive algo-
rithm finds no need to add new basis pairs before time t ¼ 0:35. As the system evolves, the randomnesses get strong
through interactions among different basis pairs and the adaptive algorithm automatically adds more basis pairs when
necessary.

Avoiding selection of multi-index Set J. The gPC method suffers greatly from the curse of dimensionality. In the above
numerical example, we use low-order (6 3) polynomials and also the sparse truncation technique to further reduce the size
of multi-index set J, which still results in a set of 130 polynomials. It takes more than 8 h of wall time to numerically inte-
grate the gPC system from t ¼ 0:0 to t ¼ 1:0. Adaptive gPC methods try to include only the most important gPC coefficients
wa in the computation, i.e., a selection of multi-index set J.

In Fig. 10(a), we plot the energy spectrum of the gPC solution at t ¼ 1:0, i.e., the L2 norm of the gPC coefficient wa, which
does not decay monotonically. Index J is a multi-index set, so we do not have sufficient information and a good strategy,
prior to the computation, to sort J and select the most important ones.

On the other hand, our DyBO method tracks the KL expansion of the true solution and automatically includes only the
most important ones. Furthermore, the KL expansion is known to provide the most compact representation of a second-
order stochastic process, so the energy spectrum of the DyBO solution, i.e., the L2 norm of the DyBO-gPC coefficient
wi; i ¼ 1;2; . . . ;m, has a faster decay rate even compared to the sorted energy spectrum of gPC solution (see Fig. 10(b)).
This difference in the decay rate implies that our method leads to a smaller system to solve, leading to less computational
cost.
0 0.2 0.4 0.6 0.8
0

2

4

6

8

−5

0

5

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

−1

0

1

2

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

−2

−1

0

1

2

0 0.2 0.4 0.6 0.80

0.2

0.4

0.6

0.8

−1

0

1

0 0.2 0.4 0.6 0.8
0

2

4

6

8

−5

0

5

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

−1

0

1

2

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

−2

−1

0

1

2

0 0.2 0.4 0.6 0.8
0

0.2

0.4

0.6

0.8

−1

0

1

Fig. 8. The first four spatial basis at time t ¼ 1:0. Top are computed by DyBO-gPC, while the bottom are computed by gPC.
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To further illustrate and understand the benefits of the DyBO method, we consider a little ‘‘stronger’’ stochastic force
@f2

@x
� @f1

@y

� 	
¼ � @r1

@y

X4

i¼1

it
T

ni þ
@r2

@x

X8

i¼5

ði� 4Þt
T

t
T

� 	
ni: ð43Þ
With this stochastic force, the sorted energy spectrum of both gPC and DyBO solutions along with the square roots of
eigenvalues are plotted in Fig. 11(a). Clearly, the energy spectrum of DyBO decays much faster than that of gPC.

Once the gPC coefficients wa’s are sorted in the descending order in L2 norm, we can use the first several gPC coefficients,
i.e., the most important ones, to compute a solution and compare with the exact one. The relative errors of STD computed by
this procedure are plotted in Fig. 11(b) against the number of gPC coefficients.

At the first glance, this procedure may seem effective. But we would like to point out that the multi-indices a’s corre-
sponding to the most important gPC coefficients are in general not known prior to the beginning of computations. What’s
more, such set of multi-indices may change with respect to time t, making the selection of an effective multi-index set J

even harder. Moreover, the less important gPC coefficients excluded from the gPC system may induce additional errors when
Fig. 10. Comparison of energy spectrum of gPC and DyBO solutions at time t ¼ 1:0.



Fig. 11. Comparisons of gPC and DyBO methods.
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Fig. 12. Stochastic basis computed by DyBO and gPC.
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we solve the system which only includes the most important ones. In fact, we observe that the solution obtained by this pro-
cedure is less accurate than that by our DyBO method with the same number of basis pairs, as shown in Fig. 11(b). With only
8 basis pairs, our DyBO method achieves the same accuracy (� 0:5%) as that by gPC method with 60 gPC coefficients. By
using Table 4, we can estimate speedup in this case. When the sparsity of tensor TH is not exploited in the numerical imple-
mentation of gPC, the speedup is� 200X (327:8 s v.s. 1:6567 s per time iteration). When the sparsity is exploited (see Remark
3.1 in Section 3.2), the speedup is � 6X (10:628 s v.s. 1:6567 s per time iteration). Fig. 11(a) also confirms numerically that
our DyBO method can accurately recover the eigenvalues in the KL expansion.

Looking into the stochastic basis Y ¼ HA reveals the origin of the fast error decay in our DyBO-gPC method. In Fig. 12, we
plot the stochastic basis computed by DyBO in the second figure and ones recovered from the gPC solution in the third figure,
respectively. Clearly, each stochastic basis Yi is a linear combination of several, possibly many, gPC basis. Therefore, unlike gPC
methods, where the stochastic basis H is fixed and does not change with time, the DyBO method aggregates the polynomial
basis and forms a more efficient stochastic basis Y. Moreover, this set of stochastic basis is automatically adapted in time.
6.3. 2D stochastic flow driven by buoyance force

As a model to test numerically the generalized DyBO formulation for a system of time-dependent SPDEs, we consider the
Navier–Stokes equations whose velocity components are driven by both stochastic forces and buoyancy forces due to small



(a) (b)
Fig. 13. Stochastic flow driven by stochastic force and buoyancy force due to Boussinesq approximation. On the left: diagram of the stochastic flow in an
unit square. The gravity is downward parallel to y-axis and periodic boundary conditions are assumed on both x and y directions. On the right, the initial
temperature field is plotted, while the initial vorticity is uniformly zero.
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density difference induced by temperature variations. Specifically, we consider the stochastic flow in an unite square, i.e.,
D ¼ ½0;1� � ½0;1�, with periodic boundary conditions on both spatial directions. See Fig. 13(a).

The temperature field is not spatially uniform and causes variations of the density field. Such variations are small because
we assume the thermal expansion coefficient is very small. The induced buoyancy force may drive the flow motion in addi-
tion to external stochastic forces. Here, we adopt the Boussinesq approximation to model such buoyancy force. The govern-
ing SPDE of such stochastic flow in Fig. 13(a) is the Stochastic Navier–Stokes equations (SNSE)
@h
@t
þ u

@h
@x
þ v @h

@y
¼ jDh; ð44aÞ

ut þ u � ru ¼ mMu�rpþ f þ F ð44bÞ
r � u ¼ 0; ð44cÞ
where the viscosity m ¼ 2:0� 10�4 and the thermal diffusivity j ¼ 2:0� 10�4 . h is temperature field, u ¼ ðu;vÞ is the velocity
field, p is the pressure, f ¼ ðf1; f2Þ is the zero-mean stochastic force vector and F ¼ ð0;lghÞ is the buoyancy force, where l is
the thermal expansion coefficient, g is the gravity of Earth and scaled gravity lg ¼ 11:31 (see [7] for more details).

At the first glance, this numerical example is similar to the one in Section 6.2 except introducing the additional temper-
ature field and gravity effect. However, the stochastic flow is very different from the one considered previously for the fol-
lowing reason. We see that the buoyancy force depends on the gradient of temperature field and is actually a stochastic
force. In other words, the stochastic flow considered in this section is driven by two kinds of stochastic forces: one ‘‘external’’
stochastic force injecting randomness from the ambient environment into the unit square and one ‘‘internal’’ stochastic force
feeding randomness back to the system, from temperature component to vertical velocity component. Such stochastic flow
provides a severe test model for our generalized DyBO methods.

Like the previous numerical example, it is convenient to consider the vorticity-stream function formulation in the stan-
dard form defined in the system of SPDEs (26),
@h
@t
¼ Lhfh;wg ¼ � u

@

@x
þ v @

@y

� 	
hþ jDh; ð45aÞ

@w
@t
¼ Lwfh;wg ¼ � u

@

@x
þ v @

@y

� 	
wþ mDwþ @f2

@x
� @f1

@y

� 	
þ lg

@h
@x
: ð45bÞ
Consider the finite-term KL expansion of the solutions of SNSE (44),
h ¼ �hþ hYT ¼ �hþ hAT HT ; ð46aÞ
w ¼ �wþWZT ¼ �wþWBT HT ; ð46bÞ
where row vectors h ¼ ðh1; h2; � � � ; hmh
Þ and W ¼ ðw1;w2; � � � ;wmw Þ, and matrices A 2 RNp�mh and B 2 RNp�mw . We write basis

number vector m ¼ ðmh;mWÞ. By substituting the above expansion into Eq. (29), we obtain the DyBO-gPC formulation for
SNSE (44) (see A for details). The system of equations for the temperature component are
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@�h
@t
¼ jD�h�Dð�u;�vÞ�h �DðU;VÞ hAT Bð Þ; ð47aÞ

@h

@t
¼ �hDT

h þ jDh�Dð�u;�vÞh �DðU;VÞ�h BT A� Dðui ;v iÞhj
BaiAbjAckT

ðHÞ
abc

h i
1�k
; ð47bÞ

dA
dt
¼ A �CT

h þ j DhT ; h
� �

K�1
h � ðDð�u;�vÞhÞT ; h

D E
K�1

h

� �
� B DðU;VÞ�h

� �T
; h

D E
K�1

h � T
ðhÞ
ijk BaiAbjT

ðHÞ
abc

h i
c�k

K�1
h ; ð47cÞ
where matrices Ch and Dh can be solved from the linear system (4) from G	h,
KhG	h ¼ j hT ;Dh
� �

� hT ;Dð�u;�vÞh
� �

� hT ;DðU;VÞ�h
� �

BT A� T
ðhÞ
ijk BaiAbjAclT

ðHÞ
abc

h i
k�l
: ð48Þ
The system of equations for the vorticity component are
@ �w
@t
¼ mD �w�Dð�u;�vÞ �w þ lg

@�h
@x

� 	
�DðU;VÞW; ð49aÞ

@W
@t
¼ �WDT

w þ mDW�Dð�u;�vÞW �DðU;VÞ �w

 �

þ lg
@h

@x
AT B� Dðui ;v iÞwj

BaiBbjBckT
ðHÞ
abc

h i
1�k
þ FB; ð49bÞ

dB
dt
¼ B �CT

w þ mDWT � ðDð�u;�vÞWÞT � DðU;VÞ �w
� �T

;W
D E

K�1
W

� �
þ lgA

@hT

@x
;W

� �
K�1

W � T
ðWÞ
ijk BaiBbjT

ðHÞ
abc

h i
c�k

K�1
W

þ FT ;W
D E

K�1
W ; ð49cÞ
where matrices Cw and Dw can be solved from the linear system (4) from G	w,
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Fig. 14. STD of vorticity and temperature fields at time t ¼ 1:0. Left column by DyBO and right column by gPC.
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KWG	w ¼ WT ; mDW�Dð�u;�vÞW �DðU;VÞ�w

D E
þ WT ;lg

@h

@x

� �
AT B� T

ðWÞ
ijk BaiBbjBclT

ðHÞ
abc

h i
k�l
þ WT ;F
D E

B: ð50Þ
Both the gPC system and the DyBO-gPC system are numerically integrated by the fourth-order RK method with a time
step Dt ¼ 10�3. Unlike the stochastic flow only driven by the stochastic force in the previous numerical example, we found
by numerical experiments a higher-resolution spatial grid is necessary to resolve some fine structures. Thus, we use
256� 256 spatial grid in the numerical simulations. Computations on higher resolution grid, 512� 512, are also performed
for the gPC method to make sure that the solution is indeed well-resolved. The pseudo-spectral method with the 36-deali-
asing rule [15,16] is used to compute spatial derivatives. For the DyBO method, the gPC solution at DT0 ¼ 0:2 are used as
initial conditions. Different values of DT0, such as 0:1 and 0:15, have also been used and no significant differences have been
found. Here, we use the sparse truncation technique and choose the multi-index set
J ¼ fa 2 J3
8 and if j a j¼ 3; then a2 6 2;a3 6 1;a4 6 1;a6 6 2;a7 6 1;a8 6 1g n f0g:
Both initial vorticity and temperature field are assumed to be deterministic. In this example, we are primarily interested
in the combined effect of stochastic force f and the stochastic buoyancy force, so the vorticity is assumed to be zero initially.
We adopt the initial temperature field from [7],
hðx; y;0; nÞ ¼ h�ðx; yÞ ¼ 1
2

Hd1 ðylbðxÞ � yÞ þ 1
2

Hd1 ðyubðxÞ � yÞ; ð51Þ
where ylbðxÞ ¼ 1
2� d2 � d3y0ðxÞ; yubðxÞ ¼ 1

2þ d2 þ d3y0ðxÞ; y0ðxÞ ¼ 1þ sinð2pðxþ 3
4ÞÞ, and the modified Heaviside step function

H�ðzÞ ¼ xþ�
2� þ 1

2p sin px
�

� �
. In Fig. 13(b), the initial temperature field h�is plotted.

In the first numerical example, we choose basis number vector m ¼ ð7;8Þ. In Fig. 14, STD fields of vorticity and temper-
ature are plotted at time t ¼ 1:0 with the results by DyBO in the left column and ones by gPC in the right column. We also
compare the spatial basis of vorticity and temperature, W and h, given by DyBO and gPC at time t ¼ 1:0, respectively (not
shown here, see [8]). These results confirm that the solutions given by DyBO are not only a good approximation to the solu-
tion given by gPC, but also track directly the KL expansion of the SPDE solution.

To further study the numerical convergence of our DyBO method, we choose another two basis number vectors,
m ¼ ð3;4Þ and m ¼ ð9;10Þ, and repeat the DyBO computation. The relative errors of vorticity and temperature STD fields
as functions of time are plotted in Fig. 15a) and (b), respectively. When the basis number vector is increased from
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Table 5
Speedups by proposed parallelization strategy for different spatial grids and mode number vectors. Wall times of a single RK time step for different parameters
are given in seconds, fourth, sixth and eighth columns. All times are in seconds.

# proc 256� 256 512� 512

m ¼ ½7;8� m ¼ ½19;20� m ¼ ½7;8� m ¼ ½19;20�

Time Speedup Time Speedup Time Speedup Time Speedup

Serial 1.6930 NA 19.529 NA 10.658 NA 71.372 NA
2 1.2618 1.34 11.150 1.75 6.8218 1.56 34.471 2.07
4 1.0216 1.66 6.9873 2.79 4.4738 2.38 20.600 3.46
6 0.9787 1.73 4.4082 4.43 3.7902 2.81 16.940 4.21
8 0.9197 1.84 3.1262 6.25 3.5095 3.03 15.182 4.70
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m ¼ ð3;4Þ to m ¼ ð9;10Þ, the relative error of STD is brought down from 11:9% to 1:8% for vorticity and from 10:7% to 1:8%

for temperature, respectively.
In the above numerical simulation, we have intentionally chosen mW ¼ mh þ 1 due to the fact that the vorticity is more

singular than the temperature in general and requires more modes to resolve the stochastic solution accurately. However, in
general, the specific number of modes required in numerical simulations would be problem dependent. Furthermore, when
the adaptive strategy developed in Section 4 is incorporated, such guess of mode numbers is eliminated. The number of
modes for both components will adjust automatically on the fly as demonstrated in the next numerical example. Initially,
the basis number vector is chosen as m0 ¼ ð5;6Þ. As we can see in the top two plots in Fig. 15, good accuracy is preserved
as basis pairs are automatically added when necessary (see Fig. 15(c) for the evolution of numbers of vorticity and temper-
ature basis pairs).

The parallelization strategy proposed in Section 3.3 for the quadratic nonlinear PDE driven by a stochastic force is imple-
mented via POSIX multi-threaded programming in C++ and hooked to the main matlab code via matlab external APIs. Since
we use FFT in the pseudo-spectral method, a simple domain partition scheme (see Cheng’s thesis [8] for details) is adopted
for the maximum performance of FFT. The simulations are conducted on the Shared Heterogeneous Cluster (SHC) at Caltech
Center for Advanced Computing Research (CACR). Due to the limitations posted by available campus matlab licenses, our
simulation is constrained onto a single computing node where total 8 computing cores are available from two AMD Opteron
2390 of 2.5 GHz.

For two spatial grids, 256� 256 and 512� 512, the wall times of a single RK iteration steps are recorded and reported in
Table 5 for serial computation and parallel computation with 2;4;6 and 8 cores, respectively. Speedups of parallel strategies
are also reported in the same table. Two mode number vectors m ¼ ð7;8Þ and m ¼ ð19;20Þ are used in the computation.
Confirming our complexity analysis, the speedup is more significant for larger spatial grid and more mode pairs. For exam-
ple, the computational time on 8 cores is reduced to 1=6 on 256� 256 spatial grid compared to that on a single core.
7. Conclusions

The DyBO method proposed in the first part of our paper [9] exploits the intrinsic data-sparsity of SPDEs, tracks the KL
expansion of the stochastic solutions, and provides an efficient numerical method for time-dependent SPDEs. In addition
to providing applications for stochastic flow driven by stochastic forces, we also make the following important contributions
to this method in this paper:

Computational complexity analysis. Detailed computational complexity analysis has been conducted, which shows a
speedup factor of Oððm=NpÞ3Þ over the standard gPC method for a quadratic nonlinear PDE driven by a stochastic force.
We have observed considerable speedups in the 2D stochastic flow problem. Furthermore, a simple, yet powerful, parallel-
ization strategy based on domain decomposition of the spatial domain was proposed and its parallel efficiency was numer-
ically verified.

Adaptive strategy for adding and removing mode pairs. Based on the analysis of the type-KL error, a sophisticated strategy
has been proposed to adaptively and dynamically add or remove spatial and stochastic mode pairs by using the short-time
‘‘burst’’ of the DyBO-gPC and gPC method. The effectiveness of such strategies have been demonstrated in our numerical
examples. We are currently exploring alternative adaptive strategy based on l1 optimization to avoid the need of computing
gPC solution for a short time..

Generalizations to a system of SPDEs. We have generalized the DyBO method for a system of SPDEs and applied it to solve a
2D Boussinesq approximation driven by both stochastic external forces and buoyancy forces. Such generalization potentially
provides a way to tackle problems involving both multiscale phenomena and randomnesses. For example, the stochastic
solution can be first decomposed into different spatial scales and then the generalized DyBO method can be applied to
the system of SPDEs of stochastic solution components on different scales. The DyBO method can also be generalized to track
KL expansion of SPDE solution in other Sobolev space, which will be reported in the subsequence paper.
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Appendix A. Derivations of the DyBO formulation of SNSE

The derivations of the DyBO formulation of (36) and (44) are very similar. In this appendix, we provide the details of the
derivations of the DyBO-gPC formulation of SNSE (44) as an example. Substituting the KL expansion into the Poisson equa-
tion for the steam function (37), we have
�Dw ¼ �wþWZT ; ðA:1Þ
which implies an expansion w ¼ �wþ wZT with
� D�w ¼ �w;
� Dw ¼W:
From the above expansion of w, it is easy to get expansions of u and v,
u ¼ @
�w
@y
þ @w
@y

ZT ¼ �uþ UZT ; i:e:; �u ¼ @
�w
@y
¼ � @

@y
D�1 �w;U ¼ @w

@y
¼ � @

@y
D�1W;

v ¼ � @
�w
@x
� @w

@x
ZT ¼ �v þ VZT ; i:e:; �v ¼ � @

�w
@x
¼ @

@x
D�1 �w;V ¼ � @w

@x
¼ @

@x
D�1W:
Note that all these expansions of w;u and v are not necessarily KL expansions.
First, we derive the equation for the temperature. Substituting the KL expansion into Eq. (45b), we get
Lhfh;wg¼� �u
@�h
@x
þ �v @

�h
@y

� 	
þjD�hþ½jDhAT � �u

@h

@x
þ �v @h

@y

� 	
AT � @�h

@x
Uþ@

�h
@y

V
� 	

BT �HT �UBT HT HA
@hT

@x
�VBT HT HA

@hT

@y
:

Taking expectations on both sides yields
E Lhfh;wg½ � ¼� �u
@�h
@x
þ �v @

�h
@y

� 	
þjD�h�UBT A

@hT

@x
�VBT A

@hT

@y
;

~Lhfh;wg ¼ jDhAT � �u
@h

@x
þ �v @h

@y

� 	
AT � @�h

@x
Uþ @

�h
@y

V
� 	

BT
� �

HT þUBT A
@hT

@x
þVBT A

@hT

@y
�UBT HT HA

@hT

@x
�VBT HT HA

@hT

@y
;

and
E ~Lhfh;wgH

 �

¼ jDhAT � �u
@h

@x
þ �v @h

@y

� 	
AT � @�h

@x
Uþ @

�h
@y

V
� 	

BT � ui
@hj

@x
þ v i

@hj

@y

� 	
BaiAbjT

ðHÞ
abc

� �
1�c

:

Further, we plug in the above equality into the inner product. We get
hT ; E½~Lhfh;wgH�
� �

¼ j hT ;Dh
� �

AT � hT ; �u
@h

@x
þ �v @h

@y

� �
AT � hT ;

@�h
@x

Uþ @
�h
@y

V
� �

BT � ½TðhÞijk BaiAbjT
ðHÞ
abc�k�c;
where the third-order mw-by-mh-by-mh tensor
TðhÞ ¼ hk;ui
@hj

@x
þ v i

@hj

@y

� �� 	
ijk

:

From Eq. (29), we have the DyBO-gPC formulation for the temperature component,
@�h
@t
¼ jD�h� �u

@�h
@x
þ �v @

�h
@y

� 	
� UBT A

@hT

@x
� VBT A

@hT

@y
;

@h

@t
¼ �hDT

h þ jDh� �u
@h

@x
þ �v @h

@y

� 	
� @�h
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Uþ @
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V
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BT A� ui
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@x
þ v i

@hj

@y

� 	
BaiAbjAckT

ðHÞ
abc

� �
1�k

;

dA
dt
¼ A �CT

h þ j DhT ; h
� �

K�1
h � �u

@hT

@x
þ �v @h

T

@y
; h

� �
K�1
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� B
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UT þ @
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VT ; h

� �
K�1

h � T
ðhÞ
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ðHÞ
abc

h i
c�k

K�1
h ;
where matrices Ch and Dh can be solved from the linear system (4) with G	h,
KhG	h ¼ j hT ;Dh
� �

� hT ; �u
@h

@x
þ �v @h

@y

� �
� hT ;

@�h
@x

Uþ @
�h
@y

V
� �

BT A� T
ðhÞ
ijk BaiAbjAclT

ðHÞ
abc

h i
k�l
:
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Next, we derive the DyBO equations for the vorticity component. Substituting the KL expansion into Eq. (45a), we have
Lwfh;wg ¼ mD�w� �u
@ �w
@x
� �v @

�w
@y
þ lg

@�h
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� 	
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V
� 	� �
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@h

@x
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@WT

@y
þ FHT :
Taking expectations on both sides, we have
E½Lwfh;wg� ¼ mD �w� �u
@ �w
@x
� �v @

�w
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Substituting the above equality into the inner product gives
WT ;E½~Lwfh;wgH�
D E

¼ WT ; mDW� �u
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where the third-order mw-by-mw-by-mw tensor
TðWÞ ¼ wk;ui
@wj

@x
þ v i

@wj

@y

� �� 	
ijk
: ðA:2Þ
From Eq. (29), we have the DyBO-gPC formulation for the vorticity component,
@ �w
@t
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@ �w
@x
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where matrices Cw and Dw can be solved from the linear system (4) with G	w,
KWG	w ¼ WT ; mDW� �u
@W
@x
þ �v @W

@y

� 	
� @ �w

@x
Uþ @

�w
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V
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h i
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B:
Combining the above discussion and using the generalized material derivative (41), we arrive at the DyBO-gPC formula-
tion for SNSE (44).
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