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With the rapid development of internet economy, transparent logistics is stepping into 
a prosperity period with massive transportation data generated and collected every 
day. In this paper, we focus on the segmentation of GPS trajectory data generated 
in logistics transportation to analyze the vehicle behaviors and extract business affair 
information according to the vehicle behavior characteristics, which is challenging due to 
the complexity of trajectory data and unavailability of road information. We extract the 
stopping points from the trajectory data sequence based on the duration of nonmovement, 
and construct business time window and electronic fence by analyzing the driving habits 
of vehicles. Furthermore, we propose a probabilistic logic based data segmentation method 
(PLDSM) which not only helps finding all the business points but also assists in inferring 
the business affair categories. An efficient numerical algorithm integrating duality theory 
and Newton’s method is proposed to obtain the optimal solution. Finally, a practical 
example is presented to validate the effectiveness of PLDSM. The results greatly enrich 
the data segmentation technique and promote the practicability of probabilistic logic.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

Massive data are generated every second with the rapid development of information technology. Although the processing 
capability of computer has achieved great improvement, data storage and retrieval are still challenged by the increasingly 
accumulated complicated data. Therefore, how to filter the redundant data and extract valuable information from raw data 
are a major concern in real applications. Data segmentation attracts people’s attention for its efficiency in data summariza-
tion and information mining. As a data-based information technique, data segmentation is intended for segmenting data 
sequence into a series of disjoint segments based on some predetermined criteria. It has been applied successfully in var-
ious fields, such as image processing [42] [17], DNA sequence segmentation [5] and vehicle trajectory analysis [2]. Data 
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segmentation is able to partition a digital image into regions of pixels by similarity in color and intensity. In vehicle tra-
jectory analysis, data segmentation can be applied to simplify the vehicle movement to compact the continually evolving 
spatio-temporal database, achieving a fast and efficient support of applications such as recognition of trajectory patterns, 
prediction of congested areas [2]. In this paper, we mainly focus on GPS trajectory data segmentation.

Various trajectory data segmentation methods have been proposed in the past few years, which can be divided into two 
classes. The first is attribute-driven segmentation method. It is capable of partitioning the spatial trajectory into several 
number of segments such that the movement inside each segment is homogeneous with respect to some movement at-
tributes, such as speed, residence time and heading. Yoon and Shahabi [41] partitioned a trajectory into a small number of 
spatially and temporally homogeneous segments. In each segment, the vehicle approximately moved at a constant speed. 
Buchin et al. [6] considered location, heading, speed, curvature, sinuosity and curviness to segment the trajectory into a 
minimum number of segments. Krumm and Horvitz [25] segmented the trajectory of a car by finding the data sequence 
with speed less than two miles per hour. Panagiotakis et al. [34] described the representativeness of each segment based on 
local density and trajectory similarity, and then identified the segment borders and the number of segments by the novel 
segmentation algorithm. Aronov et al. [3] designed the outlier-tolerant criterion and the standard deviation criterion to seg-
ment the trajectory by proposing a univariate attribute function. More attribute-driven data segmentation can be found in 
[7,14,15,40,43].

The second kind of trajectory data segmentation refers to the pattern-driven segmentation method, which mostly focuses 
on pattern detection based on individual or group of moving entities. Patterson et al. [36] used trajectory data to infer an 
individual’s transportation mode into bus, walk and car to predict the most likely route. In view of that people had to walk 
through the transition between two different transportation modes, Zheng et al. [44] proposed a walk-based trajectory data 
segmentation method to identify the transportation modes. Laube and Imfeld [26] developed a relative motion framework 
to study the similar behaviors of different entities, where a collection of spatio-temporal patterns were defined based on 
the moving direction. As an extension of the relative motion framework, Laube et al. [27] extracted four movement patterns 
including flock, leadership, convergence and encounter from geospatial data. Benker et al. [4] redefined the flock as a set 
of objects which moved along paths close to each other for a predefined time. Jeung et al. [22] proposed a convoy query 
and outlined preliminary technique to detect the convoy of vehicles from massive spatio-temporal data. Zheng et al. [45]
developed a change point-based segmentation method to partition the trajectory into segments with different transportation 
modes. Other pattern-based segmentation studies can be found in [1,16,23,30,35,46].

Most of the current GPS trajectory data segmentation are performed by means of cluster algorithm. Cluster algorithm 
is a well-known generic unsupervised learning technique, which can be applied to determine relevant similar groups of 
trajectory data according to some common characteristics. For example, Giannotti et al. [18] employed a cluster algorithm 
to extract the regions that vehicles usually visited based on the density of locations, and calculated the travel time of each 
segment between two regions to infer the vehicle behaviors. Pelekis et al. [37] proposed a cluster algorithm to segment 
trajectory data using various distance functions based on location, speed, acceleration and direction. There are two popular 
cluster algorithms commonly applied in the trajectory data segmentation: K-means (KM) and density-based spatial cluster-
ing of applications with noise (DBSCAN). The KM-based segmentation pursues to optimize the defined clustering quality 
function with a certain number of clusters [28,29]. The prerequisite of this method is knowing the number of clusters in 
advance. In contrast, DBSCAN clusters the trajectories based on density criteria without knowing the number of clusters 
[33]. It merely depends on two inputs: ε and Minpts, where ε refers to the radius of a neighborhood and Minpts denotes 
the minimum number of data points in each neighborhood. For example, Gong et al. [20] proposed an improved DBSCAN 
algorithm to identify the stopping points of a GPS trajectory. Chen et al. [10] designed a T-DBSCAN algorithm by considering 
the spatio-temporal characteristics of the GPS trajectory. In addition to the above cluster algorithms, some other machine 
learning techniques are applied in data segmentation, such as K-nearest neighbor (KNN) [24], neural networks (NN) [9], 
convolutional neural network (CNN) [13] and deep neural network (DNN) [39].

Although the above machine learning algorithms are able to solve the complicated trajectory data segmentation problem 
effectively, there are still some restrictions. The first is that most of the current machine learning based data segmentation 
methods rely on the road information such as map matching or GIS components. In real applications, it may be expensive 
or even impossible to derive the GIS data. The second is the harsh demand on the accuracy of training data. The machine 
learning algorithms perform well in case that the training data is accurate. However, the data errors and information loss 
are inevitable in the data retrieval and collection process, which may cause the machine learning methods to obtain a 
wrong conclusion violating the common sense and logic. To tackle with the above deficiencies, we incorporate probabilistic 
logic into data segmentation to reduce the negative influence of erroneous data, and propose the PLDSM, which not only 
segments the data sequence accurately, but also helps on recuperating information loss. As an application, we apply it to 
logistics transportation field.

In recent years, the rapid development of internet economy in China greatly promotes the prosperity of logistics, which 
permeates every aspect of our daily life. For example, on 11th November 2017, the total trading volume in Alibaba turned to 
168.2 billion RMB, generating 812 million logistics orders. As an important part of logistics, the fourth party logistics is play-
ing an increasingly important role for its efficiency in collaborating information resources and information sharing. Instead 
of providing transportation service for real products, the fourth party logistics is intended for providing logistics program-
ming, consultation and logistics information system for the first, second and third party logistics. To achieve a transparent 
transportation and have a better control of the logistics information, the transportation vehicles in the first, second and 
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Fig. 1. Before segmentation.

Fig. 2. After segmentation.

third party logistics are usually required to install electronic sensors including GPS receivers, electronic locks, and electronic 
fueling tank caps, which collect massive transportation data for the fourth party logistics. However, the fourth party logistics 
has no access to obtaining the business affair information including business time and business locations. As for this appli-
cation scene, in this paper, we investigate the application of data segmentation to mine the business affair information from 
GPS trajectory data. The key issue is to segment the series of GPS data into segments of which each segment corresponds to 
a particular business affair. For example, based on trajectory data generated by an individual vehicle, Fig. 1 only provides a 
travel trajectory. After data segmentation, the trajectory is segmented into five segments, of which each contains the origin 
and destination of a business affair. Four business points A, B, C and D where business affairs take place are detected (see
Fig. 2). In the meanwhile, we need to extract more business affair information by analyzing the segmented trajectory data 
characteristics. For example, according to the location and time of each business point and the daily driving habits of each 
vehicle, we can deduce the category of products this vehicle is transporting. This paper focuses on identifying the time and 
destinations of business affairs, and business affair categories without travel reports. Compared with previous data segmen-
tation methods, our proposed PLDSM is able to extract the hidden logistics transportation information when GIS data is 
unavailable and performs better in recuperating information loss. The contribution of this paper can be stated as follows:

• Probabilistic logic is firstly applied in segmenting GPS trajectory data without referring to any road information, which 
is able to overcome the deficiency of high dependence on GIS data in previous studies.

• The PLDSM is proposed and an efficient numerical algorithm integrating dual theory and Newton’s method is designed, 
achieving a better performance than traditional machine learning technique when the data is inadequate and not accu-
rate enough.

The remainder of the paper is structured as follows. In Section 2, we introduce the transportation data for segmentation. 
Section 3 presents the PLDSM and formulates a maximum entropy model. In Section 4, Newton’s method together with 
duality theory are employed to solve the optimal solution of the maximum entropy model. A practical example is then 
presented in Section 5 to validate the effectiveness of PLDSM. Finally, Section 6 concludes the paper.

2. Data preparation

In this section, we introduce different types of data collected in the transportation process. Various electronic devices are 
equipped in the vehicles to track the transportation status timely. These include logistics electronic locks, electronic fueling 
tank caps and GPS receivers.
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Fig. 3. GPS log and trajectory.

Electronic locks: The electronic locks, by means of mobile GPRS wireless network system, are installed to monitor 
the whole transportation process of products in the real time, assisting transportation enterprises and the clients to get 
real-time dynamic information of goods to ensure the effective supervision during transportation. This can reduce the cost 
of enterprise and enhance competitiveness. Every time the cargo door of the vehicle is opened, there is a record in the 
electronic lock.

Electronic fueling tank caps: The electronic fueling tank caps are designed to monitor the fueling of vehicles in the 
transportation process to prevent drivers from stealing the oil. Again every time when the vehicle is fueled, there is an 
electronic record in the tank cap.

GPS receivers: GPS (Global Positioning System) receivers are widely applied in transportation fields, which are intended 
for recording and uploading real-time data including position coordinates, speed, heading and some other geographical 
information.

The GPS receivers renew the positioning data every several seconds, generating a sequence of GPS points, L =
{L1, L2, . . . , Ln}. Each GPS point Li includes multiple vehicle attributes (see Fig. 3), Li = {ti, xi, yi, vi, hi}, i = 1, 2, . . . , n, 
where ti refers to the timestamp the GPS data is uploaded, xi and yi stand for the longitude and latitude of the vehicle at 
ti , respectively, vi denotes the instant speed, and hi represents the heading ranging from 0◦ to 360◦ . In particular, hi = 0◦
means the heading direction is North and hi = 90◦ refers to the East.

In addition to the transportation data L, some limited historical business data B = {B1, B2, . . . , B N} is also available for 
the purpose of analyzing the regular patterns of business affair distributions (see Fig. 3), where B j = {t∗

j , x
∗
j , y

∗
j , δ j} denotes 

the j-th business data, t∗
j represents the time when the vehicle arrives at the j-th business point, x∗

j and y∗
j refer to the 

longitude and latitude, and δ j is the residence time of vehicle at the j-th business point, j = 1, 2, . . . , N .

3. Data segmentation

In this section, we present the procedure of segmenting the GPS trajectory data to find the business points. As shown 
in Fig. 4, firstly, the outliers are detected and removed in the data processing. Secondly, the stopping points of the vehicle 
are identified by analyzing the movement status of the vehicle at each GPS point. Finally, probabilistic logic is introduced 
to filter the business points from the stopping points by comprehensively considering the electronic lock status, electronic 
fueling tank cap status, residence time, residence location and trajectory.

3.1. Data processing

GPS receiver records and uploads data frequently, and this will inevitably generate some outliers. Outliers refer to the 
data that are significantly distant from others in terms of a certain similarity metric. There are two kinds of outliers com-
monly emerged in the GPS data stream. The first is speed outlier. If the speed at a GPS point is zero, while the vehicle keeps 
moving for a consecutive time period before and after this point, then the speed at this instant is an outlier. Similarly, if the 
speed is nonzero while the vehicle stays still for a consecutive time period before and after this point, then it is another 
kind of speed outlier (see Fig. 5). To deal with these outliers, a popular method is to replace the outlier speed with the 
average of the speed before and after this GPS point. For example, if vi = 0, vi−1 > 0 and vi+1 > 0, then vi = 0 is replaced 
by vi = (vi−1 + vi+1)/2. The second is location outlier. It is generally assumed that the moving distance of a vehicle in a 
short time interval is less than a certain threshold due to the limited speed. If the distance of two consecutive GPS point is 
far beyond the distance the vehicle travels at the maximum speed, then it is deemed as a location outlier, which exhibits 
an abrupt jump in the trajectory (see Fig. 6). Usually we delete this outlier to achieve a smooth trajectory.
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Fig. 4. Framework for GPS trajectory data segmentation.

Fig. 5. Speed outlier. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Fig. 6. Location outlier.

3.2. Stopping points detection

The stopping point detection is designed for identifying potential trip ends within the data stream by searching for time 
periods of nonmovement. On a two-dimensional plane, we first sequentially connect the discrete points to form a trajectory, 
and then divide the trajectory into trips if the time interval of nonmovement exceeds a certain threshold. A GPS point is 
deemed as a trip end point if the vehicle keeps moving for a consecutive time period before this point and then stays 
nonmovement for a consecutive time period after this point. For example, Table 1 provides a GPS trajectory data sequence. 
It is seen that the vehicle stops at 2014/5/18 2:26:19, stays nonmovement for 438 s and then starts a new trip.
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Table 1
GPS trajectory data.

t x y h v

2014/5/18 2:25:14 121.368100 31.250116 121 31
2014/5/18 2:25:26 121.368100 31.249650 127 20
2014/5/18 2:25:43 121.368966 31.249166 120 25
2014/5/18 2:25:57 121.369833 31.248700 120 22
2014/5/18 2:26:19 121.370750 31.248383 0 0
2014/5/18 2:29:12 121.371233 31.248383 0 0
2014/5/18 2:32:12 121.371266 31.248366 0 0
2014/5/18 2:32:19 121.371283 31.248366 0 0
2014/5/18 2:33:37 121.371283 31.248366 0 0
2014/5/18 2:34:04 121.371600 31.248050 171 12
2014/5/18 2:34:21 121.371400 31.247233 193 25
2014/5/18 2:34:22 121.371383 31.247166 193 25
2014/5/18 2:34:35 121.371116 31.246283 196 27
2014/5/18 2:34:47 121.370883 31.245383 193 29

This step produces a trip-end file that contains all the stopping points coordinate information, including time, longi-
tude and latitude. In addition, the residence time of each stopping point can also be obtained by computing the time of 
nonmovement.

3.3. Business point identification based on probabilistic logic

All the stopping points are detected after the above procedures. To further filter the business points from these stopping 
points, we sequentially analyze the electronic lock status, fueling tank cap status, residence time, residence location and 
trajectory of each stopping point.

Electronic lock and fueling tank cap
For each stopping point, we first check the status of the electronic lock and fueling tank cap. If there is an unlocking 

record in the electronic lock, then it is definitely a business point as the lock can only be unlocked when cargo discharging 
takes place. In case that no unlocking record is available, we turn to identify the fueling tank cap status. If the fueling tank 
cap is unlocked, it can be inferred that the vehicle lies in a gas station where the vehicle is refueling.

Business time window
In case that no record in both of the electronic lock and fueling tank cap is available, we construct business time window 

based on historical business data to analyze the relationship between vehicle residence time and business affair. Suppose 
that the residence time is subject to a certain kind of probability distribution. We study the statistics of the residence 
time of historical business point and formulate the frequency distribution function. Denote the residence time of vehicle in 
the i-th business point as δi . The steps are as follows: Firstly, reorder δi in an increasing order as δ(1), δ(2), . . . , δ(N) , where 
δ(1) = min{δ1, δ2, . . . , δN } and δ(N) = max{δ1, δ2, . . . , δN }. Secondly, divide [δ(1), δ(N)] into m identical intervals: [δ(1), δ(1) +σ), 
[δ(1) +σ , δ(1) +2σ), . . ., [δ(1) + (m −1)σ , δ(N)], where σ = (δ(N) −δ(1))/m. Finally, we construct the statistics of the frequency 
of stopping points whose residence time lies in [δ(1) + iσ , δ(1) + (i +1)σ ), i = 0, 1, . . . , m −1, and denote it as f i . Then study 
the statistics of the frequency of business points whose residence time is in [δ(1) + iσ , δ(1) + (i + 1)σ ) and denote it as f ∗

i . 
Figs. 7 and 8 give the histogram of frequency and distribution function, where the red histogram represents the business 
points frequency and the blue one denotes all the stopping points frequency. The distribution function is

F (t) =
⎧⎨
⎩

f ∗
i

f i
, if δ(1) + iσ ≤ t < δ(1) + (i + 1)σ , i = 0,1, . . . ,m − 1,

0, otherwise.

(1)

For each point, its probability of residence time satisfying the business demand (the criterion we adopt for classifying a 
business point) is F (t) if the residence time is t .

Electronic fence
Electronic fence is constructed to analyze the relationship between the residence location and business affair. By plotting 

the historical business data on the two-dimensional plane, it is found that the business points are centered around sev-
eral fixed positions, of which the density is much higher compared with other positions on the plane. Therefore, we employ 
DBSCAN to cluster these historical business points. For each cluster, an electronic fence is built to locate the area where busi-
ness affair usually takes place (see Fig. 9). We can identify whether a stopping point is a business point by electronic fence. 
If the stopping point lies in the electronic fence, then it is probably a business point. However, due to the existence of data 
perturbation, the longitude and latitude of a stopping point may vary slightly during the nonmovement period. For example, 
it follows from Table 1 that the vehicle keeps nonmovement from 2:26:19 to 2:33:37, but its locations are slightly different. 
To overcome this deficiency, we divide the varying locations of each stopping point into two groups: (1) locations in the 
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Fig. 7. Histogram of frequency.

Fig. 8. Frequency distribution function.

Fig. 9. Electronic fences.

Fig. 10. Stopping point data perturbation.

electronic fence and (2) locations outside the electronic fence (see Fig. 10). Assume that the frequencies of those two groups 
are f in and fout , respectively. Then the probability for the location satisfying the business demand can be estimated by

F = f in

( f in + fout)
. (2)
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Fig. 11. Special trajectory 1.

Fig. 12. Special trajectory 2.

Trajectory identification
Some special trajectories can be utilized to determine whether a stopping point is a business point. There are two special 

trajectories considered. The first is illustrated in Fig. 11 which provides a trajectory from A to B . The vehicle takes the path 
A → C → D → B rather than A → B though there is a direct path. Therefore, the stopping point E in path C → D is likely 
a business point. Another typical trajectory is shown in Fig. 12, where a vehicle is driving straightly along the road from F
to H . At the crossroad, it turns to the right, stops at G for a while, and returns by the same way it came. Then stopping 
point G is likely to be a business point. Therefore, we can analyze the heading changes of the vehicle before and after the 
stopping point to identify whether its trajectory satisfies the business demand. If the trajectory matches one of the two 
special trajectories, then it is probably a business point.

To find the business points accurately and estimate the corresponding probabilities, we introduce probabilistic logic 
into data segmentation process. Probabilistic logic was first proposed by Nilsson who presented a procedure for computing 
probabilistic entailment [32], which inspires many subsequent probabilistic logic studies [8,12,19,21,31,38]. Given a set of 
propositions and their associated probabilities, this procedure computes a range of probabilities within which the probability 
of some given target proposition lies. The procedure operates by first finding all consistent assignments of truth values to 
the given propositions and then using these assignments to set up a system of linear equations that can be solved.

In view of the above five attributes: electronic lock status, fueling tank cap status, residence time, location and trajectory, 
six propositions are set and seven logic formulae are proposed to determine whether the stopping points are business points.

Propositions
• P1: There is an unlocking record in the electronic lock
• P2: There is an unlocking record in the electronic fueling tank cap
• P3: The residence time satisfies the business demand
• P4: The location satisfies the business demand
• P5: The trajectory satisfies the business demand
• P6: The stopping point is a business point
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Fig. 13. Semantic tree.

Logic formulae
• P1 → P6: The stopping point is certainly a business point if there is an unlocking record in the electronic lock
• P2 → ¬P6: The stopping point is not a business point if there is a record in the electronic fueling tank cap
• ¬P1 ∧ ¬P2 ∧ ¬P3 → ¬P6: The stopping point is not a business point if the corresponding residence time does not 

satisfy the business demand
• ¬P1 ∧¬P2 ∧¬P4 → ¬P6: The stopping point is not a business point if its location does not satisfy the business demand
• ¬P1 ∧ ¬P2 ∧ P3 ∧ P4 → P6: The stopping point is a business point if its residence time and location both satisfy the 

business demand
• ¬P1 ∧ ¬P2 ∧ P3 ∧ P5 → P6: The stopping point is a business point if the residence time and trajectory both satisfy the 

business demand
• ¬P1 ∧¬P2 ∧ P4 ∧ P5 → P6: The stopping point is a business point if its location and trajectory both satisfy the business 

demand

For any proposition Pi , i = 1, 2, . . . , 6, there are two possible situations called atoms: W i1 where Pi is true and W i2

where Pi is false. The reality world must be in one of them, but we might not know which one. Suppose that T r(.) is an 
assignment function from propositions set S to {0, 1}, where S = {P1, P2, P3, P4, P5, P6}. For any Pi ∈ S ,

T r(Pi) =
{

1, if Pi is true,

0, otherwise.

Based on the above six propositions, a binary semantic tree can be constructed to describe all the 26 sets of atoms (see
Fig. 13). At each node of the tree, we branch left if the proposition is true and branch right if the proposition is false. The 
truth values of the six propositions are shown in Table 2, of which each column represents a possible atom with a unique 
set of truth values for all the six propositions.

Although Table 2 provides 64 sets of atoms, there are actually fewer possible atoms due to some of the true values 
for our 6 propositions are logically inconsistent. Several different kinds of inconsistencies are detected in Table 2. The 
first is the inconsistency between P2 → ¬P6 and P1 → P6, which is marked with a “×”. Take [1, 1, 1, 1, 1, 0]T as an 
example, it means that the electronic lock and the fueling tank cap are unlocked simultaneously, which is impossible in 
reality. The second is the inconsistency with P1 → P6 which is marked with a “×”. For example, the truth values of the six 
sentences [1, 0, 1, 1, 1, 0]T are inconsistent since the stopping point is definitely a business point when there is an unlocking 
record in the electronic lock. The third inconsistency is marked with a “×”, which contradicts with P2 → ¬P6. Some other 
inconsistencies due to the contradiction with the proposed logic formulae are marked with different colors. Finally, 24 sets 
of consistent atoms are marked with a “

√
”, of which the truth value matrix is expressed as follows:

V =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 0 0 0 0 1 1 1 0 1 1 1 1 0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

where V ij represents the consistent truth value of Pi in j-th possible atom, i = 1, 2, . . . , 6, j = 1, 2, . . . , 24.
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0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1
0 1 1 1 1 0 0 0 0
0 1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1 0
√ √ × √ × √ × × √

0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 1 1 1 0 0 0 0
0 1 1 0 0 1 1 0 0
0 1 0 1 0 1 0 1 0
√ √ × × √ × √ × √
Table 2
Truth value assignment in different possible atoms.

P1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
P2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
P3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
P4 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
P5 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
P6 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

× × × × × × × × √ × √ × √ × √ × × √ × √ × √ ×
P1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
P2 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
P3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
P4 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 0 0 0
P5 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0
P6 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

× × × × × × × × √ × √ × √ × √ × × √ × √ × √ ×
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The possible atoms comprise a sample space where a probability distribution is defined. Denote vectors p =
[p1, p2, . . . , p6]T and q = [q1, q2, . . . , q24]T , where pi is the probability that proposition Pi is true and q j is the prob-
ability that the reality world lies in W j , i = 1, 2, . . . , 6, j = 1, 2, . . . , 24. Due to the exclusivity and exhaustivity of all the 
possible atoms, the sum of qi equals to one. Then the probabilities of the propositions satisfy the following matrix equation:

p = Vq. (3)

Following from Eq. (3), the probabilities of the six propositions are expressed as

pi =
24∑
j=1

V ijq j, i = 1,2, . . . ,6, (4)

which implies that the probability of a proposition is the sum of the probabilities for the possible atoms in which that 
proposition is true.

For each stopping point, the probabilities of the first five propositions p1, p2, p3, p4 and p5 can be estimated by analyzing 
its GPS trajectory data and historical business data. Here p1, p2 and p5 are binary variables taking values in {0, 1}. Denote 
p1 = 1 if there is an unlocking record in the electronic lock, otherwise, p1 = 0. Similarly, p2 = 1 if there is an unlocking 
record in the fueling tank cap, otherwise, p2 = 0. p5 = 1 if the trajectory satisfies the business demand, otherwise, p5 = 0. 
Furthermore, p3 and p4 take values in interval [0, 1], which can be calculated according to Eqs. (1) and (2). Our objective 
is to compute p6 to determine whether this stopping point is a business point. Following from Eq. (4), it is known that p6

can be uniquely determined once a vector of possible atoms q = [q1, q2, . . . , q24]T is selected. However, the vector q is not 
unique. Therefore, a maximum entropy model is formulated to select the optimal vector q̂.⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

max −
24∑
j=1

q j ln q j

∑24
j=1 V ijq j = pi, i = 1,2, . . . ,5,

q1 + q2 + . . . + q24 = 1,

0 ≤ q j ≤ 1, j = 1,2, . . . ,24,

(5)

where the first constraint ensures that vector q satisfies Vq = p, the second constraint implies that the sum of probabilities 
for all the possible atoms equals to 1, and the third constraint gives the lower and upper bounds of q j , j = 1, 2, . . . , 24.

4. Model solving based on Newton’s method

In this section, we first transform the maximum entropy problem into its dual problem, and then apply Newton’s method 
to solving the problem. There are two major reasons for conducting the transformation. First, the original problem is a 
maximization problem with constraints while the dual problem is a minimization problem without constraints. Second, the 
number of variables in the dual problem is significantly less than the original problem, therefore the computational cost 
can be substantially saved. The above maximum entropy model is expressed as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
max −

24∑
j=1

q j ln q j

V̄q = p̄,

0 ≤ q j, j = 1,2, . . . ,24,

(6)

where p̄ = [p1, p2, p3, p4, p5, 1]T and V̄ composes of the first five rows in V and a vector of all ones. Remark that the 
constraint q j ≤ 1 can be discarded as we require that q1 + q2 + · · · + q24 = 1, and 0 ≤ q j , j = 1, 2, . . . , 24.

V̄ =

⎛
⎜⎜⎜⎜⎜⎝

1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎠ .

As shown in [11], the dual problem of (6) is

min
λ

max
q

⎧⎨
⎩−

24∑
j=1

q j ln q j + λT (p̄ − V̄q)

⎫⎬
⎭ , (7)
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Algorithm 4.1 Newton’s Method.
Step 1. Initialize an initial solution λ0, and a small enough positive threshold ε. Set k = 0.
Step 2. Compute the gradient ∇ f (λ(k)) and Hessian ∇2 f (λ(k)).
Step 3. Derive λ(k+1) according to iteration formula:

λ(k+1) = λ(k) − [∇2 f (λ(k))
]−1 ∇ f (λ(k)).

Step 4. If ‖ ∇ f (λ(k+1)) ‖< ε , then λ∗ = λ(k+1);
otherwise, set k = k + 1 and return to Step 2.

Step 5. Output the optimal solution λ∗ .

where λ = [λ1, λ2, λ3, λ4, λ5, λ6]T is the multiplier. Then the optimal solution q∗ can be obtained by solving the equations:

∇q j L(q,λ) = − ln q j − 1 − λT V̄ j = 0, j = 1,2, . . . ,24, (8)

where V̄ j represents the j-th column of V̄. Thus, the optimal solution is

q∗
j = e−1−λT V̄ j > 0, j = 1,2, . . . ,24. (9)

Substitute Eq. (9) into Eq. (7), we have

min
λ

⎧⎨
⎩

24∑
j=1

e−1−λT V̄ j + λT p̄

⎫⎬
⎭ . (10)

Then Model (6) is transformed into Model (10), which can be solved by the Newton’s method by iterating the multipli-
ers λ. Note that Problem (10) is a minimization problem without constraints and the number of variables is reduced from 
24 (original problem) to 6. Denote

f (λ) =
24∑
j=1

e−1−λT V̄ j + λT p̄.

Then the gradient of f (λ) can be expressed as

∇ f (λ) = −V̄q∗ + p̄,

and the Hessian of f (λ) is expressed as

∇2 f (λ) = V̄diag(q∗)V̄
T
,

where diag(q∗) is a diagonal matrix with diagonal entries q∗ . It is clear that ∇2 f (λ) is a positive definite matrix because 
all the entries of q∗ are positive and V̄ is a full rank matrix. Suppose that λ(k) is the k-th iteration solution of (10), 
k = 0, 1, 2, . . ., where λ(0) is the initial solution. The Newton’s iteration formula is given as follows:

λ(k+1) = λ(k) −
[
∇2 f (λ(k))

]−1 ∇ f (λ(k)). (11)

Based on the above iteration formula, a sequence of points λk are generated until the norm of gradient ‖∇ f (λk)‖ = 0 or 
less than a given small enough threshold ε . In our numerical experiment, we set ε = 0.0001. Then the optimal solution λ∗
is obtained. The steps are shown in Algorithm 4.1.

5. Numerical example

This section presents a real GPS trajectory data segmentation problem to validate the effectiveness of PLDSM. By com-
prehensively analyzing the GPS trajectory data and historical business affair records, all the business points are filtered out 
and the business affair categories are inferred by PLDSM. As a comparison, a widely applied machine learning technique 
KNN is used to tackle with the same trajectory data segmentation problem. The results reveal that PLDSM performs better 
in effectiveness and practicability.

Example 5.1. Suppose that the fourth party logistics is greatly concerned about the business affair information of the co-
operative third party logistics vehicle with ID 238245, which transports various cargoes to different retailing depots every 
day in Shanghai. Every time there is a cargo discharging, a business affair is completed, and then the vehicle driver would 
record the business affair information including the arrival time, departure time and location. The fourth party logistics has 
no access to all the business affair information except some limited historical business data from 2014/5/10 00:00:00 to 
2014/5/17 24:00:00 derived by surveying the driver of this vehicle (see Appendix). In the meanwhile, all the GPS trajectory 
data is available by the GPS receiver installed in this vehicle. To verify the effectiveness of PLDSM, we take the GPS trajec-
tory data and historical business data from 2014/5/10 00:00:00 to 2014/5/17 24:00:00 as the training dataset to construct a 
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Table 3
Frequency distribution function of residence time.

δ (s) f ∗ f F (t)

t < 600 0 79 0.0000
600 ≤ t < 900 10 15 0.6667
900 ≤ t < 1200 8 11 0.7273
1200 ≤ t < 1500 3 5 0.6000
1500 ≤ t < 1800 8 15 0.5333
1800 ≤ t < 2100 2 5 0.4000
2100 ≤ t < 2400 1 2 0.5000
2400 ≤ t < 2700 2 2 1.0000
2700 ≤ t < 3000 0 0 0.0000
3000 ≤ t < 3300 1 1 1.0000
3300 ≤ t < 3600 1 1 1.0000
t ≥ 3600 0 7 0.0000

Fig. 14. Clusters of historical business data.

trajectory data segmentation mechanism, then apply it to segment a new GPS data sequence of this vehicle from 2014/5/18 
00:00:00 to 2014/5/19 24:00:00 and compare the results with the surveyed business affair information.

In the training stage, we firstly detect all the stopping points from 2014/5/10 00:00:00 to 2014/5/17 24:00:00, and 
statistic the frequency of stopping points and business points. According to Eq. (1), the distribution function of residence 
time is obtained (see Table 3 above).

Secondly, the electronic fence is built by using DBSCAN to cluster the historical business data. Remark that there 
are 36 available business points (see Appendix). However, due to the data perturbation caused by the inexact posi-
tioning, each business point has multiple slightly different locations. To fully use the business affair information and 
achieve a better efficiency of clustering, we take all the varying locations into consideration to cluster the business 
points. Set the parameters in DBSCAN as follows: ε = 0.003 and Minpts = 3. Then the business points are divided 
into seven clusters: C1 = {1, 7, 13, 16, 19, 25, 30, 34}, C2 = {2, 8, 20, 26, 31, 35}, C3 = {3}, C4 = {4, 10, 14, 17, 22, 27, 32, 36}, 
C5 = {6, 11, 18, 23, 28, 33}, C6 = {12, 24, 28} and C7 = {5, 9, 15, 21} (see Fig. 14). For each cluster, the electronic fence is 
built (see Fig. 15).

After the above training stage where the residence time frequency distribution and electronic fence are built, we start to 
segment the data sequence from 2014/5/18 00:00:00 to 2014/5/19 24:00:00. According to the data segmentation procedure 
in Fig. 4, we firstly detect all the stopping points in this data stream. As shown in Appendix, the minimum residence time 
of all the business points is 605 s. Therefore, the threshold in the stopping point detection process is set as 605 s since 
the stopping point cannot be a business point if its residence time is less than 605 s. By the stopping point identification 
process, 14 stopping points are obtained. Then we estimate the probability of residence time satisfying the business demand 
p3 (see Table 4). Secondly, check the electronic lock status and fueling tank cap status of each stopping point. For vehicle 
238245, no electronic lock data and electronic fueling data is available, then the values of p1 and p2 are zeros.

In the next step, for each stopping point, we calculate its probability of residence location satisfying the business demand 
(see p4 in Table 4). It can be seen clearly that the locations of seven stopping points lie in the electronic fence (see Fig. 16). 
Take stopping point 3 as an example, due to data perturbation, it has 18 varying locations, 16 of which lie in the electronic 
fence, and 2 lie outside the electronic fence. Therefore, p4 = 16/18 = 0.8889.
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Fig. 15. Electronic fences of different clusters.
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Table 4
GPS trajectory data segmentation results by PLDSM.

No. δ (s) p1 p2 p3 p4 p5 p6

1 1123 0.0000 0.0000 0.7273 0.0000 1.0000 0.7273
2 1902 0.0000 0.0000 0.4000 0.0000 1.0000 0.4000
3 2486 0.0000 0.0000 1.0000 0.8889 1.0000 1.0000
4 766 0.0000 0.0000 0.6667 0.6000 1.0000 0.8667
5 2181 0.0000 0.0000 0.5000 1.0000 0.0000 0.5000
6 1356 0.0000 0.0000 0.6000 0.8462 0.0000 0.5077
7 60870 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
8 1184 0.0000 0.0000 0.7273 0.0000 1.0000 0.7273
9 2423 0.0000 0.0000 1.0000 0.0000 1.0000 1.0000
10 1178 0.0000 0.0000 0.7273 0.0000 0.0000 0.0000
11 1777 0.0000 0.0000 0.5333 0.9167 1.0000 0.9616
12 723 0.0000 0.0000 0.6667 1.0000 1.0000 1.0000
13 1472 0.0000 0.0000 0.6000 1.0000 0.0000 0.6000
14 1079 0.0000 0.0000 0.7273 0.0000 0.0000 0.0000

Table 5
The confusion matrix.

True class Recognized class

Positive Negative

Positive T P F N
Negative F P T N

Finally, check whether the trajectory at each stopping point satisfies the business demand. According to the heading 
change of the vehicle, it is found that the trajectories of stopping points 1, 2, 3, 4, 8, 9, 11 and 12 satisfy the business 
demand (see Fig. 17). Take stopping point 1 as an example, at first, the heading of vehicle 238245 is around 100◦ . At point 
A, the vehicle turns left with the heading changing to 350◦ . After arriving at B , it stops with heading changing to 0◦ and 
then stays unmoving for a certain period. From B to C , the heading changes from 0◦ to 170◦ , representing that the vehicle 
completes a u-turn. Finally, the vehicle turns left again at point D and then leaves in the direction of 90◦ . Therefore, the 
trajectory of stopping point 1 satisfies the business demand. The trajectories before and after those stopping points can be 
seen in Fig. 18, where the red and green curves denote the trajectory before and after the stopping point respectively.

After deriving the corresponding probabilities: p1, p2, p3, p4 and p5, the value of p6 is obtained by solving model (6)
with Newton’s method. The last column of Table 4 lists the final probabilities of these stopping points being business 
points. Assign the stopping points with p6 ≥ 0.5 as business points, then stopping points 1, 3, 4, 5, 6, 8, 9, 11, 12 and 
13 are recognized as business points, where the ones marked with red are true business points in reality. There are two 
commonly accepted criteria measuring the efficiency of data segmentation: precision and recall, which are defined based on 
the following confusion matrix (see Table 5), where T P denotes true positive business points, representing the number of 
real business points which are recognized correctly, F N refers to the number of real business points wrongly recognized as 
non-business points, F P stands for the number of real non-business points wrongly recognized as business points and T N
represents the number of real non-business points recognized correctly. The precision (Pre) and recall (Rec) are expressed 
as follows:

Pre = T P

T P + F P
, Rec = T P

T P + F N
. (12)

According to Table 4 and Eq. (12), the precision for PLDSM is 70%, and the recall is 100%. As comparison, we employ 
the most widely applied machine learning technique KNN to filter out the business points from the 14 stopping points 
in Table 4. Using the same training dataset including longitude x∗ , latitude y∗ , residence time δ and trajectory p5, a KNN 
classifier is constructed by employing the Euclidean distance and setting parameter K = 3. The segmentation result is shown 
in the last column of Table 6, where 1 implies that the stopping point is recognized as business point and 0 represents that 
the stopping point is recognized as non-business point.

The results in Table 6 reveal that stopping points 3, 5, 6, 11, 12, 13 and 14 are recognized as business points by KNN 
while the real business points are 3, 4, 5, 6, 11, 12 and 13. Therefore, the precision and recall for KNN are both 86%. 
Although KNN performs better in precision compared with PLDSM, it cannot filter out all the real business points, i.e., 
business point 4. In contrast, the recall of PLDSM is 100%, representing PLDSM is able to find all the business points from 
the data sequence. In real GPS trajectory data segmentation application, the fourth party logistics concerns most about 
the recall of segmentation rather than precision since omitting any potential business point could significantly influence 
the inference over the whole business affair and sometimes even lead to a wrong judgment in business affair analysis. 
Therefore, achieving a larger recall is the most important objective to cover all the real business points. In case that all the 
real business points are covered, we turn to the comparison in precision.
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Fig. 16. Stopping points in the electronic fence.
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Fig. 17. Heading changes at different stopping points.
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Fig. 18. Trajectories before and after stopping points.
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Table 6
GPS trajectory data segmentation results by KNN.

No. x∗ y∗ δ p5 Output

1 121.247683 31.269750 1123 1.0000 0.0000
2 121.356750 31.253850 1902 1.0000 0.0000
3 121.389250 31.224583 2486 1.0000 1.0000
4 121.434650 31.256800 766 1.0000 0.0000
5 121.427400 31.253633 2181 0.0000 1.0000
6 121.394233 31.245966 1356 0.0000 1.0000
7 121.241216 31.242183 60870 0.0000 0.0000
8 121.247883 31.269433 1184 1.0000 0.0000
9 121.357350 31.253650 2423 1.0000 0.0000
10 121.370883 31.248650 1178 0.0000 0.0000
11 121.389716 31.224650 1777 1.0000 1.0000
12 121.390516 31.241400 723 1.0000 1.0000
13 121.427616 31.253100 1472 0.0000 1.0000
14 121.394250 31.245616 1079 0.0000 1.0000

Fig. 19. Location for stopping point 1 and 8.

Fig. 20. Location for stopping point 9.

In addition, it follows from Table 4 that stopping points 1, 8 and 9 are “wrongly” recognized as business points by 
PLDSM, which are not the known business points according to the surveyed business data. Then we check the residence 
time and residence locations of these three points, and study their GPS trajectory. Interestingly, it is found that this vehicle 
stops around these locations for a certain period every day. Stopping points 1 and 8 are in the same location shown in 
Fig. 19, which is nearby several markets, squares and malls. Every day, the vehicle drives to this location, stays for around 
20 minutes, then takes a u-turn with a change of 180 in direction and leaves. As regard to stopping point 9, we search its 
location (see Fig. 20) by Google map, and find that it is close to a supermarket RT Mart. The GPS trajectory data reveals that 
this vehicle usually stops at this area at around 2:00:00, stays for 30 minutes and leaves. It is known that the replenishment 
of supermarkets is conducted during the midnight to avoid the negative impact on the shopping activities of customers in 
the daytime. And fresh food such as meat, vegetables and fruits are usually pursued and replenished in the early morning 
to ensure the freshness of food. Therefore, according to the time and location, we can infer that stopping points 1, 8 and 9 
are probably business points, and this vehicle is intended for replenishment of malls and supermarkets. The core cause of 
these three exceptions is the incompleteness of business data due to some particular business affairs may be deliberately 
concealed by the driver. Then the real precision for PLDSM is actually 100% since all the business points are detected, 
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which reflects the benefits of incorporating common logic and real driving experiences in GPS trajectory data segmentation. 
Generally speaking, our proposed PLDSM not only can segment the GPS trajectory data and find all the business points 
accurately, but also assists to infer the business affair categories.

6. Conclusions

GPS trajectory data segmentation is attracting attention of researchers and practitioners for its efficiency and necessity in 
extracting business affair information from raw data. The unavailability of GIS data and information loss in data collection 
process significantly increase the difficulty in real trajectory segmentation issues. In this paper, we consider a real application 
of data segmentation in logistics transportation. Based on limited historical business data, the business time window and 
electronic fence are built to analyze the driving habits of vehicles. An efficient data segmentation mechanism is formulated 
by sequentially considering electronic lock data, fueling tank cap data, residence time, residence location and trajectory. 
More importantly, we firstly incorporate the probabilistic logic into data segmentation and integrate the duality theory and 
Newton’s method to obtain the optimal solution. As application, we solve a real GPS trajectory data segmentation problem 
by PLDSM and verify its advantages over KNN. The results greatly promote the practicability of probabilistic logic in data 
segmentation.

Frankly speaking, this study only focuses on the GPS trajectory data segmentation of one vehicle. In real application, 
the fourth party logistics may be confronted with segmenting the trajectory data of multiple vehicles simultaneously. The 
challenge is that the correlation of different logistics vehicle trajectories should be considered separately since different 
vehicles may transport the cargoes to the same depot or only one vehicle is assigned to a certain depot. Therefore, it will 
be attractive to continue the multi-vehicle GPS trajectory data segmentation study to strengthen the practicability. In the 
future, we will consider the network based GPS trajectory data segmentation to tackle with the above issue.
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