






Πðz; tÞ. According to SI Appendix, we can derive the following Lyapunov
matrix equation:

ΑSΣS +ΣSΑ
T
S +DS = 0, [8]

where ΑS = ðAijÞ is a matrix with elements Aij =
PL
k=1

νki
∂Kk ðxsÞ

∂xj
= ∂½SiKðxsÞ�

∂xj
, Ds =BBT

is a noise matrix with elements ½BBT�ij =
PL
k= 1

νkiνkjKkðxsÞ= ½STdiagðK1ðxsÞ,⋯,

KLðxsÞÞS�ij, and
P

s=ðÆðx − xsÞTðx − xsÞæÞ is a covariance matrix to be unknown.

Note that the diagonal elements of ΣS represent the variances of the ran-
dom variables, and the vector of the mean concentrations of the reactive
species is approximately given by Æxæ≈ xs.

We point out that the above analysis framework is convenient for both
clarifying the origins of nonmarkovianity (including fluctuations) and tracing
the effects of different parameters on the stochastic properties of the un-
derlying systems. SI Appendix provides details for examples of analysis by the
gLNA. We point out that a slow-scale LNA (ssLNA) has been developed, which
describes a class of nonmarkovian systems stemming from timescale separa-
tion (43). Specifically, starting with a markovian system composed of fast and
slow species, the authors of that paper derived the LNA for the nonmarkovian
system, which describes only the slow species (the observables).

sgFPE. As an effective approximation of the CME in some situations, the
Fokker–Planck equation (FPE) has extensively been used (1, 2, 44, 45), mainly
because the latter is more easily analyzed and can often provide more in-
tuitive understanding of a biochemical system than the former. However,
the FPE has not been established in the presence of molecular memory.
Here, we derive a sgFPE for a general nonmarkovian reaction network with
arbitrary waiting-time distributions.

First, although Eq. 3 holds for the discrete variables, it also holds for the
corresponding continuous variables. Second, Taylor-expanding the CME in
the case of continuous variables to the second-order term yields

s~Pðx, sÞ− ~Pðx, 0Þ≈−
XL
i=1

XN
k=1

νik
∂
∂xk

h
~Miðs; xÞ~Pðx, sÞ

i

                       +
1
2

XL
i=1

XN
k, l=1

νikνil
∂2

∂xk∂xl

h
~Miðs;xÞ~Pðx, sÞ

i . [9]

Multiplying s on both sides of Eq. 9, letting s→0 and making use of the facts:

KiðnÞ= lim
s→0

~Miðs;nÞ and PðxÞ= lim
s→0

s~Pðx, sÞ, we can arrive at the following sgFPE:

−
XN
k=1

∂
∂xk

"XL
i=1

νikKiðxÞPðxÞ
#
+
1
2

XN
k, l=1

∂2

∂xk∂xl

"XL
i=1

νikνilKiðxÞPðxÞ
#
= 0. [10]

In the next section, we will use Eq. 10 to analyze generalized stochastic
models of gene expression and obtain some interesting results on the effect
of molecular memory.

In the following section, we will apply the above general theory to 4 gene
models: a generalized model of constitutive gene expression, a generalized
model of gene self-regulation, a generalized ON-OFF model, and a gener-
alized model of genetic toggle switch, where by “generalized,” we mean
that each model considers molecular memory or nonmarkovianity. Then, we
discover biological knowledge, e.g., molecular memory is in effect equiva-
lent to a feedback and can induce bimodality, fine-tune the expression
noise, and induce switch. (The related data will be available from the cor-
responding author upon request.)

Results
The Effect of Molecular Memory Is Equivalent to the Introduction of a
Feedback.Understanding how a gene is turned on at a mechanistic
level has been one of the big challenges in molecular biology and
has received extensive attention over decades. Identifying the
actual sequence of events during gene expression and establishing
the method of recruitment have turned out to be a surprisingly
difficult task (46). Here, we introduce a generalized model to
mimic complex biochemical processes underlying gene expression,
referring to Fig. 2A, where the proteins are assumed to be pro-
duced instantaneously after messenger RNAs (mRNAs) are pro-
duced. Fig. 2B is a schematic representation of transitions between
protein states with time. Let ψ1ðt; nÞ and ψ2ðt; nÞ be waiting-time

distributions for protein synthesis and degradation, respectively,
where n represents the number of protein molecules.
First, consider the case without regulation but with molecular

memory. Two waiting-time distributions are set as ψ1ðt; nÞ=
λ1

L1=ΓðL1ÞtL1−1e−λ1 t and ψ2ðt; nÞ ¼ ðnλ2ÞL2 tL2−1e−nλ2t, where λ1
and λ2 are positive constants (which may be understood as the
mean synthesis and degradation rates, respectively). Before
presenting analytical results, we perform numerical calculation
with results shown in Fig. 2, where Fig. 2C demonstrates that the
stationary protein distribution indeed exists even in the presence
of molecular memory. Hereafter, we will vary memory index (L1
or L2) while keeping the constant average time between suc-
cessive reactions by scaling parameter λ1 ðλ2Þ appropriately with
L1 ðL2Þ, i.e., keeping the ratio Li=λi fixed.
As pointed out above, the stationary probabilistic behavior of

the original nonmarkovian reaction system is exactly the same as
that of the constructed markovian reaction network, but there
would exist differences in dynamic probability behavior between
the 2 networks. Fig. 2C shows that 2 dynamic distributions are
different at the initial stage, but this difference gradually reduces
and finally disappears with time. Fig. 2E demonstrates how
molecular memory (i.e., L1 > 1 or L2 > 1) affects the stationary
protein distributions, whereas Fig. 2D shows that L1 always de-
creases the mean protein number but L2 always increases this
number. These numerical results imply that the effect of mo-
lecular memory is equivalent to the introduction of a feedback.
For this, we give an intuitive interpretation. First, note that in
simulation, we keep the average waiting times between succes-
sive reactions constant by scaling λ1ðλ2Þ appropriately with
L1ðL2Þ, i.e., we keep ratios L1=λ1 ≡ 1=λp1 and L2=λ2 = 1=λp1 con-
stant. This implies that the average of waiting times remains
unchanged, but their variances decrease with increasing L1ðL2Þ.
Second, the waiting-time distribution will collapse onto a Dirac
delta function due to zero variance if L1ðL2Þ tends to infinity.
Third, note that the reaction event that actually occurs is the one
whose waiting time is minimum. Therefore, for a fixed L2, if L1
increases, the variability in birth waiting times decreases. As a
result, the probability of birth events decreases and hence the
effective reaction rate decreases. Similarly, if the protein-decay
rate decreases with L2, the mean protein number will increase.
Finally, we emphasize that such a memory-induced feedback
stems from fluctuations in waiting times rather than changes in
their means.
In order to obtain analytical results, we consider the case of

L=L1 > 1 and L2 = 1. In this case, 2 ERTs are given by K1ðnÞ=
nλ2λ1L=½ðλ1 + λ2nÞL − λ1

L� with K1ð0Þ= λ1=L and K2ðnÞ= nλ2.
Note that function f ðxÞ= xλ2~λ1

L
=½ð~λ1 + xÞL −~λ1

L� with ~λ= λ1=λ2
has the following properties: f ð0Þ= 0 and the derivative f ′ðxÞ is
less than zero, i.e., f ′ðxÞ< 0 for all x≥ 0. Therefore, the effect of
molecular memory is equivalent to the introduction of a negative
feedback. In addition, we can show that the stationary protein
distribution is given by PðnÞ= ð~λ1LÞn=½n!ða1Þn⋯ðaL− 1Þnρ� with
ρ= ½1FLð1,1, a1,⋯, aL− 1;~λ1LÞ�−1, where symbol 1FLðb, c1,⋯, cL; zÞ
is a confluent hypergeometric function (47), and symbol ðcÞn is
defined as ðcÞn = cðc+ 1Þ⋯ðc+ n− 1Þ. Constants a1,⋯, aL−1 are
determined by comparing the coefficients for the same power of
x in the equality of ~λ

L−1
+ x~λ

L−1
+⋯+ xL−1 = ðx+ a1Þ⋯ðx+ aL−1Þ,

where a1,⋯, aL1−1 are assumed to be real (the case of complex
roots can be similarly analyzed). This form of the distribution is
similar to that of the stationary mRNA distribution in a stochastic
gene model with a DNA loop (48).

Molecular Memory Can Induce Bimodality. In the markovian case,
gene self-regulating systems have been extensively studied, and
some analytical results have been obtained (49–52). However,
gene self-regulating processes are in general nonmarkovian as
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pointed out in the introduction, raising the question of how
nonmarkovianity impacts gene-product distributions. To ad-
dress this question, let us consider the following gene model:
ON��!ψ1ðt; nÞ ON+ protein, protein��!ψ2ðt; nÞ ∅, where n represents
the number of protein molecules, and ψ1ðt; nÞ and ψ2ðt; nÞ are the
intrinsic waiting-time distributions for protein synthesis and deg-
radation, which take the forms ψ1ðt;nÞ=ðλ1ðnÞÞL=ΓðLÞtL−1e−λ1ðnÞt
and ψ2ðt;nÞ=nλ2e−nλ2t, where λ1ðnÞ=½μ0+μ1ðn=KÞH � =½1+ðn=KÞH �
is a regulation function of Hill type, H is the Hill coefficient, and
μ0, μ1 (representing the feedback strength), K, and λ2 are positive
parameters. This setting enables us to have a description in terms
of one promoter state rather than 2 switching states but also
hides the fact that proteins produced by the gene in the ON state
bind to the gene and take it back to the OFF state. If promoter
switching between ON and OFF states is very quick and if the
protein–DNA binding rate is not much larger than the unbinding
rate, the use of an effective Hill-type function is reasonable (53).
Similar to the case of no regulation, 2 effective transition rates,

K1ðnÞ and K2ðnÞ, can also be given analytically. Although the exact
stationary protein distribution cannot be analytically given, the so-
lution to Eq. 10, i.e., the stationary distribution of continuous vari-
ables, can be approximately expressed as (see SI Appendix for details)

PðxÞ=N ½λ1ðxÞ+ λ2x�L − ½λ1ðxÞ�L
½λ1ðxÞ+ λ2x�Lλ2x

exp
�
−2x+

Z x

0
4
�

λ1ðx′Þ
λ1ðx′Þ+ λ2x′

�L
dx′

�
,

[11]

where N is a normalization factor.
Numerical results are demonstrated in Fig. 3, where Fig. 3 A

and C shows how the number of the most probable protein
molecules obtained by a statistical method depends on memory
index L, whereas Fig. 3 B and D demonstrates that the stationary
distribution predicted by Eq. 11 can well approximate that
obtained by solving the sgCME. Note that L= 1 corresponds to

the markovian case (red dashed lines), whereas L< 1 or L> 1 to
the nonmarkovian case. In Fig. 3 A and C, the shadowed areas
represent that bimodality exists. Also note that the number of
the most probable protein molecules shown in Fig. 3 A and C is
in agreement with that predicted by a deterministic system (SI
Appendix). From Fig. 3 B and D, we observe that bimodal protein
distribution exists only for moderately large L with L> 1 or only
for moderately small L with L< 1. Since memory index L deter-
mines the strength of molecular memory, Fig. 3 implies that the
molecular memory only with moderate strengths can induce bi-
modality. Here, we also give an intuitive explanation for the dem-
onstrated numerical results. First, the occurrence of bimodality
needs appropriate nonlinearity. Second, if L is far away from 1,
then the system’s nonlinearity enhances. However, values of Lmust
be appropriately chosen to generate bimodal protein distributions
since only the appropriate nonlinearity can lead to bimodality.

Molecular Memory Can Fine-Tune the Gene Expression Noise. Tran-
scription is a key step in gene expression. Biochemical processes
associated with transcription often involve a variety of TFs,
which regulate the promoter kinetics. For bacterial cells, pro-
moters can exist in a surprisingly large number of regulatory
states, e.g., the PRM promoter of phage lambda in Escherichia
coli is regulated by 2 different TFs binding to 2 sets of 3 oper-
ators that can be brought together by looping out the intervening
DNA, and, as a result, the number of regulatory states of the
PRM promoter is up to 128 (54). In contrast, eukaryotic pro-
moters are more complex, involving nucleosomes competing
with or being removed by TFs (55). In addition to the conven-
tional regulation by TFs, the eukaryotic promoters can also be
epigenetically regulated via histone modifications (56–58), and
such regulation may lead to very complex promoter structures
(59). Given this complexity, we introduce intrinsic waiting-time
distributions to model promoter kinetics. Specifically, assume
that the switch times from OFF to ON and vice versa follow gamma
distributions given, respectively, by ψonðt;mÞ= λon

Lon

ΓðLonÞt
Lon−1e−λon t and

A

C D

B

Fig. 3. Molecular memory can induce bimodal protein expression in the presence of feedback: the gene model depicted in Fig. 2A, where ψ1ðt;nÞ depends on
n. Empty circles represent the results obtained by the sgCME, whereas the solid lines represent the results predicted by Eq. 11. A and B correspond to the case
of L≥ 1, where A demonstrates the dependence of most probable protein numbers on memory index L, whereas B shows stationary protein distributions. C
and D correspond to the case of L≤ 1, where C demonstrates the dependence of most probable protein numbers on L, whereas D shows stationary protein
distributions. Parameter values are set as: μ0 = 4L, μ1 = 14L,K = 6,n= 4, λ2 = 1(A and B); μ0 = 2.5L, μ1 = 10L,K = 6,n= 4, λ2 = 1 (C and D).
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ψoffðt;mÞ= λoff
Loff

ΓðLoff Þ t
Loff−1e−λoff t, where m represents the number of

mRNA molecules. In addition, assume that the waiting-time distri-
butions for transcription and degradation are given by ψgðt;mÞ=
μLg

ΓðLgÞ t
Lg−1e−μt and ψdegðt;mÞ= ðmλdegÞLdeg

ΓðLdegÞ tLdeg−1e−mλdegt. The corre-
sponding gene model is schematically depicted in Fig. 4A.
Let KiðmÞ ði= 1,2,3,4Þ be ETRs for transition from OFF to

ON, for transition from ON to OFF, for transcription, and for
degradation, respectively. According to Eq. 2, we can obtain the
analytical expressions of the ETRs, which are given in SI Ap-
pendix. Moreover, the analytical expression of K1ðmÞwith Lon > 1
or K2ðmÞ with Loff > 1 can imply that the effect of molecular
memory is equivalent to the introduction of a feedback, as
interpreted above. Let P0ðmÞ and P1ðmÞ be the probabilities that
mRNA has m molecules at states OFF and ON, respectively.
Then, the corresponding sgCME takes the following form:

−K1ðmÞP0ðmÞ+K2ðmÞP1ðmÞ+K4ðm+ 1ÞP0ðm+ 1Þ
−K4ðmÞP0ðmÞ= 0

K1ðmÞP0ðmÞ−K2ðmÞP1ðmÞ+K4ðm+ 1ÞP1ðm+ 1Þ−K4ðmÞP1ðmÞ                                                                           
+K3ðm− 1ÞP1ðm− 1Þ−K3ðmÞP1ðmÞ= 0.

[12]

In general, Eq. 12 has no analytical solution but can be solved
numerically (see SI Appendix for details). Fig. 4 shows numerical
results, where we vary memory index ðLÞ but always keep the

constant average time between successive reactions by scaling
the characteristic parameter (e.g., α) appropriately with L.
From this figure, we observe that the mRNA mean is mono-

tonically decreasing in memory index Lon (Fig. 4B) or in memory
index Lg (Fig. 4D) if the other memory indices are set as 1, but
monotonically increasing in memory index Loff (Fig. 4C) or in
memory index Ldeg (Fig. 4E) if the other memory indices are set
as 1. Fig. 4B shows that memory index Lon amplifies the mRNA
noise, whereas Fig. 4 C–E demonstrates that the other 3 memory
indices can reduce the mRNA noise. In a word, Fig. 4 indicates
that molecular memory plays an unneglectable role in gene
expression.

Molecular Memory Can Induce Switch. Recall that a toggle-switch
network (Fig. 5A) can model the cross-repression between the
determinants of different cellular states, which can result in a
definite choice between 2 outcomes (60–62). Conventional
models of genetic toggle switch consider exponential waiting-
time distributions. However, the expression of a gene in gen-
eral involves a multistep process. Indeed, transcriptional re-
pressor monomer (A or B) binds first to dimers and then to
specific DNA sequences near the promoter, repressing the pro-
duction of transcriptional repressor monomer (B or A). This
multistep process can lead to nonexponential waiting times,
creating a memory between individual reaction events. Here, we
consider a generalized model of genetic toggle switch, which is
schematically shown in Fig. 5A with 4 reactions listed in Fig. 5B,

A

B

D E

C

Fig. 4. Effect of molecular memory on gene expression. (A) Schematic representation of a model of stochastic transcription. (B) Dependence of the mean
mRNA and the noise intensity on Lon, where Loff = Lg = Ldeg = 1. (C) Dependence of the mean mRNA and the noise intensity on Loff, where Lon = Lg = Ldeg = 1. (D)
Dependence of the mean mRNA and the noise intensity on Lg, where Lon = Loff = Ldeg = 1. (E) Dependence of the mean mRNA and the noise intensity on Ldeg,
where Lon = Loff = Lg = 1. The parameter values are set as λon = Lon, λoff = 4Loff, λg =20Lg and λdeg = Ldeg. This setting implies the average time between successive
reactions is kept fixed by scaling λi appropriately with Li.
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where ψA
g ðt; nÞ,ψA

degðt; nÞ and ψB
g ðt; nÞ,ψB

degðt; nÞ are intrinsic
waiting-time distributions for the synthesis and degradation of
protein A and protein B, respectively, and n= ðnA, nBÞT with nA
and nB representing the numbers of protein A and protein B
molecules, respectively. Assume that these waiting-time distri-

butions are given by ψA
g ðt; nÞ= ½ΓðLA

g Þ�−1½λAg ðnÞ�
LA
g tL

A
g −1e−λ

A
g ðnÞt

with λAg ðnÞ= αA=ð1+ βAn
HA
B Þ, ψA

degðt; nÞ= λAdegnAe
−λ2nA t; ψB

g ðt; nÞ=
½ΓðLB

g Þ�−1½λBg ðnÞ�
LB
g tL

B
g −1e−λ

B
g ðnÞt with λBg ðnÞ = αB=ð1 + βBn

HB
A Þ,

ψB
degðt;nÞ= λBdegnBe

−λ2nBt. Note that LA
g =1 and LB

g =1 correspond
to the markovian case, whereas LA

g >1 or LB
g >1 corresponds to

the nonmarkovian case.
Numerical results are demonstrated in Fig. 5 C–H, where Fig.

5 C–E corresponds to the case of exponential waiting times,
whereas Fig. 5 F–H to the case of nonexponential waiting times.
We observe that if the waiting times for synthesis of protein A
and B follow exponential distributions (i.e., if we set LA

g =
LB
g = 1), the steady-state joint distribution of proteins A and B is

unimodal, referring to Fig. 5 C and D. However, if the waiting
times for synthesis of protein A and B follow nonexponential
distributions (e.g., if we set LA

g =LB
g = 2), the steady-state joint

distribution of proteins A and B is bimodal, referring to Fig. 5 F
and G. To examine the time dependence of the populations of 2
proteins in a single cell, we first perform stochastic simulations
with a numerical algorithm (see SI Appendix for details) and then
calculate the difference between the levels of proteins A and B.

Numerical results are shown in Fig. 5 E and H. Comparing Fig.
5E with Fig. 5H, we find that 2 switching states occur only in the
case of nonexponential waiting times or molecular memory.
Thus, we conclude from Fig. 5 that molecular memory can in-
duce bimodal distributions in the toggle-switch model depicted
in Fig. 5A or Fig. 5B.

Discussion
Previous studies of biochemical-reaction processes on networks
are mainly based on markovian (i.e., memoryless) hypothesis.
However, as soon as a reactant interacts with its environment,
the effect of molecular memory cannot be neglected. We have
derived an exact sgCME, an sgLNA, and an sgFPE for a general
biochemical-reaction network with molecular memory charac-
terized by nonexponential waiting-time distributions. These de-
rived equations allow one to retain analytical and/or numerical
tractability, being general in scope, and thus are of a potential
applicability in a wide variety of problems that transcend pure
physics applications. The derived sgCME is particularly useful in
finding stationary distributions in a number of nonmarkovian
biochemical systems, as demonstrated in this article. Analysis of
stochastic gene expression examples has indicated that the
sgCME can help us find new biological knowledge, e.g., the ef-
fect of molecular memory is equivalent to the introduction of a
feedback, and molecular memory can induce bimodality, al-
though the distribution is not bimodal in the corresponding
markovian case. The power of the sgCME can be enhanced by
analyzing other examples, such as nonmarkovian random walks

A

C

F G H

D E

B

Fig. 5. (A) Schematic representation of a genetic toggle-switch model with molecular memory, where 2 genes are repressed by each other. (B) Four reactions
corresponding to A, where waiting times for synthesis and degradation of each protein follow distributions. Default parameter values are taken as:
βA = βB = 1,HA =HB = 1, λAdeg = λBdeg = 1. (C and F) Joint distributions of proteins A and B, obtained by a numerical algorithm (SI Appendix). (D and G) Heat maps
in the plane of protein A and B. (E and H) Time series of the difference between the levels of protein A and B, obtained by sgGA. C–E correspond to ex-
ponential waiting times, where parameter values are set as LAg = LBg = 1, αA = αB = 20. F–H correspond to nonexponential waiting times, where parameter values
are set as LAg = LBg = 2, αA = αB = 40. Prob., probability.
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and diffusion on networks (21, 63–65) and nonmarkovian open
quantum systems (66).
Our general theory can reproduce some known results for

queuing models of biological processes. First, recall that Pedraza
and Paulsson (6) analyzed a GIX=M=∞ (including G=M=∞)
model of gene expression with a general queuing waiting-time
distribution for the arrival of bursts and an exponential waiting-
time distribution for the decay of mRNAs and derived an ap-
proximate formula for the mRNA noise. In SI Appendix, we have
used the above theory to reproduce this formula. Second, envi-
ronmental perturbations or external noise, which is often in-
evitable in cellular processes, can be modeled with time delay
(20). We have derived the analytical expressions of effective
transition rates and further established the corresponding gLNA
(see SI Appendix for details). Functionally, this gLNA may be
analogous to the chemical fluctuation theorem for Gt=G=∞
models of gene expression (19), where subscript “t” represents
that the corresponding waiting-time distributions are time-varying.
Our theoretical framework can also be used in the inference of

the structure and parameters involved in system modes for a
broad class of nonmarkovian biochemical-reaction processes on
networks. For example, the structure of gene promoters and
their kinetics, which would be complex due to, e.g., TF regula-
tion, can be inferred based on experimental data. In fact, we can
first infer the key parameter k in the Erlang waiting-time dis-
tribution from experimental data, since it can represent the
number of small, difficultly specified reaction steps involved in
transitions from ON to OFF states or vice versa, implying that
the promoter structure can be determined. Then, we can use the
standard method (e.g., the maximum likelihood estimation) to
infer the values of other parameters from the experimental data,
such as the mean switching rates between ON and OFF states,
the mean transcription or translational rate. These inferred ki-
netic parameters in turn determine promoter kinetics and gene-
expression dynamics. Furthermore, the sgCME can be used in
the analysis of the corresponding stationary probabilistic be-
havior. In a word, we expect that our analytical framework will be
of use for studying a variety of phenomena in biological and
physical sciences and, indeed, in other areas where individual-
based models with general waiting-time distributions and/or
delayed interactions are relevant.
In the realistic world, “non-Markov is the rule, Markov is the

exception,” as remarked by N. G. van Kampen (67). A stochastic

process (i.e., the biological phenomenon evolving in time) may
be or may not be markovian, depending on the variables used to
describe it. If all of the variables are observable or measurable, the
process is markovian. In general, however, this is impractical and
even impossible. Therefore, most of real stochastic processes we
observe are nonmarkovian. To model real stochastic processes with
some unobservable variables, many different methods of modeling
have been proposed, e.g., queuing models (6, 7, 17–19), delay
models (5, 28), Langevin equations with color noise (68), and
CTRW models (20–22, 26). Correspondingly, some simulation al-
gorithms have also been developed, e.g., those based on general
renewal processes (30–33) and the one by introducing some exog-
enously reaction channels (38). These approaches, despite their
own advantages, have finite applications, e.g., queuing models are
inconvenient to treating bi- or multimolecular reaction networks.
Finally, we point out that CTRWs used in our theory incor-

porate the timing of move, where a random walker waits between
2 moves for a duration that independently follows an intrinsic
waiting-time distribution. In other words, the move events are
generated by a renewal process. On the other hand, CTRWs can
be categorized into the 2 classes of active CTRWs and passive
CTRWs, depending on whether a random walker actively initial-
izes them as it travels or passively follows states when available
(21). In active CTRWs, the interevent time of a state is reini-
tialized when a random walker lands on it. In passive CTRWs to
which queuing models correspond, however, the interevent time
of a state is not reset, and the waiting time depends on the last
activation time. Usually, active CTRWs generates interevent times
from a given PDF, more suitable to the analytical study of random
processes, whereas passive CTRWs use interevent times observed
in real data, less favorable to model and analyze. Based on the
active CTRW framework, we have established a set of theories for
a general biochemical network with arbitrary intrinsic waiting-time
distributions. Our analysis of generalized birth and death pro-
cesses based on the passive CTRW framework (SI Appendix) has
provided a general thinking by establishing the relationship be-
tween the active and passive CTRWs.
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