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Abstract
We define the notion of a Ricci curvature lower bound for parametrized statistical
models. Following the seminal ideas of Lott–Sturm–Villani, we define this notion
based on the geodesic convexity of the Kullback–Leibler divergence in a Wasserstein
statistical manifold, that is, a manifold of probability distributions endowed with a
Wasserstein metric tensor structure. Within these definitions, which are based on
Fisher information matrix and Wasserstein Christoffel symbols, the Ricci curvature
is related to both, information geometry and Wasserstein geometry. These definitions
allow us to formulate bounds on the convergence rate of Wasserstein gradient flows
and information functional inequalities in parameter space. We discuss examples of
Ricci curvature lower bounds and convergence rates in exponential family models.

Keywords Ricci curvature · Information projection · Wasserstein statistical
manifold · Fokker–Planck equation on parameter space

1 Introduction

The Ricci curvature lower bound on sample space plays a crucial role in various
fields, including heat semi-groups [4] and differential geometry (Brunn–Minkowski
inequality) [38]. In particular, it provides sharp bounds for convergence rates of diffu-
sion processes [4] and functional inequalities [34]. In recent years, optimal transport
contributed a viewpoint that connects Ricci curvature and information functionals. In
this study, optimal transport, in particular the L2-Wasserstein metric, introduces a Rie-
mannian structure in probability density space, named density manifold [22,33]. The
Ricci curvature lower bound in sample space is equivalent to the geodesic convexity
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of the Kullback–Leibler divergence in the density manifold1. Following this angle,
Lott–Sturm–Villani [28,37] defined the Ricci curvature on non-smooth metric sam-
ple spaces, and Erbar–Maas [16] introduced it on discrete sample spaces. It is worth
mentioning that the discrete optimal transport is introduced by Chow et.al. [8], Maas
[29], and Mielke [30]. These studies and associated Ricci curvature lower bounds on
discrete sample spaces have many applications; see [9,10,13–15,17,18,36].

In statistics and machine learning, we often are interested in constructing, or select-
ing, a density that models the behavior of some observed data, according to some
quality criterion. Very often we restrict the search to a subset of densities, as this
allows us to handle large state spaces and also to incorporate prior knowledge into
our search. Parametrized statistical models are a ubiquitous and powerful approach.
In this paper, we develop the theory of Ricci curvature lower bounds for this situ-
ation. The Ricci curvature lower bound governs the dissipation rates of the relative
entropy. In the context of learning, this corresponds to the rates of convergence of
gradient descent methods for minimizing the Kullback–Leibler (KL) divergence and
computing information projections.

The Wasserstein metric tensor of a statistical manifold (a parametrized set of prob-
ability densities) has been defined in [24]. A statistical manifold endowed with a
Wassersteinmetric tensor structure is calledWasserstein statisticalmanifold.Wedefine
the Ricci curvature lower bound via geodesic convexity of the KL divergence on a
Wasserstein statistical manifold.We obtain a definition of the Ricci curvature that con-
nects Wasserstein geometry [38] and information geometry [2,3], much in the spirit of
[23,24], and take a natural further step towards connecting the two fields, in particular,
relating notions from learning applications and the geometry of the statistical models.
We focus on discrete sample spaces, which allows us to present a clear picture of the
relations deriving from this theory, and leave the details of continuous settings for
future work.

We consider a discrete statistical model described by a tuple (�, I , p) consisting
of a parameter space �, a discrete sample space (or state space) I = {1, . . . , n},
and a parametrization p : � → P(I ). Here P(I ) denotes the set of all probability
distributions on I . We say that (�, I , p) has Ricci curvature lower bound κ ∈ R with
respect to a given reference measure q, if and only if, for any θ ∈ �, it holds that

G F (θ) +
∑

a∈I

(
dθθ pa(θ) log

pa(θ)

qa
− �W ,a(θ)

d

dθa
DKL(p(θ)‖q)

)
� κGW (θ).

HereG F is the Fisher-Raometric tensor,GW is the L2-Wassersteinmetric tensor, dθθ p
is the second differential of the parameterization,�W (θ) are the Christoffel symbols of
the Wasserstein statistical manifold, and DKL(p(θ)‖q) = ∑n

i=1 pi (θ) log pi (θ)
qi

is the
KLdivergence. This definition depends on the referencemeasureq. We emphasize that
the geometry of statistical manifold comes into the picture of Ricci curvature through
both Fisher information matrix and Wasserstein Christoffel symbols. In statistics and
learning applications, the reference measure will play the role of a target or empirical

1 Geodesic convexity is a synthetic definition. If a function f on manifold (M, g) is second differentiable,
then f is λ-geodesic convex whenever HessM f � λg.
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Fig. 1 Our discussion involves a state space I , a parameter space �, and a parametrized set p(�) in the
space P(I ) of probability distributions on I . For a reference measure q ∈ P(I ), a positive Ricci curvature
lower bound implies that the Wasserstein geodesic connecting two distributions, p(θ0) and p(θ1), ‘bends’
towards q. The figure depicts the geodesic as a thick curve, together with the level sets of DKL(p(·)‖q), in
� and p(�). In terms of the state space I , when q is uniform, a decrease of the KL divergence with respect
to q corresponds to an increase of the entropy, meaning that along the geodesic, the ‘volume’ of states under
the distributions ‘bulges’. This corresponds to the synthetic notion of positive curvature in sample space.
Note how the geodesics are constrained to lie within the model p(�), which in general does not contain q.
See Definition 7, Theorem 8, Proposition 9, and Figs. 2 and 3 for more details

data distribution. A schematic illustration of the spaces and relations that we consider
is provided in Fig. 1.

The Ricci curvature on discrete state spaces has been studied by many groups.
(i) Ollivier [31] introduces a discrete Ricci curvature via L1-Wasserstein metric. Many
inequalities on graphs are shown under this setting; see, e.g., [19,21,32]. (ii) Lin-Yau et
al. [25,26] also define a Ricci curvature lower bound by heat semi-groups and Bakry–
Emery �2 operators. (iii) Erbar–Maas introduce the Ricci curvature lower bound
in [16] by means of equivalence relations with Lott–Sturm–Villani in the Wasser-
stein probability manifold, under which several information functional inequalities are
established. This notion has been studied extensively in [13–15,17,18]. However, the
notion of a Ricci curvature lower bound on the parameter space of a statisticalmanifold
has not been studied so far. Parametrized Wasserstein probability sub-manifolds were
not introduced until recently in [7,24]. There are several related infinite dimensional
Wasserstein sub-manifolds considered in [6,35]. Our definition of the Ricci curvature
lower bound for parametrized statistical models is close in spirit to the definitions by
Lott–Sturm–Villani and Erbar–Maas.

This paper is organized as follows. In Sect. 2, we briefly review the connections
between Ricci curvature, optimal transport, and KL divergence. We further demon-
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strate these connections in the context of information projections. In Sect. 3, we
introduce Wasserstein statistical manifolds. This is intended as a short review of the
definitions from [24]. We derive the Fokker–Planck equation on parameter space,
which is the Wasserstein gradient flow of the KL divergence. The main technical con-
tributions of this paper are contained in Sect. 4. We describe the convergence rate
of the Fokker–Planck equation in terms of a Ricci curvature lower bound. Further,
we use the notion of Ricci curvature lower bound to establish information functional
inequalities. We also discuss methods to estimate the Ricci curvature lower bound. In
Sect. 5, we present numerical evaluations on small exponential families. These allow
us to illustrate the notions introduced in the paper, and gain more intuition about their
meaning.

2 Ricci curvature and information projections

In this section, we review the connection of optimal transport and information theory
put forward in Villani’s book [38], and we further connect with the notion of informa-
tion projections described by Csiszár–Shields [11]. In later sections we will develop
these connections for the case of parametric statistical models.

2.1 Wasserstein geometry

Consider a continuous measure space (�, g�, q). Here � is a finite dimensional
compact smooth Riemannian manifold without boundary, g� is its metric tensor, dx is
the volume from of�, and q ∈ C∞(�) is the measure volume formwith

∫
�

q(x) = 1,
q(x) > 0. The Ricci curvature tensor on (�, g�, q) refers to

Ric = Ric� − Hess� log q, (1)

where Ric� denotes the Ricci curvature on � and Hess� is the Hessian operator on
�. Note that this notion of curvature depends on the reference measure q. Later in
our discussion, the reference measure will play the role of a target or empirical data
distribution.

On the one hand, optimal transport, in particular the L2-Wasserstein metric, intro-
duces an infinite-dimensional Riemannian structure in density space. Consider the set
of smooth and strictly positive densities

P+(�) =
{
ρ ∈ C∞(�) : ρ(x) > 0,

∫

�

ρ(x)dx = 1

}
.

The tangent space of P+(�) at ρ ∈ P+(�) is given by

TρP+(�) =
{
σ ∈ C∞(�) :

∫

�

σ(x)dx = 0

}
.
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Definition 1 (L2-Wasserstein metric tensor)Define the inner product gρ : TρP+(�)×
TρP+(�) → R by

gρ(σ1, σ2) =
∫

�

σ1(x)(−
ρ)†σ2(x)dx,

where 
†
ρ : TρP+(�) → TρP+(�) is the inverse of the elliptical operator 
ρ =

∇ · (ρ∇). Here ∇ and ∇· are the gradient and divergence operators in �, respectively.

Following [22],we call (P+(�), g) aWasserstein densitymanifold or aWasserstein
manifold for short. The metric tensor introduces a variational formulation of a metric
function. More precisely, the square of the L2-Wasserstein metric function is equal
to the geometric energy (action) of geodesics in the Wasserstein manifold. For any
ρ0, ρ1 ∈ P+(�), the L2-Wasserstein metric function is defined as

W (ρ0, ρ1)
2 = inf

{∫ 1

0
gρt (∂tρt , ∂tρt )dt : ρt ∈ P+(�), t ∈ [0, 1]

}

= inf

{∫ 1

0
‖∇�t‖2ρt dxdt : �t ∈ C∞(�), t ∈ [0, 1]

}
,

where the second formula is often named Benamou-Breiner formula [5]. It is the
geometric action functional in term of cotangent bundle; see details in [23].

One can extend the definitions from P+(�) to the set P2(�) of Borel probability
measures with finite second moments. It is well known that the L2-Wasserstein metric
defines a metric function on P2(�), and hence (P2(�), W ) forms a length space. See
related analytical treatments in [38].

2.2 Wasserstein gradient flow of the KL divergence

On the other hand, information theory considers a particular functional on density
space, namely the KL divergence. Given a smooth reference measure q ∈ P+(�), the
KL divergence of a given ρ with respect to q is defined by

DKL(ρ‖q) =
∫

�

ρ(x) log
ρ(x)

q(x)
dx .

Notice that the KL divergence is precisely the free energy. Indeed, if we write q(x) =
1
K e−V (x) with K = ∫

�
e−V (x)dx , we see that

DKL(ρ‖q) =
∫

�

ρ(x) log ρ(x)dx +
∫

�

V (x)ρ(x)dx + log K

= − H(ρ) + Eρ[V (X)] + log K ,

where H(ρ) = − ∫
�

ρ(x) log ρ(x) dx is the Boltzmann–Shannon entropy, X is a
random variable satisfying the law of density ρ and E is the expectation operator.
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The Ricci curvature on sample space is related both to the KL divergence and
the L2-Wasserstein metric tensor. This interaction starts with the gradient flow of
the KL divergence in the Wasserstein manifold (P+(�), g) [20]. It describes the
time evolution of the density following the negative Wasserstein gradient of the KL
divergence:

∂ρt

∂t
= − gradWDKL(ρ‖q)

=∇ ·
(

ρt∇
(
log

ρt

q
+ 1

))

=∇ · (ρt∇V ) + 
ρt .

(2)

The second line is by Definition 1 of the Wasserstein metric tensor. The last equality
holds since q(x) = 1

K e−V (x) and ∇ · (ρ∇ log ρ) = ∇ · (∇ρ) = 
ρ.
It is worth noting that there are several perspectives based on (2). Firstly, the flow (2)

is a well-known dynamics called the Fokker–Planck equation (FPE). It describes the
probability transition equation of drift diffusion process

Ẋt = −∇V (Xt ) + √
2Ḃt ,

where Bt is the canonical Brownian motion in sample space. Secondly, along the
flow (2), the KL divergence converges to zero. I.e. ρt converges to the minimizer of
the KL divergence, known as the Gibbs measure, q(x) = 1

K e−V (x). This reminds of
iterative methods for computing information projections [11] in statistics and machine
learning. In this context, one seeks to reproduce the behavior of a teacher system in
terms of a model. To this end, the learning rule proceeds by adjusting the model
parameters so as to maximize the likelihood function given the observations, which
is equivalent to minimizing the divergence, for instance using Wasserstein gradient
descent. The flow is the continuous limit of the gradient descent learning rule. We
shall go to this connection shortly, in Sect. 2.5.

2.3 Dissipation rates and the Ricci curvature lower bound

As it turns out, the Ricci curvature lower bound governs the exponential dissipation
rate of (2) towards the Gibbs measure q. In the setting of learning, this corresponds
precisely to the exponential rate of convergence of the learning dynamics. To see this,
the following calculations in dynamical system are used. One can find the convergence
rate of (2) by comparing the ratio between the first and second time derivatives along
the flow. By some computations, the first time derivative of the KL divergence along
the flow is found to be equal to

− d

dt
DKL(ρt‖q) = gρt (∂tρt , ∂tρt )

=
∫

�

�

(
log

ρt

q
, log

ρt

q

)
ρt dx,
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while the second time derivative is given by

d2

dt2
DKL(ρt‖q) =HessWDKL(ρt‖q) (∂tρt , ∂tρt )

=
∫

�

�2

(
log

ρt

q
, log

ρt

q

)
ρt dx .

Here HessW is the Hessian operator with respect to the Wasserstein metric tensor, and
� and �2 are the Bakry–Emery operators defined by

�( f , f ) =
∫

�

g�(∇ f ,∇ f ) dx,

and

�2( f , f ) = (Ric� − Hess� log q)(∇ f ,∇ f ) + tr(Hess� f ,Hess� f ),

where Ric� is the Ricci curvature tensor on �, Hess� is the Hessian operator on �,
and tr is the trace operator. By the above formulas, the ratio between d

dt DKL(ρt‖q)

and d2

dt2
DKL(ρt‖q) relates to the integral version of �, �2, i.e. the expectation values

of the operators �, �2. Notice that tr(Hess� f ,Hess� f ) ≥ 0. Classical results [38]
show that the lower bound of Ricci curvature governs the smallest ratio between
d
dt DKL(ρt‖q) and d2

dt2
DKL(ρt‖q), which further gives the exponential convergence

rate of (2). In addition, the above computation demonstrate that the lower bound of
the Ricci curvature, informally speaking, is equivalent to the smallest eigenvalue of
the Hessian operator of the KL divergence in the Wasserstein manifold.

Theorem 2 Given κ ∈ R and q(x) ∈ P+(�), the following statements are equivalent.

(i) κ is a Ricci curvature lower bound of (�, g�, q). I.e. κ is the largest number for
which, uniformly over �,

Ric = Ric� − Hess� log q � κg�;

(ii) �2( f , f ) ≥ κ�( f , f ), for any f ∈ C∞(�);
(iii) For any constant speed geodesic ρt , t ∈ [0, 1], connecting ρ0 and ρ1 in

(P2(�), W ),

DKL(ρt‖q) ≤ (1 − t)DKL(ρ0‖q) + tDKL(ρ1‖q) − κ

2
t(1 − t)W (ρ0, ρ1)

2.

Theorem 2 opens the door to define a notion of Ricci curvature lower bound on
sample spacevia its equivalent statements. In the literature,Bakry–Emery [4] define the
Ricci curvature lower bound by applying (ii) for smooth Riemannian sample spaces,
while Lott–Sturm–Villani [28,37] define it using (iii) for non-smooth metric sample
spaces, and Erbar–Maas [16] define it by (iii) in a discrete sample space. In this paper,
we shall define the notion of Ricci curvature lower bound for parametric statistics
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taking an approach based on (iii), known as the geodesic convexity property of the KL
divergence.

2.4 Learning in a parametrizedmodel

In statistics and machine learning applications one often considers a parametrized set
{p(·; θ) : θ ∈ R

d} of candidate probability distributions from which one wishes to
choose one to model the distribution of some given data.

One motivation for using parametrized models is reducing the dimensionality asso-
ciated with large state spaces. For instance, we may be considering a state space
consisting of images presented as arrays of pixel intensities, corresponding to {0, 1}n

with n easily in the order of thousands. In this case, storing a probability distribution
as a vector p ∈ R

2n
of individual probabilities p(x), x ∈ {0, 1}n , is an impossibility.

With a parametric model, instead of storing the probability vector, we store only a
parameter vector θ ∈ R

d , with a more manageable d, and fix a mapping that allows us
to recover individual values p(x; θ) of the probability distribution for a given x , or, in
other cases, which allows us to generate samples from p(·; θ) that we can also use to
estimate expectation values of interest. Reducing the dimensionality is useful not only
in terms of storage, but also in a statistical sense, in relation to overfitting. Without
going into details, the richer the class of hypotheses, with more free parameters, the
more prone we are to fitting statistical nuisances, instead of capturing the true general
behavior of the data. Byworkingwith a parametrizedmodel, we can incorporate priors
into the learning system and limit its vulnerability to overfitting.

When working with a parametrized model, obtaining the best possible hypothesis,
e.g. the maximizer of the likelihood, is usually a non trivial problem and one has to
resort to iterative methods. A relevant question then is the computational effort needed
for this. In particular, one is interested in the number of iterations needed until reaching
a solution that is within ε of the best possible. The Ricci curvature can be regarded
as a way to obtain bounds on the convergence rate of gradient optimization of the KL
divergence for a given a target distribution, uniformly over the start distribution. We
elaborate on this in the next paragraph. The situation is illustrated in Figs. 1, 2, and 3.

2.5 I-projections

In the context of information theory and statistics, Csiszár-Shields [11] define the I-
projection of a distribution Q onto a non-empty closed convex set N of distributions
as the point P∗ ∈ N such that

D(P∗‖Q) = min
P∈N

D(P‖Q).

The notion of I-projection considers the minimization of the KL divergence with
respect to the first argument, but it is also relevant in the context ofmaximum likelihood
estimation, where the minimization is with respect to the second argument. Given an
empirical data distribution P , a maximum likelihood estimate over a set E is a point
P∗ ∈ E (the closure of E), with
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Fig. 2 For a distribution Q in an
exponential family E and a
distribution P in an orthogonal
linear familyN , the
Pythagorean relation holds:
D(P‖Q) =
D(P‖P∗) + D(P∗‖Q), where
P∗ is the unique intersection
point of E andN

E

N

D(P‖P ∗)

D(P ∗‖Q)

D(P‖Q)

Q

P ∗

P

D(P‖P∗) = inf
Q∈E

D(P‖Q).

If we consider an exponential family model E = {p ∝ Qr exp(θTF) : θ ∈ R
d} on

a finite state space I , with sufficient statistics F : I → R
d and reference measure

Qr ∈ P+(I ), then the maximum likelihood estimator P∗ for the target distribution P
can be obtained as the I-projection of Q ∈ E onto the orthogonal linear family defined
by N = {p : ∑

x F(x)p(x) = ∑
x F(x)P(x)}. We have namely that

P∗ = argminQ′∈E D(P‖Q′) = argminP∈N D(P‖Q).

This is a consequence of the well known Pythagorean relation [2,11] illustrated in
Fig. 2. Iterative numerical methods to compute I-projections, and more generally, to
optimize the likelihood, include gradient optimization, Newton’s method, the Fisher
scoring algorithm [27], the Fisher natural gradient [1], and generalized iterative scaling
[12].

Csiszár and Shields [11] consider iterative methods for computing I-projections,
and obtain upper bounds on the divergence along the resulting parameter trajectories,
which describe the convergence to the optimum value. For two sets of distributions,
P andQ, together with two functions D(·, ·) : P ×Q → R and δ(·, ·) : P ×P → R,
satisfying certain conditions, they describe an iterative algorithm (alternating diver-
gence minimization) which iterates pn ∈ P and qn ∈ Q, and give an upper bound of
the form

D(pn+1, qn) − Dmin ≤ δ(p∞, pn) − δ(p∞, pn+1). (3)

In this paper we are in the special setting whereQ = {q} andP is the set of all den-
sities. There is a natural connection between (3) and the Fokker–Planck-equation (2).
Indeed, setting D as the KL divergence and qn = q = p∞, pn = ρt , pn+1 = ρt+
t ,
where 
t is the step size, we demonstrate in Proposition 9 that we can substitute

δ(q, p) = 1

2κ
t
DKL(p‖q),

where κ is the Ricci curvature lower bound that we will define later on. Strictly
speaking, for this correspondence, we need to assume that κ > 0, which is a natural
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Fig. 3 Illustration of the Ricci
curvature lower bound κ in
connection to the geodesic
convexity of the KL divergence
and the rate of convergence of
the information projection flow.
Here p(θt ) is a Wasserstein
geodesic connecting p(θ0) and
p(θ1). When q = p(θ1), the KL
divergence DKL(p(θt )‖q) is
monotonically decreasing

DKL(p(θt)‖q)

p(θ0)

p(θ1)

t0 t1

1
8 κ dW (θ0, θ1)2

requirement similar to requiring that the KL divergence is geodesic convex in set P .
Each step dissipation in (3) then gives

DKL(ρt+
t‖q) − Dmin ≤δ(p∞, pn) − δ(p∞, pn+1)

= 1

2κ
t
{DKL(ρt‖q) − DKL(ρt+
t‖q)}

= − 1

2κ

d

dt
DKL(ρt‖q) + o(
t).

In other words, the Fokker–Planck equation is a monotone information projection
flow, in which the dissipation quantity is governed by the difference of relative entropy
divided by twice the Ricci curvature lower bound. In the limit where 
t goes to zero,

DKL(ρt‖q) − Dmin ≤ − 1

2κ

d

dt
DKL(ρt‖q).

Grönwall’s inequality then implies that this I-projection flow (2) converges to the
minimizer at the rate of e−2κt , i.e.

DKL(ρt‖q) − Dmin ≤ e−2κt
(
DKL(ρ0‖q) − Dmin

)
.

The above shows that the learning rate for the Fokker–Planck equation is linear, whose
lower bound is governed by κ . Following these connections, we will pursue the defi-
nition of the Ricci curvature lower bound on parameter space. The convergence rate,
in relation to the Ricci curvature lower bound and the geodesic convexity of the KL
divergence, is illustrated schematically in Fig. 3. More details will be provided in
Proposition 9.

3 Wasserstein statistical manifolds

In preparation for the definitions and results on the Ricci curvature that we will present
in the next section, we briefly review the definition of aWasserstein statisticalmanifold
with discrete sample space from [24], and present the Fokker–Planck equation on
parameter space.
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3.1 Wasserstein geometry on the probability simplex

We recall the definition of discrete probability simplex with L2-Wasserstein Rieman-
nian metric. Consider the discrete sample space I = {1, . . . , n}. The probability
simplex on I is the set

P(I ) =
{

(p1, . . . , pn) ∈ R
n :

n∑

i=i

pi = 1, pi ≥ 0

}
.

Here p = (p1, . . . , pn) is a probability vector with coordinates pi corresponding
to the probabilities assigned to each node i ∈ I . The probability simplex P(I ) is a
manifold with boundary. We denote the interior by P+(I ). This consists of the strictly
positive probability distributions, with pi > 0 for all i ∈ I . To simplify the discussion,
we will focus on the interior P+(I ). For the studies related to the boundary ∂P(I ),
we refer the reader to [23].

Next we define the L2-Wasserstein metric tensor onP+(I ), which also encodes the
metric tensor of discrete states I . We need to give a ground metric notion on sample
space. We do this in terms of a simply connected undirected graph with weighted
edges, G = (I , E, ω), where I is the vertex set, E ⊆ (I

2

)
is the edge set, and ω =

(ωi j )i, j∈I ∈ R
n×n is a matrix of edge weights satisfying

ωi j =
{

ω j i > 0, if (i, j) ∈ E

0, otherwise
.

The set of neighbors (adjacent vertices) of i is denoted by N (i) = { j ∈ V : (i, j) ∈ E}.
The normalized volume form on node i ∈ I is given by di =

∑
j∈N (i) ωi j∑n

i=1
∑

i ′∈N (i) ωi i ′
.

The graph structure G = (I , E, ω) induces a graph Laplacian matrix function.

Definition 3 (Weighted Laplacian matrix) Given an undirected weighted graph G =
(I , E, ω), with I = {1, . . . , n}, the matrix function L(·) : Rn → R

n×n is defined by

L(p) = DT�(p)D, p = (pi )
n
i=1 ∈ R

n,

where

• D ∈ R
|E |×n is the discrete gradient operator defined by

D(i, j)∈E,k∈V =

⎧
⎪⎨

⎪⎩

√
ωi j , if i = k, i > j

−√
ωi j , if j = k, i > j

0, otherwise

,

• −DT ∈ R
n×|E | is the oriented incidence matrix, and
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• �(p) ∈ R
|E |×|E | is a weight matrix depending on p,

�(p)(i, j)∈E,(k,l)∈E =
{

1
2 (

1
di

pi + 1
d j

p j ) if (i, j) = (k, l) ∈ E

0 otherwise
.

TheLaplacianmatrix function L(p) is the discrete analog of theweightedLaplacian
operator −∇ · (ρ∇) from Definition 1. Here it is used as the inverse of metric tensor
for the discrete probability simplex.

Remark 1 There are several other choices of �(p) proposed in [29]. It is worth men-
tioning that the canonical choice of�(p) in discrete settings is unknown yet. We leave
the study for other choices of �(p) to interested readers.

We are now ready to present the L2-Wasserstein metric tensor. Consider the tangent
space of P+(I ) at p,

TpP+(I ) =
{

(σi )
n
i=1 ∈ R

n :
n∑

i=1

σi = 0

}
.

Denote the space of potential functions on I byF(I ) = R
n , and consider the quotient

space
F(I )/R = {[�] | (�i )

n
i=1 ∈ R

n},
where [�] = {(�1 + c, . . . , �n + c) : c ∈ R} are functions defined up to addition of
constants.

We introduce an identification map via the weighted Laplacian matrix L(p):

V : F(I )/R → TpP+(I ), V� = L(p)�.

We know that L(p) has only one simple zero eigenvalue with eigenvector c(1, 1,
. . . , 1), for any c ∈ R. This is true since for (�i )

n
i=1 ∈ R

n ,

�TL(p)� = (D�)T�(p)(D�) =
∑

(i, j)∈E

ωi j (�i−� j )
2
(
1

2

(
1

di
pi + 1

d j
p j

))
= 0,

implies �i = � j , (i, j) ∈ E . It the graph is connected, as we assume, then (�i )
n
i=1 is

a constant vector. ThusV : F(I )/R → TpP+(I ) is a well definedmap, linear, and one
to one. I.e., F(I )/R ∼= T ∗

pP+(I ), where T ∗
pP+(I ) is the cotangent space of P+(I ).

This identification induces the following inner product on TpP+(I ).

Definition 4 (L2-Wasserstein metric tensor) The inner product gp : TpP+(I ) ×
TpP+(I ) → R takes any two tangent vectors σ1 = V�1 and σ2 = V�2 ∈ TpP+(I )
to

gp(σ1, σ2) = σ T
1�2 = σ T

2�1 = �T
1L(p)�2. (4)
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In other words,

gp(σ1, σ2) := σ1
TL(p)†σ2, for any σ1, σ2 ∈ TpP+(I ),

where L(p)† is the pseudo inverse of L(p).

Following the inner product (4), the Wasserstein metric (distance function)
W : P+(I ) × P+(I ) → R is defined by

W (p0, p1)2 := inf
p(t),�(t)

{∫ 1

0
�(t)TL(p(t))�(t)dt

}
. (5)

Here the infimum is taken over pairs (p(t),�(t)) with p ∈ H1((0, 1),Rn) and
� : [0, 1] → R

n measurable, satisfying

d

dt
p(t) − L(p(t))�(t) = 0, p(0) = p0, p(1) = p1.

3.2 Wasserstein statistical manifold

Wenext consider a statisticalmodel definedby a triplet (�, I , p). Here, I = {1, . . . , n}
is the sample space,� is the parameter space, which is an open subset ofRd , d ≤ n−1,
and p : � → P+(I ) is the parametrization function,

p(θ) = (pi (θ))n
i=1, θ ∈ �.

We define a Riemannian metric gW on � as the pull-back of metric g on P+(I ). In
other words, we require that p : (�, gW ) → (P+(I ), g) is an isometric embedding:

gW
θ (a, b) :=gW

p(θ)(dθ p(θ)(a), dθ p(θ)(b))

=(
dθ p(θ)(a)

)T
L(p(θ))†

(
dθ p(θ)(b)

)
, for all a, b ∈ Tθ (�).

Since dp(θ)(a) = (∑d
j=1

∂ pi (θ)
∂θ j

a j
)n

i=1 = Jθ p(θ)a, we arrive at the following defi-
nition.

Definition 5 (L2-Wasserstein metric tensor on parameter space) For any pair of tan-
gent vectors a, b ∈ Tθ� = R

d , define

GW (θ) := Jθ p(θ)TL(p(θ))† Jθ p(θ), (6)

and
gW
θ (a, b) := aTGW (θ)b,

where Jθ (p(θ)) = (
∂ pi (θ)
∂θ j

)1≤i≤n,1≤ j≤d ∈ R
n×d is the Jacobi matrix of the

parametrization p.
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This inner product is consistent with the restriction of theWasserstein metric gW to
p(θ). We will assume that rank(Jθ p(θ)) = d, so that the parametrization pi is locally
injective and the metric tensor gW is positive definite. We call (�, I , p), together with
the induced Riemannian metric gW , Wasserstein statistical manifold (WSM).

In this case, the constrained Wasserstein distance function dW : � × � → R+ is
given by the geometric action energy

dW (θ0, θ1)
2

= inf
θ(t)∈C1([0,1],�)

{∫ 1

0
θ̇ (t)TGW (θ(t))θ̇(t)dt : θ(0) = θ0, θ(1) = θ1

}
. (7)

The above formula can be viewed as Benamou-Breiner formula within probability
models.Whenworking on the full probability simplex, with θ = p, themetric function
dW corresponds precisely to the metric function W given in (5).

3.3 Fokker–Planck equation on parameter space

We next derive the Fokker–Planck equation on parameter space by Wasserstein gra-
dient flow of KL divergence.

Given a reference measure q ∈ P+(I ), consider the Kullback–Leibler divergence
(relative entropy) on parameter space

DKL(p(θ)‖q) =
n∑

i=1

pi (θ) log
pi (θ)

qi
.

Proposition 6 (Fokker–Planck equation on parameter space) The gradient flow for the
negative Boltzmann–Shannon entropy in (�, g) is

dθ

dt
= −(

Jθ p(θ)TL(p(θ))† Jθ p(θ)
)†

Jθ p(θ)T log
p(θ)

q
. (8)

Proof Notice that the Riemannian gradient operator of function F ∈ C∞(θ) in
(�, gW ) is defined as

gradW F(θ) = GW (θ)†∇θ F(θ),

and the gradient flow satisfies

dθ

dt
= −gradW F(θ).
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Thus, the gradient flow of entropy on (�, gW ) satisfies

dθ

dt
= − gradWDKL(p(θ)‖q)

= − GW (θ)†∇θDKL(p(θ)‖q)

= − (
Jθ p(θ)TL(p(θ))† Jθ p(θ)

)†
Jθ p(θ)T

(
log

p(θ)

q
+ �1

)
,

where ∇θ represents the Euclidean gradient operator, log p(θ)
q = (log pi (θ)

qi
)n
i=1 and

�1 = (1, . . . , 1) ∈ R
n . Since p(θ)T�1 = 1, we have Jθ p(θ)T�1 = �0. This completes the

proof. ��

Remark 2 Consider the full probability set with continuous sample space �. Denote
the probability pi (t) by a density ρ(t, x) ∈ P(�), then the equation (8) recovers
exactly the FPE (2).

We next study the convergence properties of the Fokker–Planck equation on param-
eter space. In otherwords, how fast does the solution of (8) converge to its equilibrium?
As in the full probability space, we define the concept of Ricci curvature lower bound
on parameter space to give the bound of the convergence rate for (8).

4 Ricci curvature lower bound on parameter space

This section contains themain contributions of this paper.Wedefine theRicci curvature
lower bound on parameter space and prove equivalent conditions for this defini-
tion, which connect information geometry and Wasserstein geometry. In addition,
we present several information functional inequalities on parameter space. Finally, we
give a simple guide for computing these quantities in practice.

4.1 Ricci curvature lower bound on parameter space

Definition 7 We say (�, I , p) has the Ricci curvature lower bound κ ∈ R if for any
constant speed geodesic θt , t ∈ [0, 1], connecting θ0, θ1 in (�, gW ), it holds that

DKL(p(θt )‖q) ≤ (1 − t)DKL(p(θ0)‖q) + tDKL(p(θ1)‖q) − κ

2
t(1 − t)dW (θ0, θ1)

2.

In this case we also write
Ric(�, I , p) ≥ κ.

If (�, gW ) forms a compact smoothRiemannianmanifold and p(θ) is smooth. Then
κ is the smallest eigenvalue of the Hessian of the KL divergence over the Wasserstein
statistical manifold, i.e.
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HessWDKL(p(θ)‖q) � κGW (θ),

for any θ ∈ �.

Definition 7 is based on the definition of geodesic convexity in geometry. It is a more
general definition than the one in terms of the Hessian operator begin bounded below
by κ . The reason is as follows. On the one hand, the probability set is a manifold with
boundary. Suitable regularity studies are needed to take care of the boundary when
using the Hessian operator [23]. On the other hand, not all parameterizations p(θ) are
twice differentiable.

Definition 7 shares the same spirit of Lott–Sturm–Villani and Erbar–Maas. If
p(�) = P(I ) is the whole probability simplex, then Ric(�, I , p) is the Ricci
curvature bound on discrete sample space. Our definition extends this idea to a statis-
tical manifold. In other words, Ric(�, I , p) inherits properties from both probability
submanifold and Ricci curvature bound on sample space. Note that Ric(�, I , p) is
different from the Ricci curvature on (�, gW ), in which the former represents how the
changes ratio KL divergence takes effect on the parameterized sample space, while
the later reflects the curvature on the set of probability model itself.

We next given an equivalent condition for Definition 7. It naturally connects Ricci
curvature (R), Information geometry (I) and Wasserstein geometry (W). We call it
Ricci–Information–Wasserstein (RIW) condition.

Theorem 8 (RIW condition) Assume � is a compact set. Ric(�, I , p) ≥ κ holds if
and only if for any θ ∈ �,

G F (θ) +
∑

a∈I

(
dθθ pa(θ) log

pa(θ)

q
− �W ,a(θ)

d

dθa

DKL(p(θ)‖q)

)
� κGW (θ), (9)

where G F (θ) = (G F (θ)ab)1≤a,b≤d is the Fisher-Rao metric tensor

G F (θ)ab =
∑

i∈I

d log pi (θ)

dθa

d log pi (θ)

dθb
pi (θ), (10)

�W ,k = (�
W ,k
i j )1≤i, j≤n is the Wasserstein Christoffel symbol

�
W ,k
i j = 1

2

n∑

l=1

(GW ,kl)
−1

(
∇θi GW , jl + ∇θ j GW ,il − ∇θl GW ,i j

)
,

and GW (θ) is the Wasserstein metric tensor defined in (6).

Proof Let θt be a constant speed geodesic, i.e. θ̈t + �W (θ̇t , θ̇t ) = 0 with θ0 = θ ∈ �

and θ̇0 = a ∈ Tθ�. Consider the Taylor expansion
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DKL(p(θt )‖q) = DKL(p(θ)‖q) + d

dt

∣∣∣∣
t=0

DKL(p(θt )‖q)t + 1

2

d2

dt2

∣∣∣∣
t=0

DKL(p(θt )‖q)t2 + o(t2).

Then the Hessian operator on Riemannian manifold (�, gW ) forms

HessWDKL(p(θt )‖q)(θ̇t , θ̇t )

= d2

dt2
DKL(p(θt )‖q)

= d

dt
(dθ DKL(p(θt )‖q)Tθ̇t )

= θ̇Tt dθθDKL(p(θt )‖q)θ̇t − dθDKL(p(θt )‖q)T�W (θ̇t , θ̇t )

= θ̇Tt dθθDKL (p(θt )‖q) θ̇t − θ̇Tt

(
∑

k∈I

d

dθk
DKL(p(θt )‖q)�W ,k

)
θ̇t .

In addition,

dθDKL(p(θt )‖q) =
n∑

i=1

(
dθ pi (θt ) log pi (θt )+ pi (θt )dθ log pi (θt ) − dθ pi (θt ) log qi

)

=
n∑

i=1

(
dθ pi (θt ) log pi (θt ) − dθ pi (θt ) log qi

)
,

where
∑n

i=1 pi (θt )dθ log pi (θt ) = ∑n
i=1 pi (θt )

1
pi (θt )

Jθ pi (θt ) = 0, since
∑n

i=1 pi (θ)

= 1. Thus

dθθDKL(p(θt )‖q) =
n∑

i=1

dθθ pi (θt ) log
pi (θt )

q
+

n∑

i=1

1

pi (θt )
dθ pi (θt )dθ pi (θt )

T

=
n∑

i=1

dθθ pi (θt ) log
pi (θt )

q
+ G F (θ),

where G F denotes the Fisher-Rao metric tensor: G F (θt ) = ∑n
i=1

1
pi (θt )

dθ pi

(θt )dθ pi (θt )
T = ∑n

i=1 dθ log pi (θt )dθ log pi (θt )
T pi (θ),with the fact 1

pi (θt )
dθ pi (θt ) =

dθ log pi (θt ).
Thus HessWDKL(p(θ)‖q) � κGW (θ) is equivalent to (9). This concludes the

proof. ��

Remark 3 If we replace I by the continuous sample space (�, g�) and consider the
full probability simplex, then RIW condition (9) is equivalent to the integral version
of Bakry–Emery condition. See details in [23, Proposition 19].
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4.2 Entropy dissipation on parameter space

With the Ricci curvature lower bound in hand, we can prove the following convergence
properties of Fokker–Planck equations on parameter space.

Proposition 9 (Bakry–Emery condition on parameter space) Assume � is a compact
set. If Ric(�, I , p) ≥ κ > 0, then there exists a unique equilibrium θ∗ ∈ �, with

θ∗ = argmin
θ∈�

DKL(p(θ)‖q).

In addition, for any initial condition θ0 ∈ �, the solution θ(t) of (8) converges to θ∗
exponentially fast, with

DKL(p(θt )‖q)−DKL(p(θ∗)‖q)≤e−2κt
(

DKL(p(θ0)‖q)−DKL(p(θ∗)‖q)
)
, for all t .

(11)

Remark 4 This result will apply for any geometry defined on�, whenever κ > 0 is the
smallest eigenvalue of the corresponding Hessian operator of the divergence function.

Proof The proof comes from the classical study of gradient flow in Riemannian man-
ifold (�, gW ). Since HessWDKL(p(θ)‖q) ≥ κ > 0, the DKL(p(θ)‖q) is κ-geodesics
convex in (�, gW ). Thus θ(t) converges to the unique equilibrium θ∗, which is also
the unique minimizer of KL divergence.

We next investigate how fast θ(t) converges to θ∗. The speed of convergence is
obtained by comparing the first and second derivatives of the KL divergence w.r.t. time
t along (8). We have

d

dt
DKL(p(θt )‖q) = −gW (gradWDKL(p(θt )‖q), gradWDKL(p(θt )‖q)

)
,

and

d2

dt2
DKL(p(θt )‖q) = 2HessWDKL(p(θt )‖q)

(
gradWDKL

(p(θt )‖q), gradWDKL(p(θt )‖q)
)
.

From Ric(�, I , p) ≥ κ > 0, then HessWDKL(p(θ)‖q) ≥ κ > 0, i.e.

d2

dt2
DKL(p(θt )‖q) ≥ −2κ

d

dt
DKL(p(θt )‖q), for all t ≥ 0. (12)

Then by integrating the above formula over [t,+∞), one obtains

d

dt
[DKL(p(θ∗)‖q) − DKL(p(θt )‖q)] ≥ −2κ[DKL(p(θ∗)‖q) − DKL(p(θt )‖q)].

Proceed with the Grönwall’s inequality, the result is proved. ��
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4.3 Functional inequalities on parameter space

In literature [34], the convergence rate of FPE is used to prove several functional
inequalities, including Log-Sobolev, Talagrand and HWI inequalities. The HWI
inequality is a relation between the relative entropy (H), Wasserstein metric (W),
relative Fisher information functional (I). We shall derive the counterparts of these
inequalities on parameter space.

Here the Log-Sobolev inequality describes a relationship between relative entropy
and relative Fisher information functional on parameter space. Here the relative Fisher
information functional is defined by

I(p(θ)‖q) :=gW (gradWDKL(p(θt )‖q), gradWDKL(p(θt )‖q)). (13)

Here we formulate (13) as follows:

I(p(θ)‖q) = log
p(θ)

q

T

Jθ (p(θ))
(
Jθ p(θ)TL(p(θ))† Jθ p(θ)

)†
Jθ p(θ)T log

p(θ)

q
.

We compare (13) with the one in continuous sample space and full probability space:

I(ρ‖q) =
∫

�

g�

(
∇ log

ρ

q
,∇ log

ρ

q

)
ρ dx .

We note that the functional (13) is different from the commonly known Fisher infor-
mation matrix (10) in parameter space. It contains the ground metric structure in the
sample space, which is inherited from the L2-Wasserstein metric tensor L(p)†. In
other words, when applying the Fisher information in full probability set into parame-
ter space, the following two angles arrive. Here (13) keeps the differential structure of
sample space and project the differential of KL divergence into the parameter space,
while Fisher information matrix (10) replaces the differential structures of sample
space to the ones in parameters.

In the following, we derive inequalities based on (13).

Proposition 10 (Functional inequalities on parameter space) Consider a statistical
manifold (�, I , p). The following inequalities hold.

(i) If Ric(�, I , p) ≥ κ > 0, then the Logarithmic Sobolev inequality on parameter
space

DKL(p(θ)‖q) − DKL(p(θ∗)‖q) ≤ 1

2κ
I(p(θ)‖q), (14)

holds for any θ ∈ �.
(ii) If Ric(�, I , p) ≥ κ > 0, then the Talagrand inequality on parameter space

κ

2
dW (θ, θ∗)2 ≤ DKL(p(θ)‖q) − DKL(p(θ∗)‖q),

holds for any θ ∈ �.
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(iii) If Ric(�, I , p) ≥ κ ∈ R (κ not necessarily positive), then the HWI inequality
on parameter space

DKL(p(θ)‖q) − DKL(p(θ∗)‖q) ≤ √
I(p(θ)‖q)dW (θ, θ∗) − κ

2
dW (θ, θ∗)2,

holds for any θ ∈ �.

Proof Here we mainly follow the heuristic arguments in [34]. In finite dimensional
parameter space, these approaches are rigorous. We demonstrate the proofs for the
completeness of paper.

(i) The proof follows Proposition 9. Consider the Fokker–Planck equation (2) with
initial condition θ(0) = θ . The dissipation along gradient flow of entropy gives

I(p(θt )‖q) = − d

dt
DKL(p(θt )‖q)

=gW
(
gradWDKL(p(θt )‖q), gradWDKL(p(θt )‖q)

)
.

(15)

Since (12) holds, by integrating over time t ∈ [0,∞), we have

− d

dt
DKL(p(θt )‖q)|∞t=0 ≥ −2κ[DKL(p(θ∗)‖q) − DKL(p(θ0)‖q)].

From (15) and θ(0) = θ , we have

I(p(θ)‖q) − I(p(θ∗)‖q) ≤ 2κ[DKL(p(θ)‖q) − DKL(p(θ∗)‖q)],

where we use the fact gradWDKL(p(θ)‖q) = 0, so that I(p(θ∗)‖q) = 0. It proves
the result.

(ii) Consider θ(t) satisfy the FPE (2) on parameter space with θ(0) = θ . Since
Ric(�, I , p) ≥ κ > 0, then limt→∞ θ(t) = θ∗. Define

�(t) = dW (θ, θ(t)) +
√
2

κ

√
DKL(p(θt )‖q) − DKL(p(θ∗)‖q).

Thus �(0) =
√

2
κ

√
DKL(p(θ)‖q) − DKL(p(θ∗)‖q) and �(∞) = limt→∞ �(t) =

dW (θ, θ∗). We claim that �(t) is nondecreasing. If so, then �(0) ≤ �(∞), which
proves the result.

To show �(t) is nondecreasing, we shall prove that

d

dt

+
�(t) = lim sup

h→0+
�(t + h) − �(t)

h
≤ 0.

Here we assume θ(t) �= θ∗, otherwise �(t + h) = �(t) for any h, which shows the
upper derivative zero.
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On the one hand, by triangle inequality,

|dW (θ, θt ) − dW (θ, θt+h)| ≤ dW (θt , θt+h),

so that

lim sup
h→0+

dW (θt , θt+h)

h
= √

gW (gradWDKL(p(θt )‖q), gradWDKL(p(θt )‖q))

= √
I(p(θt )‖q). (16)

On the other hand, since θ(t) �= θ∗, then
√
2

κ

d

dt

√
DKL(p(θt )‖q) − DKL(p(θ∗)‖q)

= −gW (gradWDKL(p(θt )‖q), gradWDKL(p(θt )‖q))√
2κ(DKL(p(θt )‖q) − DKL(p(θ∗)‖q))

= − I(p(θt )‖q)√
2κ(DKL(p(θt )‖q) − DKL(p(θ∗)‖q))

.

From (14), we have

√
2

κ

d

dt

√
DKL(p(θt )‖q) − DKL(p(θ∗)‖q) ≤ −√

I(p(θt )‖q). (17)

From (16) and (17), we have d
dt

+
�(t) = lim suph→0+

�(t+h)−�(t)
h ≤ 0, which fin-

ishes the proof.
(iii) From the definition of Ric(�, I , p) ≥ κ , then HessWDKL(p(θ)‖q) � κGW .

Denote θt be a geodesic curve of least energy in manifold (�, gW ), joining θ0 = θ

and θ1 = θ∗. Thus

dW (θ, θ∗) =
√

gW

(
dθt

dt
,

dθt

dt

)
.

From the Taylor expansion on the (�, gW ), we have

DKL(p(θ∗)‖q) = DKL(p(θ)‖q) + d

dt
|t=0DKL(p(θt )‖q)

+
∫ 1

0
(1 − t)

d2

dt2
DKL(p(θt )‖q)dt .

We note that

d

dt
|t=0DKL(p(θt )‖q)

= gW

(
gradWDKL(p(θt )‖q),

dθt

dt

)
|t=0
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≥ −
√

gW
(
gradWDKL(p(θt )‖q), gradWDKL(p(θt )‖q)

)|t=0

√

gW

(
dθt

dt
,

dθt

dt

)
|t=0

= −√
I(p(θ)‖q)dW (θ, θ∗),

and

∫ 1

0
(1 − t)

d2

dt2
DKL(p(θt )‖q)dt

=
∫ 1

0
(1 − t)gW

(
HessWDKL(p(θt )‖q) · dθt

dt
,

dθt

dt

)
dt

≥
∫ 1

0
κ(1 − t)gW

(
dθt

dt
,

dθt

dt

)
dt

= κ

2
dW (θ, θ∗)2.

Combining the above formulas, we prove the result. ��

4.4 Computing the Ricci curvature lower bound and convergence rate

In this section, we design an algorithm for Ricci curvature lower bound κ .
Wefirst approximate κ byRIWcondition in Theorem8. In otherwords, we compute

formulas for (9) via

κ = Smallest eigenvalue of GW (θ)−1

×
{

G F (θ) +
∑

a∈I

(
dθθ pa(θ) log

pa(θ)

q
− �W ,a(θ)

d

dθa

DKL(p(θ)‖q)
)}

.

where dθθ pa(θ), �W ,a(θ), d
dθa

DKL(p(θ)‖q) are computed by numerical differentia-
tion.

In practice, we also compute a uniform convergence rate K ≥ κ as the smallest
ratio of d

dt DKL(p(θt )‖q) and d2

dt2
DKL(p(θt )‖q) along the gradient flow (8) for any

initial conditions. I.e.

K = min
θ0∈�

1

2T

DKL(p(θ2T )‖q) − 2DKL(p(θT )‖q) + DKL(p(θ0)‖q)

DKL(p(θT )‖q) − DKL(p(θ0)‖q)
,

where T is a given short time, θT is the solution of (11) with initial condition θ0.
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Convergence rate
Input: Sample initial conditions {θ s

0 }|S|
s=1;

Target distribution q;
A suitable initial step size h > 0;
A short terminal time T > 0.

Output: Approximation K of the uniform convergence rate;

for s ∈ {1, . . . , |S|}
for k = 1, 2, . . . , 2T /h

θ s
k+1 = θ s

k − hGW (θ s
k )−1∇θDKL(p(θ s

k )‖q) ;
end

end

K = mins∈{1,...,|S|} 1
2T

DKL(p(θs
2T )‖q)−2DKL(p(θs

T )‖q)+DKL(p(θs
0 )‖q)

DKL(p(θs
T )‖q)−DKL(p(θs

0 )‖q)
.

5 Examples

In this section, we illustrate some of the concepts introduced in the previous sections
by means of evaluating them on a simple class of exponential family models. We
illustrate the effects from the choice of the ground metric on sample space in relation
to the choice of the statistical model, and the relationships between the Ricci curvature
lower bound and the rates of convergence in learning.

Example 1 (Ricci curvature for a one-dimensional exponential family on three states)
We study how the Ricci curvature changes with the choice of a probability model and
with the choice of the ground metric on sample space. In order to obtain a picture as
complete as possible, we consider the small setting of three states and one dimensional
exponential families.

Consider the sample space I = {1, 2, 3} with a fully connected graph with edges
E = {(1, 2), (2, 3), (1, 3)}, andweightsω = (ω12, ω23, ω13). The probability simplex
is a triangle

P(I ) =
{

(pi )
3
i=1 ∈ R

3 :
3∑

i=1

pi = 1, pi ≥ 0

}
.

We consider statistical manifolds of the form

p(θ) = 1

Z(θ)
(eθc1 , eθc2 , eθc3),

with sufficient statistic c = (c1, c2, c3) ∈ R
3, parameter θ ∈ � = [θmin, θmax] ⊂ R

1,
and partition function Z(θ) = ∑3

i=1 eθci . These are exponential families specified
by the choice of the sufficient statistic c. Here, addition of constants is immaterial.
Multiplicative scaling by non-zero numbers does not change the model. For better
comparability, we always choose c to have norm one.
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In particular, thesemodels can be indexedby the projective line,which for simplicity
we can represent by a half circle, or an angle.

We fix a uniform reference measure q = ( 13 ,
1
3 ,

1
3 ). The KL divergence then takes

the form

DKL(p‖q) =
3∑

i=1

pi log
pi

qi
=

3∑

i=1

pi log pi + log 3.

We evaluate the Ricci curvature lower bound for 30 different exponential families
and 10 different choices of the ground metric. We choose the sufficient statistics
as evenly spaced points on a radius 1 half circle, and set the parameter domain as
� = [−2, 2].

The results are shown in Fig. 4. The left panel estimates K as the minimum rate of
convergence of the Wasserstein gradient flow of the KL divergence, over a grid of 10
different initial conditions on the parameter domain. As can be seen, the convergence
is faster, the better ω connects the end points of the exponential family.

The right panel estimates κ as the minimum eigenvalue of the Hessian operator of
the KL divergence over a grid of parameter values in the domain. Figure 5 gives a
direct comparison of the estimates obtained from convergence rates and the Hessian.
As can be seen, the Hessian is always a lower bound of the convergence rate, which
reflects Proposition 9.

If the parameter domain is smaller, the Hessian gives a closer bound to the rate of
convergence. If, on the contrary, the parameter domain is larger, the gaps between the
Hessian and the convergence rates tend to be larger. Larger parameters correspond
to distributions closer to the boundary of the simplex. We illustrate these effects in
the Appendix, where we provide figures with different choices of � (Figs. 6, 7), and
also comparing the Hessian and rates of convergence at individual parameter values
(Fig. 8).

6 Discussion

To summarize, we introduced a notion of Ricci curvature lower bound for parametric
statistical models and illustrated its possible relevance in the context of parameter
estimation and learning. This notion is based on the geodesic convexity of the KL
divergence in Wasserstein geometry. Following the program from [24], we hope that
this paper continues to strengthen the interactions between information geometry and
Wasserstein geometry.

The Ricci curvature lower bound depends on the target distribution, the statisti-
cal model, and the ground metric on sample space. We think that this notion can
serve to capture the general properties of learning in different models, and hence that
it can serve to guide the design of statistical models (e.g., the graph of a graphi-
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Fig. 4 Lower bound on the Ricci curvature for one-dimensional exponential families on three states. Each
simplex corresponds to a different choice of ω = (ω12, ω23, ω13), indicated at the bottom. Within each
simplex there are 30 different exponential families (which are curves) with sufficient statistics of norm one
and parameter domain � = [−1, 1]. The color of each exponential family corresponds to the value of K
estimated as the minimum convergence rate (left panel), and the value of κ as the minimum eigenvalue
of the Hessian (right panel), over the parameter domain. Blue corresponds to lower and yellow to higher
values. We give a direct comparison of K and κ in Fig. 5
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Fig. 5 This figure compares the values of K and κ from Fig. 4. Each subplot corresponds to one choice of
ω, indicated at the top, with x axis corresponding to the 30 different exponential families. As can be seen,
the curvature κ obtained as the smallest Hessian eigenvalue (red) is, indeed, always a lower bound of the
convergence rate K (blue)
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cal model or the connectivity structure of a neural network) and the ground metric.
Our experiments show that an adequate choice of the two, in conjunction, can sig-
nificantly increase the rates of convergence in learning. On the other hand, the
Ricci curvature depends on both, the information and the Wasserstein metric tensors.
An interesting question arises; namely to find the statistical interpolation of such a
connection.

We note that the Ricci curvature lower bound is a global notion over the proba-
bility model. This is advantageous to provide a uniform analysis, but it can also lead
to difficulties, especially when the models include points near the boundary of the
simplex, where the behavior is not as regular. Our experiments indicate that restricting
the parameter domain to a region bounded away from the boundary of the simplex
allows us to closely track the rates of convergence. Another challenge is that, being
a global quantity, the computation can be challenging. Nonetheless, we point out that
computing the curvature in terms of the Hessian is much cheaper than estimating the
learning rates empirically. We have focused on discrete sample spaces, which allowed
us to obtain an intuitive and transparent picture of the relationships that derive form
this theory. We expect that the derivations extend naturally to the case of continuous
sample spaces. We also consider it worthwhile to extend the entropy method to prob-
ability models. In other words, to compute the Hessian in statistical manifolds along
gradient flows.We believe that the entropymethodwould be very helpful in estimating
the convergence rate of related natural gradient methods.

Another interesting line of investigation is the following. Our definitions are based
on the KL divergence and the Wasserstein and Fisher metric tensors. In principle, it is
possible to derive analogous definitions for other metric structures. In particular, one
can consider the family of f -divergences. Such an analysis could allow us to compare
different learning paradigms.
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the European Union’s Horizon 2020 research and innovation programme (Grant Agreement no 757983).
W.L. is supported by AFOSR MURI FA9550-18-1-0502.
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Appendix A. Additional figures to Example 1
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Fig. 7 Similar to Fig. 4, but with a larger parameter domain� = [−4, 4]. On this relatively large parameter
domain, the models contain points close to the boundary of the simplex, where the Hessian (and the Ricci
curvature) can have large oscillations. In turn, we observe larger gaps to the minimum rate of convergence,
compared with Fig. 6
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Fig. 8 Convergence rates and minimum Hessian eigenvalue at individual parameter choices. Here we fixed
the ground metric ω = (ω12, ω23, ω13) = (1/2, 1/2, 0). Each subplot corresponds to one exponential
family, with sufficient statistic indicated at the top. Within a region around θ = 0 (the value of the reference
measure), the minimum of the Hessian is closer to the convergence rates. In fact, the Hessian eigenvalue
intersects the rate of convergence at θ = 0. The Hessian at θ = 0 is the asymptotic rate of convergence.
The lower row zooms in the y axis of the upper row. For these exponential families, the convergence rates
do not vary much across choices of the initial parameter value
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