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Abstract. In this paper, we show that any compact Kähler manifold homotopic to

a compact Riemannian manifold with negative sectional curvature admits a Kähler-

Einstein metric of general type. Moreover, we prove that, on a compact symplectic

manifold X homotopic to a compact Riemannian manifold with negative sectional

curvature, for any almost complex structure J compatible with the symplectic form,

there is no non-constant J-holomorphic entire curve f : C → X.

1. Introduction

In 1970s, S.-T. Yau proposed the following conjecture:

Conjecture. Let (X,ω) be a compact Kähler manifold with dimCX > 1. Suppose

(X,ω) has negative Riemannian sectional curvature, then X is rigid, i.e. X has only

one complex structure.

It is a fundamental problem on the rigidity of Kähler manifolds with negative cur-

vature. Yau proved in [Yau77, Theorem 6] that when X is covered by a 2-ball, then

any complex surface oriented homotopic to X must be biholomorphic to X. By using

the terminology of “strongly negativity”, Siu established in [Siu80, Theorem 2] that a

compact Kähler manifold of the same homotopy type as a compact Kähler manifold

(X,ω) with strongly negative curvature and dimCX > 1 must be either biholomor-

phic or conjugate biholomorphic to X. Note that when dimCX = 2, the above Yau’s

conjecture has been completely solved by Zheng [Zhe95]. It is well-known that the

strongly negative curvature condition can imply the negativity of the Riemannian

sectional curvature.

Based on Yau’s conjecture, one can also ask a more general question: if a Kähler

manifold–or complex manifold–X admits a Riemannian metric with negative sectional

curvature, is there any restriction on the complex structure of X?

The first main result of our paper is one important step towards the question:

Theorem 1.1. Let X be a compact manifold homotopic to a compact Riemannian

manifold Y with negative sectional curvature. If X has a Kähler complex structure

(J, ω), then (X, J) admits a Kähler-Einstein metric of general type. Moreover, each

submanifold of (X, J) also admits a Kähler-Einstein metric of general type.
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Indeed, we prove in Theorem 3.1 a more general result. One of the main ingredients in

the proofs is a notion called “Kähler hyperbolicity” introduced by Gromov in [Gro91],

and our key observation is that every Kähler hyperbolic manifold has ample canonical

bundle (see Theorem 2.11), which also answers a question asked by Gromov in [Gro91,

p.267].

Recall that a compact complex manifold X is called Kobayashi (or Brody) hy-

perbolic if every holomorphic map f : C → X is constant. Gromov pointed out in

[Gro91] that every Kähler hyperbolic manifold is Kobayashi hyperbolic. On the other

hand, one can also extend these terminologies to symplectic manifolds. Note that for

a fixed symplectic form ω, there are many almost complex structures compatible with

ω. Our second result is

Theorem 1.2. Let (X,ω) be a compact symplectic manifold homotopic to a com-

pact Riemannian manifold with negative sectional curvature. For any almost complex

structure J on X compatible with ω, there exists no non-constant J-holomorphic map

f : C→ X.

Acknowledgements. B.-L. Chen was partially supported by grants NSFC11521101,

11025107. X.-K. Yang was partially supported by China’s Recruitment Program of

Global Experts and National Center for Mathematics and Interdisciplinary Sciences,

Chinese Academy of Sciences.

2. Background materials

2.1. Positivity of line bundles. Let (X,ω) be a smooth projective manifold of

complex dimension n, L→ X a holomorphic line bundle and E → X a holomorphic

vector bundle. Let OP(E∗)(1) be the tautological line bundle of the projective bundle

P(E∗) over X.

(1) L is said to be ample if Lk is very ample for some large k, i.e. the map

X → P(H0(X,Lk)∗) defined by the global sections of Lk is a holomorphic

embedding. L is called semi-ample if for some large positive integer k, Lk is

generated by its global sections, i.e. the evaluation map ι : H0(X,Lk) → Lk

is surjective. The vector bundle E is called ample if OP(E∗)(1) is an ample

line bundle.

(2) L is said to be nef ( or numerically effective), if L ·C ≥ 0 for any irreducible

curve C in X.

(3) L is said to be big, if the Kodaira dimension κ(L) = dimX where

κ(L) := lim sup
m→+∞

log dimCH
0(X,Lm)

logm
.

Here we use the convention that the logarithm of zero is −∞.
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Definition 2.1. X is said to be of general type if the Kodaira dimension κ(X) :=

κ(KX) is equal to the complex dimension of X.

There are many examples of compact complex manifolds of general type. For instance,

manifolds with ample canonical bundles.

2.2. Kähler hyperbolicity. Let’s recall some concepts introduced by Gromov in

[Gro91]. Let (X, g) be a Riemannian manifold. A differential form α is called d-

bounded if there exists a form β on X such that α = dβ and

(2.1) ‖β‖L∞(X,g) = sup
x∈X
|β(x)|g <∞.

It is obvious that if X is compact, then every exact form is d-bounded. However,

when X is not compact, there exist smooth differential forms which are exact but not

d-bounded. For instance, on Rn, α = dx1∧· · ·∧dxn is exact, but it is not d-bounded.

Definition 2.2. Let (X, g) be a Riemannian manifold and π : (X̃, g̃) → (X, g) be

the universal covering with g̃ = π∗g. A form α on X is called d̃-bounded if π∗α is a

d-bounded form on (X̃, g̃).

It is obvious that the d̃-boundedness does not depend on the metric g when X is

compact.

Lemma 2.3. Let (X, g) be a compact Riemannian manifold. If α is d̃-bounded on

(X, g), then for any metric g1 on X, α is also d̃-bounded on (X, g1).

Proof. Since X is compact, any two smooth metrics on X are equivalent. �

Note also that the d̃-boundedness of a closed form α on a compact manifold X depends

only on the cohomology class [α] ∈ H∗DR(X,R).

Lemma 2.4. Let (X, g) be a compact Riemannian manifold. Suppose α is d̃-bounded,

then α1 = α+ dγ is also d̃-bounded.

Proof. Let π : (X̃, g̃)→ (X, g) be the universal covering and β be the form on X̃ such

that π∗α = dβ and ‖β‖
L∞(X̃,g̃)

<∞. Hence, we have

π∗α1 = d(β + π∗γ)

and

‖β + π∗γ‖
L∞(X̃,g̃)

≤ ‖β‖
L∞(X̃,g̃)

+ ‖π∗γ‖
L∞(X̃,g̃)

= ‖β‖
L∞(X̃,g̃)

+ ‖γ‖L∞(X,g) <∞.

�

Definition 2.5. Let X be a Riemannian manifold. X has d̃-bounded ith cohomology

if every class in H i
DR(X,R) is d̃-bounded.

3



B.-L. Chen and X.-K. Yang Kähler manifolds homotopic to negatively curved manifolds

Lemma 2.6. Let f : X → Y be a smooth map between two compact Riemannian

manifolds. Suppose α is d̃-bounded on Y , then f∗α is d̃-bounded on X.

Proof. Let πX : X̃ → X and πY : Ỹ → Y be the universal coverings of X and Y

respectively. Since X̃ is simply connected, there exists a lifting map f̃ : X̃ → Ỹ , such

that the following diagram

X̃

πX
��

f̃ // Ỹ

πY
��

X
f
// Y

commutes. On the other hand, we know π∗Y α = dβ for some L∞-bounded form β

over Ỹ . Hence

(2.2) π∗X(f∗α) = f̃∗(π∗Y α) = f̃∗(dβ) = d(f̃∗β).

Since X and Y are compact, πX and πY are local isometries,

(2.3) ‖f̃∗β‖
L∞(X̃,π∗XgX)

≤ C‖β‖
L∞(Ỹ ,π∗Y gY )

· ‖f‖p
C1(gX ,gY )

<∞

where p is the degree of β and C is a constant depending only on X and p. �

In geometry, various notions of hyperbolicity have been introduced, and the typical

examples are manifolds with negative curvature in suitable sense. The starting point

for the present investigation is Gromov’s notion of Kähler hyperbolicity [Gro91].

Definition 2.7. Let X be a compact complex manifold. X is called Kähler hyperbolic

if it admits a Kähler metric ω such that ω is d̃-bounded.

The typical examples of Kähler hyperbolic manifolds are locally Hermitian symmetric

spaces of noncompact type.

As we mentioned before, a compact complex manifold is called Kobayashi hyper-

bolic if it contains no entire curves. A fundamental problem in complex geometry is

Kobayashi’s conjecture (e.g. Lang’s survey paper [Lan86]):

Conjecture 2.8. Let X be a compact complex manifold. If X is Kobayashi hyper-

bolic, then the canonical bundle KX is ample.

Along the same line, Gromov asked the following question in [Gro91, p.267].

Question 2.9. Let X be a compact Kähler hyperbolic manifold. Is the canonical

bundle KX ample? Is the cotangent bundle Ω1
X ample?

We first give a counter-example to the second part of Gromov’s question.

Example 2.10. Let X = C1 × C2 be the product of two smooth curves of genus at

least 2. It is obvious that X is Kähler hyperbolic since both C1 and C2 are Kähler

hyperbolic. The cotangent bundle is Ω1
X = π∗1Ω1

C1
⊗ π∗2Ω1

C2
, which is not ample.

Indeed, its restriction to a curve C1 × {p} has a trivial summand.
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Next, we give an affirmative answer to the first part of Gromov’s question based

on an observation in algebraic geometry. To the readers’ convenience, we include a

straightforward proof here.

Theorem 2.11. Let X be a compact Kähler hyperbolic manifold. Then the canonical

bundle KX is ample.

Proof. If X is Kähler hyperbolic, then X contains no rational curves. Indeed, suppose

f : P1 → X is a rational curve. We want to show f is a constant, i.e. f∗ω = 0. Let

πX : X̃ → X be the universal covering. Then there is a lifting f̃ : P1 → X̃ such that

πX ◦ f̃ = f . Since ω is d̃-bounded, i.e. there exists a bounded 1-form β on X̃ such

that π∗Xω = dβ,

(2.4) f∗ω = f̃∗(π∗Xω) = d(f̃∗β).

It implies ∫
P1

f∗ω =

∫
P1

d(f̃∗β) = 0,

and so f∗ω = 0.

Gromov proved in [Gro91, Corollary 0.4C] that if X is Kähler hyperbolic, then KX

is a big line bundle, and so X is Moishezon. By Moishezon’s theorem, the Kähler

and Moishezon manifold X is projective. Since X contains no rational curves, Mori’s

cone theorem implies that KX is nef. Since KX is big and nef, by Kawamata-Reid-

Shokurov base point free theorem, KX is semi-ample. Then there exists m big enough

such that ϕ = |mKX | is a morphism. Since KX is big, there is a positive integer m̃

such that

m̃KX = D + L

where D is an effective divisor and L is an ample line bundle. Suppose KX is not

ample, then there exists a curve C contracted by ϕ, i.e., KX · C = 0. Therefore,

D · C = −L · C < 0.

Let ∆ = εD for some small ε > 0, then (X,∆) is a klt pair and KX + ∆ is not ϕ-nef.

Then by the relative Cone theorem(e.g. [KM98, Theorem 3.25]) for log pairs, there

exists a rational curve C̃ contracted by the morphism ϕ. This is a contradiction since

we have already proved that X contains no rational curves. Therefore, we conclude

that KX is ample. �

3. The proof of Theorem 1.1

In this section, we prove Theorem 1.1, which is based on the following result.

Theorem 3.1. Let X be a compact Kähler manifold and Y be a compact Riemannian

manifold with d̃-bounded H2
DR(Y,R). Suppose there exist two smooth maps f1 : X → Y
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and f2 : Y → X such that the image of the induced map

(f2 ◦ f1)∗ : H2
DR(X,R)→ H2

DR(X,R)

contains at least one Kähler class. Then X admits a Kähler-Einstein metric of general

type. Moreover, each submanifold of X is also a Kähler-Einstein manifold of general

type.

Proof. Suppose X̃ and Ỹ are the universal coverings of X and Y respectively. Let

f̃1 : X̃ → Ỹ and f̃2 : Ỹ → X̃ be the liftings of f1 and f2 respectively such that the

following diagram

(3.1) X̃

πX
��

f̃1 // Ỹ

πY
��

f̃2 // X̃

πX
��

X
f1

// Y
f2

// X

commutes. Let ω be a Kähler metric on X such that [ω] is contained in the image of

(f2 ◦ f1)∗ : H2
DR(X,R)→ H2

DR(X,R).

Then there exist a 1-form γ and a closed 2-form ω1 on X such that

(3.2) ω = (f2 ◦ f1)∗ω1 + dγ.

Since Y has d̃-bounded H2
DR(Y,R), for the 2-form ω1 on X, there exists a 1-form β

on Ỹ such that

(3.3) π∗Y ◦ f∗2ω1 = dβ

and β is d-bounded on (Ỹ , π∗gY ). It implies f̃∗2 ◦ π∗Xω1 = dβ and

(3.4) f̃∗1 ◦ f̃∗2 ◦ π∗Xω1 = f̃∗1dβ = d(f̃∗1β).

Moreover, by (3.2) and (3.4), we have

(3.5) π∗Xω = d(π∗Xγ) + π∗X ◦ f∗1 ◦ f∗2ω1 = d(π∗Xγ) + f̃∗1 ◦ f̃∗2 ◦ π∗Xω1 = d(π∗Xγ + f̃∗1β).

By using a similar argument as in the proof of Lemma 2.6, we know f̃∗1β is bounded

on X̃. Hence, π∗Xω is d-bounded on X̃. By definition 2.7, (X,ω) is Kähler hyperbolic.

By Theorem 2.11, KX is ample, i.e. c1(X) < 0. Thanks to the Aubin-Yau theorem,

there exists a smooth Kähler metric ω̃ on X such that Ric(ω̃) = −ω̃.

Suppose Z is a submanifold of X. Let ωZ be the Kähler metric induced from

(X,ω). By Lemma 2.6, (Z, ωZ) is also Kähler hyperbolic. By Theorem 2.11 and the

Aubin-Yau theorem again, Z is a Kähler-Einstein manifold of general type. �

Before giving the proof of Theorem 1.1, we need the following result which refines

a fact pointed out by Gromov[Gro91]:
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Proposition 3.2. Let (M, g) be a simply-connected n-dimensional complete Rie-

mannian manifold with sectional curvature bounded from above by a negative constant,

i.e.

sec ≤ −K

for some K > 0. Then for any bounded and closed p-form ω on M , where p > 1,

there exists a bounded (p− 1)-form β on M such that

(3.6) ω = dβ and |β|L∞ ≤ K−
1
2 |ω|L∞ ,

where the L∞-norm is given by

(3.7)

|β|L∞ = sup {|β(v1, · · · , vp−1)|(x) : x ∈M,vi ∈ TxM, |vi|g = 1, i = 1, · · · , p− 1} .

(Note that the norms defined in (2.1) and (3.7) are equivalent.)

Proof. Fix x0 ∈ M , let expx0 : Tx0M → M be the exponential map, which is a

diffeomorphism by Cartan-Hadamard theorem. Let ϕt : M → M , t ∈ [0, 1], be

a family of maps defined by ϕt(x) = expx0(t · exp−1
x0 (x)), x ∈ M . We denote the

distance function from x0 by ρ, then

Xt |ϕt(x)=

(
d

dt
ϕt

)
|ϕt(x)= ρ(x)∇ρ |ϕt(x) .

It is clear that ϕ1 = id and ϕ0 ≡ x0. Then

(3.8) ω(x) =

∫ 1

0

(
d

dt
ϕ∗tω

)
(x)dt =

∫ 1

0
ϕ∗t (LXtω)(x)dt = d

(∫ 1

0
ϕ∗t (iXtω)dt

)
where we have used Cartan’s homotopy formula LXt = d◦ iXt + iXt ◦d for differential

forms. If we set

(3.9) β =

∫ 1

0
ϕ∗t (iXtω)dt,

then ω = dβ. We show β has bounded L∞-norm. Fix x ∈M , v1, v2, · · · vp−1 ∈ TxM ,

|vi| = 1, 〈vi,∇ρ〉 = 0, we have

(3.10) β(v1, · · · , vp−1)(x) =

∫ 1

0
ω (Xt, (dϕt)(v1), · · · , (dϕt)(vp−1)) (ϕt(x))dt.

By the standard comparison theorem (e.g. [CE75, Theorem 1.28]), we have

(3.11) |(dϕt)(v)| ≤ sinh(t
√
Kρ(x))

sinh(
√
Kρ(x))

for v ∈ TxM , |v| = 1 and 〈v,∇ρ〉 = 0. Hence,

(3.12) |β(v1, · · · , vp−1)(x)| ≤ |ω|L∞
∫ 1

0
ρ(x)

[
sinh(t

√
Kρ(x))

sinh(
√
Kρ(x))

]p−1

dt.
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If ρ(x) ≥ K−
1
2 , since

(3.13)

∫ 1

0
sinhp−1(t

√
Kρ(x))dt ≤ cosh(

√
Kρ(x))− 1√
Kρ(x)

(sinh(
√
Kρ(x)))p−2,

we have

(3.14) |β(v1, · · · , vp−1)(x)| ≤ |ω|L
∞

√
K
· cosh(

√
Kρ(x))− 1

sinh(
√
Kρ(x))

≤ K−
1
2 |ω|L∞ .

If ρ(x) ≤ K−
1
2 , we have

(3.15)

∫ 1

0
ρ(x)

[
sinh(t

√
Kρ(x))

sinh(
√
Kρ(x))

]p−1

dt ≤ ρ(x) ≤ K−
1
2 .

Combining two cases, we get |β(v1, · · · , vp−1)(x)| ≤ K−
1
2 |ω|∞.

On the other hand, if vi is parallel to ∇ρ for some i, then (dϕt)(vi) is parallel to

∇ρ. By the explicit formula (3.10), we see β(v1, · · · , vp−1)(x) = 0. Hence we obtain

|β|L∞ ≤ K−
1
2 |ω|L∞ . �

The proof of Theorem 1.1. By Proposition 3.2, we see that a compact Riemannian

manifold Y with negative Riemannian sectional curvature has d̃-bounded qth coho-

mology for all q ≥ 2. If X is homotopic to Y , there exist two smooth maps f1 : X → Y

and f2 : Y → X such that the induced map (f2◦f1)∗ is identity on H∗DR(X,R). Hence,

we can apply Theorem 3.1 to complete the proof of Theorem 1.1. �

As an application of Theorem 1.1, we give a slightly shorter proof on the following

rigidity theorem which was proved by S.-T. Yau in [Yau77, Theorem 6].

Corollary 3.3 (Yau). Let N be a compact complex surface covered by the unit ball in

C2. Then any complex surface M that is oriented homotopic to N is biholomorphic

to N .

Proof. Since M is homotopic to the Kähler manifold N with even first Betti number

b1, M also has even first Betti number b1 and so it is Kähler. Since N has a smooth

metric with strictly negative Riemannian sectional curvature, by Theorem 1.1, M

is a Kähler-Einstein manifold of general type. Hence, the classical Chern-number

inequality (e.g. [Yau77, Theorem 4]) implies ,

3c2(M) ≥ c2
1(M).

Since M is oriented homotopic to N , the signature of M equals that of N . One can

see c2
1(M) = c2

1(N) and c2(M) = c2(N). Therefore, 3c2(M) = c2
1(M). By [Yau77,

Theorem 4], M is covered by the unit ball in C2. By Mostow’s rigidity theorem

([Mos73]), M is in fact biholomorphic to N . �
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4. Hyperbolicity on compact symplectic manifolds

We begin by recalling some basic definitions. A symplectic form ω on a manifold

X tames an almost complex structure J if at each point of X, ω(Z, JZ) > 0 for all

nonzero vectors Z. We can define a Riemannian metric by

(4.1) gω(Y,Z) =
1

2
(ω(Y, JZ) + ω(Z, JY )).

If, in addition,

ω(JY, JZ) = ω(Y, Z)

for all vectors Y,Z, then we say that ω is compatible with J . We establish a more

general result than Theorem 1.2.

Theorem 4.1. Let X be a compact symplectic manifold and Y be a compact Rie-

mannian manifold with d̃-bounded H2
DR(Y,R). Suppose there exist two smooth maps

f1 : X → Y and f2 : Y → X such that the image of the induced map

(f2 ◦ f1)∗ : H2
DR(X,R)→ H2

DR(X,R)

contains at least one symplectic class [ω]. Then for any almost complex structure J on

X compatible with the symplectic form ω, there exists no non-constant J-holomorphic

map f : C → X.

Proof. Let ω be a symplectic form on X such that [ω] is contained in the image of

(f2 ◦ f1)∗ : H2
DR(X,R)→ H2

DR(X,R).

Then there exist a 1-form γ and a closed 2-form ω1 on X such that

(4.2) ω = (f2 ◦ f1)∗ω1 + dγ.

Now we use the same commutative diagram as in (3.1). There exists a 1-form β on

Ỹ such that π∗Y ◦ f∗2ω1 = dβ and β is d-bounded on (Ỹ , π∗gY ). Moreover, we have

π∗Xω = d(π∗Xγ + f̃∗1β). If we set η = π∗Xγ + f̃∗1β, then η is bounded on X̃, i.e., ω is

d̃-bounded.

Let J be an almost complex structure on X which is compatible with the symplectic

form ω and f : C → X be a J-holomorphic map. We want to show f is a constant,

i.e. f∗ω = 0. There is a lifting f̃ : C → X̃ of f such that πX ◦ f̃ = f . Let g be

the induced Riemannian metric on (X,ω) defined as in (4.1). The induced almost

complex structure, symplectic form and metric on X̃ are denoted by J̃ , ω̃ and g̃

respectively. On the other hand, for any tangent vectors v, w on C,

g̃
(
f̃∗v, f̃∗w

)
= ω̃

(
f̃∗v, J̃ f̃∗ (w)

)
= ω̃

(
f̃∗v, f̃∗ (J0w)

)
= (f∗ω) (v, J0w)

= ω (f∗v, f∗J0w) = ω (f∗v, Jf∗w) = (f∗g) (v, w) ,

where J0 is the standard complex structure of C. Hence, we have

(4.3) f̃∗g̃ = f∗g.
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Since π∗Xω = dη,

(4.4) f∗ω = d(f̃∗η)

where η is bounded on (X̃, g̃). On the other hand, since J is compatible with the

symplectic form ω and f : C→ X is J-holomorphic, if f is not a constant, then

f∗ω =
1

2

√
−1µ(z)dz ∧ dz

is a Kähler form which may degenerate at countably many points on C. Moreover,

the potential f̃∗η in (4.4) is still (f∗g)-bounded on C. Indeed, since η is bounded over

(X̃, g̃), for any tangent vector v on C, we have∣∣∣(f̃∗η) (v)
∣∣∣2 =

∣∣∣η (f̃∗v)∣∣∣2 ≤ C ∣∣∣f̃∗v∣∣∣2
g̃

= C|v|2f∗g,

where we use (4.3) in the last step.

For any bounded domain Ω ⊂ C, we use Aµ(Ω) and Lµ(∂Ω) to denote the area of

Ω and the length of ∂Ω with respect to the measure µ(z)|dz|. Then

(4.5) Aµ(Ω) =

∫
Ω
f∗ω =

∫
∂Ω
f̃∗η ≤ CLµ(∂Ω)

since f̃∗η is (f∗g)-bounded. Denote Br = {z ∈ C : |z| < r}, Sr = {z ∈ C : |z| = r}.
For any r > 0, we have

Aµ(Br) =

∫∫
B(r)

µ(z)dxdy =

∫ r

0

(∫
St

µ

)
dt

≥
∫ r

0

(∫
St

√
µ

)2

(2πt)−1dt =
1

2π

∫ r

0
L2
µ(St)

1

t
dt

≥ 1

2πC2

∫ r

0
A2
µ(Bt)

1

t
dt.

Denote F (r) =
∫ r

0 A
2
µ(Bt)

1
t dt, then

t · d
dt
F (t) = A2

µ(Bt) ≥
F (t)2

4π2C4
(4.6)

which implies

d

dt

(
− 1

F (t)

)
≥ 1

4π2C4

1

t
.(4.7)

Integrating the above formula over interval [a, b] with b > a > 0, we have

1

F (a)
≥ 1

F (b)
+

1

4π2C4
log

b

a
.(4.8)

Let b→∞, we find F (a) = 0 for any a > 0. This is a contradiction. �
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The proof of Theorem 1.2. By Proposition 3.2, we see that a compact Riemannian

manifold Y with strictly negative Riemannian sectional curvature has d̃-bounded qth

cohomology for all q ≥ 2. Hence, we can apply Theorem 4.1 to complete the proof of

Theorem 1.2. �
As a special case of Theorem 4.1, one can see

Corollary 4.2. Let (X,ω) be a compact Kähler manifold. If X is Kähler hyperbolic,

then it is Kobayashi hyperbolic.

On the other hand, the following result on Kobayashi hyperbolicity is fundamental

(e.g. [Kob98, Theorem 3.6.21]):

Theorem 4.3. Let X be a compact complex manifold. If the cotangent bundle Ω1
X is

ample, then X is Kobayashi hyperbolic.

One may wonder whether a similar result holds for Kähler hyperbolicity. Unfortu-

nately, we observe that

Corollary 4.4. Let X be a complete intersection with ample cotangent bundle Ω1
X

and dimX ≥ 2. Then X is Kobayashi hyperbolic. However,

(1) X is not Kähler hyperbolic.

(2) X can not admit a Riemannain metric with non-positive sectional curvature.

Proof. It is well-known that complete intersections are all simply connected (e.g.

[Sha94, p.225-p.227]). �

For example, the intersection of two generic hypersurfaces in P4 whose degrees are

greater than 35 has ample cotangent bundle ([Bro14, Corollary 4.13]). In particular,

complete intersections are not strongly negative in the sense of Siu.
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