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Distributed Non-Convex First-Order Optimization
and Information Processing: Lower Complexity

Bounds and Rate Optimal Algorithms
Haoran Sun and Mingyi Hong

Abstract—We consider a class of popular distributed non-convex
optimization problems, in which agents connected by a network
G collectively optimize a sum of smooth (possibly non-convex)
local objective functions. We address the following question: if the
agents can only access the gradients of local functions, what are the
fastest rates that any distributed algorithms can achieve, and how
to achieve those rates. First, we show that there exist difficult prob-
lem instances, such that it takes a class of distributed first-order
methods at least O(1/

√
ξ(G) × L̄/ε) communication rounds to

achieve certain ε-solution [where ξ(G) denotes the spectral gap of
the graph Laplacian matrix, and L̄ is some Lipschitz constant].
Second, we propose (near) optimal methods whose rates match the
developed lower rate bound (up to a ploylog factor). The key in
the algorithm design is to properly embed the classical polynomial
filtering techniques into modern first-order algorithms. To the best
of our knowledge, this is the first time that lower rate bounds and
optimal methods have been developed for distributed non-convex
optimization problems.

Index Terms—Non-convex distributed optimization, Optimal
convergence rate, Lower complexity bound.

I. INTRODUCTION

A. Problem and Motivation

W E CONSIDER the following distributed optimization
problem

min
y∈RS

f̄(y) :=
1

M

M∑

i=1

fi(y), (1)

where fi(y) : RS → R is a smooth and possibly non-convex
function accessible to agent i. There is no central con-
troller, and the M agents are connected by a network de-
fined by an undirected and unweighted graph G = {V, E}, with
|V| = M vertices and |E| = E edges. Each agent i can only
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communicate with its immediate neighbors, and it can access its
local component function fi.

A common way to reformulate problem (1) in the dis-
tributed setting is given below. Introduce M local variables
x1, . . . , xM ∈ RS and a concatenation of M variables x :=
[x1; . . . ;xM ] ∈ RSM×1, then the following formulation is
equivalent to (1) whenever G is connected

min
x∈RSM

f(x) :=
1

M

M∑

i=1

fi(xi), s.t. xi = xj , ∀(i, j) ∈ E .
(2)

where f(x) : RSM → R. After the reformulation, the objective
function now becomes separable, and the linear constraint en-
codes the network connectivity pattern.

B. Distributed Non-Convex Optimization

Distributed non-convex optimization has gained considerable
attention recently. For example, it finds applications in training
neural networks [2], clustering [3], and dictionary learning[4],
just to name a few.

The problem (1) and (2) have been studied extensively in
the literature when fi’s are all convex; see for example [5]–[7].
Primal based methods such as distributed subgradient (DSG)
method [5], the EXTRA method [7], as well as primal-dual based
methods such as distributed augmented Lagrangian method [8],
Alternating Direction Method of Multipliers (ADMM) [9], [10]
have been proposed.

On the contrary, only recently there have been works address-
ing the more challenging problems without assuming convexity
of fi; see [2], [4], [11]–[23]. The convergence behavior of the
distributed consensus problem (1) has been studied in [4], [11].
Reference [12] develops a non-convex ADMM based methods
for solving the distributed consensus problem (1). However the
network considered therein is a star network in which the local
nodes are all connected to a central controller. References [14],
[15] propose a primal-dual based method for unconstrained
problem over a connected network, and derives a global conver-
gence rate for this setting. In [13], [17], [18], the authors utilize
certain gradient tracking idea to solve a constrained nonsmooth
distributed problem over possibly time-varying networks. The
work [19] summarizes a number of recent progress in extend-
ing the DSG-based methods for non-convex problems. Refer-
ences [2], [16], [20] develop methods for distributed stochastic
zeroth and/or first-order non-convex optimization. It is worth
noting that the distributed algorithms proposed in all these works
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converge to first-order stationary solutions, which contain local
maximum, local minimum and saddle points.

Recently, the authors of [22], [24]–[26] have developed
first-order distributed algorithms that are capable of computing
second-order stationary solutions (which under suitable con-
ditions become local optimal solutions). Other second-order
distributed algorithms such as [27], [28] are designed for convex
problems, and they utilize high-order Hessian information about
local problems.

C. Lower and Upper Rate Bounds Analysis

Despite the strong interests and many recent contributions in
this field, one major question remains open:

(Q) What is the best convergence rate achievable by any
distributed algorithms for the non-convex problem (1)?

Question (Q) seeks to find a best convergence rate, which is
a characterization of the smallest number of iterations required
to achieve certain high-quality solutions, among all distributed
algorithms. Clearly, understanding (Q) provides fundamental
insights to distributed optimization and information processing.
The answer to (Q) offers meaningful estimates on the total
amount of communication and computation efforts that are re-
quired to achieve a given level of accuracy. Further, the identified
optimal strategies capable of attaining the best convergence
rates will also help guide the practical design of distributed
algorithms, convex and non-convex alike.

Convergence rate analysis (aka iteration complexity analysis)
for convex problems dates back to early works by Nesterov,
Nemirovsky and Yudin [29], [30], in which lower bounds
and optimal first-order algorithms have been developed; also
see [31]. In recent years, many accelerated first-order algorithms
achieving those lower bounds for different kinds of convex
problems have been derived, both for centralized [32], [33]
and distributed settings [34]. In those works, the problem is to
optimize minx f(x) with convex f , and the optimality measure
used is f(x)− f(x∗). The lower bound can be expressed as [31,
Theorem 2.2.2]

f(xt)− f(x∗) ≤ ‖x0 − x∗‖L
(t+ 2)2

, (3)

where L is the Lipschitz constant for ∇f ; x∗ (resp. x0) is
the global optimal solution (resp. the initial solution); t is the
iteration index. Therefore to achieve ε-optimal solution in which
f(xt)− f(x∗) ≤ ε, one needs

√
‖x∗−x0‖L

ε iterations. Recently the
above approach has been extended to distributed strongly convex
optimization in [35], where problem (1) is considered, with each
fi being strongly convex. The authors provide lower and upper
rate bounds for a class of algorithms in which the local agents
can utilize both ∇fi(x) and its Fenchel conjugate ∇∗fi(x).
We note that this result is not directly related to the class of
“first-order” method, since computing the Fenchel conjugate
∇∗fi(x) requires performing certain exact minimization, which
involves solving a strongly convex optimization problem. Other
related works in this direction also include [36] and [37], both
are for convex cases. In particular, the work [37] is a non-smooth
extension of [35], where the lower complexity bound under the
Lipschitz continuity of the global and local objective function are
discussed and the optimal algorithm is proposed. The work [36]

studies the optimal convergence rates for distributed convex op-
timization problems, including both strongly convex and convex,
smooth and non-smooth cases.

When the problem becomes non-convex, the size of the gra-
dient function can be used as a measure of solution quality.
In particular, let h∗

T := min0≤t≤T ‖∇f(xt)‖2, then it has been
shown that the classical (centralized) gradient descent (GD)
method achieves the following rate [31, page 28]

h∗
T ≤ c0L(f(x

0)− f(x∗))
T + 1

, where c0 > 0 is some constant.

It has been shown in [38], [39] that the above rate is optimal
for any first-order methods that only utilize the gradient in-
formation, when applied to problems with Lipschitz gradient.
However, no lower bound analysis has been developed for
distributed non-convex problem (1); there are even not many
algorithms that provide achievable upper rate bounds (except for
the recent works [12], [15], [40]), not to mention any analysis
on the tightness/sharpness of these upper bounds.

D. Contribution of This Work

In this work, provide answers to (some specific versions of)
question (Q). Our main contributions are given below:

1) We develop the first lower complexity bound for a class of
distributed first-order methods to solve problem (1). We show
that, to achieve certain ε-optimality, it is necessary for any such
algorithm to performO(1/

√
ξ(G)×L̄/ε) rounds of communication

among all the nodes, where ξ(G) is certain spectral gap of the
graph Laplacian matrix, and L̄ is the averaged Lipschitz constant
of the gradients of local functions. On the other hand, it is
necessary for any such algorithm to perform O(L̄/ε) rounds
of computation among all the nodes.

2) We design an optimal algorithm that is based on a novel
approximate filtering -then- predict and tracking (xFILTER)
strategy, which achieves our derived lower complexity bounds
(up to a ploylog factor).

In Table I, we specialize some key results developed in the
paper to a few popular graphs, and compare them with the
achievable rates of centralized GD.

Notations: For a symmetric matrixB,λmax(B),λmin(B) and
λmin(B) denote the maximum, the minimum and the minimum
nonzero eigenvalues; IP denotes an identity matrix with size
P , 1M denotes an all one vector of size M , and ⊗ denotes the
Kronecker product. [M ]denotes the set{1, . . . ,M}. For a vector
x, x[i] denotes its ith element; We use Õ to denote O(log(M))
where M is the problem dimension; use i ∼ j to denote two
connected nodes i and j, i.e., for a graph G := {V, E}, i ∼ j if
i �= j, and (i, j) ∈ E ; use col(X) to denote the column space of
a matrix X .

II. PRELIMINARIES

To properly address (Q), we need to specify the concrete
classes of problems, networks, algorithms, and the solution
measures under consideration.

A. The Class P , N , A
Problem Class. A problem is in class PM

L if:
A1. The objective is an average of M functions; see (1).
A2. Each component function fi(x)’s has Lipschitz gradient:

‖∇fi(xi)−∇fi(zi)‖ ≤ Li‖xi − zi‖, ∀xi, zi ∈ RS , ∀i,
(4)
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TABLE I
THE MAIN RESULTS OF THE PAPER WHEN SPECIALIZING TO A FEW POPULAR GRAPHS

The Entries Show the Best Rate Bounds Achieved by the Proposed Xfilter Algorithm for a Number of Specific Graphs and Problem Class;
Li is the Lipschitz Constant for ∇fi [see (4)]; for the Uniform Case U = L1, . . . ,LM . For the Uniform Lipschitz the Lower Rate
Bounds Derived for the Particular Graph Matches the Upper Rate Bounds (we only Show the Latter in the Table). The Last Row Shows
the Rate Achieved by the Centralized GD Algorithm. The Notation Õ Denotes Big O with Some Polynomial in Logarithms, i.e, use Õ to
Denote O(log(M)) Where M is the Problem Dimension

where Li ≥ 0 is the smallest positive number such that
the above inequality holds true.
Define L̄ := 1

M

∑M
i=1 Li, Lmax := maxi Li, and Lmin

similarly. Define the matrix of Lipschitz constants as:

L := diag([L1, . . . , LM ])⊗ IS ∈ RMS×MS . (5)

A3. The function f(x) is lower bounded over x ∈ RMS , i.e.,

f := inf
x

f(x) > −∞. (6)

These assumptions are rather mild. For example an fi satisfies
[A2-A3] is not required to be second-order differentiable.

Network Class. LetN denote a class of networks represented
by an undirected and unweighted graph G = {V, E}, with |V| =
M vertices and |E| = E edges. In this paper the term ‘network’
and ‘graph’ will be used interchangeably. Also, we use NM

D to
denote a class of network similarly as above, but with M nodes
and a diameter of D, defined below [where dist(·) indicates the
distance between two nodes]: D := maxu,v∈V dist(u, v).

Following the convention in [41], we define a number of graph
related quantities below. First, define the degree of node i as di,
and define the averaged degree as:

d̄ :=
1

M

M∑

i=1

di (7)

Define the incidence matrix (IM) A ∈ RE×M as follows: if e ∈
E and it connects vertex i and j with i > j, then Aev = 1/

√
dv

if v = i, Aev = −1/
√
dv if v = j and Aev = 0 otherwise [41,

Theorem 8.3]. The graph Laplacian matrix and the degree
matrix are defined as follows (see [41, Section 1.2]):

L := A�A ∈ RM×M , P := diag[d1, . . . , dM ] ∈ RM×M .
(8)

In particular, the elements of the Laplacian are given as:

[L]ij =

⎧
⎪⎨

⎪⎩

1 if i = j

− 1√
didj

if i ∼ j, i �= j

0 otherwise.

We note that the graph Laplacian defined here is sometimes
known as the normalized graph Laplacian in the literature, but
throughout this paper we follow the convention used in the
classical work [41] and simply refer it as the graph Laplacian.
For convenience, we also define a scaled version of the IM:

F := AP 1/2 ∈ RE×M . (9)

It is known that the scaled IM satisfies the following:

F1M = AP 1/21M = 0. (10)

Define the second smallest eigenvalue of L, as λmin(L):

λmin(L) = inf
x:
∑M

i=1 xidi=0

x�Lx
∑M

i=1 x
2
i di

. (11)

Then the spectral gap of the graph G can be defined below:

ξ(G) = λmin(L)
λmax(L) ≤ 1. (12)

Algorithm Class. Define the neighbor set for node i ∈ E as

Ni := {i | i ∼ j, j �= i}. (13)

We say that a distributed, first-order algorithm is in class A if it
satisfies the following conditions.

[B1.] At iteration 0, each node can obtain some network
related constants, such as M , D, eigenvalues of the graph
Laplacian L, etc.

[B2.] At iteration t+ 1, each node i ∈ [M ] first conducts
a communication step by broadcasting the local xt

i to all its
neighbors, through a function Qt

i(·) : RS → RS . Then each
node will generate the new iterate, by combining the received
message with its past gradients using a function W t

i (·):
vti = Qt

i(x
t
i)︸ ︷︷ ︸

communication step

, xt+1
i ∈W t

i

({{vkj }j∈Ni
,∇fi(x

k
i ), x

k
i }tk=1

)
︸ ︷︷ ︸

computation step

.

(14)

In this work, we will focus on the case where the Qt
i(·)’s and

W t
i (·)’s are linear operators.
Clearly A belongs to the class of first-order methods because

only local gradient information is used. It is also a class of
distributed algorithms because at each iteration the nodes only
communicate with their immediate neighbors.

Additionally, in practical distributed algorithms such as DSG,
ADMM or EXTRA, nodes are dictated to use a fixed strategy to
linearly combine all its neighbors’ information. To model such
a requirement, below we consider a slightly restricted algorithm
classA′, where we require each node to use the same coefficients
to combine its neighbors (note that allowing the nodes to use a
fixed but arbitrary linear combination is also possible, but the
resulting analysis will be more involved). In particular, we say
that a distributed, first-order algorithm is in A′ if it satisfies [B1]
and the following:

[B2’.] At iteration t+ 1, each node i ∈ [M ] performs:

vti = Qt
i(x

t
i), x

t+1
i ∈ W t

i

⎛

⎝

⎧
⎨

⎩
∑

j∈Ni

vtj ,∇fi(x
k
i ), x

k
i

⎫
⎬

⎭

t

k=1

⎞

⎠ .

(15)
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We remark that, in both algorithm classes, one round of com-
munication occurs at each iteration, where each node broadcasts
its local variable xt

i once. Therefore, the total iteration number is
the same as the total communication rounds. However, the total
times that the entire gradient {∇fi(xi)}Mi=1 is evaluated could be
smaller than the total iteration number/communication rounds.
This is because when we compute xt+1

i , the operation W t
i (·)

can set the coefficient in front of ∇fi(x
r
i ) to be zero, effectively

skipping the local gradient computation.

B. Solution Quality Measure

Next we provide definitions for the quality of the solution.
Note that since we consider using first-order methods to solve
non-convex problems, it is expected that in the end some first-
order stationary solution with small ‖∇f‖ will be computed.

The measure we provided below is directly related to local
variables {xi ∈ RS}Mi=1. At a given iteration T , we say that
{xT

i } is a local ε-solution if the following holds:

h∗
T := min

t∈[T ]

∥∥∥∥
M∑

i=1

∇fi(x
t
i)

M

∥∥∥∥
2

+
1

Mλmin(P
1/2LP 1/2)

∑

(i,j):i∼j

√
LiLj‖xt

i−xt
j‖2 ≤ ε.

(16)

Clearly this definition takes into consideration both the con-
sensus error and the size of the local gradients. It is easy to check
that when h∗

T goes to zero, a first-order stationary solution for
problem (1) is obtained. Note that the constant 1

Mλmin(P
1/2LP 1/2)

is needed to balance the two different terms. The “mint∈[T ]”
operation is needed to track the best solution obtained until
iteration T , because the quantity inside this operation may not
be monotonically decreasing.

In our work we will focus on providing answers to the fol-
lowing specific version of question (Q):

For any ε > 0, what is the minimum iteration T needed
for any algorithm in class A (or class A’) to solve instances
in classes (P,N ), so to achieve h∗

T ≤ ε?

C. Some Useful Facts and Definitions

Below we provide a few facts about the above classes.
On Lipschitz constants. Assume that each fi has Lipschitz

continuous gradient with constant Li in (4). Then we have:

‖∇f̄(y1)−∇f̄(y2)‖ ≤ L̄‖y1 − y2‖, ∀ y1, y2. (17)

We also have the following

‖∇f(x)−∇f(z)‖2= 1

M2

M∑

i=1

‖∇fi(xi)−∇fi(zi)‖2, ∀ xi, zi

which implies

‖∇f(x)−∇f(z)‖ ≤ 1

M
‖L(x− z)‖, ∀ x, z (18)

where the matrix L is defined in (5).
On Quantities for Graph G. Let us present some usfeul

properties for graph G. Define the following matrices:

Σ := diag[σ1, . . . , σE ] � 0, Υ := diag([β1, . . . , βM ]) � 0.

For two diagonal matricesΥ2 andΣ2 of appropriate sizes, the
generalized Laplacian (GL) matrix is defined as:

LG = Υ−1F�Σ2FΥ−1, (19)

and its elements are given by:

[LG]ij =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑
q:i∼q σ

2
iq

β2
i

if i = j

− σ2
ij

βi × βj
if (ij) ∈ E , i �= j

0 otherwise

.

Define a diagonal matrix K ∈ RE×E as below:

[K]e,q =

{√
LiLj if e = q, and e = (i, j)

0 otherwise
. (20)

Then when Υ = P 1/2L1/2 and Σ2 = K, GL becomes:

L̃ := L−1/2P−1/2F�KFP−1/2L−1/2. (21)

Note that if any diagonal element in the matrix L is zero, then
L−1 denotes the Moore - Penrose pseudoinverse. Similarly, if
Υ = L1/2 and Σ2 = K, then the GL matrix becomes:

L̂ := L−1/2F�KFL−1/2. (22)

These matrices will be used later in our derivations.
Below we list some useful results about the Laplacian [41]–

[43]. First, all eigenvalues of L lie in the interval [0, 2]. Also
because λmin(L) = λmin(P

−1/2F�FP−1/2), we have

λmin(L) ≤ λmin(F
�F ). (23)

Also we have that [41, Lemma 1.9]

λmin(L) ≥
1

D
∑

i di
. (24)

The spectral of L for some special graphs are given below:
1) Complete Graph: The eigenvalues are 0 and M/(M − 1)

(with multiplicity M − 1), so ξ(G) = 1;
2) Star Graph: The eigenvalues are 0 and 1 (with multiplicity

M − 2), and 2, so ξ(G) = 1/2;
3) Path Graph: The eigenvalues are 1− cos(πm/(M − 1))

for m = 0, 1, . . . ,M − 1, and ξ(G) ≥ 1/M2.
4) Cycle Graph: The eigenvalues are 1− cos(2πm/M) for

m = 0, 1, . . . ,M − 1, and ξ(G) ≥ 1/M2.
5) Grid Graph: The grid graph is obtained by placing the

nodes on a
√
M ×√

M grid, and connecting nodes to their
nearest neighbors. We have ξ(G) ≥ 1/M .

6) Random Geometric Graph: Place the nodes uniformly in
[0, 1]2 and connect any two nodes separated by a distance less
than Ra ∈ (0, 1). Then if Ra satisfies [43]

Ra = Ω

(√
log1+ε(M)/M

)
, for any ε > 0, (25)

then with high probability ξ(G) = O( log(M)
M ).

III. COMPLEXITY LOWER BOUNDS

We begin to develop the complexity lower bounds for algo-
rithms in A to solve problems PM

L over network N . We will
mainly focus on the case where fi’s have uniform Lipschitz con-
stants Li = U ∈ (0, 1), ∀i ∈ [M ]. At the end of this section,
generalization to the non-uniform case will be discussed. Our
proof combines ideas from the classical work of Nesterov [44],
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Fig. 1. The functional value, and derivatives of Ψ and Ψ.

as well as two recent constructions [39] (for centralized non-
convex problems) and [35] (for strongly convex distributed
problems). Differently from [44] [35], in our construction we
can only use first-order differentiable, gradient Lipschitz contin-
uous, but not second-order differentiable functions. Comparing
with [39], we need to carefully construct network structures
so that it is challenging for algorithm in A to achieve local-ε
solutions.

To begin with, we construct the following two functions:

h(x) :=
1

M

M∑

i=1

hi(xi), f(x) :=
1

M

M∑

i=1

fi(xi), (26)

as well as the corresponding versions that evaluate on a “cen-
tralized” variable y

h̄(y) :=
1

M

M∑

i=1

hi(y), f̄(y) :=
1

M

M∑

i=1

fi(y). (27)

Here we have xi ∈ RT , for all i, y ∈ RT , and x :=
(x1, . . . xM ) ∈ RTM×1. In our subsequent constructions, we
will make h and h̄ easy to analyze, while make f and f̄ fall
in the desired class PM

U .

A. Path Graph (D = M − 1)

First we consider the extreme case in which the nodes form
a path graph with M nodes and each node i has its own local
function hi. For notational simplicity assume that M is a multi-
ple of 3, that is, M = 3C for some integer C > 0. Also assume
that T is an odd number without loss of generality.

Define the component functions hi’s in (26) as follows.

hi(xi)

=

⎧
⎪⎪⎨

⎪⎪⎩

Θ(xi, 1) + 3
∑�T/2�

j=1 Θ(xi, 2j), i ∈ [1, M
3

]

Θ(xi, 1), i ∈ [M3 + 1, 2M
3

]

Θ(xi, 1) + 3
∑�T/2�

j=1 Θ(xi, 2j + 1), i ∈ [ 2M3 + 1,M
]

(28)

where we have defined the following functions

Θ(xi, j) := Ψ(−xi[j − 1])Φ(−xi[j])

−Ψ(xi[j − 1])Φ(xi[j]), ∀ j ≥ 2

Θ(xi, 1) := −Ψ(1)Φ(xi[1]). (29)

The component functions Ψ,Φ : R → R are given as below

Ψ(w) :=

{
0 w ≤ 0

1−e−w2
w > 0,

and Φ(w) :=4 arctanw + 2π.

Suppose x1 = x2 = · · · = xM = y, then the average func-
tion becomes:

h̄(y) :=
1

M

M∑

j=1

hi(y) = Θ(y, 1) +

T∑

i=2

Θ(y, i)

= −Ψ(1)Φ(y[1])

+

T∑

i=2

[Ψ (−y[i−1]) Φ (−y[i])−Ψ(y[i−1]) Φ(y[i])] .

Further for a given error constant ε > 0 and a given averaged
Lipschitz constant U ∈ (0, 1), let us define

fi(xi) :=
150πε

U
hi

(
xiU

75π
√
2ε

)
. (30)

Therefore we also have, if x1 = x2 = · · · = xM = y, then

f̄(y) :=
1

M

M∑

i=1

fi(y) =
150πε

U
h̄

(
yU

75π
√
2ε

)
. (31)

First we present properties of the component functions hi.
Lemma 3.1: The functions Ψ and Φ satisfy the following.
1) For all w ≤ 0, Ψ(w) = 0, Ψ′(w) = 0.
2) The following bounds hold for the functions and their first

and second-order derivatives:

0 ≤ Ψ(w) < 1, 0 ≤ Ψ′(w) ≤
√

2

e
,

− 4

e
3
2

≤ Ψ′′(w) ≤ 2, ∀w > 0

0 < Φ(w) < 4π, 0 < Φ′(w) ≤ 4,

− 3
√
3

2
≤ Φ′′(w) ≤ 3

√
3

2
, ∀w ∈ R

3) The following key property holds:

Ψ(w)Φ′(v) > 1, ∀ w ≥ 1, |v| < 1. (32)

4) The function h is lower bounded as follows:

hi(0)− inf
xi

hi(xi) ≤ 10πT , h(0)− inf
x

h(x) ≤ 10πT .

5) The first-order derivative of h̄ (resp. hj) is Lipschitz
continuous with constant � = 75π (resp. �j = 75π, ∀i).

The next lemma is a simple extension of the previous result.
Lemma 3.2: We have the following properties for the func-

tions f and f̄ defined in (31) and (30).
1) We have ∀x ∈ RTM×1

f(0)− inf
x

f(x) +
1

MU
‖d0‖2 ≤ 1650π2ε

U
T.

where we have defined

d0 := [∇f1(0), . . . ,∇fM (0)]. (33)

2) We have
∥∥∇f̄(y)

∥∥ =
√
2ε

∥∥∥∥∇h̄

(
yU

75π
√
2ε

)∥∥∥∥ , ∀ y ∈ RT×1.

(34)

3) The first-order derivatives of f̄ and that for each
fj , j∈ [M ] are Lipschitz continuous, with the same
constant U >0.

The next result analyzes the size of ∇h̄.
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Lemma 3.3: If there exists k ∈ [T ] such that |y[k]| < 1, then
the following holds

∥∥∇h̄(y)
∥∥ =
∥∥∥∥∥
1

M

M∑

i=1

∇hi(y)

∥∥∥∥∥ ≥
∣∣∣∣∣
1

M

M∑

i=1

∂

∂y[k]
hi(y)

∣∣∣∣∣ > 1.

Lemma 3.4: Define x̄ := 1
M

∑M
i=1 xi, and assume that U ∈

(0, 1). Then we have
∥∥∥∥∥
1

M

M∑

i=1

∇fi(xi)

∥∥∥∥∥

2

+
U

Mλmin(P
1/2LP 1/2)

∑

(i,j):i∼j

‖xi−xj‖2

≥ 1

2

∥∥∇f̄(x̄)
∥∥2 .

Lemma 3.5: Consider using an algorithm in class A or in
class A′ to solve the following problem:

min
x∈RTM×1

h(x) =
1

M

M∑

i=1

hi(xi), (35)

over a path graph. Assume the initial solution: xi = 0, ∀ i ∈
[M ]. Let x̄ = 1

M

∑M
i=1 xi denote the average of the local vari-

ables. Then the algorithm needs at least (M3 + 1)T iterations to
have xi[T ] �= 0, ∀ i and x̄[T ] �= 0.

Now we are ready to show our first main result.
Theorem 3.1: Let U ∈ (0, 1) and ε be positive. Then for

any distributed first-order algorithm in class A or A′, there
exists a problem in class PM

U and a network in class N , such
that it requires at least the following number of iterations and
communication rounds

t ≥ 1

3
√
ξ(G)

⎢⎢⎢⎣

(
f(0)− infx f(x) +

‖d0‖2
MU

)
U

1650π2
ε−1

⎥⎥⎥⎦ (36)

to achieve the following error h∗
t ≤ ε.

To prove this result, the main idea is to construct a path graph
and a particular special problem in PM

U such that to reduce h∗
t ,

it is necessary to traverse the entire graph once.
Next, for the problem class with non-uniform Lipschitz con-

stants, we can extend the previous result to any network in class
N (by properly assigning different values of Li’s to different
nodes). In this case the lower bound will be dependent on the
spectral property of L̂ as defined in (22).

Corollary 3.1: Let ε be positive. For any given network in
N , and for any algorithm in A, there exists a problem in PM

L
such that to achieve the accuracy h∗

t < ε, it requires at least the
following number of iterations and communication rounds

t ≥ 1

3

√
ξ(L̂)

⌊(
f(0)− infx f(x) + ‖d0‖2L−1/M

)
L̄

1650π2
ε−1

⌋
.

(37)

IV. THE PROPOSED ALGORITHMS

In this section, we introduce our proposed algorithm for
solving problem (2). The algorithm is near-optimal, and can
achieve the lower bounds derived in Section III except for a
multiplicative polylog factor in M . To simplify the notation, we
rewrite problem (2) in the following compact form:

min
x∈RSM

f(x) :=
1

M

M∑

i=1

fi(xi), s.t. (F ⊗ IS)x = 0. (38)

It can be verified that, by using the definition of F , the con-
straint in this problem is equivalent to the ones given in (2).
For notational simplicity, in the following we will assume that
S = 1 (scalar variables). All the results presented in subsequent
sections extend easily to case with S > 1.

A. The xFILTER Algorithm

To motivate our algorithm design, observe that the commu-
nication lower bound O(1/

√
ξ(G)×L̄/ε) in Section III can be de-

composed into the product two parts, O(1/
√

ξ(G)) and O(L̄/ε),
corresponding roughly to the communication efficiency and the
computational complexity, respectively. Such a product form
motivates us to separate the computation and communication
tasks, and design a double loop algorithm to achieve the desired
lower bound.

Our proposed algorithm is based on a novel approximate
filtering -then- predict and tracking (xFILTER) strategy, which
properly combines the modern first-order optimization methods
and the classical polynomial filtering techniques. It is a “double-
loop” algorithm, where in the outer loop local gradients are
computed to extract information from local functions, while in
the inner loop some filtering techniques are used to facilitate ef-
ficient information propagation. Please see Algorithm 1 for the
detailed description, from the system perspective. It is important
to note that the algorithm contains an outer loop (S3)–(S4) and
an inner loop (S2), indexed by r and q, respectively. Further, the
local gradient evaluation only appears in the outer loop step (S3).

To understand the algorithm, we note that one important task
of each agent is to update its local variable so that it is close to
the average 1

M

∑M
i=1 xi. Let us use di to denote a local variable

that approximates the above average. At the beginning of the
algorithm, di is just a rough estimate of the average, so we
have di =

1
M

∑
j xj + ei, where ei is the deviation from the

true average, and it can be viewed as some kind of “estimation
noise”. To gradually remove such a noise, in step S1) we resort to
the so-called graph based joint bilateral filtering used for image
denoising [45], [46], which can be formulated as the following
regularized least squares problem:

xr+1
∗ := arg min

x∈RM

1

2
‖x− dr‖2Υ2 +

1

2
x�F�Σ2Fx, (39)

where dr is the noisy signal,F is a penalty high pass filter related
to the graph structure (in our case, F is the adjacency matrix),
and Σ2 is a regularization parameter. Its solution, denoted as
xr+1
∗ as given below, will be close to the “unfiltered” signal

dr, while having reduced high frequency components, or high
fluctuations across the components:

Rxr+1
∗ = dr, with R := Υ−2F�Σ2F + IM . (40)

It is important to note that if xr+1
∗ indeed achieves consensus,

then by (10) we have F�Σ2Fxr+1
∗ = 0, implying xr+1

∗ = dr,
which says dr should “track” xr+1

∗ .
Unfortunately, the system (40) cannot be precisely solved in

a distributed manner, because inverting R destroys its pattern
about the network structure embedded in the product F�Σ2F .
More specifically, F�Σ2F is the weighted graph Laplacian
matrix whose (i, j)th entry is nonzero if and only if node i, j are
connected, but (Υ−2F�Σ2F + IM )−1 is a dense matrix without
such a property. Therefore in S2), we use a degree-QChebyshev
polynomial to approximate xr+1

∗ . The output, denoted as xr+1,
stays in a Krylov space span{dr, Rdr, . . . , RQdr}. Specifically,
at each iteration, the only step that requires communication is
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the operation Ru, which is given by
(Ruq−1)[i] = (Υ−2F�Σ2Fuq−1)[i] + dq−1[i]

=
1

β2
i

∑

j:j∼i

σ2
ij(uq−1[j]− dr[i]) + uq−1[i], ∀i,

(41)

so this step can be done distributedly, via one round of local
message exchange.

After completing Q > 0 such Chebyshev iterations (46)
(C-iteration for short), the obtained solution xr+1 will be an
approximate solution to the system 40, with a residual error
vector εr+1 as given below

Rxr+1 = dr +Rεr+1, with εr+1 := xr+1 − xr+1
∗ . (42)

Up to this point, the filtering technique we have discussed
aims at removing the “non-consensus” parts from a vector
d = [d1, . . . , dN ]�. However, recall that the goal of distributed
optimization is not only to achieve consensus, but also to opti-
mize the objective function

∑
i fi(xi). Therefore, a prediction

step (S3) is performed to incorporate the most up-to-date local
gradient ∇fi(xi), followed by a tracking step (S4) to update
d. Ideally, one would like the new dr+1

i to have the following
three properties: 1) It is close to the previous dri ; 2) it takes into
consideration the new local gradient information offered by the
“predicted” x̃r+1

i ; 3) it is a “low frequency” signal, meaning
dr+1
i and dr+1

j are relatively close, for all i �= j. Taking a closer
look at the “tracking” step, we can see that all three components
are included: It adds to the previous dr the differences of
the last two predictions, and it removes some non-consensus
components among the local variables.

To end this subsection, we emphasize that, the filtering step
(S2) is critical to ensure that the proposed algorithm achieve
performance lower bounds predicted in Section III. Intuitively, it
helps to accelerate information propagation across the network.
Indeed, as will be shown shortly, the numberQ in (S2) is directly
related to properties of the underlying graph.

B. Discussion

Below we provide remarks about the proposed algorithm.
Remark 4.1: (xFILTER as a primal-dual strategy) First,

we provide an interesting interpretation of the xFILTER strategy.
Let us introduce an auxiliary (dual) variable λr ∈ RE , which is
updated as follows:

λr+1 = λr +Σ2Fxr+1, with, λ−1 = 0. (43)

Then according to (47), (48) and the initialization x−1 = 0,
d−1 = −Υ−2∇f(0), we have the following relationship

d0 := −Υ−2∇f(x−1) + (x0 −Υ−2∇f(x0)

− (x−1 −Υ−2∇f(x−1)))−Υ−2F�λ0

= x0 −Υ−2∇f(x0)−Υ−2F�λ0.

By using the induction argument, we can show that for all r ≥ 0,
the following holds

dr := xr −Υ−2∇f(xr)−Υ−2F�λr. (44)

Combining (40) and (44), we obtain the following useful
alternative expressions of (40) and (42):

Υ−2
(∇f(xr) + F�(λr +Σ2Fxr+1

∗ )
)
+ (xr+1

∗ − xr) = 0
(45a)

Υ−2
(∇f(xr)+F�(λr+Σ2Fxr+1)

)
+(xr+1 − xr) = Rεr+1.

(45b)

Algorithm 1: The xFILTER Algorithm (Global View).
(S1) [Initialization]. Assign each node i ∈ N with βi > 0;
Assign each edge (ij) ∈ E with σij>0; Initialize x−1=0,
d−1 = −Υ−2∇f(x−1) and x̃−1 = x−1 −Υ−2∇f(x−1).
Compute R by (40);

(S2) [Filtering]. At iteration r + 1, r ≥ −1: For a fixed
constant Q > 0, run the following C-iterations (with
parameters {αq, τ})

u0 = xr, u1 = (I − τR)u0 + τdr,

uq = αq(I − τR)uq−1 + (1− αq)uq−2

+ ταqd
r, q = 2, . . . , Q; (46)

Set xr+1 = uQ;
(S3) [Prediction]. Compute x̃r+1 by:

x̃r+1 = xr+1 −Υ−2∇f(xr+1); (47)

(S4) [Tracking]. Compute dr+1 by:

dr+1 = dr + (x̃r+1 − x̃r)−Υ−2F�Σ2Fxr+1. (48)

Set r = r + 1, go to (S2).

Using (45a), it is clear that xr+1
∗ can be equivalently written

as the optimal solution of the following problem:

xr+1
∗ = argmin

x
〈∇f(xr) + F�λr, x− xr〉

+
1

2
‖ΣFx‖2 + 1

2
‖Υ(x− xr)‖2. (49)

It follows that, the iterates {xr+1} can be viewed as trying to
approximately optimize the primal variable of the following
augmented Lagrangian (AL),

AL(x, λ) = f(x) + 〈λ, Fx〉+ 1

2
‖ΣFx‖2 (50)

while the update (43) updates the dual variable. For simplicity,
we will use ALr to denote AL(xr, λr).

Remark 4.2: (Implementation and Algorithm Classes)
First, to compute dr’s, note that d−1 = −Υ−2∇f(0). Then if
dr−1 is given, by combining (48) and (47), it is easy to show
that each dri can be updated as

dri = dr−1
i + (xr

i − xr−1
i )− 1

Mβ2
i

(∇fi(x
r
i )−∇fi(x

r−1
i ))

+
∑

j:j∼i

σ2
ij

β2
i

(xr
i − xr

j). (51)

Combining the above expression with (41) for computing
Ruq−1, it is clear that all the computation only involves local
communication and local gradient computation.

The above observation also suggests that for a general choice
of parameter matrix Σ2 � 0, xFILTER is in class A. Further, if
Σ2 is a multiple of identity matrix (i.e., there exists σ2 > 0 such
that Σ2 = σ2IE), then the computations in (51) only involve the
sum of neighboring iterates, therefore the algorithm belongs to
class A′ as well.

V. THE CONVERGENCE RATE ANALYSIS

In this section we provide the analysis of the convergence
rate of xFILTER. All the proofs can be found in the appendix.
For convenience, the algorithm will be analyzed based on the
primal-dual interpretation in Remark 4.1.

Step 1. We first analyze the dynamics of the dual variable.
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Lemma 5.1: Suppose that f(x) is in class PM
L . Then, for all

r ≥ 0, the iterates of xFILTER satisfy

‖λr+1 − λr‖2Σ−2 ≤ κ̃

(
3

M2
‖Υ−1L(xr − xr−1)‖2

+ 3‖wr+1‖2Υ2 + 3‖ΥR(εr+1 − εr)‖2
)
. (52)

where we have defined the following

κ̃ :=
1

λmin(ΣFΥ−2F�Σ)
=

1

λmin(LG)
(53a)

wr+1 := (xr+1 − xr)− (xr − xr−1). (53b)

Step 2. In this step we analyze the dynamics of the AL (38).
Lemma 5.2: For all r ≥ 0, the iterates of xFILTER satisfy

ALr+1 − ALr ≤ −1

2
‖xr+1 − xr‖2

Υ2R− L
M

(54)

+ 〈Υ2Rεr+1, xr+1 − xr〉+ 3κ̃

M2
‖Υ−1L(xr − xr−1)‖2

+ 3κ̃‖wr+1‖2Υ2 + 3κ̃‖ΥR(εr+1 − εr)‖2.

Step 3. In this step, we analyze the error sequences {εr+1}
generated by the xFILTER. First we have the following well-
known result on the behavior of the Chebyshev iteration; see,
e.g., [47, Chapter 6] and [48, Theorem 1, Chapter 7].

Lemma 5.3: Consider using the Chebyshev iteration (46) to
solve Rx = dr. Define xr+1

∗ = R−1dr, with

R := Υ−2(F�Σ2F +Υ2). (55)

Define the following constants:

ξ(R) :=
λmin(R)

λmax(R)
≤ 1, ξ(Υ2) :=

λmin(Υ
2)

λmax(Υ2)
≤ 1,

θ(R) := λmin(R) + λmax(R). (56)

Choose the following parameters:

τ =
2

θ(R)
, α1 = 2, αt+1 =

4

4− ρ20αt
, ρ0 =

1− ξ(R)

1 + ξ(R)
.

Then for any η ∈ (0, 1), achieving the following accuracy

‖uQ − xr+1
∗ ‖2Υ2 ≤ η‖u0 − xr+1

∗ ‖2Υ2 , (57)

requires the following number of iterations

Q ≥ −1

4
ln(η/4)

√
1/ξ(R).

Recall that in Algorithm 1 the initial and final solutions for the
Chebyshev iteration are assigned to xr and xr+1, respectively.
Define ε̃r := u0 − xr+1

∗ = xr − xr+1
∗ , which is the error before

running the C-iteration. We have

Rxr=Ru0=R(u0 − xr+1
∗ ) +Rxr+1

∗ := Rε̃r + dr, ∀ r ≥ −1.

Plugging in the definition of dr in (44), we obtain

Rε̃r = Rxr +Υ−2(∇f(xr) + F�λr −Υ2xr). (58)

Using the definition of εr+1 in (45b), and the fact that R is
invertible, we obtain the following key relationship

εr+1 − ε̃r = xr+1 − xr, ∀ r ≥ −1. (59)

Recall that εr+1 := xr+1 − xr+1
∗ , and xr+1 = uQ, xr = u0,

then (57) implies

‖εr+1‖2Υ2 ≤ η‖ε̃r‖2Υ2 . (60)

By combining Lemma 5.3, (59) and (60), the following re-
sult provides some essential relationships between the error
sequences {εr+1} with the outer-loop iterates {xr+1}.

Lemma 5.4: Choose the inner iteration of xFILTER as

Q = −1

4
ln

(
θ2

16 + 128M max{λmax(Υ2R), 1}
)√

1/ξ(R).

(61)

where θ := ξ(Υ2R)ξ(Υ2)×min{1, λmin(Υ
2)}. Then we have

the following inequalities

‖Υ2Rεr+1‖2 ≤ 1

16M
‖xr+1 − xr‖2Υ2R, (62a)

‖εr+1‖2Υ2R ≤ 1

16M
‖xr+1 − xr‖2Υ2R, (62b)

‖ΥRεr+1‖2 ≤ 1

16M
‖xr+1 − xr‖2Υ2R, (62c)

〈Υ2Rεr+1, xr+1 − xr〉 ≤ 3

16
‖xr+1 − xr‖2Υ2R, (62d)

〈Υ2Rεr, xr+1 − xr〉 ≤ 1

8
‖xr−xr−1‖2Υ2R

+
1

16
‖xr+1 − xr‖2Υ2R. (62e)

Clearly, using the Chebyshev iteration is one critical step
that ensures fast reduction of the error {εr+1}. In particular, to
achieve constant reduction of error, the total number of required
Chebyshev iteration is proportional to

√
1/ξ(R), rather than

1/ξ(R) in conventional iterative scheme such as the Richard-
son’s iteration [47]. Such a choice enables the final bound to be
dependent on

√
1/ξ(G), rather than 1/ξ(G).

Step 4. Let us construct the following potential functions
(parameterized by constants c̃ > 0)

P̃c̃(x
r+1, xr, λr+1) := ALr+1 +

3κ̃

M2
‖Υ−1L(xr+1 − xr)‖2

+
3κ̃

8
‖xr+1 − xr‖2Υ2R+

c̃

2
‖ΣFxr+1‖2

+
c̃

2
‖xr+1 − xr‖2

Υ2+Υ2R
4 + L

M

. (63)

For notational simplicity we will denote it as P̃ r+1. Next we
show that when the algorithm parameters are chosen properly,
the potential functions will decrease along the iterations.

Lemma 5.5: Suppose that f(x) is in class PM
L , Q is chosen

according to (61), and the rest of the parameters of xFILTER are
chosen as below

c̃ = 8κ̃ =
8

λmin(ΣFΥ−2F�Σ)
, Υ2 � LΥ−2L

M2
, (64a)

(1/4− 3κ̃− c̃)Υ2R− (1 + 2c̃)L/M − 6κ̃

M2
LΥ−2L � 0.

(64b)

Then for all r ≥ 0, we have

P̃ r − P̃ r+1 ≥ 1

8
‖xr+1 − xr‖2Υ2R + κ̃‖wr+1‖2Υ2 . (65)

Step 5: Next we show the boundedness of {P̃ r+1}.
Lemma 5.6: Suppose that f(x) is in classPM

L and the param-
eters are chosen according to (64) and (61). Then the sequence



5920 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 22, NOVEMBER 15, 2019

{P̃ r+1} generated by xFILTER satisfies

P̃ r+1 ≥ f, ∀ r > 0, P̃ 0 ≤ f(x0) +
5

M
d�0L

−1d0. (66)

where f and d0 are defined in (6) and (33), respectively.
Step 6: We are ready to derive the final bounds for the

convergence rate of the proposed algorithm.
Theorem 5.1: Suppose that f(x) is in class PM

L and the
parameters are chosen according to (64) and and (61). Let Tr

denote the outer iteration index in which xFILTER satisfies

e(Tr) := min
r∈[Tr]

∥∥∥∥1/M
M∑

i=1

∇fi(x
r
i )

∥∥∥∥
2

+ ‖ΣFxr‖2 ≤ ε. (67)

Then we have the following bound for the error:

ε ≤ C̃1 × C̃2

Tr
, (68)

with the following constants

C̃1 := f(x0)− f +
5

M
d�0L

−1d0 (69a)

C̃2 := 128

(
M∑

i=1

β2
i + 3 +

1

32κ̃

)
. (69b)

VI. RATE BOUNDS AND TIGHTNESS

In this section we provide explicit choices of various param-
eters, and discuss the tightness of the resulting bounds.

A. Parameter Selection and Rate Bounds for xFILTER

First, recall that the matrices L̃ and L̂ are defined in (21)-(22).
Below we will provide two choices of parameters.

Choice I. We focus on a class of graphs such that there exists
an absolute constant k > 0 such that the following holds :

kP � d̄IM (70)

where d̄ is the averaged degree (7). Condition (70) says that the
degrees of the nodes are not very different from their average.
For example the following graphs satisfy (70): Complete graph
(k = 1), star graph (k = 2), grid graph (k = 2), cubic graph
(k = 1), path graph (k = 2), and any regular graph (k = 1).

For the class of graphs satisfies (70), let us pick the parameters
for xFILTER as follows:

Σ2 =
48× 96k

∑
i diλmin(L̃)

K, Υ2 =
96k∑
i di

P 1/2LP 1/2. (71)

Using the above choice, we have

β2
i =

96Lidik∑
i di

=
96Lidik

Md̄
(72)

and that the matrix Υ satisfies the following

Υ2 =
96k∑
i di

P 1/2LP 1/2 � 96

M
L. (73)

Plugging these choices to LG in (19) we obtain

LG = Υ−1F�Σ2FΥ−1

=
48

λmin(L̃)
L−1/2P−1/2F�KFP−1/2L−1/2

=
48

λmin(L̃)
L̃. (74)

Therefore by (53a) we have

κ̃ =
λmin(L̃)
48λmin(L̃)

=
1

48
. (75)

Also in this case we have

R = Υ−2F�Σ2F + I

=
48

λmin(L̃)
P−1/2L−1P−1/2F�KF + I.

By noting that the matrix P−1/2L−1P−1/2F�KF and L̃ share
the same set of eigenvalues, we obtain

λmax(R)≤
(
48λmax(L̃)
λmin(L̃)

+ 1

)
≤ 50

ξ(L̃) , λmin(R) = 1, (76a)

ξ(R) ≥ 1

/(
48λmax(L̃)
λmin(L̃)

+ 1

)
≥ ξ(L̃)

50
. (76b)

Choice II. For general graphs not necessarily satisfying (70), let
us pick the parameters for xFILTER as follows

Σ2 =
48× 96

Mλmin(L̂)
K, Υ2 =

96

M
L. (77)

Using the above choice, we have

β2
i =

96Li

M
. (78)

We have that

LG =
48

λmin(L̂)
L−1/2F�KFL−1/2 =

48

λmin(L̂)
L̂. (79)

Therefore by (53a) we have

κ̃ =
λmin(L̂)
48λmin(L̂)

=
1

48
. (80)

Also in this case we have

R = Υ−2F�Σ2F + I =
48

λmin(L̂)
L−1F�KF + I.

By noting that the matrix L−1F�KF and L̂ share the same set
of eigenvalues, we obtain

λmax(R) ≤
(
48λmax(L̂)
λmin(L̂)

+ 1

)
≤ 50

ξ(L̂) , λmin(R) = 1,

(81a)

ξ(R) ≥ 1/

(
48λmax(L̂)
λmin(L̂)

+ 1

)
≥ ξ(L̂)

50
. (81b)

Remark 6.1: (Choices of Parameters) The above two
choices of parameters differ on whether Υ2 is scaled with the
degree matrix or not. The resulting bounds are also dependent
on the spectral gap for L̃ and L̂, one inversely scaled with the
degree matrix, and the other does not. Note that the spectral gap
of L̃ and L̂ may not be the same. For example for a star graph
with Li = Lj , ξ(L̂) = O(1/M) but ξ(L̃) = O(1). Therefore
one has to be careful in choosing these parameters so that ξ(R)
is made as large as possible.

Additionally, since we are mainly interested in choosing the
parameters so that the resulting rate bounds will be optimal in
their dependency on problem parameters, the absolute constants
in the above parameter choices have not been optimized.

The following result is a consequence of Theorem 5.1.
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Theorem 6.1: Consider using xFILTER to solve problems in
class (PM

L ,N ), then the following holds.
Case I. Further restricting NM

D to a subclass satisfying (70).
If parameters in (71) is used, then the condition (64b) will
be satisfied. Further, to achieve e(T ) ≤ ε, it requires at most
the following number of iterations (where T denotes the total
iterations of the xFILTER algorithm), see (82) shown at the
bottom of this page, where C̃2 is given by

C̃2 ≤ 128

(
96k
∑M

i=1 di

M∑

i=1

diLi + 19

)
. (83)

Case II. Suppose parameters in (77) are used. Then the condition
(64b) will be satisfied. Further, to achieve e(T ) ≤ ε, it requires
at most the following number of iterations, see (84) shown at the
bottom of this page, where C̃2 is given by

C̃2 ≤ 128

(
96

M

M∑

i=1

Li + 19

)
. (85)

We note that compared with (68) in Theorem 5.1, the addi-
tional multiplicative term in (82) accounts for the Chebyshev
iterations that are needed for every outer iteration r.

B. Tightness of the Upper Rate Bounds

We present some tightness results of the upper rate bounds for
xFILTER. In particular, we compare the expressions derived in
Theorem 6.1, and the lower bounds derived in Section III, over
different kinds of graphs and for different problems. We will
mainly focus on the case with uniform Lipschitz constants, i.e.,
Li = U, ∀ i. We will briefly discuss the case of non-uniform
Lipschitz constants at the end of this section.

First, consider the class PM
U with the following properties:

L1 = L2 = · · ·LM =
1

M

M∑

i=1

Li := U, L = UIM . (86)

It follows that in this case L̃ = L, and L̂ = P 1/2LP 1/2. Let us
first make some useful observations.

Remark 6.2: Let us specialize the parameter choices for
xFILTER algorithm in (71) and derive the bounds for C̃2 ×
1/
√

ξ(L̃) in (83) for the following special graphs.
Complete graph. Complete graphs satisfy (70) with k = 1.

It also satisfies λmin(L̃) = M/(M − 1) ≥ 1. Therefore using

the expression (83) we obtain the following:

C̃comp
2 × 1√

ξ(L̃)
≤ 12500U + 2560. (87)

Grid graph. Grid graphs satisfy (70) with k = 2. It also satisfies
λmin(L̃) ≥ 1/M . Therefore using the expression (83) we obtain
the following:

C̃grid
2 × 1√

ξ(L̃)
≤ (12500U + 2560)×

√
M. (88)

Star graph. Star graphs satisfy (70) with k = 2. It also has
ξ(L̃) = 1/2. Therefore using the expression (83) we obtain the
following:

C̃star
2 × 1√

ξ(L̃)
≤ (12500U + 2560)×

√
2. (89)

Random Geometric graph. If the radius Ra satisfies (25),
then with high probability ξ(L̃) = O( log(M)

M ). Further, from the
proof of [49, Lemma 10], for any ε and c > 0, if

Ra = Ω

(√
log1+ε(M)/(Mπ)

)
(90)

then with probability at least 1− 2/M c−1, the following holds

log1+ε M −
√
2c logM ≤ di ≤ log1+ε M +

√
2c logM, ∀ i.

This means that (70) is satisfied (with k = O(1)) with high
probability (also see discussion at the end of [43, Section V]).
Therefore using the expression (83) we obtain the following:

C̃geometric
2 × 1√

ξ(L̃)
≤ (12500U+2560)×O

( √
M√

log(M)

)
.

Cycle/Path graph. Cycle/path graphs satisfy (70) with k = 2.
We also have λmin(L̃) ≥ 1/M2. Therefore using the expression
(83) we obtain the following:

C̃cycle
2 × 1√

ξ(L̃)
≤ (12500U + 2560)×M. (91)

We also note that for the xFILTER algorithm, the fact that
Li = U, ∀ i implies that the matrixΣ2 given in (71) is a multiple
of identity matrix. Therefore by Remark 4.2, we can conclude
that in this case xFILTER belongs to both A and A′.

Now we are ready to present our tightness analysis.
Theorem 6.2: Consider the problem class PM

U , and a sub-
class of N satisfying (70). Then the convergence rate in (82) is
tight (up to a polylog factor).

Proof: When Li = Lj , ∀i �= j, and when (70) is satisfied, it
is easy to verify that the following holds

h∗
T ≤ e(T ), and L̃ = L. (92)

T ≤ 1

ε

(
f(x0)− f +

5

M
‖d0‖2L−1

)
× C̃2 × 1

4
ln

(
502(MLmax/Lmin)

4 × (16+128Mmax{50× 96kLmax, 1})
ξ3(L̃)×min{1, 962k2L2

min/M
2}

)√
50/ξ(L̃)

(82)

T ≤ 1

ε

(
f(x0)− f +

5

M
‖d0‖2L−1

)
× C̃2 × 1

4
ln

(
502(Lmax/Lmin)

4 × (16+128M max{50× 96Lmax/M, 1})
ξ3(L̂)×min{1, 962L2

min/M
2}

)√
50/ξ(L̂)

(84)
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To bound the total number of iteration required to achieve h∗
T ≤

ε, note that when (70) is satisfied, we can apply the bound (82)
in Theorem 6.1 and obtain, see (93) shown at the bottom of this
page. Comparing with the lower bound in Theorem 3.1, it is
clear that except for the multiplicative ln(·) term, the remaining
bound is in the same order as the lower bound (36). �

Remark 6.3: (Optimal Number of Gradient Evaluations)
It is important to note that the “outer” iteration of the xFILTER
required to achieve ε-local solution scales with O(U/ε), which
is independent of the network size. Because local gradients are
only evaluated in the outer iterations, the above fact suggests
that the total number of gradients ∇f(xr) required is also in
O(U/ε). This is an optimal order because it is the same as what
is needed for the centralized gradient descent.

Remark 6.4: (Performance Gap Compared with Existing
Methods) An existing algorithm called distributed gradient
primal-dual algorithm (D-GPDA) has also been developed re-
cently, which has explicit characterization of various conver-
gence rates [50]. In particular, this algorithm is not optimal, in
the sense that at each iteration, O(1) local communication and
gradient computation are to be carried out, and the total number
of iterations scale with O( 1ε × 1

ξ(G) ). Obviously the D-GPDA
algorithm costs a lot more compared with xFILTER, for example
for path/star graph, it requires O(M2) times more gradient
computation effort, andO(M) times more communication effort
than what is required by the xFILTER.

Remark 6.5: (Non-uniform Lipschitz Constants) We com-
ment that for the general case Li �= Lj , ∀i, j, we can use similar
steps to verify that the bound (84) derived in Theorem 6.1 is
optimal, in the sense that they achieve the lower bound (37)
predicted in Corollary 3.1.

VII. NUMERICAL RESULTS

This section presents numerical examples to show the effec-
tiveness of the proposed algorithms. Two kinds of problems
are considered, distributed binary classification and distributed
neural networks training. We use the former one to demonstrate
the behavior and scalability of our algorithm and use the latter
one to show the practical performance.

A. Simulation Setup

In our simulations, all algorithms are implemented in MAT-
LAB R2017a for binary classification problem and implemented
in Python 3.6 for training neural networks, running on a com-
puter node with two 12-core Intel Haswell processors and
128 GB of memory (unless otherwise specified). Both synthetic
and real data are used for performance comparison. For synthetic
data, the feature vector is randomly generated with standard
normal distribution with zero mean and unit variance. The label
vector is randomly generated with uniformly distributed pseudo-
random integers taking the values {−1, 1}. For real data, we use
the breast cancer dataset1 for binary classification and MNIST2

for training neural network. The breast cancer dataset contains

1https://archive.ics.uci.edu/ml/datasets/Breast+Cancer+Wisconsin+(Diagnostic)
2http://yann.lecun.com/exdb/mnist/

Fig. 2. M = 20, B = 200,K = 10.

a total of 569 samples each with 30 real positive features. The
MNIST dataset contains a total of 60,000 handwritten digits,
each with a 28× 28 gray scale image and a label from ten
categories.

B. Distributed Binary Classification

We consider a non-convex distributed binary classification
problem [51], where each component function fi is given by

fi(xi) =
1

B

B∑

j=1

log
(
1 + exp(−yijx

�
i vij)

)
+

S∑

s=1

λαx2
i,s

1 + αx2
i,s

.

Here vij ∈ RS denotes the feature vector with dimension S,
yij ∈ {1,−1} denotes the label for the jth date point in ith agent,
and there are totalB data points for each agent. Unless otherwise
noted, the graph E used in our simulation is generated using the
random geometric graph and the graph parameter Ra is set to
0.5. The regularization parameter is set to λ = 0.001, α = 1.

To compare the convergence performance of the proposed
algorithms, we randomly generated MB data points with di-
mension K and distribute them into M nodes, i.e. each node
contains B data points with K features. Then we compare
xFILTER with the D-GPDA [50], the distributed subgradient
(DSG) method [52], the Push-sum algorithm [53], and the
NEXT algorithm [13]. The parameters for NEXT are chosen
as τ = 1, α[0] = 0.1 and μ = 0.01 as suggested by [13], while
the parameters for xFILTER are chosen based on (71).

Simulation results on synthetic data for different M,B,K
averaged over 30 realizations are investigated and shown in
Fig. 2 to Fig. 3, where the x-axis denotes the total rounds of
communications required, and the y-axis denotes the quality
measure (16). Note that the curves xFILTER (outer) included
in these figures show the number of communication rounds
required for xFILTER to perform the “outer” iterations (which
is equivalent to r in Algorithm 1, since in each outer iteration
only one round of communication is required in Step S3). The
performance evaluated on real data is also characterized in Fig. 4,
in which we choose M = 10, B = 56, and K = 30. These
results show that the proposed algorithms perform well in all
parameter settings compared with existing methods.

We further note that these figures also show (rough) com-
parison about computation efficiency of different algorithms.

T ≤ 1

ε

(
f(x0)− f +

5

MU
‖d0‖2

)
× 128 (96kU + 19)

1

4
ln

(
502M4 × (16 + 128M max{50× 96kU, 1})

ξ3(G)×min{1, 962k2U2/M2}
)√

50/ξ(G).
(93)
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Fig. 3. M = 50, B = 2000,K = 10.

Fig. 4. M = 10, B = 56,K = 30.

Fig. 5. Comparison of NEXT and xFILTER over path graphs with increasing
number of nodes (M ∈ [10, 150] in (a) and M ∈ [5, 50] in (b)). Each point
in the figure represents the total number of communication needed to reach
h∗
T ≤ ε.

Specifically, for D-GPDA, DSG and Push Sum (resp. NEXT),
the total rounds of communication is the same as (resp. twice as)
the total number of gradient evaluations per node. In contrast,
the total rounds of communication in the outer loop of xFILTER
is the same as the local gradient evaluations. Therefore, the
comparison between xFILTER (outer) and other algorithms in
Fig. 2 to Fig. 3 shows the relative computational efficiency of
these algorithms. Clearly, xFILTER has a significant advantage
over the rest of the algorithms.

Further, we compare the scalability performance of the pro-
posed algorithms with increased network dimension M . In
particular, in Fig. 5 we compare the total communication rounds
required for NEXT and the xFILTER for reaching h∗

T ≤ 10−10

and h∗
T ≤ 10−15, over path graphs with increasing number of

nodes. Overall, we see that the xFILTER performs reasonably
fast and exhibits the desired linear scaling.

We do want to point out that although the proposed algorithms
compare relatively favorably with NEXT in our numerical tests,
NEXT can in fact handle a larger class of problems because it is
designed for nonsmooth and constrained nonconvex problems.

Fig. 6. Comparison of DSG and xFILTER over path graphs on distributed
training neural networks; Plot (a) shows the dynamic of the categorical cross-
entropy loss, and plot (b) shows the training classification accuracy. The param-
eters are chosen based on their best practical performance through grid search.
The curves xFILTER (outer) and xFILTER (total) again represent the number
of outer iteration, and the total number of iterations required for xFILTER.

Further, for all the algorithms we have used, we did not tune the
parameters: For xFILTER and D-GPDA, we use the theoretical
upper bound suggested in Theorem 5.1, and for NEXT we use
the parameters suggested in the paper [13]. It could be possible
to fine-tune the stepsizes to make them faster, but since this paper
is mostly on the theoretical properties of rate optimal algorithms,
we choose not to go down that path.

C. Distributed Neural Network Training

In our second experiment, we present some numerical results
under a more realistic setting. We consider training a neural
network model for fitting the MNIST data set. The dataset is
first randomly partitioned into 10 subsets, and then gets dis-
tributed over 10 machines. A fully connected neural network
with one hidden layer is used in the experiment. The number
of neurons for the hidden layer and the output layer are set
as 128 and 10, respectively. The initial weights for the neural
network are drawn from a truncated normal distribution centered
at zero with variance scaled with the number of input units.
The algorithms are written in Python, and the communication
protocol is implemented using the Message Passing Interface
(MPI). The empirical performance of the xFILTER is evaluated
and compared with the DSG algorithm [52]. Fig. 6 shows that,
compared with DSG, the proposed algorithm achieves better
communication and computation efficiency, and has improved
classification accuracy.

Note that despite the fact that some global parameters (such
as the Lipschitz constants) are unknown, the rules provided in
(71) or (77) still can help us roughly estimate a set of good
parameters. For example, we choose the following parameters

Σ2 =
σ

∑
i diλmin(L̃)

, Υ2 =
βP∑
i di

, (94)

and tune the parameter β and σ by search from the sets
{0.1, 0.2, 0.5, 1, 2, 5, . . . , 100, 200, 500}. Based on the best
practical performance over 10 runs, we choose β = 100 and
σ = 20 for xFILTER and α = 0.1 for DSG.

VIII. CONCLUSION AND FUTURE WORKS

This paper represents the first work that investigates the
performance of optimal first-order algorithms for non-convex
distributed optimization problems. We provide a lower com-
plexity bound that characterizes the worst case performance for
any algorithm in class A, and propose an algorithm capable of
(nearly) achieving the lower bound in various settings. In Fig. 7,
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Fig. 7. Graphical comparison of various bounds analyzed in this work, illus-
trated over a path graph with M nodes.

we illustrate various bounds discussed in this work by using a
path graph.

To the best of our knowledge, the proposed algorithm is the
first and the only available distributed non-convex algorithm
in class A that can achieve the (near) optimal rate performance
for problem/network classes (P,N ). However, they still require
some global information to initialize the parameters, so it will
be of interest to design global information free algorithms that
only require local structures to set parameters (just like in the
convex case, see discussions in [54]). It will also be desirable
to consider the problem where only the average function f̄ has
Lipschitz gradient, but not the local fi’s.

APPENDIX

A. Proof of Lemma 5.1

Proof: For simplicity we will denote gr := ∇f(xr). First
note that ∀r ≥ −1 the following holds according to (45b),

gr + F�(λr +Σ2Fxr+1) + Υ2(xr+1 − xr) = Υ2Rεr+1.
(95)

Second, by using (95) and the update (43), we obtain

F�λr+1 = −gr −Υ2(xr+1 − xr) + Υ2Rεr+1. (96)

Then subtracting the previous iteration leads to

F�(λr+1 − λr) = −(gr − gr−1)−Υ2wr+1

+Υ2R(εr+1 − εr), ∀ r ≥ 0.

Note that the matrix Υ2 � 0, Σ2 � 0, then we have

Υ−1(ΣF )�Σ−1(λr+1 − λr) = −Υ−1(gr − gr−1)

−Υwr+1 +ΥR(εr+1 − εr). (97)

Then using the fact that

Σ−1(λr+1 − λr) = ΣFxr+1 ∈ col(ΣF ),

we can square both sides and obtain the following

λmin(ΣFΥ−2F�Σ)‖Σ−1(λr+1 − λr)‖2

≤ 3‖gr − gr−1‖2Υ−2 + 3‖wr+1‖2Υ2 + 3‖ΥR(εr+1 − εr)‖2
(18)

≤ 3

M2
‖Υ−1L(xr − xr−1)‖2

+ 3‖wr+1‖2Υ2 + 3‖ΥR(εr+1 − εr)‖2, ∀ r ≥ 0. (98)

This concludes the proof. �

B. Proof of Lemma 5.2

Proof: Consider (50), using the Lipschitz gradient assump-
tion (18), we have

AL(xr+1, λr)− AL(xr, λr)

≤ 〈∇f(xr) + F�λr + F�Σ2Fxr, xr+1 − xr〉

+
1

2M
‖xr+1 − xr‖2L +

1

2
‖ΣF (xr+1 − xr)‖2

= 〈∇f(xr) + F�λr + F�Σ2Fxr+1, xr+1 − xr〉

+ 〈Υ2(xr+1 − xr), xr+1 − xr〉+ 1

2M
‖xr+1 − xr‖2L

+
1

2
‖ΣF (xr+1 − xr)‖2 − ‖xr+1 − xr‖2Υ2+F�Σ2F

(95)

≤ −(xr+1 − xr)�
(
Υ2R

2
− L

2M

)
(xr+1 − xr)

+ 〈Υ2Rεr+1, xr+1 − xr〉. (99)

Using the update rule of the dual variable, and combine the above
inequality, we obtain

ALr+1−ALr ≤ − 1

2
‖xr+1 − xr‖2

Υ2R− L
M

+〈Υ2Rεr+1, xr+1−xr〉+〈λr+1−λr, Fxr+1〉

= − 1

2
‖xr+1 − xr‖2

Υ2R− L
M

+〈Υ2Rεr+1, xr+1−xr〉+‖Σ−1(λr+1−λr)‖2.
Combined with Lemma 5.1 we complete the proof. �

C. Proof of Lemma 5.4

Proof: Let us choose

η = θ2/(4 + 32M max{λmax(Υ
2R), 1}). (100)

Then from Lemma 5.3, it is clear that if Q satisfies (61), then

‖εr+1‖2Υ2 ≤ η‖ε̃r‖2Υ2 . (101)

Note that Υ2R = F�Σ2F +Υ2 � 0, then it follows that

‖Υ2Rεr+1‖2 ≤ λmax(RΥ2Υ2R)

λmin(Υ2)
‖εr+1‖2Υ2

(60)

≤ ηλmax(RΥ2Υ2R)

λmin(Υ2)
‖ε̃r‖2Υ2

≤ ηλmax(RΥ2Υ2R)λmax(Υ
2)

λmin(Υ2)
‖ε̃r‖2

≤ ηλmax(RΥ2Υ2R)λmax(Υ
2)

λmin(RΥ2Υ2R)λmin(Υ2)
‖Υ2Rε̃r‖2

≤ ηθ−2‖Υ2Rε̃r‖2.
Using the above relation, we can then obtain the following

‖Υ2Rεr+1‖2 ≤ 2ηθ
−2

(‖Υ2Rεr+1‖2 + ‖Υ2R(εr+1 − ε̃r)‖2)
(59)

≤ 2ηθ−2(‖Υ2Rεr+1‖2+‖Υ2R(xr+1−xr)‖2).
Therefore, we obtain

‖Υ2Rεr+1‖2 ≤ 2ηθ−2/(1− 2ηθ−2)‖Υ2R(xr+1 − xr)‖2.
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Plugging the definition of η in (100), we have

‖Υ2Rεr+1‖2 ≤λmax(Υ
2R)2ηθ−2/(1−2ηθ−2)‖xr+1−xr‖2Υ2R

(100)

≤ 1/(16M)‖xr+1 − xr‖2Υ2R, ∀ r ≥ −1.

To obtain the second inequality, notice that

‖εr+1‖2Υ2R ≤ θ−1η‖ε̃r‖2Υ2R ≤ θ−2η‖ε̃r‖2Υ2R (102)

where the last inequality is due to the fact that θ ≤ 1. Then
repeating the above derivation we can obtain the desired result.
The third inequality in (62) can be derived in a similar way, and
the last two in (62) can be obtained by using Cauchy-Swartz
inequality. �

D. Proof of Lemma 5.5

Proof: Notice that the following identities hold true

〈a− b, c− d〉 ≤ 1

2
‖a− b‖2 + 1

2
‖c− d‖2 (103)

〈a− b,Bb〉 = 1

2
‖a‖2B − 1

2
‖b‖2B +

1

2
‖a− b‖2B , with B � 0.

(104)

Using the optimality condition from (96) we have

〈F�λr+1 +∇f(xr) + Υ2(xr+1 − xr)

−Υ2Rεr+1, xr+1 − xr〉 = 0

〈F�λr +∇f(xr−1) + Υ2(xr − xr−1)

−Υ2Rεr, xr − xr−1〉 = 0,

Subtract the above two equations, use (103)–(104), and apply
the bounds (62d), (62e), we obtain
1

2
‖ΣFxr+1‖2 + 1

2
‖xr+1 − xr‖2Υ2

≤ 1

2
‖ΣFxr‖2 + 1

2
‖xr − xr−1‖2Υ2 − 1

2
‖wr+1‖2Υ2

+ 1/(2M)‖xr+1 − xr‖2L + 1/(2M)‖xr − xr−1‖2L
+ 1/4‖xr+1 − xr‖2Υ2R + 1/4‖xr − xr−1‖2Υ2R, ∀ r ≥ 0.

(105)

By using the potential function defined in (63), we have

P̃ r+1 − P̃ r = ALr+1 − ALr +
3κ̃

M2
‖Υ−1L(xr+1 − xr)‖2

− 3κ̃

M2
‖Υ−1L(xr − xr−1)‖2

+
3κ̃

8
(‖xr+1 − xr‖2Υ2R − ‖xr − xr−1‖2Υ2R)

+
c̃

2

(
‖ΣFxr+1‖2 + ‖xr+1 − xr‖2

Υ2+Υ2R
4 + L

M

)

− c̃

2

(
‖ΣFxr‖2 + ‖xr − xr−1‖2

Υ2+Υ2R
4 + L

M

)
.

Multiplying (105) with c̃, then adding to (54), and use the
estimate of the size of ε in (62c) and (62d), we can obtain

P̃ r+1 − P̃ r ≤ −1

2
(xr+1 − xr)�V (xr+1 − xr)

−
(
c̃

2
− 3κ̃

)
‖wr+1‖2Υ2 .

with the matrix V defined as follows

V :=

(
Υ2R− (1 + 2c̃)

L

M
− 6κ̃

M2
LΥ−2L

− Υ2R(24κ̃+ 6 + 16c̃)

16

)
.

Therefore in order to make the potential function decrease, we
need to follow (64). �

E. Proof of Lemma 5.6

Proof: We can express the AL as (for all r ≥ 0)

ALr+1 − f(xr+1) = 〈λr+1,Σ−2(λr+1 − λr)〉+1

2
‖ΣFxr+1‖2

=
1

2

(‖Σ−1λr+1‖2 − ‖Σ−1λr‖2

+‖Σ−1(λr+1 − λr)‖2 + ‖ΣFxr+1‖2) .
Since infx f(x) = f is lower bounded, let us define

ÂLr+1 := ALr+1 − f, f̂(x) := f(x)− f ≥ 0,

P̂ r+1 := P̃ r+1 − f.

Therefore, summing over r = −1 · · · , T , we obtain
T∑

r=−1

ÂLr+1 =
1

2

(‖Σ−1λT+1‖2 − ‖Σ−1λ−1‖2)

+
T∑

r=−1

(
f̂(xr+1)+

1

2
‖ΣFxr+1‖2+1

2
‖Σ−1(λr+1−λr)‖2

)
.

Using the initialization λ−1 = 0, then the above sum is lower
bounded by zero. This fact implies that the sum of P̂ r+1 is also
lower bounded by zero (since besides ÂL, the remaining terms
in P̂ are all nonnegative)

T∑

r=0

P̂ r+1 ≥ 0, ∀ T > 0,

Note that if the parameters of the system are chosen according
to (64), then P̃ r+1 is nonincreasing, which implies that its
shifted version P̂ r+1 is also nonincreasing. Combined with the
nonnegativity of the sum of the shifted potential function, we
can conclude that

P̂ r+1 ≥ 0, and P̃ r+1 ≥ inf f(x), ∀ r ≥ 0. (106)

Next we compute P̃ 0. By letting r = −1, and use x−1 = 0 and
λ−1 = 0, we obtain

AL0 − f(x0) =
1

2

(
2‖Σ−1λ0‖2 + ‖ΣFx0‖2) = 3

2
‖Σ−1λ0‖2.

(107)

Then we have

P̃ 0 = AL0 +
3κ̃

M2
‖Υ−1Lx0‖2 + 3

8
κ̃‖x0‖2Υ2R

+
c̃

2

(
‖ΣFx0‖2 + ‖x0‖2Υ2+Υ2R/4+L/M

)
, (108a)

AL0 ≤ f(x0) + 2‖ΣFx0‖2, x−1 = 0, λ−1 = 0, (108b)

x0 (45b)
= R−1Υ−2∇f(0)− ε0, ε̃−1 (58)

= R−1Υ−2∇f(0).
(108c)
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Use the above relation, we have

P̃ 0 ≤ f(x0) + (x0)�Z̃x0, with Z defined as

Z̃ =
3κ̃

M2
LΥ−2L+

(
3

8
κ̃+ c̃

)
Υ2R

+
c̃L

2M
+ 2FΣ2F � 3Υ2R

where the last inequality follows from our choice of parameters
in (64b). Therefore we have

(x0)�Z̃x0 ≤ 3(x0)�Υ2Rx0

≤ 3(∇f(0)−Υ2Rε0)�R−1Υ−2(∇f(0)−Υ2Rε0)

(i)

≤ 6(∇f(0))�R−1Υ−2∇f(0) + 6(ε0)�Υ2Rε0

≤ 3M(∇f(0))�L−1∇f(0) +
3

8M
‖x0‖2Υ2R

where in (i)we have used the Cauchy-Swartz inequality; the last
inequality uses (62), the choice of the parameters (64b) (which
implies Υ2R ≥ 4L/M ). The above series of inequalities imply
that

2‖x0‖2Υ2R ≤
(
3− 3

8M

)
‖x0‖2Υ2R≤3M(∇f(0))�L−1∇f(0).

Therefore overall we have

(x0)�Z̃x0 ≤ 3(x0)�Υ2Rx0 ≤ 5M(∇f(0))�L−1∇f(0).

By observing 1
M2 d

�
0 d0 = ‖∇f(0)‖2, the desired result is ob-

tained. �

F. Proof of Theorem 5.1

To show the result, we consider the optimality condition (95),
and multiply both sides of it by the all one vector, and use the
fact that F1 = 0 to obtain

1�∇f(xr) + 1�Υ2(xr+1 − xr) = 1�Υ2Rεr+1.

Squaring both sides and rearranging terms we have
∥∥∥∥∥
1

M

M∑

i=1

∇fi(x
r
i )

∥∥∥∥∥

2

≤ 2(xr+1 − xr)�Υ211�Υ2(xr+1 − xr)

+ 2(εr+1)�Υ2R11�Υ2Rεr+1

(62)

≤ 2(xr+1 − xr)�Υ2(xr+1 − xr)× 1�Υ21

+M/(4M)‖xr+1 − xr‖2Υ2R

(i)

≤ ‖xr+1 − xr‖2Υ2R × 2

(
1 +

M∑

i=1

β2
i

)
,

(65)

≤ 64(P̃ r − P̃ r+1)× 2

(
1 +

M∑

i=1

β2
i

)
, ∀ r ≥ 0.

where in (i) we used Υ2R = Υ2 + F�Σ2F � Υ2.
To bound the consensus error, we first use (62) and obtain

‖Υ2R(εr+1 − εr)‖2 ≤ 1

4M
‖xr+1 − xr‖2Υ2R

+
1

4M
‖xr − xr−1‖2Υ2R.

Then we apply Lemma 5.1 to obtain

‖ΣFxr+1‖2

≤ 3κ̃
(
‖xr+1 − xr‖2Υ2R

4M

+ ‖wr+1‖2Υ2

+‖xr − xr−1‖2Υ2R
4M +LΥ−2L

M2

)

(i)

≤ 2‖xr+1 − xr‖2Υ2R + 3κ̃‖wr+1‖2Υ2

+ 2‖xr − xr−1‖2Υ2R, ∀ r ≥ 0 (109)

where (i) is a consequence of (64b), which implies

2Υ2R � 3κ̃

(
LΥ−2L

M2
+Υ2R

)
. (110)

By combining (109) and the following inequality

‖ΣFxr‖2 ≤ 2‖ΣF (xr+1 − xr)‖2 + 2‖ΣFxr+1‖2,
we have

‖ΣFxr‖2 ≤ 4‖xr+1 − xr‖2Υ2R+F�Σ2F + 6κ̃‖wr+1‖2Υ2

+ 4‖xr − xr−1‖2Υ2R

(65)

≤ 64(P̃ r − P̃ r+1) + 64(P̃ r−1 − P̃ r), ∀ r ≥ 1

‖ΣFx0‖2 ≤ 64(P̃ 0 − P̃ 1) + 4‖x0‖2Υ2R.

So overall we have that
Tr∑

r=0

⎛

⎝
∥∥∥∥∥
1

M

M∑

i=1

∇fi(x
r
i )

∥∥∥∥∥

2

+ ‖ΣFxr‖2
⎞

⎠

≤ 64

(
1 +

M∑

i=1

β2
i + 1

)
Tr∑

r=1

((P̃ r − P̃ r+1) + (P̃ r−1 − P̃ r))

+ 64(P̃ 0 − P̃ 1) + 4‖x0‖2Υ2R

≤ 128

(
1 +

M∑

i=1

β2
i + 2

)
(P̃ 0 − f) + 4‖x0‖2Υ2R. (111)

where the last inequality utilizes the descent property of P̃ r in
Lemma 5.5, and the boundedness property in Lemma 5.6. Note
that from (107), (108a) and use c̃ = 8κ̃ in (64a), we obtain

P̃ 0 ≥ f(x0) + κ̃‖x0‖2Υ2R. (112)

Therefore From (66) and Lemma 5.6 we have that

4‖x0‖2Υ2R ≤
4
(
P̃ 0 − f(x0)

)

κ̃

(66)

≤ 4
(
f(x0) + 5

M d�0L
−1d0 − f

)

κ̃
:=

4C̃1

κ̃
.

Combining the above two relations leads to

1

Tr

Tr∑

r=0

(
∥∥
∑M

i=1 ∇fi(x
r
i )

M

∥∥2 + ‖ΣFxr‖2
)

≤ 128

(
M∑

i=1

β2
i + 3 +

1

32κ̃

)
C̃1/Tr.

This completes the proof. �
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X. SUPPLEMENTAL MATERIAL: THE COMPLEXITY ANALYSIS

A. Proof of Lemma 3.1

Proof. Property 1) is obviously true.
To prove Property 2), note that following holds for w > 0:

 (w) = 1� e�w2

,  0(w) = 2e�w2

w,  00(w) = 2e�w2

� 4e�w2

w2, 8 w > 0. (113)

Obviously,  (w) is an increasing function over w > 0, therefore the lower and upper bounds are  (0) = 0, (1) = 1;
 0(w) is increasing on [0, 1

p
2
] and decreasing on [ 1

p
2
,1], where  00( 1

p
2
) = 0, therefore the lower and upper bounds are

 0(0) =  0(1) = 0, 0( 1
p
2
) =

q
2
e ;  00(w) is decreasing on (0,

q
3
2 ] and increasing on [

q
3
2 ,1) [this can be verified by

checking the signs of  000(w) = 4e�w2

w(2w2
� 3) in these intervals]. Therefore the lower and upper bounds are  00(

q
3
2 ) =

�
4

e
3
2
, 00(0+) = 2, i.e.,

0   (w) < 1, 0   0(w) 

r
2

e
, �

4

e
3
2

  00(w)  2, 8w > 0.

Further, for all w 2 R, the following holds:

�(w) = 4 arctanw + 2⇡, �0(w) =
4

w2 + 1
, �00(w) = �

8w

(w2 + 1)2
. (114)

Similarly, as above, we can obtain the following bounds:

0 < �(w) < 4⇡, 0 < �0(w)  4, �
3
p
3

2
 �00(w) 

3
p
3

2
, 8w 2 R.

We refer the readers to Fig. 1 for illustrations of these functions.
To show Property 3), note that for all w � 1 and |v| < 1,

 (w)�0(v) >  (1)�0(1) = 2(1� e�1) > 1

where the first inequality is true because  (w) is strictly increasing and �0(v) is strictly decreasing for all w > 0, and that
�0(v) = �0(|v|).

Next we show Property 4). Note that 0   (w) < 1 and 0 < �(w) < 4⇡. Therefore we have h(0) = � (1)�(0) < 0 and
using the construction in (28)

inf
xi

hi(xi) � � (1)�(xi[1])� 3

bT/2cX

j=1

 (w)�(v) � �4⇡ � 6⇡T � �10⇡T (115)

where the first inequality follows  (w)�(v) > 0 and second follows  (w)�(v) < 4⇡, we reach the conclusion.
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Fig. 8: The functional value for ⇥(w, v) =  (w)�(v).
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Finally we show Property 5), using the fact that a function is Lipschitz if it is piecewise smooth with bounded derivative.
From construction (28), the first-order partial derivative of hq(y) can be expressed below.
Case I) If i is even, we have

@hq

@y[i]
=

8
<

:

3 (� (�y[i� 1])�0 (�y[i])� (y[i� 1])�0 (y[i])) , q 2 [1, M
3 ]

0, q 2 [M3 + 1, 2M
3 ]

3 (� 0 (�y[i])� (�y[i+ 1])� 0 (y[i])� (y[i+ 1])) , q 2 [ 2M3 + 1,M ]
. (116)

Case II) If i is odd but not 1, we have

@hq

@y[i]
=

8
<

:

3 (� 0 (�y[i])� (�y[i+ 1])� 0 (y[i])� (y[i+ 1])) , q 2 [1, M
3 ]

0, q 2 [M3 + 1, 2M
3 ]

3 (� (�y[i� 1])�0 (�y[i])� (y[i� 1])�0 (y[i])) , q 2 [ 2M3 + 1,M ]
. (117)

Case III) If i = 1, we have

@hq

@y[1]
=

⇢
� (1)�0(y[1]) + 3 (� 0 (�y[1])� (�y[2])� 0 (y[1])� (y[2])) , q 2 [1, M

3 ]
� (1)�0(y[1]), q 2 [M3 + 1,M ]

. (118)

Obviously, @hq

@y[i] is a piecewise smooth function for any i, q, and it either equals zero or is separated at the non-differentiable
point y[i] = 0 because of the function  .

Further, fix a point y 2 RT and a unit vector v 2 RT where
PT

i=1 v[i]
2 = 1. Define

gq(✓; y, v) := hq(y + ✓v)

to be the directional projection of hq on to the direction v at point y. We will show that there exists ` > 0 such that
|gq 00(0; y, v)|  ` for all y 6= 0 (where the second-order derivative is taken with respect to ✓).

First we can compute gq 00(0; y, v) as follows:

g
00

q (0; y, v) =
TX

i1,i2=1

@2

@y[i1]@y[i2]
hq (y) v[i1]v[i2] =

X

�2{0,1,�1}

TX

i=1

@2

@y[i]@y[i+ �]
hq (y) v[i]v[i+ �],

where we take v[0] := 0 and v[T + 1] := 0.
The second-order partial derivative of hq(y) (8y 6= 0) is given as follows when i is even:

@2hq

@y[i]@y[i]
=

8
<

:

3 ( (�y[i� 1])�00 (�y[i])� (y[i� 1])�00 (y[i])) , q 2 [1, M
3 ]

0, q 2 [M3 + 1, 2M
3 ]

3 ( 00 (�y[i])� (�y[i+ 1])� 00 (y[i])� (y[i+ 1])) , q 2 [ 2M3 + 1,M ]
(119)

@2hq

@y[i]@y[i+ 1]
=

⇢
0, q 2 [1, 2M

3 ]
3 ( 0 (�y[i])�0 (�y[i+ 1])� 0 (y[i])�0 (y[i+ 1])) , q 2 [ 2M3 + 1,M ]

(120)

@2hq

@y[i]@y[i� 1]
=

⇢
3 ( 0 (�y[i� 1])�0 (�y[i])� 0 (y[i� 1])�0 (y[i])) , q 2 [1, M

3 ]
0, q 2 [M3 + 1,M ]

. (121)

By applying Lemma 3.1 – i) [i.e.,  (w) =  0(w) =  00(w) = 0 for 8 w  0], we immediately obtain that at least one of the
terms  (�y[i� 1])�00 (�y[i]) or � (y[i� 1])�00 (y[i]) is zero. It follows that

 (�y[i� 1])�00 (�y[i])� (y[i� 1])�00 (y[i])  sup
w

| (w)| sup
v

|�00(v)|.

Similarly,
 00 (�y[i])� (�y[i+ 1])� 00 (y[i])� (y[i+ 1])  sup

w
| 00(w)| sup

v
|�(v)|

 0 (�y[i])�0 (�y[i+ 1])� 0 (y[i])�0 (y[i+ 1])  sup
w

| 0(w)| sup
v

|�0(v)|.

Therefore, take the maximum over equations (119) to (121) and plug in the above inequalities, we obtain
����

@2hq

@y[i1]@y[i2]

����  3max{sup
w

| 00(w)| sup
v

|�(v)|, sup
w

| (w)| sup
v

|�00(v)|, sup
w

| 0(w)| sup
v

|�0(v)|}

= 3max

(
8⇡,

3
p
3

2
, 4

r
2

e

)
< 25⇡, 8 i1 being even, 8 i2

where the equality comes from Lemma 3.1 – ii).
We can also verify that the above bound for i being odd but not 1 is exactly the same.
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When i = 1 we have following:

@2hq

@y[1]@y[1]
=

⇢
� (1)�00(y[1]) + 3 (� 00 (�y[1])� (�y[2])� 00 (y[1])� (y[2])) , q 2 [1, M

3 ]
� (1)�00(y[1]), q 2 [M3 + 1,M ]

@2hq

@y[1]@y[2]
=

⇢
3 (� 0 (�y[1])�0 (�y[2])� 0 (y[1])�0 (y[2])) , q 2 [1, M

3 ]
0, q 2 [M3 + 1,M ]

Again by applying Lemma 3.1 – i) and ii),
����

@2hq

@y[1]@y[i2]

����  max{sup
w

| (1)�00(w)|+ 3 sup
w

| 00(w)| sup
v

|�(v)|, 3 sup
w

| 0(w)| sup
v

|�0(v)|}

= max

(
3
p
3

2
(1� e�1) + 24⇡, 12

r
2

e

)
< 25⇡, 8 i2.

Summarizing the above results, we obtain:

��g00q (0; y, v)
�� =

������

X

�2{0,1,�1}

TX

i=1

@2

@y[i]@y[i+ �]
hq (y) v[i]v[i+ �]

������

 25⇡
X

�2{0,1,�1}

�����

TX

i=1

v[i]v[i+ �]

�����

= 25⇡

 �����

TX

i=1

v[i]2

�����+ 2

�����

TX

i=1

v[i]v[i+ 1]

�����

!

 75⇡
TX

i=1

��v[i]2
�� = 75⇡.

Overall, the first-order derivatives of hq are Lipschitz continuous for any q with constant ` = 75⇡.
To show the same result for the function h̄, we can apply (17). This completes the proof. Q.E.D.

B. Proof of Lemma 3.2
Proof. To show that property 1) is true, note that from the definition of fi(xi) we have

rfi(xi) =
p
2✏⇥rhi

✓
xiU

75⇡
p
2✏

◆
.

Therefore the following holds:

1

M
kd0k

2 =
2✏

M

MX

i=1

krhi(0)k
2 =

2✏

M

MX

i=1

| (1)�0(0)|2 = 32✏(1� exp(�1))2. (122)

Therefore we have the following:

f(0)� inf
x

f(x) +
kd0k2

MU
=

150⇡✏

U

✓
h(0)� inf

x
h(x) +

16(1� exp(�1))2

75⇡

◆
.

Then by applying Lemma 3.1 we have that for any T � 1, the following holds

f(0)� inf
x

f(x) +
kd0k2

MU


150⇡✏

U
⇥ (10⇡T + 0.03) 

150⇡✏

U
⇥ 11⇡T.

Property 2) is true due to the definition of f̄ .
Property 3) is true because the following

krf̄(z)�rf̄(y)k =
p
2✏

����rh̄

✓
zU

75⇡
p
2✏

◆
�rh̄

✓
yU

75⇡
p
2✏

◆����  Ukz � yk

where the last inequality comes from Lemma 3.1 – (5). This completes the proof. Q.E.D.

C. Proof of Lemma 3.3
Proof. The first inequality holds for all k 2 [T ], since 1

M

PM
i=1

@
@y[k]hi(y) is one element of 1

M

PM
i=1 rhi(y).

We divide the proof for second inequality into two cases.
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Case 1. Suppose |y[j � 1]| < 1 for all 2  j  k. Therefore, we have |y[1]| < 1. Using (118), we have the following
inequalities:

@

@y[1]
hi(y)

(i)
 � (1)�0(y[1])

(ii)
< �1, 8i (123)

where (i) is true because  0(w),�(w) are all non-negative from Lemma 3.1 -(2); (ii) is true due to Lemma 3.1 – (3). Therefore,
we have the following

��rh̄(y)
�� =

�����
1

M

MX

i=1

rhi(y)

����� �

�����
1

M

MX

i=1

@

@y[1]
hi(y)

����� > 1.

Case 2) Suppose there exists 2  j  k such that |y[j � 1]| � 1.
We choose j so that |y[j � 1]| � 1 and |y[j]| < 1. Therefore, depending on the choices of (i, j) we have three cases

@hi(y)

@y[j]
=

8
<

:

�3 ( (�y[i� 1])�0 (�y[j]) + (y[i� 1])�0 (y[j])) , q 2 [1, M
3 ]

0, q 2 [M3 + 1, 2M
3 ]

�3 ( 0 (�y[j])� (�y[i+ 1]) + 0 (y[j])� (y[i+ 1])) , q 2 [ 2M3 + 1,M ]
.

If q 2 [1, M
3 ], because |y[j � 1]| � 1 and |y[j]| < 1, using Lemma 3.1 – (3), and the fact that the negative part is zero for

 , and �0 is even function, the expression further equals to

�3 · (|y[j � 1]|)�0 (|y[j]|)]
(32)
< �3, (124)

If q 2 [ 2M3 + 1,M ] the expression is obviously non-positive because both  0 and � are nonnegative. Overall, we have
�����
1

M

MX

i=1

@hi(y)

@y[j]

����� >

������
1

M

M/3X

i=1

3

������
= 1.

This completes the proof. Q.E.D.

D. Proof of Lemma 3.4
Proof. First let us derive a useful property. Define d := [d1; d2; · · · ; dM ] where di is the degree for node i; further define

x̄ :=
1

M

MX

i=1

xi, x̃i := xi � x̄, x̃ := [x̃1; x̃2; · · · ; x̃M ].

It is easy to observe that :
x̃> = 0, and x̃ /2 Null(F>F ).

Then the following holds:

x>F>Fx =
X

(i,j):i⇠j

kxi � xjk
2 =

X

(i,j):i⇠j

kx̃i � x̃jk
2 = x̃>F>Fx̃ � �min(F

>F )kx̃k2. (125)

Therefore the following holds:
MX

i=1

kx̄� xik
2


1

�min(F
>F )

X

(i,j):i⇠j

kxi � xjk
2 =

1

�min(P
1/2LP 1/2)

X

(i,j):i⇠j

kxi � xjk
2. (126)

Based on the above property, we have the following series of inequalities

��rf̄(x̄)
��2  2

����
1

M

MX

i=1

(rfi(x̄)�rfi(xi))

����
2

+ 2

����
1

M

MX

i=1

rfi(xi)

����
2

(i)


2

M

MX

i=1

����rfi(
1

M

MX

j=1

xj)�rfi(xi)

����
2

+ 2

����
1

M

MX

i=1

rfi(xi)

����
2

(ii)


2

M

MX

i=1

U2

����
1

M

MX

j=1

xj � xi

����
2

+ 2

����
1

M

MX

i=1

rfi(xi)

����
2

(iii)


2U

M�min(P
1/2LP 1/2)

X

(i,j):i⇠j

kxj � xik
2 + 2

����
1

M

MX

i=1

rfi(xi)

����
2
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where in (i) and (iii) we have used the convexity of the function k · k
2; in (ii) we used Lemma 3.2 – (3); in (iii) we have

also used the assumption that U 2 (0, 1) and (126). Overall we have
����
1

M

MX

i=1

rfi(xi)

����
2

+
U

M�min(P
1/2LP 1/2)

X

(i,j):i⇠j

kxi � xjk
2
�

1

2
krf(x̄)k2 .

This completes the proof. Q.E.D.

E. Proof of Lemma 3.5

Proof. For a given k � 2, suppose that xi[k], xi[k+1], ..., xi[T ] = 0, 8i, that is, support{xi} ✓ {1, 2, 3, ..., k� 1} for all i.
Then  0 (xi[k]) =  0 (�xi[k]) = 0 for all i, and hi has the following partial derivative when k is even:

@hi(xi)

@xi[k]
=

⇢
�3 ( (�xi[k � 1])�0 (�xi[k])) + 3 ( (xi[k � 1])�0 (xi[k])) , i 2 [1, M

3 ]
0, i 2 [M3 + 1,M ]

(127)

and the following partial derivative when k is odd and k � 3:

@hi(xi)

@xi[k]
=

⇢
0, i 2 [1, 2M

3 ]
�3 ( (�xi[k � 1])�0 (�xi[k])) + 3 ( (xi[k � 1])�0 (xi[k])) , i 2 [ 2M3 + 1,M ]

. (128)

Recall that for any algorithm in class A or A0, each agent is only able to compute linear combination of historical gradient
and neighboring iterates [cf. (14) and (15)]. Therefore, for a given node i, as long as the kth element of the gradient as well
as that of its neighbors have never been updated once, xi[k] remains to be zero. Combining this observation with the above
two expressions for @hi(xi)

@xi[k]
, we can conclude that when support{xi} ✓ {1, 2, 3, ..., k � 1} for all i, then in the next iteration

xi[k] will be possibly non-zero on the node i 2 [1, M
3 ] for even k and i 2 [ 2M3 + 1,M ] for odd k, and all other nodes still

have xj [k] = 0, 8 j 6= i.
Now suppose that the initial solution is xi[k] = 0 for all (i, k). Then at the first iteration only @hi(xi)

@xi[1]
is non-zero for all

i, due to the fact that @hi(xi)
@xi[1]

=  (1)�0(0) = 4(1 � e�1) for all i from (118). If follows that even if every node is able to
compute its local gradient, and can communicate with their neighbors, it is only possible to have xi[1] 6= 0, 8i. At the second
iteration, we can use (127) to conclude that it is only possible to have @hr(xr)

@xr[k]
6= 0 for some r 2 [1, M/3], therefore when

using an algorithm in class A, we can conclude that xi[2] = 0 for all i /2 [1, M/3].
Then following our construction (28), we know the nodes in the set [1, M

3 ] and the set [ 2M3 +1,M ] have minimum distance
M/3. It follows that using an algorithm in A or A0, it takes at least M/3 iterations for the non-zero xr[2] and the corresponding
gradient vector to propagate to at least one node in set [2M/3+1,M ]. Once we have xj [2] 6= 0 for some j 2 [2M/3+1, M ],
then according to (128), it is possible to have @hj(xj)

@xj [3]
6= 0, and once this gradient becomes non-zero, the corresponding variable

xj [3], j 2 [2M/3 + 1, M ] can become nonzero.
Following the above procedure, it is clear that we need at least MT

3 iterates and T computations to make xi[T ] possibly
non-zero. Q.E.D.

F. Proof of Theorem 3.1

Now we are ready to prove our first main result.
Proof of Theorem 3.1. By Lemma 3.5 we have x̄[T ] = 0 for all t < M+3

3 T . Then by applying Lemma 3.2 – (2) and
Lemma 3.3, we can conclude that the following holds

��rf̄(x̄[T ])
�� =

p
2✏

����rh̄

✓
x̄[T ]U

75⇡
p
2✏

◆���� >
p
2✏, (129)

where the second inequality follows that there exists k 2 [T ] such that | x̄[k]U

75⇡
p
2✏
| = 0 < 1, then we can directly apply Lemma 3.3.

Then by applying Lemma 3.4 gives h⇤

(M+3)T/3 > ✏, where h⇤

T is defined in (16).
The third part of Lemma 3.2 ensures that fi’s are U -Lipschitz continuous gradient, and the first part shows

f(0)� inf
x

f(x) +
kd0k2

MU


1650⇡2✏

U
T,

Therefore we obtain

T �

6664

⇣
f(0)� infx f(x) +

kd0k
2

MU

⌘
U

1650⇡2
✏�1

7775 . (130)
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Fig. 9: The path-star graph used in our construction.

Summarizing the above argument, we have

t �
M + 3

3
T �

M + 3

3

6664

⇣
f(0)� infx f(x) +

kd0k
2

MU

⌘
U

1650⇡2
✏�1

7775 .

By noting that for path graph ⇠(G) � 1/M2, this completes the proof. Q.E.D.

G. Generalization

1) Uniform Li, Fixed D and M : In this subsection, we would like to generalize Theorem 3.1 to a slightly wider class of
networks (beyond the path graph used in our construction). Towards this end, consider a path-star graph shown in Fig. 9.
The graph contains a path graph with D � 1 nodes, and the remaining nodes are divided into D � 1 groups, each with either
bM/(D� 1)� 1c or bM/(D� 1)� 1c+1 nodes, and each group is connected to the nodes in the path graph by using a star
topology. We have the following corollary to Theorem 3.1.

Corollary 10.1: Let U 2 (0, 1) and ✏ be positive, and fix any D and M such that D  M � 1. For any algorithm in class
A or A

0, there exists a problem in class P
M
U and a network in class N

M
D , so that to achieve accuracy h⇤

t < ✏, it requires at
least the following number iterations

t �
D

3

6664

⇣
f(0)� infx f(x) +

kd0k
2

MU

⌘
U

1650⇡2
✏�1

7775 .

Alternatively, the above bound can be expressed as the following

t �

p
D/(3M)

3
p
⇠(G)

6664

⇣
f(0)� infx f(x) +

kd0k
2

MU

⌘
U

1650⇡2
✏�1

7775 .

Proof. Fix any D and M such that D  M � 1, we can construct a path-star graph as described in Fig.9, whose diameter
is D.

To show the lower bounds for such a graph, we split all M nodes into three sets A,B, C based on the main path, each with
M
3 nodes (assume M is a multiple of 3), where A and C has minimum D+2

3 distance (assume D� 1 is a multiple of 3). Then
we construct the component functions hi’s as follows.

hi(xi) =

8
>>>>>>>><

>>>>>>>>:

⇥(xi, 1) + 3

bT/2cX

j=1

⇥(xi, 2j), i 2 A

⇥(xi, 1), i 2 B

⇥(xi, 1) + 3

bT/2cX

j=1

⇥(xi, 2j + 1), i 2 C

(131)

Since the graph has diameter D in the above construction, and the distance between any two elements in A and C is at least
D+2
3 (assume D � 1 is a multiple of 3), by a similar step in Lemma 3.5 we can conclude that we need at least (D+2

3 + 1)T
iterations to achieve xi[T ] 6= 0. By applying (130), we can obtain the desired result.
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To show the second result, note that from (24) we have
X

i

diD �
1

�min(L)
(132)

For the path-star graph under consideration, we have
X

i

di = 2(D � 1)� 2 +M  3M

so the following holds:

D2
�

D/3M

�min(L)
.

The desired result is then immediate. Q.E.D.
Finally, for the problem class with non-uniform Lipschitz constants, we can extend the previous result to any network in

class N (by properly assigning different values of Li’s to different nodes). In this case the lower bound will be dependent on
the spectral property of bL as defined in (22) (expressed below for easy reference)

bL := L�1/2F>KFL�1/2. (133)

H. Sketch of Proof for Corollary 3.1
To prove this result, we select the values of the coefficient set {Li}

M
i=1, so that the “effective” network topology becomes

a path. In particular, for any given network in N , we can construct local functions as follows: First, along the longest path
of size D, we distributed the functions into three sets A,B, C, where A and C denotes the first and last D

3 nodes on the path
respectively, and B denotes the rest nodes on the path. Second, for the rest of the functions not on the path, denoted as set D,
set their local functions to zero (or equivalently, set the corresponding Li’s to zero). Then, the local function belongs to each
set can be expressed as:

hi(xi) =

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

M

D
⇥(xi, 1) +

3M

D

bT/2cX

j=1

⇥(xi, 2j), i 2 A

M

D
⇥(xi, 1), i 2 B

M

D
⇥(xi, 1) +

3M

D

bT/2cX

j=1

⇥(xi, 2j + 1), i 2 C

0, i 2 D

(134)

This way the network reduces to a path graph. Note that the Lipschitz constant for the gradient of h(y) = 1
M

PM
i=1 hi(y) is

still 1, and we can use the similar constructions and proof steps leading to Theorem 3.1 to prove the claim.
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