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1 Introduction

It has been known that the internal space for N=2 supersymmetric one-dimensional sigma model

is a Kahler manifold [?], and the internal space for N=4 supersymmetric one-dimensional sigma

model is a hyper-Kahler manifold [?] [?]. It means that there exists a torsion-free connection

with holonomy in U(n) or Sp(n), respectively, on the internal space.

It has also been known for a fairly long time that when the Wess-Zumino term is present

in the sigma model, the internal space has linear connections with holonomy in U(n) or Sp(n)

depending on the numbers of supersymmetry. However, the connection has torsion and the

torsion tensor is totally skew-symmetric [?] [?] [?]. The geometry of a connection with totally

skew-symmetric torsion and holonomy in U(n) is referred to KT-geometry by physicists. When

the holonomy is in Sp(n), the geometry is referred to HKT-geometry.

If one ignores the metric and the connection of a HKT-geometry, the remaining object on the

manifold is a hypercomplex structure. The subject of hypercomplex manifolds has been studied

by many people since the publication of [?] and [?]. A considerable amount of information

is known. It has a twistor correspondence [?] [?]. There are homogeneous examples [?] and

there are also inhomogeneous examples [?] [?]. There is a reduction construction modeled on

symplectic reduction and hyper-Kahler reduction [?]. However, all these works focus on the

hypercomplex structure and the associated Obata connection which is a torsion-free connection

preserving the hypercomplex structure. What is not discussed in these works is hyper-Hermitian

geometry.

On the other hand, Hermitian connections on almost Hermitian manifolds are studied rather

thoroughly by Gauduchon [?]. He considered a subset of Hermitian connections determined by

the form of their torsion tensor, called canonical connections.

Guided by physicists' work and based on the results on hypercomplex manifolds, we review

and further develop the theory of HKT-geometry. Some of our observations are re-interpretation

of physicists' results, especially those in [?] [?] and [?] [?], and some of the results in this paper

are new.

In Section ??, we review the basic definitions of HKT-geometry along the line of classical

Hermitian geometry developed by Gauduchon [?]. Based on Joyce's construction of homogeneous

hypercomplex manifolds [?], we review the construction of homogeneous HKT-geometry with

respect to compact semi-simple Lie groups [?].

In Section ??, we find that a hyper-Hermitian manifold admits HKT-connection if and only

if for each complex structure, there is a holomorphic (0,2)-form. This characterization easily

implies that some hyper-Hermitian structures are not HKT-structure. Furthermore, when this

characterization is given a twistorial interpretation, the associated object on the twistor space

of the hypercomplex structure is holomorphic with respect to a non-standard almost complex

structure J2. This almost complex structure J2 is first discussed by Eells and Salamon in a



different context [?]. Since this almost complex structure is never integrable, we focus on the

holomorphic (0,2)-forms. From this perspective, we verify that there are HKT-structures on

nilmanifolds, and that the twist of a HKT-manifold is again a HKT-manifold.

In Section ?? we study the potential theory for HKT-geometry which is based on results in

Section ??. We shall see that local HKT-geometry is very flexible in the sense that the existence

of one generates many through a perturbation of potential functions. In particular, we show

that hyper-Kahler potentials generate many HKT-potentials. The results in this section and

Section ?? allow us to construct a large family of inhomogeneous HKT-structures on compact

manifolds including S1 x S4n+3.

Finally, a reduction theory based on hyper-Kahler reduction for HKT-geometry is developed

in Section ??.

2 Hyper-Kahler Geometry with Torsion

2.1 Kahler Geometry with Torsion

Let M be a smooth manifold with Riemannian metric g and an integrable complex structure

J. It is a Hermitian manifold if g(JX, JY) = g(X, Y). The Kahler form F is a type (1,1)-form

defined by F(X, Y) = g(JX, Y).

A linear connection V on M is Hermitian if it preserves the metric g and the complex

structure J. i.e.,

Vg = 0 and VJ = 0.

Since the connection preserves the metric, it is uniquely determined by its torsion tensor T. We

shall also consider the following (3,0)-tensor

c(X,Y,Z)=g(X,T(Y,Z)). (1)

Gauduchon found that on any Hermitian manifold, the collection of canonical Hermitian

connections is an affine subspace of the space of linear connections [?]. This affine subspace is at

most one dimensional. It is one point if and only if the Hermitian manifold is Kahler, i.e., when

the Kahler form is closed, then the family of canonical Hermitian connections collapses to the

Levi-Civita connection of the given metric. It is one-dimensional if and only if the Hermitian

manifold is non-Kahler. In the latter case, there are several distinguished Hermitian connections.

For example, Chern connection and Lichnerwicz's first canonical connection are in this family.

We are interested in another connection in this family.

Physicists find that the presence of the Wess-Zumino term in N=2 supersymmetry yields

a Hermitian connection whose torsion c is totally skew-symmetric. In other words, c is a 3-

form. Such a connection turns out to be another distinguished Hermitian connection [?] [?].

The geometry of such a connection is called by physicists a KT-connection. Among some

mathematicians, this connection is called the Bismut connection. According to Gauduchon [?],
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on any Hermitian manifold, there exists a unique Hermitian connection whose torsion tensor c is

a 3-form. Moreover, the torsion form can be expressed in terms of the complex structure and the

Kahler form. Recall the following definitions and convention [?, Equations 2.8 and 2.15-2.17].

For any n-form ω, when

(Jω)(X1,...,Xn) :={-l)nuj{JXl,...,JXn) then dcω = (-l)nJdJu. (2)

And

^ ^ ^ ^ (3)

By [?], the torsion 3-form of the Bismut connection is

U (4)c(X,Y,Z) U

2.2 Hyper-Kahler Connection and HKT-Geometry

Three complex structures I1, I2 and I3 on M form a hypercomplex structure if

I12 = ll = lt = -^, and I1I2 = h = -hh. (5)

A triple of such complex structures is equivalent to the existence of a 2-sphere worth of integrable

complex structures:

T = {a1I1 + a2I2 + a3I3 :a21 + a22 + a32 = 1}. (6)

When g is a Riemannian metric on the manifold M such that it is Hermitian with respect to

every complex structure in the hypercomplex structure, (M,I,g) is called a hyper-Hermitian

manifold. Note that g is hyper-Hermitian if and only if

g(X, Y) = g(I1X, I1Y) = g(I2X, I2Y) = g(I3X, I3Y). (7)

On a hyper-Hermitian manifold, there are two natural torsion-free connections, namely the

Levi-Civita connection and the Obata connection. However, in general, the Levi-Civita connec-

tion does not preserve the hypercomplex structure and the Obata connection does not preserve

the metric. We are interested in the following types of connections.

Definition 1 A linear connection V on a hyper-Hermitian manifold (M, I, g) is hyper-Hermitian

Vg = 0, and V/i = V/2 = V/3 = 0. (8)

Definition 2 A linear connection V on a hyper-Hermitian manifold (M, I , g) is hyper-Kdhler

if it is a hyper-Hermitian and its torsion tensor is totally skew-symmetric.

A hyper-Kahler connection is referred to as a HKT-connection in physics literature. The

geometry of this connection or this connection is also referred to as a HKT-geometry.



Note that a HKT-connection is also the Bismut connection for each complex structure in

the given hypercomplex structure. For the complex structures {I1,I2,I3}, we consider their

corresponding Kahler forms {F1, F 2 , F3} and the complex operators {d1, cfe, c^} where di = dic.

Due to Gauduchon's characterization of Bismut connection, we have

Proposition 1 A hyper-Hermitian manifold (M,I,g) admits a hyper-Kdhler connection if and

only if d1F1 = d2F2 = d3F3. If it exists, it is unique.

In view of the uniqueness, we say that (M,I,g) is a HKT-structure if it admits a hyper-

Kahler connection. If the hyper-Kahler connection is also torsion-free, then the HKT-structure

is a hyper-Kahler structure.

2.3 Homogeneous Examples

Due to Joyce [?], there is a family of homogeneous hypercomplex structures associated to any

compact semi-simple Lie group. In this section, we briefly review his construction and demon-

strate, as Opfermann and Papadopoulos did [?], the existence of homogeneous HKT-connections.

Let G be a compact semi-simple Lie group. Let U be a maximal torus. Let g and u be

their algebras. Choose a system of ordered roots with respect to uC. Let α1 be a maximal

positive root, and h1 the dual space of α1. Let d\ be the sp(1)-subalgebra of G such that its

complexification is isomorphic to h1 (B α1 © fl-«i where gα1 and Q-ai are the root spaces for

ct\ and — α1 respectively. Let b1 be the centralizer of d\. Then there is a vector subspace f1

composed of root spaces such that G = b1 © d\ © f1. If b1 is not Abelian, Joyce applies this

decomposition to it. By inductively searching for sp(1) subalgebras, he finds the following [?,

Lemma 4.1].

Lemma 1 The Lie algebra G of a compact Lie group G decomposes as

g = be]=1d3e]=1f3, (9)

with the following properties. (1) b is Abelian and dj is isomorphic to sp(1). (2) b ©™=i dj

contains u. (3) Set b0 = g, bn = b and bk = b ®" = f c + 1 dj ©™=fc+1 fj. Then [bk, dj} = 0 for k > j .

(4) [di,fi] C fl. (5) The adjoint representation of di on fl is reducible to a direct sum of the

irreducible 2-dimensional representations ofsp(1).

When the group G is semi-simple, the Killing-Cartan form is a negative definite inner product

on the vector space G.

Lemma 2 The Joyce Decomposition of a compact semi-simple Lie algebra is an orthogonal

decomposition with respect to the Killing-Cartan form.
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Proof: Since Joyce Decomposition given as in (??) is inductively defined, it suffices to prove

that the decomposition

flc = b i©9i©f i (10)

is orthogonal. Recall that

9\ = {l)l,Xai,X_ai), fi = ©ai/a>0,(a,a1)/0fla ©fl-a,

b1 = {h G u c : α1(h) = 0} ©

Since the Cartan subalgebra uC is orthogonal to any root space, and it is an elementary fact

that two root spaces gα, gβ are orthogonal whenever a / ±β, f1 is orthogonal to both b1 and

d\. For the same reasons, d\ is orthogonal to the summand (Ba>o,(a,a1)=oQa ©fl-« in b1, and b1

is orthogonal to the summand (Xai,X-ai) in d\. Then d\ is orthogonal to b1 because for any

element h in the Cartan subalgebra in b1, (h,h\) = α1(h) = 0. q. e. d.

Let G be a compact semi-simple Lie group with rank r. Then

(2n - r)u(1) ©fl = Rra j n = 1 9, e ? = 1 fj. (11)

At the tangent space of the identity element of T2n~r x G, i.e. the Lie algebra (2n — r)u(1) ©g,

a hypercomplex structure {h,h, h} is defined as follows. Let {E1,..., £"„} be a basis for R n .

Choose isomorphisms φj from sp(1), the real vector space of imaginary quaternions, to dj. It

gives a real linear identification from the quaternions H to (Ej) (Bdj. If Hj, Xj and Yj forms a

basis for dj such that [Hj,Xj] = 2Yj and [Hj,Yj] = -2Xj} then

1Ej = Hj, I2Ej = Xj,I3Ej = Yj. (12)

Define the action of Ia on fj by Ia(v) = [v,φj(ιa)] where ι1 = i,ι2 = j,ι3 = k. The complex

structures {h,h, h} at the other points of the group T2n~r xG are obtained by left translations.

These complex structures are integrable and form a hypercomplex structure [?].

Lemma 3 When G is a compact semi-simple Lie group with rank r, there exists a negative

definite bilinear form B on the decomposition (2n — r)u(1) © g = Rra j n

= 1 dj ©™=1 fj such that

(1) its restriction to g is the Killing-Cartan form, (2) it is hyper-Hermitian with respect to the

hypercomplex structure, and (3) the above decomposition is orthogonal.

Proof: In dj, we choose an orthogonal basis {Hj,Xj, Yj} such that Hj is in the Cartan subalgebra

and

B(Hj,Hj) = B(Xj,Xj) = B(Yj,Yj) = -\). (13)

On R n = (2n — r)u(1) © b, choose E1,... ,En and extend the Killing-Cartan form so that

,Ej) = -5tJX
2. (14)



It is now apparent that the extended Killing-Cartan form is hyper-Hermitian with respect to

h,h and I3.

To show that the Killing-Cartan form is hyper-Hermitian on ©""=1fj, it suffices to verify that

the Killing-Cartan form is hyper-Hermitian on f1. It follows from the fact that B(X, [Y, Z]) is

totally skew-symmetric with respect in X, Y, Z and the Jacobi identity. q. e. d.

Let g be the left-translation of the extended Killing-Cartan form —B. It is a bi-invariant

metric on the manifold T2n~r x G. The Levi-Civita connection D is the bi-invariant connection.

Let V be the left-invariant connection. When X and Y are left-invariant vector fields

DXY = 1[X,Y], and VXY = 0.

Since the hypercomplex structure and the hyper-Hermitian metric are left-invariant, the left-

invariant connection is hyper-Hermitian. The torsion tensor for the left-invariant connection is

T(X,Y) = -[X,Y]. The (3,0)-torsion tensor is

c(X,Y,Z) = -B([X,Y],Z).

It is well known that c is a totally skew-symmetric 3-form. Therefore, the left-invariant connec-

tion is a HKT-structure on the group manifold T2n~r x G.

It is apparent that if one extends the Killing-Cartan form in an arbitrary way, then the

resulting bi-invariant metric and left-invariant hypercomplex structure cannot make a hyper-

Hermitian structure.

The above construction can be generalized to homogeneous spaces [?].

3 Characterization of HKT-Structures

In this section, we characterize HKT-structures in terms of the existence of a holomorphic object

with respect to any complex structure in the hypercomplex structure. Through this characteri-

zation, we shall find other examples of HKT-manifolds. Toward the end of this section, we shall

also reinterpret the twistor theory for HKT-geometry developed by Howe and Papadopoulos

[?]. The results seem to indicate that the holomorphic characterization developed in the next

paragraph will serve all the purposes that one wants the twistor theory of HKT-geometry to

serve.

3.1 Holomorphic Characterization

Proposition 2 Let (M,I,g) be a hyper-Hermitian manifold and Fa be the Kdhler form for

(Ia,g). Then (M,I,g) is a HKT-structure if and only if d\{F2 + iF3) = 0; or equivalently



Proof: Since di(F2 + iF3) = 12(dF2 - d1F3) + |(d1F2 + dF3), it is identically zero if and only if

d1F2 = -dF3, and dF2 = d1F3.

Note that F2(I1X, I1Y) = g(I2I1X, I1Y) = -g(I2X, Y) = -F2(X, Y). It follows that d1F2 =

(—1)2 I1dI1(F2) = —I\dF2. As dF2 is a 3-form, for any X, Y, Z tangent vectors,

I1dF2(X, Y, Z) = dF2(I1X, I1Y, I1Z) = dF2(I2I3X, I2I3Y, I2I3Z)

= -I2dF2(I3X, I3Y, I3Z) = I3I2dF2(X, Y, Z).

Since F2 is type (1,1) with respect to I2, I2F2 = F2. Then d1F2 = ~hdF2 = I3I2dF2 =

I2dI2F2 = I3d2F2. On the other hand, -dF3 = I3I3dF3 = I3I3dI3F3 = I3d3F3. Therefore,

d2F2 = d3F3 if and only if d1F2 = —dF3. Similarly, one can prove that d2F2 = d3F3 if and only

if d1F3 = dF2. It follows that di(F2 + iF3) = 0 if and only if d2F2 = d3F3. It is equivalent

to V2 = V3 where V" is the Bismut connection of the Hermitian structure (M,Ia,g). Since

h = I2I3, and V2 = V3, I1 is parallel with respect to V2 = V3. By the uniqueness of the

Bismut connection, V1 = V2 = V3. q. e. d.

On any hypercomplex manifold (M,I), if F2 — iF3 is a 2-form such that —F2(I2X,Y) =

g(X,Y) is positive definite and it is a non-holomorphic (0,2)-form with respect to I1, then

(M,g,I) is a hyper-Hermitian manifold but it is not a HKT-structure. For example, a conformal

change of a HKT-structure by a generic function gives a hyper-Hermitian structure which is not

a HKT-structure so long as the dimension of the underlying manifold is at least eight. On the

other hand Proposition ?? implies that every four-dimensional hyper-Hermitian manifold is a

HKT-structure, a fact also proven in [?, Section 2.2].

In the proof of Proposition ??, we also derive the following [?].

Corollary 1 Suppose F1,F2 and F3 are the Kdhler forms of a hyper-Hermitian structure. Then

the hyper-Hermitian structure is a HKT-structure if and only if

diFj = -25ijC - eijkdFk. (15)

Theorem 1 Let (M, I) be a hypercomplex manifold and F2 — iF3 be a (0,2)-form with respect

to I1 such that d\{F2 — iF3) = 0 or equivalently d\{F2 + iF3) = 0 and —F2(I2X,Y) = g(X,Y)

is a positive definite symmetric bilinear form. Then (M, I, g) is a HKT-structure.

Proof: In view of the last proposition, it suffices to prove that the metric g along with the given

hypercomplex structure I is hyper-Hermitian.

Note that F2 — iF3 is type (0,2) with respect to I1. Since X — U\X is a type (1,0)-vector

with respect to I1, (F2 — iF3)(X — H\X, Y) = 0 for any vectors X and Y. It is equivalent to the

identity F2(I1X,Y) = -F3(X,Y). Then

F3(I3X,Y) = -F2(hhX,Y) = F2(I2X,Y) = -g(X,Y).



So F3(I3X,I3Y) = F3(X,Y), and g is Hermitian with respect to h. Since the metric g is

Hermitian with respect to h and h = I2I3, g is also Hermitian with respect to I1. q. e. d.

3.2 HKT-Structures on Compact Nilmanifolds

In this section, we apply the last theorem to construct a homogeneous HKT-structure on some

compact nilmanifolds.

Let {X1, ...,X2n, Y1,..., Y2n, Z} be a basis for R 4 n + 1 . Define commutators by: [Xi,Yi] = Z,

and all others are zero. These commutators define on R 4 n + 1 the structure of the Heisenberg Lie

algebra h2n. Let R 3 be the 3-dimensional Abelian algebra. The direct sum n = h2n ® R 3 is a

2-step nilpotent algebra whose center is four dimensional. Fix a basis {E1, E2, E3} for R 3 and

consider the following endomorphisms of n [?] :

h 1: Xi —> Yi, Z —E 1 , E2 —E 3;

h 2: X2i+1 —> X2i, Y21-1 —>• Y2i, Z —> E2, E 1> E3;

12 = I22 = -identity, h = I1I

Clearly hh = -hh- Moreover, for a = 1,2,3 and X,Y G n, [IaX,IaY] = [X,Y] so Ia are

Abelian complex structures on n in the sense of [?] and in particular are integrable. It implies

that {Ia : a = 1,2,3} is a left invariant hypercomplex structure on the simply connected Lie

group N whose algebra is n. It is known that the complex structures Ia on n satisfy:

d(A}'V) G A}'V

where n* is the space of left invariant 1-forms on N and AjJn* is the (i, j)-component of n <g> C

with respect to Ia [?]. But then we have d(A/ n*) e ΛI2,1 n* and any left invariant (2,0)-form

is 9i-closed. Now consider the invariant metric on N for which the basis {Xi,Yi, Z,Ea} is

orthonormal. Since it is compatible with the structures Ia in view of Theorem ?? we obtain a

left-invariant HKT-structure on N. Noting that N is isomorphic to the product H2n x R 3 of

the Heisenberg Lie group H2n and the Abelian group R 3 we have:

Corollary 2 Let Γ be a cocompact lattice in the Heisenberg group H2n and Z3 a lattice in R3.

The compact nilmanifold (Γ x Z3)\N admits a HKT-structure.

3.3 Twist of Hyper-Kahler Manifolds with Torsions

Suppose that (M,I) is a hypercomplex manifold, a U(1)-instanton P is a principal U(1)-bundle

with a U(1)-connection 1-form θ such that its curvature 2-form is type-(1,1) with respect to

every complex structure in I [?] [?]. Let ΨM : U(1) —>• Aut(M) be a group of hypercomplex

automorphism, and let ΨP : U(1) —> Aut(P) be a lifting of ΨM. Let Φ : U(1) —> AutP be the

principal U(1)-action on the bundle P, and A(g) be the diagonal product Φ(g)ΨP(g) action on
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P. A theorem of Joyce [?, Theorem 2.2] states that the quotient space W = P/A(U(1)) of the

total space of P with respect to the diagonal action A is a hypercomplex manifold whenever

the vector fields generated by A(U(1)) are transversal to the horizontal distribution of the

connection θ. The quotient space W is called a twist of the hypercomplex manifold M.

Now suppose that (M,I,g) is a HKT-structure, and P is a U(1)-instanton with connection

form θ. Suppose that ΨM : U(1) —>• Aut(M) is a group of hypercomplex isometry. Due to the

uniqueness of HKT-structure, ΨM is a group of automorphism of the HKT-structure.

Corollary 3 The twist manifold W admits a HKT-structure.

Proof: Let φ : P —>• M and A : P —>• W be the projections from the instanton bundle P to M and

the twist W respectively. The connection θ defines a splitting of the tangent bundle of P into

horizontal and vertical components: TP = TL © V where H = Kerθ. We define endomorphisms

Ia on TP as follows: /„ = 0 on vertical directions, and when v is a horizontal lift of a tangent

vector v to M, define Iav = Iav.

Since the fibers of the projection A are transversal to the horizontal distribution, for any

tangent vector v to W, there exists a horizontal vector v such that dAv = v. Define Ia and

g on W by Iav = dA(Iav) and g(v,w) = g(v,w). As the diagonal action is a group of hyper-

holomorphic isometries, the almost complex structures Ia and metric g are well defined.

To verify that Ia are integrable complex structures on W, we first observe that: for horizontal

vector fields X and Y, dA[X,Y] = [dAX,dAY], dφ[X,Y] = [dφX,dφY] and dAIa = IadA,

d<pla = Iadφ. Through these relations, we establish the following relations between Nijenhius

tensors of Ia, Ia and Ia:

dANa(X,Y) = Na (d AX, dAY) and d(j)Na (X,Y) = Na (dφX, dφY).

The second identity implies that the horizontal part of Na(X, Y) vanishes because the complex

structures Ia are integrable. With the first identity, it follows that the Nijenhius tensor for Ia

vanishes if the vertical part of Na(X, Y) also vanishes. To calculate the vertical part, we have

6{Na{X, Y)) = 14θ([X, Y] + Ia[IaX, Y] + Ia[X, IaY] - [IaX, IaY])

= 41θ([X, Y] - [IaX, IaY]) = 41(dθ(X, Y) - dθ(IaX, Ia

Since θ is an instanton, dθ(X, Y) — dθ(IaX, IaY) = 0. It follows that Ia are integrable.

To check that g is a HKT-metric, we first observe that dA and dφ give rise to isomorphisms

of A^'^M, A^'^H and A^'^W when we fix the structures h, h and Ix. Let the Kahler forms

of the structures Ia and Ia be denoted by Fa and Fa respectively. Now if X, Y and Z are sections

then

X(A*(F2 + iF3))(Y, Z) = X(f(F2 + iF3))(Y, Z).
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Since dθ is type (1,1), θ([X,Y]) = dθ(X,Y) = 0. It means that [X,Y] is a section of H(1,0).

Therefore, A * ( F 2 + iF3)([X, Y],Z)= (j)*{F2 + iF3)([X, Y],Z). It follows that

(A*d(F2 + iF3))\A(mH = (dA*(F 2 + iF3))\A(3,0)H = # * ( F 2 + iF3))|Λ(3,0)H = 0.

Hence d{F2 + iF3)\A(3,o)W = 0 and the corollary follows from Proposition ??. q. e. d.

3.4 Twistor Theory of HKT-Geometry

When (M, I) is a 4n-dimensional hypercomplex manifold, the smooth manifold Z = M x

S2 admits an integrable complex structure. It is defined as follows. For a unit vector a =

(a1,a2, a3) e R3, let 1$ be the complex structure a1I1+a2I2+a3I3 in the hypercomplex structure

I. Let J^ be the complex structure on S 2 defined by cross product in R3: J^w = a x wα. Then

the complex structure on Z = M x S 2 at the point (x, αa) is J(x,a) = la ® Jg- It is well known

from twistor theory that this complex structure is integrable [?]. We shall have to consider a

non-integrable almost complex structure J2 = I ® (—</)• Unless specified otherwise, we discuss

holomorphicity on Z in terms of the integrable complex structure J.

With respect to J, the fibers of the projection π from Z = M x S2 onto its first factor are

holomorphic curves with genus zero. It can be proved that the holomorphic normal bundles are

(B2nO(l). The antipodal map τ on the second factor is an anti-holomorphic map on the twistor

space Z leaving the fibers of the projection π invariant.

The projection p onto the second smooth factor of Z = M x S2 is a holomorphic map such

that the inverse image of a point (a1,a2,a3) is the manifold M equipped with the complex

structure a1I1 + a2I2 + a3I3. If D is the sheaf of kernel of the differential dp, then we have the

exact sequence

^ >0. (16)

Real sections, i.e. τ-invariant sections, of the holomorphic projection p are fibers of the projection

from Z onto M.

Twistor theory shows that there is a one-to-one correspondence between hypercomplex man-

ifold (M, I) and its twistor space Z with the complex structure J, the anti-holomorphic map τ,

the holomorphic projection p and the sections of the projection p with prescribed normal bundle

It is not surprising that when a hypercomplex manifold has a HKT-structure, there is an ad-

ditional geometric structure on the twistor space. The following theorem is essentially developed

in [?].

Theorem 2 Let (M,I,g) be a 4n-dimensional HKT-structure. Then the twistor space Z is a

complex manifold such that
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1. the fibers of the projection π : Z —>• M are rational curves with holomorphic normal bundle

®2nO{l),

2. there is a holomorphic projection p : Z —>• C P 1 such that the fibers are the manifold M

equipped with complex structures of the hypercomplex structure I,

3. there is a J2-holomorphic section of f\(°'2^V <g> p*QCPi defining a positive definite (0,2)-

form on each fiber,

4. there is an anti-holomorphic map τ compatible with 1, 2 and 3 and inducing the antipodal

map on C P 1 .

Conversely, if Z is a complex manifold with a non-integrable almost complex structure J2

with the above four properties, then the parameter space of real sections of the projection p is a

4n-dimensional manifold M with a natural HKT-structure for which Z is the twistor space.

Proof: Given a HKT-structure, then only part 3 in the first half of this theorem is a new

observation. It is a generalization of Theorem ??. Through the stereographic projection,

C ^ a = T T ^( i-ICI 2 ,-^(C-C),-(C + C)) (17)

( is a complex coordinate of the Riemann sphere. Note that

1 . | ζ | 2 i(C-C) ζ + ζ
' -i(C-C) i + i(C2 + C2) - A (C 2 -C 2 )

is a special orthogonal matrix. Let b and c be the second and third column vectors respectively.

Consider the complex structure

According to Theorem ??, the 2-form

( F 2 - iF3) - 2iζF1 + ζ2(F2 + iF3)) (18)

is holomorphic with respect to Ig.

Due to the integrability of the complex structure Ig, dg is linear in a. Therefore,

da =a = 1 + ((1 - |ζ|2)d1 - i«-<)d2 ~ (ζ + 0 4 ) • (19)

Note that ζ is holomorphic with respect to the almost complex structure J2. More precisely,

consider the 9-operator with respect to the almost complex structure J2: on n-forms, it is

(20)
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then J2dζ = iζ, and δζ = 0. It follows that at (x, αa) on Z = M x S2,

6 (-2iCl

= -2i(5Fi + (1 + ζ2)δF2 - i(1 - ζ2)δF3 = -2i(dsi

f (1 + ζ2)dF2 - i(1 - ζ2)dF3

^ + (1 + (2)dsF2-i(l-(2)

Now (??) and (??) together imply that the twisted 2-form (F2 - iF3) - 2iζF1 + ζ2(F2 + iF3) is

closed with respect to δ. Therefore, it is a J2-holomorphic section.

Since ζ is a holomorphic coordinate on S2, the homogeneity shows that this section is twisted

by O(2).

The inverse construction is a consequence of the inverse construction of hypercomplex man-

ifold [?] and Theorem ??. q. e. d.

As the almost complex structure J2 is never integrable [?], twistor theory loses substantial

power of holomorphic geometry when we study HKT-structure. Therefore, we focus on the

application of Theorem ??.

4 Potential Theory

Theorem ?? shows that the form F2 + iF3 is a enclosed (2,0)-form on a HKT-manifold. It is

natural to consider a differential form β1 as potential 1-form for F2 + iF3 if d\[3\ = F2 + iF3. A

priori, the 1-form β1 depends on the choice of the complex structure I1. The potential 1-form

for F3 + iF1, if it exists, depends on I2, and so on. In this section, we seek a function that

generates all Kahler forms.

4.1 Potential Functions

A function /x is a potential function for a hyper-Kahler manifold (M, I , g) if the Kahler forms

Fa are equal to dda/J.- Since da = {—l)nladla on n-forms, da/J. = Iad/J.. Therefore,

did2/j, = d\I2d[i = —I\dI\I2d[i = —Iidl3d[i = —Iiddsii = —Iifi,3 = Q3 =

Now we generalize this concept to HKT-manifolds.

Definition 3 Let (M,I,g) be a HKT-structure with Kahler forms F1,F2 and F3. A possibly

locally defined function /JL is a potential function for the HKT-structure if

(dd + d2d3)/i, F2 = 1(dd2 + d3di)/i, F3 = 1(dd3 + did2)/i. (21)
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Due to the identities dda + dad = 0 and dadb + dbda = 0, /x is a potential function if and only

if

Fa = -(dda + d^dg)n,

when a = b x c and Fg is the Kahler form for the complex structure Ig = a1I1 + a2I2 + a3I3 .

Moreover, the torsion 3-form is given by d1F1 = d2F2 = d3F3 = \d\d2d3ii,. Furthermore, since

da = \{d + ida) and da = \{d - ida),

F2 + iF3 = 1(dd2 + idd3 + id1d2 - did3)iJL = 2<9i/29i/x. (22)

Conversely, if a function /x satisfies the above identity, it satisfies the last two identities in

(??). Since the metric is hyper-Hermitian, for any vectors X and Y, F1(X,Y) = F2(I3X,Y).

Through the integrability of the complex structures I1, I2, I3, the quaternion identities (??) and

the last two identities in (??), one derives the first identity in (??). Therefore, we have the

following theorem which justifies our definition for potential functions.

Theorem 3 Let (M,I,g) be a HKT-structure with Kahler form F1,F2 and F3. A possibly

locally defined function n is a potential function for the HKT-structure if

F2 + iF3 = 2dih~dni. (23)

In this context, a HKT-structure is hyper-Kahler if and only if the potential function satisfies

the following identities.

ddi/j, = d2d3/j,, dd2[i = d3d2/x, dd3/x = d\d2[i. (24)

Remark: As in the Kahler case, compact manifolds do not admit globally defined HKT poten-

tial. To verify, let f be a potential function and g be the corresponding induced metric. Define

the complex Laplacian of f with respect to g:

d*df = Acf = g(dd1f,F1)

Then 0<2g(F1,F1)= g(dd1f + d2d3f, F1) = 2Acf, because

g(d2d3f,Fl)=g(-I2ddlf,Fl) = -g{ddlf,I2Fl)=g{ddlf,Fl) = Acf.

Now the remark follows from the standard arguments involving maximum principle for second

order elliptic differential equation just like in the Kahler case since A c / does not have zero-order

terms.

Remark: If we introduce the following quaternionic operators acting on quaternionic valued

forms on the left: dH = d + id1 + jd2 + kd3, and d = d — id1 — jd2 — kd3, then a real-valued

function /x is a HKT-potential if dH7)H[i = -2iFx - 2jF2 - 2kF3.
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If we identify H n with C2 n , we deduce from Theorem ?? that any pluri-subharmonic function

in domain C 2 n is an HKT-potential. The converse however is wrong. As we shall see in ?? the

function log(|z|2 + |w|2) is a HKT potential in C2 n \{0} but is not pluri-subharmonic.

Remark: Given a HKT-metric g with Kahler forms F1, F2 and F3, for any real-valued function

/x we consider

F2 + iF3 = F2 + iF3 + dihdiii.

According to Theorem ?? and other results in this section, whenever the form g(X,Y) :=

—F2(I2X,Y) is positive definite, we obtain a new HKT-metric with respect to the old hyper-

complex structure.

4.2 HKT-Potentials Generated by Hyper-Kahler Potentials

Let (M,I,g) be a hyper-Kahler manifold with hyper-Kahler potential /x. The Kahler forms are

given by Qa = dda/J- We consider HKT-structures generated by potential functions through /x.

Theorem 4 Suppose (M,I,g) is a hyper-Kahler manifold with hyper-Kahler potential /x. For

any smooth function f of one variable, let U be the open subset of M on which /x is defined and

(25)

Define a symmetric bilinear form g by

9 = f'(li)g + jf"(li)(dli> ® d/j. + hd/j. (Si hd/j. + I2d/j. <g> I2d/j. + hd/j. <g> hd/i). (26)

Then (U,I,g) is a HKT-structure with /(//) as its potential.

Proof: Since /x is a hyper-Kahler potential for the metric g, Q2 + ̂ 3 = 1d\l2d\[i. It follows that

J / / / / x A I2dlfji

f"()(d + idifi) A (/2d/x 2 d

When F2 and F3 are the real and imaginary parts of 29 i / 2 9i / respectively, then

F2 = /'(/x)Q2 + -f"{n){dn A /2d/x + di/x A /2di/x). (27)
Zi

It is now straightforward to verify that —F2(/2X, Y) = g(X,Y). Therefore, g together with

given hypercomplex structure defines a HKT-structure with the function f as its potential so

long as g is positive definite.

Since g is hyper-Hermitian, the vector fields Y0 = V/x and Ya = /aV/x are mutually orthogonal

with equal length. At any point where Y0 is not the zero vector, we extend {Y0, Y1,Y2,Y3} to an

orthonormal frame with respect to the hyper-Kahler metric g. Any vector X can be written as
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X = aoYo+a\Yi+a2Y2+a3Ys+X-L where X1- is in the orthogonal complement of {Y0, Y1, Y2,Y3}.

Note that

X-1) = 0, and hd^X^) = -(/(V/x,/^) = ̂ V f t l 1 ) = 0.

Also, for 1 < a / b < 3,

dfi(Ya) = 2

Then

g(X,X) = /'(/x)(X>2)|V/x|2 + ^ 0 [ > 2 ) | V / x | 4 = (/'Ox)

Therefore, g is positive definite on the open set defined by the inequality (??). q. e. d.

Note that for any positive integer m, /(/x) = /xm satisfies (??) whenever /x is positive. So

does /(/x) = eM. Therefore, if g is a hyper-Kahler metric with a positive potential function /x,

the following metrics are HKT-metrics.

m -2/ m ~ 1

^m = m/x (/xg H — (a/x <g> a/x +
1

Ooo = eM(a + -(dpi® dpi + Iidpi® I\dp
4

4.3 Inhomogeneous HKT-Structures on S 1 x S"4™"3

On the complex vector space (Cn © Cn)\{0}, let (zα,wα), 1 < α < n, be its coordinates. We

define a hypercomplex structure to contain this complex structure as follows.

1dzα = —idza, hdvja = —idwa, hd~za = idza, hdwa = idwα.
2dzα = dwa, hdwa = —d~za, hd^a = dwa, hdWa = —dza.
3dzα = idwa, hdwa = —id~za, I3dzα = —idwa, hdwa = idzα.

The function /x = 21(|z|2 + |w|2) is the hyper-Kahler potential for the standard Euclidean metric:

g = 1(dz <8> dzα + dz <S> dzα + dwα ® dwα + dw <8> dwα). (28)

Since |V/x|2 = 2/x, the function /(/x) = In// satisfies the inequality (??) on C2 n\{0}. By

Theorem ??, ln/x is the HKT-potential for a HKT-metric <? on C2 n\{0}.

Next for any real number r, with 0 < r < 1, and θ1,... ,θn modulo 2π, we consider the

integer group (r) generated by the following action on (Cn © Cn)\{0}.

One can check that the group (r) is a group of hypercomplex transformations. As observed

in [?], the quotient space of (Cn © Cn)\{0} with respect to (r) is the manifold S 1 x Sin~l =
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S 1 x Sp(n)/Sp(n — 1). Since the group (r) is also a group of isometries with respect to the

HKT-metric g determined by /(/x) = In//, the HKT-structure descends from (C r a©C r a)\{0} to a

HKT-structure on S1 xS4n~l. Since the hypercomplex structures on S 1 xS4n~l are parametrized

by (r, θ 1 , . . . , θn) and a generic hypercomplex structure in this family is inhomogeneous [?], we

obtain a family of inhomogeneous HKT-structures on the manifold S 1 x SAn~l.

Theorem 5 Every hypercomplex deformation of the homogeneous hypercomplex structure on

S1 x Sin~l admits a HKT-metric.

Furthermore, F~2 + iF3 = 2<9i/2<9i/x descends to S 1 x S*4"""1. However, the function /x does not

descend to S 1 x S4n~l. Therefore, this (2,0)-form has a potential form fydi/j, but not a globally

defined potential function.

4.4 Associated Bundles of Quaternionic Kahler Manifolds

When M is a quaternionic Kahler manifold, i.e. the holonomy of the Riemannian metric is

contained in the group Sp(n) • Sp(1), the representation of Sp(1) on quaternions H defines an

associated fiber bundle U(M) over the smooth manifold M with H\{0}/Z2 as fiber. Swann finds

that there is a hyper-Kahler metric g on U(M) whose potential function /x is the length of the

radius coordinate vector field along each fiber [?]. As in the last example, ln/x is the potential

function of a HKT-structure with metric g.

Again, metric g and the hypercomplex structure are both invariant of fiberwise real scalar

multiplication. Therefore, the HKT-structure with metric g descends to the compact quotients

defined by integer groups generated by fiberwise real scalar multiplications.

5 Reduction

First of all, we recall the construction of hypercomplex reduction developed by Joyce [?]. Let

G be a compact group of hypercomplex automorphisms on M. Denote the algebra of hyper-

holomorphic vector fields by g. Suppose that ν = (ν1,ν2, ν3) : M —• R 3 <g> g is a G-equivariant

map satisfying the following two conditions. The Cauchy-Riemann condition: I1dν1 = I2dν2 =

3dν3, and the transversality condition: Iadνa(X) / 0 for all X e g. Any map satisfying these

conditions is called a G-moment map. Given a point ζ = (ζ1,ζ2, (3) m R 3 ® g, denote the level

set v~l{(,) by P. Since the map ν is G-equivariant, level sets are invariant if the group G is

Abelian or if the point ς is invariant. Assuming that the level set P is invariant, and the action

of G on P is free, then the quotient space N = P/G is a smooth manifold.

Joyce proved that the quotient space N = P/G inherits a natural hypercomplex structure

[?]. His construction runs as follows. For each point m in the space P, its tangent space is

TmP = {t<E TmM : dν1(t) = dν2(t) = dν3(t) = 0}.
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Consider the vector subspace

Um = {te TmP : I1dν1(t) = I2dν2(t) = I3dν3(t) = 0}.

Due to the transversality condition, this space is transversal to the vectors generated by elements

in G. Due to the Cauchy-Riemann condition, this space is a vector subspace of TmP with co-

dimension dimg, and hence it is a vector subspace of TmM with co-dimension 4dimg. The same

condition implies that, as a subbundle of TM|P, U is closed under Ia. We call the distribution

U the hypercomplex distribution of the map ν. Let π : P —>• N be the quotient map. For any

tangent vector v at π(m), there exists a unique element v in Um such that dn(v) = v. The

hypercomplex structure on N is defined by

Iav = d,7r(Iav), i.e. Iav = Iav. (30)

T h e o r e m 6 Let (M, I , g) be a HKT -manifold. Suppose that G is a compact group of hyper-

complex isometries. Suppose that ν is a G-moment map such that along the invariant level set

P = u~l((), the hypercomplex distribution U is orthogonal to the Killing vector fields generated

by the group G, then the quotient space N = P/G inherits a natural HKT-structure.

Proof: Under the condition of this theorem, the hypercomplex distribution along the level set

P is identical to the orthogonal distribution

Hm = {te TmP : g(t,X) = 0,X G g } .

Now, we define a metric structure h at Tπ(m)N as follows. For v,w G Tπ(m)N,

π(m) (v,w) = gm(y, w). (31)

It is obvious that this metric on N is hyper-Hermitian. To find the hyper-Kahler connection D

on the quotient space N, let v and w be locally defined vector fields on the manifold N. They

lift uniquely to G-invariant sections v and w of the bundle U. As U is a subbundle of the tangent

bundle of P, and P is a submanifold of M, we consider v as a section of TP and w as a section

of TM|P. Restricting the hyper-Kahler connection V onto P, we consider V^w as a section of

TM|P. Recall that there is a direct sum decomposition

TM|P = U® Q®hQ®hQ®hQ. (32)

Let θ be the projection from TM|P onto its direct summand U. Since g is orthogonal to the

distribution U, and U is hypercomplex invariant, θ is an orthogonal projection. Define

Dvw:=d7r(e(VyW)). i.e. L\w = 6(V%w). (33)

Now we have to prove that it is a HKT-connection.
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We claim that the connection D preserves the hypercomplex structure. This claim is equiv-

alent to Dv(Iaw) = IaDvw. Lifting to U, it is equivalent to 9(y^Iaw) = Ia9(y^w). Since the

direct sum decomposition is invariant of the hypercomplex structure, the projection map θ is

hypercomplex. Therefore, it commutes with the complex structures. Then the above identity is

equivalent to 9{V^,Iaw) = 9{IaV^,w). This identity holds because V is hypercomplex.

To verify that connection D preserves the Riemannian metric h, let u, v, and w be vector

fields on N. The identity uh(v,w) — h(Duv,w) — h(v,Duw) = 0 is equivalent to the following

identity on P: ug(v,w) — g(9(VyV),w) — g(v,9(Vyw)) = 0. Since θ is the orthogonal projection

along G, the above identity is equivalent to ug(y, w) — g(VuV, w) — g(y, V^w) = 0. This identity

on P is satisfied because V is a HKT- connection.

Finally, we have to verify that the torsion of connection D is totally skew-symmetric. By

definition and the fact that θ is an orthogonal projection, the torsion of D is TD(u,v,w) =

g(yuV,w) — g(VvU,w) — g([u,v],w). Note that [u,v\ is a vector tangent to P such that dπ o

9([u,v\) = [dir(u),dir(v)} = [u,v]. Therefore, [u,v\ and [u,v] differ by a vector in g. Since the

Killing vector fields are orthogonal to the hypercomplex distribution, g([u,v],w) = g([u,v\,w).

Then we have TD(u,v,w) = Tv(u,v,w). This is totally skew-symmetric because connection V

is the Bismut connection on M. q. e. d.

Suppose that the group G is one-dimensional. Let X be the Killing vector field generated

by G. The hypercomplex distribution U and the horizontal distribution H are identical if and

only if the 1-forms I1dν1 = hdvz = hdu3 are pointwisely proportional to the 1-form ιXg along

the level set P. i.e. for any tangent vector Y to P, Iadνa(Y) = fg(X,Y) or equivalent to

dνa = fιXFa. I n the next example, we shall make use of this observation.

5.1 Example: HKT-Structure on V (CP2) = S1 x (SU(3)/U(1))

We construct a HKT-structure on V (CP2)by a U(1)-reduction from a HKT-structure on H3\{0}.

Choose a hypercomplex structure on R 6 = C 3 © C 3 by

h(x, Q) = (% -iQ), Hx,Q) = (iQ,iX), h(x, Q) = (~Q,x)- ( 3 4)

It is apparent that the holomorphic coordinates with these complex structures are (χ,θ), (χ +

Q,X~~Q)> a n d (Θ — iχ,θ ~ iχ) respectively.

As in ??, the hyper-Kahler potential for the Euclidean metric g on (C 3 © C3)\{0} is /x =

| 2 + |θ | 2). We apply Proposition ?? to /(//) = ln/x to obtain a new HKT-metric

g = —g 2 ( ^ ® dn + hdpL <g> hd/j, + hd/j, <g> hd/j, + Isdn <g> hd/i). (35)

H n
Define a hypercomplex moment map ν = (ν1,ν2, ν3) by

MX,Q) = \X\2-\Q\\ {v2 + ivz){X,Q)=2{x,Q). (36)
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where (,± is a Hermitian inner product on C 3 . Let F = U(1) be the one-parameter group acting

on (C 3 © C3)\{0} defined by

Let (r) be the integer group generated by a real number between 0 and 1. It acts on (C 3©C 3)\{0}

by

Both Γ and (r) are groups of hypercomplex automorphisms leaving the zero level set of ν

invariant. Then the quotient space z/~1(O)/F is a hypercomplex reduction. The discrete quotient

space V = u~l(0)/T x (r) is a compact hypercomplex manifold. From the homogeneity of the

metric g, we see that both Γ and the discrete group (r) are group of isometries for the metric g.

Therefore, the quotient space V inherits a hyper-Hermitian metric.

On (C 3 © C3)\{0}, the real vector field generated by the group Γ is

. <9 — d - d • d

dx dx d~g dg'

Let Fa be the Kahler form for the HKT-metric g. We check that dνa = —2\xixFa. Therefore,

Theorem ?? implies that the quotient space V inherits a HKT-structure.

Note that if (χ, θ) is a point in the zero level set, then it represents a pair of orthogonal

vectors. Therefore, the triple ( χ , A, χ x A) forms an element in the matrix group SU(3). The

action of Γ induces an action on U(3) by the left multiplication of Diag(e t*,e t*,e~2t t). Denote

the Γ-coset of ( χ , A, χ x A) by [ χ , A, χ x Al- The quotient space V is isomorphic to the
MxI'H Ixl \Q\J J Mxl'lel Ixl \e\' H l l

product space S 1 x SU(3)/U(1). The quotient map is

10 . m l X l \ , X Q X ~Q
exp | ZIYI , | , I, ,, , , , x

V Inrj' 1\X\'\Q\'\X\ \Q\

Remark : A fundamental question on HKT-structures remains open. Does every hypercomplex

manifold admit a metric such that it is a HKT-structure?
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