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Ligand-receptor binding and unbinding are fundamental biomolec-
ular processes and particularly essential to drug efficacy. Environ-
mental water fluctuations, however, impact the corresponding ther-
modynamics and kinetics and thereby challenge theoretical descrip-
tions. Here, we devise a holistic, implicit-solvent, multi-method ap-
proach to predict the (un)binding kinetics for a generic ligand-pocket
model. We use the variational implicit-solvent model (VISM) to calcu-
late the solute-solvent interfacial structures and the corresponding
free energies, and combine the VISM with the string method to ob-
tain the minimum energy paths and transition states between the
various metastable (“dry” and “wet”) hydration states. The result-
ing dry-wet transition rates are then used in a spatially-dependent
multi-state continuous-time Markov chain Brownian dynamics simu-
lations, and the related Fokker–Planck equation calculations, of the
ligand stochastic motion, providing the mean first-passage times for
binding and unbinding. We find the hydration transitions to signif-
icantly slow down the binding process, in semi-quantitative agree-
ment with existing explicit-water simulations, but significantly accel-
erate the unbinding process. Moreover, our methods allow the char-
acterization of non-equilibrium hydration states of pocket and ligand
during the ligand movement, for which we find substantial memory
and hysteresis effects for binding versus unbinding. Our study thus
provides a significant step forward towards efficient, physics-based
interpretation and predictions of the complex kinetics in realistic
ligand-receptor systems.

Ligand-receptor binding/unbinding kinetics | dry-wet transitions | vari-
ational implicit-solvent model | level-set method | string method

The complex process of ligand-receptor binding and unbind-
ing in aqueous environment is fundamental to biological

function. Understanding the thermodynamics and kinetics of
such processes has far-reaching practical significance, partic-
ularly in rational drug design (1, 2). Water is a key player
in ligand-receptor binding and unbinding, and in molecular
recognition in general (3, 4). In particular, it has been well
established that hydrophobic interactions can drive the associ-
ation and dissociation of biological molecules (5–8).

Hydration contributes significantly to the ligand-receptor
binding free energy, determining the thermodynamic stability
of the bound unit (9, 10). Recent experimental and theoretical
studies have indicated that the kinetics of ligand-receptor
binding and unbinding is crucial for drug effectiveness and
efficacy (2, 11, 12). Often, a ligand binds to a hydrophobic
pocket on the surface of a receptor molecule (13–16). Water
molecules fluctuate around such an apolar pocket, leading to

metastable “dry” or “wet” hydration states of the binding
site, separated by an energetic barrier which is on the order
of kBT (17). Such a moderate energetic hurdle facilitates
repeated condensation and evaporation of water in the pocket
region, leading to large collective hydration fluctuations (18).
In general, the dewetting of local regions generates strong
hydrophobic forces in molecular association and dissociation
(6, 7, 19, 20). In particular, it has been demonstrated that
the dry-wet transitions are a precursor of the ligand-receptor
binding and unbinding (17, 21, 22). Besides being the origin for
the thermodynamically driven forces, water fluctuations also
modify the friction and kinetics of associating hydrophobic
molecules (23–27), slowing down the binding kinetics and
giving rise to local non-Markovian effects (18, 27).

While water plays a critical role in molecular recognition,
efficient modeling of water is rather challenging due to an over-
whelming number of solvent degrees of freedom, many-body
effects, and the multi-scale nature of molecular interactions.
Explicit-water molecular dynamics (MD) simulations have
been the main tool in most of the existing studies of the kinet-
ics of ligand-receptor binding and unbinding (18, 22, 25, 26, 28–
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33). While explicitly tracking water molecules, MD simulations
are still limited to systems of relatively small sizes and events
of relatively short time scales. In particular, slow and rare wa-
ter fluctuations and large ligand residence times in the pocket
still challenge the prediction of unbinding times.

In this work, we develop a holistic, multi-method, implicit-
solvent approach to study the kinetics of ligand-receptor bind-
ing and unbinding in a generic pocket-ligand model exactly
as studied previously by explicit-water MD simulations (18),
focusing on the effect of solvent fluctuations and multiple
hydration states on such processes.

Our approach is based on the variational implicit-solvent
model (VISM) that we have developed in recent years (34–38).
In VISM, one minimizes a solvation free-energy functional of
solute-solvent interfaces to determine a stable, equilibrium
conformation, and to provide an approximation of the solva-
tion free energy. The functional couples the solute surface
energy, solute-solvent van der Waals (vdW) dispersive inter-
actions, and electrostatics. This theory resembles that of
Lum–Chandler–Weeks (39) [cf. also (40, 41)], and is different
from the existing SAS (solvent-accessible surface) type models.
We have designed and implemented a robust level-set method
to numerically minimize the VISM functional with arbitrary
3D geometry (36–38, 42).

Here, for our model ligand-pocket system, we use our level-
set VISM to obtain different hydration states and their solva-
tion free energies, and use the VISM-string method (43, 44)
to find the minimum energy paths connecting such states and
the corresponding transition rates. Such rates are then used in
our continuous-time Markov chain Brownian dynamics simula-
tions, and the related Fokker–Planck equation calculations, of
the ligand stochastic motion to obtain the mean first-passage
times for the ligand binding and unbinding. We compare our
results with existing explicit-water MD simulations.

The model ligand-receptor system. The generic pocket-ligand
model (45) consists of a hemispherical pocket and a methane-
like molecule; cf. Fig. 1 (A). The pocket, with the radius R = 8
Å and centered at (0, 0, 0), is embedded in a rectangular wall,
composed of apolar atoms aligned in a hexagonal close-packed
grid of lattice constant 1.25 Å. The wall surface is oriented
in xy-plane. The ligand, a single neutral Lennard-Jones (LJ)
sphere, is placed along the pocket symmetry axis, the z-axis,
which is taken to be the reaction coordinate. Fig. 1 (B)–(D)
depict the cross sections of all the possible VISM surfaces, i.e.,
the stable solute-solvent interfaces separating the solute region
Ωm and solvent region Ωw, representing different hydration
states for a fixed position of ligand.

Results and Analysis

Multiple hydration states and the potential of mean force
(PMF). We use our level-set method to minimize the VISM
solvation free-energy functional (cf. Eq. [2] in Theory and
Methods) and obtain a VISM surface. By choosing differ-
ent initial solute-solvent interfaces, we obtain different VISM
surfaces describing different hydration states; cf. Fig. 1.

Fig. 2 (A) shows the solvation free energies for different
VISM surfaces against the reaction coordinate z. For z < −0.5
Å, there is only one VISM surface, 1s-dry; cf. Fig. 1 (B). In
addition to 1s-dry, a second VISM surface, 2s-wet, appears for
−0.5 < z < 5 Å; cf. Fig. 1 (D). For 5 < z < 8 Å, there are
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Fig. 1. (A) A schematic of the ligand (blue sphere), explicit water, and the pocket of a
concave wall. (B) 1s-dry: The VISM surface (blue line) is a single surface enclosing all
the wall atoms and also the ligand atom, hence a dry state of the pocket. (C) 2s-dry:
The VISM surface has two disjoint components, one enclosing all the wall atoms with
a dry pocket, and one enclosing the ligand. (D) 2s-wet: The VISM surface has two
components, tightly wrapping up the wall and ligand, respectively, with no space for
water, hence a wet pocket.

three VISM surfaces. In addition to 1s-dry and 2s-wet, the
third one is 2s-dry; cf. Fig. 1 (C). Once the ligand is away from
the pocket with z > 8 Å, there are only two VISM surfaces:
2s-dry and 2s-wet.

-2 0 2 4 6 8 10 12 14

S
ol

va
ti
on

E
n
er

gy
(k

B
T
)

292

296

300

304 (A)

1s-dry
2s-dry
2s-wet

z(8A)
-2 0 2 4 6 8 10 12 14

P
M

F
(k

B
T
)

-6

-4

-2

0

2
(B)

Fig. 2. (A) Solvation free energies of different VISM surfaces vs. the ligand location.
(B) The equilibrium PMF.

Fig. 2 (B) shows the equilibrium PMF, defined as

V (z) = −kBT ln
(∑

Γ(z)

e−G[Γ(z)]/kBT

)
+ U0(z) + V∞, [1]

where Γ(z) runs over all the VISM surfaces with G[Γ(z)] the
VISM solvation free energy at Γ(z), and U0(z) =

∑
ri
ULJ(|ri−

rz|) with rz the ligand position vector, ri running through all
the wall atoms, and ULJ(r) a 12–6 LJ potential. The constant
V∞ is chosen so that V (∞) = 0. The PMF agrees well with
the result from MD simulations (17, 46, 47).

Dry-wet transition paths and energy barriers. At a fixed reac-
tion coordinate z with multiple hydration states, we use our
level-set VISM coupled with the string method to calculate
the minimum energy paths (MEPs) that connect these states,
and the corresponding transition states, energy barriers, and
ultimately the transition rates. A string or path here consists
of a family of solute-solvent interfaces, and each point of a
string, which is an interface in our case, is called an image.

In Fig. 3, we display the solvation free energies of images on
MEPs that connect the three hydration states, 1s-dry, 2s-dry,
and 2s-wet, at z = 6 Å. There are two MEPs connecting 1s-dry
(marked (I)) and 2s-dry (marked (IV)). One of them passes
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through the axisymmetric transition state marked (III), and
the other passes through the axiasymmetric transition state
marked (II). Here, symmetry or asymmetry refers to that of
the 3D conformation of the VISM surface. Energy barriers
in the transition from the state 1s-dry to 2s-dry along the
two transition paths are estimated to be 1.09 kBT and 0.52
kBT , respectively. Only one MEP is found to connect 2s-dry
(marked (IV)) and 2s-wet (marked (VI)), and the correspond-
ing transition state (marked (V)) is also found. The MEP
from 1s-dry to 2s-wet always passes through the state 2s-dry.
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Fig. 3. Solvation free energies of images on MEPs that connect the hydration states
1s-dry (I), 2s-dry (IV), and 2s-wet (VI) (shown in the bottom) with transition states (II),
(III), and (V) (shown on top) and the transition energy barriers for z = 6 Å. In the
middle plots, the horizontal axis is the string parameter α.

Fig. 4 summarizes all the energy barriers in the transitions
from one hydration state to another for each reaction coordi-
nate z. For 0 ≤ z ≤ 4 Å shown in the top of Fig. 4, there are
only two hydration states: 1s-dry and 2s-wet. The 1s-dry has
a lower free energy; cf. Fig. 2 (A), and hence the barrier in
the wetting transition from 1s-dry to 2s-wet (shown in red) is
higher than that in the dewetting transition from 2s-wet to
1s-dry (shown in blue). The dewetting barrier first increases as
the ligand approaches the entrance of the pocket (from z = 4
to z = 1 Å), and then decreases after the ligand enters the
pocket (from z = 1 to z = −0.5 Å). This is because that more
attractive solute-solvent vdW interaction is lost in dewetting
as the ligand-pocket distance reduces from z = 4 to z = 1 Å,
and that the decrease in interfacial energy outweighs the vdW
contribution to the solvation free energy as the distance further
reduces from z = 1 to z = −0.5 Å. Our predictions agree well
with those by the explicit-water MD simulations (17).

For 5 ≤ z ≤ 8 Å, there are three hydration states 1s-dry,
2s-wet, and 2s-dry; cf. Fig. 2 (A). In the middle of Fig. 4, we
plot for z in this range the energy barriers along the MEPs,
both axisymmetric and axiasymmetric, connecting the two
states 1s-dry and 2s-dry; cf. Fig. 3. Note that, as the ligand
approaches the pocket, the solute-solvent interfacial energy
changes rapidly, and hence the barrier in the transition from
1s-dry to 2s-dry increases quickly, while the barrier in the
reverse transition decreases quickly.

In the bottom of Fig. 4, we plot energy barriers for tran-
sitions between the states 2s-dry and 2s-wet in the range
5 ≤ z ≤ 12 Å; cf. Fig. 2 (A). As the ligand-pocket distance
increases, the barrier for the wetting transition (marked red)
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Fig. 4. Transition energy barriers vs. the reaction coordinate z with−0.5 ≤ z ≤ 4 Å
(top) and 5 ≤ z ≤ 12 Å (middle and bottom). Sym or Asym stands for a MEP with
an axisymmetric or axiasymmetric transition state.

first increases, since the newly created solvent region with
attractive solute-solvent vdW interaction decreases. It then
reaches a plateau after the distance is greater than 7 Å. The
pocket dewetting barrier (marked blue) is slightly larger when
the ligand is close to the pocket, since contributions of solute-
solvent vdW interaction are lost during the pocket dewetting.

Kinetics of binding and unbinding. We perform continuous-
time Markov chain (CTMC) Brownian dynamics (BD) simu-
lations and solve the related Fokker–Planck equation (FPE)
calculations for the ligand stochastic motion with the pocket
dry-wet fluctuations; see Theory and Methods. For compar-
ison, we also perform the usual BD simulations and FPE
calculations without including such fluctuations.

Fig. 5 (A) and (B) show the mean first-passage times (MF-
PTs) for the binding and unbinding, respectively. Note that
the BD simulations and FPE calculations agree with each
other perfectly for both binding and unbinding, without and
with the pocket dry-wet fluctuations, respectively. This vali-
dates mutually the accuracy of our numerical schemes. Note
also that the binding/unbinding MFPT increases/decreases
monotonically as the ligand-pocket distance increases, due to
elongated/shortened ligand travel.

In Fig. 5 (A), we see that the MFPT for binding is very
small if z < −0.5 Å. This is because the ligand diffusion
constant Din inside the pocket is large and the PMF is highly
attractive; cf. Fig. 2 (B). As the initial position z increases
from 0 Å to 5 Å, the difference between the two MFPTs with
and without the pocket dry-wet fluctuations increases from
nearly 0 ps to 100 ps. Such an increasing difference results from
the existence of the hydration state 2s-wet in this range, and
the solvation free energy of this state increases as the ligand
moves from z = 5 Å to z = 0 Å; cf. Fig. 2 (A). The pocket
dry-wet fluctuations thus decelerate considerably the ligand-
pocket association. Such deceleration has been explained by
the reduced diffusivity of the ligand in the vicinity of pocket
entrance due to the slow solvent fluctuations (18).

Our predictions of the MFPT for binding, with the dry-wet
fluctuations included, agree very well with the explicit-water
MD simulations (18), improving significantly over those with-
out such fluctuations. Note that our model predicts somewhat
shorter binding times than the MD simulations for 1 < z < 6 Å.
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z(Å)
-4 -2 0 2 4 6 8 10 12 14

<
χ
l(
z
)
>

0

0.2

0.4

0.6

0.8

1
(E)

Binding
Unbinding

z(Å)
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Fig. 5. The MFPT for: (A) the binding of ligand that starts from zinit = z and reaches
the pocket at zL = −4 Å; and (B) the unbinding of ligand that starts from zinit = z

and reaches zR = 15.5 Å, predicted by: BD simulations without (BD No SolFlt) and
with (BD With SolFlt) the dry-wet fluctuations; and FPE calculations without (FP No
SolFlt) and with (FP With SolFlt) the dry-wet fluctuations, respectively. Note that the
time unit on the vertical axis in (B) is ns while that in (A) is ps. The MFPT obtained
by explicit-water MD simulations (MD) (18) is also shown in (A). (C)–(F) The mean
values and standard deviations of the pocket and ligand hydration states χp(z) and
χl(z), respectively, against the ligand location z during the nonequilibrium binding
process from the BD simulations starting at zinit = 6 Å (cf. (C) and (E)) and the
unbinding process starting at zinit = −2 Å (cf. (D) and (F)).

In this region, the hydration fluctuations are maximal, and
this visible but relatively small (when compared to the MFPT
from the farthest distance) discrepancy reflects some of the
approximations of our implicit-solvent theory and the model
reduction on just a few states.

Fig. 5 (B) shows that the timescale for unbinding is signifi-
cantly larger than that of the binding, by nearly three orders
of magnitude. Without the pocket dry-wet fluctuations, the
unbinding MFPT is constant for z < 4 Å and decreases lin-
early for z > 4 Å. Note that the MFPT for binding in this case
also starts to increase significantly at z = 4 Å; cf. Fig. 5 (A).
With the pocket dry-wet fluctuations, the unbinding MFPT
is much smaller, since the solvation free energy of the 2s-wet
state is higher when the ligand is closer to the pocket (cf.
Fig. 2 (A)), favoring the ligand unbinding. In this case, the
MFPT remains constant up to z = 2 Å and then decays almost
linearly. This suggests that the wetting transitions occur if
z > 2 Å. Note from Fig. 5 (A) that the binding MFPT starts
increasing rapidly also around z = 2 Å.

We now study the interesting hydration of the pocket
and ligand individually during the non-equilibrium bind-
ing/unbinding processes. For this, we define a pocket hy-
dration parameter to be χp(z) = 0 or 1 if the pocket is dry or
wet, respectively. Analogously, we set for the ligand χl(z) = 0
or 1 if the ligand is dry or wet, respectively. The values 0 and
1 of these ligand-position dependent random variables χp(z)
and χl(z) are defined by the three hydration states 1s-dry,
2s-dry, and 2s-wet (cf. Fig. 1 (B)–(D)) as follows:

χp(z) = 0 and χl(z) = 0 for a 1s-dry VISM surface;
χp(z) = 0 and χl(z) = 1 for a 2s-dry VISM surface;
χp(z) = 1 and χl(z) = 1 for a 2s-wet VISM surface.
Fig. 5 (C)–(F) show the mean values, 〈χp(z)〉 and 〈χl(z)〉,

and the standard deviations, σ[χp(z)] and σ[χl(z)], during the
binding and the unbinding processes, respectively.

When the ligand is far away, there are only two VISM
surfaces, 2s-dry and 2s-wet, cf. Fig. 2 (A). For such a case, our
BD simulations predict the probability 32% of a wet pocket
(i.e., χp = 0.32 for large z) in the binding and unbinding pro-
cesses. This is perfectly consistent with the equilibrium prob-
ability e−G[Γ2s−wet]/kBT /(e−G[Γ2s−dry]/kBT + e−G[Γ2s−wet]/kBT )
predicted by our VISM theory. We observe that the pocket
hydration peaks at the entrance of the pocket in binding, agree-
ing well with MD simulations (17, 18), where it was argued
that stronger pocket hydration is induced by the penetration of
the ligand solvation shell. When the ligand enters the pocket
the latter becomes dry as anticipated.

In comparison, the maximum pocket hydration for un-
binding is shifted a bit away from the pocket. This kinetic
asymmetry or “translational mismatch” can be explained as
well by the asymmetric hydration states of the ligand, see
Fig. 5 (E), which exits the pocket without a complete solva-
tion shell. This behavior is reminiscent of a hysteresis, that is,
the hydration states during the ligand passage depend on the
history of the ligand, i.e., where it comes from.

The standard deviations of pocket hydration shown in
Fig. 5 (D) depict that the dry-wet fluctuations have local
maxima close to the pocket entrance (z ' 3−5 Å) and behave
also significantly different for binding and unbinding. The
corresponding standard deviations of ligand hydration shown
in Fig. 5 (F) show massively unstable hydration (i.e., large
peaks) close to the pocket entrance, while inside and far away
from the pocket the fluctuations are zero, indicating a very
stable (de)hydration state. Again the peaks are at different
locations for binding versus unbinding, reflecting the hysteresis
and memory of dry-wet transitions during ligand passage.

Conclusions

We have developed an implicit-solvent approach, coupling our
VISM, the string method, and multi-state CTMC BD simu-
lations, for studying the kinetics of ligand-receptor binding
and unbinding, particularly the influence of collective solvent
fluctuations on such processes. Without any explicit descrip-
tions of individual water molecules, our predictions of the
MFPT for the binding process, which is decelerated by the
solvent fluctuations around the pocket, agree very well with
the less efficient explicit-water MD simulations. Moreover,
we find surprisingly that the solvent fluctuations accelerate
the ligand unbinding from the pocket, which involves a much
larger timescale and is thus more challenging for explicit-water
MD simulations (26, 30). Importantly, our implicit-solvent ap-
proach indicates that the water effects are controlled by a few
key physical parameters and mechanisms, such as polymodal
nano-capillarity based on surface tension of the solute-solvent
interface and the coupling of the random interface forces to
the ligand’s diffusive motion.

Our approach provides a promising new direction in ef-
ficiently probing the kinetics, and thermodynamics, of the
association and dissociation of complex ligand-receptor sys-
tems, which have been studied mostly using enhanced sampling
techniques (18, 25, 26, 28, 30, 32). Our next step is to extend
our approach for more realistic systems with general reaction
coordinates and different techniques for sampling transition
paths (48, 49). Our VISM can treat efficiently the electro-
static interactions using the Poisson–Boltzmann theory (38).
To account for the flexibility of the ligand and receptor in their
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binding and unbinding, we shall expand our solvation model
to include the solute molecular mechanical interactions (50).

Theory and Methods

Variational implicit-solvent model (VISM). We consider the sol-
vation of solute molecules, with all the solute atomic positions
r1, . . . , rN , in an aqueous solvent that is treated implicitly
as a continuum. (For our model ligand-pocket system, the
solute atoms include those of the concave wall and the single
atom of the ligand; cf. Fig. 1.) A solute-solvent interface Γ
is a closed surface that encloses all the solute atoms but no
solvent molecules. The interior and exterior of Γ are the solute
and solvent regions, denoted Ωm and Ωw, respectively. We
introduce the VISM solvation free-energy functional (34, 35):

G[Γ] = ∆P vol (Ωm) +
∫

Γ
γ dS + ρ0

∫
Ωw

U(r) dV +Ge[Γ]. [2]

Here, ∆P is the difference of pressures across the interface
Γ, γ is the solute-solvent interface surface tension, ρ0 is the
bulk solvent (i.e., water) density, and U(r) =

∑N

i=1 Ui(|r−ri|)
with each Ui a standard 12–6 LJ potential. We take γ =
γ0(1 − 2τH), where γ0 is the surface tension for a planar
interface, τ is the curvature correction coefficient often known
as the Tolman length (51), and H is the local mean curvature.
The last term Ge[Γ] is the electrostatic part of the solvation
free energy, which we will not include in this study.

Minimizing the functional Eq. [2] among all the solute-
solvent interfaces Γ determines a stable, equilibrium, solute-
solvent interface, called a VISM surface, and the corresponding
solvation free energy. A VISM surface is termed dry, represent-
ing a dry hydration state, if it loosely wraps up all the solute
atoms with enough space for a few solvent molecules, or wet,
representing a wet hydration state, if it tightly wraps up all
the solute atoms without extra space for a solvent molecule.

Implementation by the level-set method. Beginning with an
initially guessed solute-solvent interface, our level-set method
evolves the interface step by step in the steepest descent direc-
tion until a VISM surface is reached. Different initial surfaces
may lead to different final VISM surfaces. See Supporting
Information (SI) for more details of implementation.

The level-set VISM-string method for minimum energy paths
(MEPs). Let us fix all the solute atomic positions and assume
that Γ0 and Γ1 are two VISM surfaces (e.g., dry and wet
surfaces). We apply the string method (43, 44) to find a MEP
that connects Γ0 and Γ1. A string or path here is a family
of solute-solvent interfaces {Γα}α∈[0,1] that connects the two
states Γ0 and Γ1. Such a string is a MEP, if it is orthogonal to
the level surfaces of the VISM free-energy functional. To find a
MEP connecting Γ0 and Γ1, we select some initial images (i.e.,
points of a string), and then update them iteratively to reach
a MEP. Different initial images may lead to different MEPs.
Once a MEP is found, we can then find a saddle point on
the MEP. Alternatively, we can fix one of the VISM surfaces,
select some initial images, and allow the last image to climb
up to reach a saddle point, and then find the MEP connecting
the two VISM surfaces passing the saddle point. We refer to
SI for more details on our implementation of the method.

Consider now our ligand-pocket system; cf. Fig. 1. For any
reaction coordinate z, we label all the three hydration states

1s-dry, 2s-dry, and 2s-wet (cf. Fig. 1) as the states 0, 1, and 2,
respectively. We define for each i ∈ {0, 1, 2} the potential

Vi(z) = Gi(z) + U0(z), [3]

where Gi(z) is the solvation free energy of the ith state at z
(cf. Fig 2 (A)) and U0(z) is the ligand-pocket vdW interaction
potential defined below Eq. [1]. We set Vi(z) = 0 if the ith
state does not exist at z.

With the energy barriers summarized in Fig. 4, we can
calculate for each z the rate Rij = Rij(z) of the transition
from one state i to another j. If a MEP from i to j passes
through another state k (cf. Fig. 3), then we set Rij(z) = 0.
If there is only one MEP connecting i and j (see, e.g., z < 4
in Fig. 2), then Rij = R0e

−Bij(z)/kBT with Bij(z) the energy
barrier from i to j and R0 a constant prefactor, describing the
intrinsic time scale of water dynamics in the pocket. Finally,
if there are two MEPs (axisymmetric and axiasymmetric)
connecting i and j, we use the same formula but with Bij an
effective barrier. For instance, consider i and j the states (I)
and (IV) in Fig. 3, respectively. The two transition states are II
and III, respectively. We set Bij(z) = BI,IV(z) = p(GII−GI)+
(1−p)(GIII−GI), where p = e−(GII−GI)/kBT /(e−(GII−GI)/kBT+
e−(GIII−GI)/kBT ) and GA is the VISM solvation free energy
at state A ∈ {I, II, III}. To determine the prefactor R0, we
calculate the equilibrium (i.e., the large z limit) energy barriers
Bdw and Bwd in the pocket dry-wet and wet-dry transitions,
respectively, and equate [R0(e−Bdw/kBT +e−Bwd/kBT )]−1 with
the time scale for the relaxation of water fluctuation of 10 ps
as predicted by explicit-water MD simulations (18). See SI for
discussions on the sensitivity of the results on R0.

Continuous-time Markov chain (CTMC) Brownian dynamics
(BD) simulations and the mean first-passage time (MFPT). To
include explicitly the dry-wet fluctuations, we introduce a
position-dependent, multi-state, random variable η = η(z):
η(z) = i (i ∈ {0, 1, 2}) if the system is in the ith hydration state
when the ligand is located at z, with the transition rates Rij(z)
given above. We define the potential Vfluc(η, z) = Vi(z) (cf.
Eq. [3]) if η(z) = i. (52). The random position z = z(t) = zt
of the ligand is now determined by our CTMC BD simulations
in which we solve the stochastic differential equation

dzt =
[
−D(zt)
kBT

∂Vfluc(η(zt), zt)
∂z

+D′(zt)
]
dt+

√
2D(zt) dξt.

Here, the partial derivative of Vfluc is with respect to its second
variable, D(z) is an effective diffusion coefficient that smoothly
interpolates the diffusion coefficients Din and Dout inside and
outside the pocket, respectively, and ξt is the standard Brow-
nian motion. Solutions to this equation are constrained by
zt ∈ [zL, zR] for some zL and zR. For the simulation of a bind-
ing process, we reset the value of zt to be 2zR − zt if zt ≥ zR,
and we stop the simulation if zt ≤ zL. For the simulation of an
unbinding process, we reset the value of z(t) to be zL if zt ≤ zL,
and we stop the simulation if zt ≥ zR. The distribution of η(z0)
for an initial ligand position z0 is set based on the equilibrium
probabilities e−Gi/kBT /

∑2
j=0 e

−Gj/kBT (i = 0, 1, 2), where Gi
is the solvation free energy of the ith hydration state at z0.

We run our CTMC BD simulation for the ligand starting
at a position z0 = zinit, and record the time at which the
ligand reaches zL (or zR) for the first time for a binding (or
unbinding) simulation. We run simulations for 3, 000 times
and average these times to obtain the corresponding MFPTs.
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Fokker–Planck equations (FPE) and the MFPT. The probabil-
ity densities Pi = Pi(z, t) for the ligand at location z at time
t with the system in the ith hydration state are determined
by the generalized FPEs (25, 52):

∂Pi
∂t

= ∂

∂z

{
D(z)

[
∂Pi
∂z

+ 1
kBT

V ′i (z)Pi
]}

+
∑

0≤j≤2,j 6=i

Rji(z)Pj −
( ∑

0≤j≤2,j 6=i

Rij(z)
)
Pi

for i = 0, 1, 2, where Vi is defined in Eq. [3]. These equations
are solved for zL < z < zR, with the boundary conditions
Pi(zL, t) = 0 and ∂zPi(zR, t) = 0 for binding, and ∂zPi(zL, t)+
(1/kBT )V ′i (zL)Pi(zL, t) = 0 and Pi(zR, t) = 0 for unbinding,
respectively. The initial conditions are Pi(z, 0) = δ(z − zinit)
if the ligand is initially at zinit. We obtain the MFPT as the
double integral of

∑2
i=0 Pi(z, t) over (z, t) ∈ [zL, zR]× [0,∞).

Parameters. We set the temperature T = 298 K, bulk water
density ρ0 = 0.033 Å−3, the solute-water surface tension
constant γ0 = 0.143 kBT/Å

2 (kB is the Boltzmann constant),
and the Tolman length τ = 0.8 Å. We set ∆Pvol (Ωm) = 0
as it is relatively very small. The LJ parameters for the wall
particles, ligand, and water are εwall = 0.000967 kBT and
σwall = 4.152 Å, εligand = 0.5 kBT and σligand = 3.73 Å, and
εwater = 0.26 kBT and σwater = 3.154 Å, respectively. The
interaction LJ parameters are determined by the Lorentz–
Berthelot mixing rules. The prefactor R0 = 0.13 ps−1. The
diffusion constants are Dout = 0.26 Å2/ps (18), and Din =
1 Å2/ps. The cut-off position distinguishing the inside and
outside of the pocket is zc = −0.5 Å. BD simulations and FPE
calculations are done for zL ≤ z ≤ zR with zL = −4 Å and
zR = 15.5 Å.
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1. The Level-Set Method for Minimizing the VISM Solvation Free-Energy Functional
We consider the solvation of solute molecules with all the solute atoms located at r1, . . . , rN in an aqueous solvent. A
solute-solvent interface Γ is a closed surface that encloses all the solute atoms but no solvent molecules. The interior
and exterior of such a surface Γ, denoted by Ωm and Ωw, are termed the solute and solvent regions, respectively. In
the variational implicit-solvent model (VISM), we minimize the solvation free-energy functional (cf. Eq. [2] in the
main text) (1, 2)

G[Γ] = ∆P vol (Ωm) + γ0

∫
Γ
(1− 2τH) dS + ρ0

N∑
i=1

∫
Ωw

Ui(|r− ri|) dV +Ge[Γ] [1]

among all the solute-solvent interfaces Γ. The parameters ∆P , γ0, τ , and ρ0 are the difference of pressures across Γ,
the surface tension constant for a planar solute-solvent interface, the curvature correction coefficient (i.e., the Tolman
length), and the bulk solvent density, respectively. In Eq. [1], H is the local mean curvature and each Ui is a 12-6
Lennard-Jones (LJ) potential with parameters σi and εi. We shall set the electrostatic part Ge[Γ] = 0 in this study.
But we will make a remark at the end of this section on the full VISM with the electrostatics. We call a solute-solvent
interface a VISM surface if it minimizes (locally) the VISM functional Eq. [1], i.e., if it is a stable equilibrium. A
VISM surface is dry, representing a dry hydration state, if it loosely wraps up all the solute atoms with enough space
for a few solvent molecules, or wet, representing a wet hydration state, if it tightly wraps up all the solute atoms
without extra space for a solvent molecule.

We have designed and implemented a robust level-set method to numerically minimize the VISM solvation free-
energy functional Eq. [1] in the three-dimensional setting (3–8). Beginning with an initial solute-solvent interface that
may have a large value of solvation free energy, our level-set method moves the interface in the direction of steepest
descent of the VISM solvation free energy step by step until a VISM surface is reached. The (normal component of
the) boundary force that moves the interface is given by the negative first variation, Fn = −δΓG[Γ], of the VISM
solvation free-energy functional Eq. [1] (with Ge[Γ] = 0) (3, 7):

Fn(r) = −∆P − 2γ0[H(r)− τK(r)] + ρ0

N∑
i=1

Ui(|r− ri|) ∀r ∈ Γ, [2]

where K(r) is the Gaussian curvature at r. As our level-set method is an optimization method of the steepest descent
type, different initial interfaces are relaxed to different VISM surfaces, often representing different hydrations states.
We often use the following two types of initial interfaces: a tight wrap that is a surface of the union of van der Waals
(vdW) spheres centered at solute atoms with reduced radii; and a loose wrap that is a large surface loosely enclosing
all the solute atoms.

To apply the level-set method (9–11) to minimizing the functional Eq. [1], we represent a solute-solvent interface Γ
as the zero level set (i.e., level surface) of a function φ = φ(r) (called a level-set function), i.e., Γ = {r : φ(r) = 0}.
We keep a level-set function to be negative and positive inside and outside the interface Γ, respectively. The unit
normal n pointing from the solute to solvent region, the mean curvature H, and the Gaussian curvature K at a point
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r on the interface can be readily expressed as n = ∇φ/|∇φ|, H = (1/2)∇ · n, and K = n · adj (∇2φ)n, respectively.
Here, ∇2φ is the Hessian matrix of the function φ with entries being the second order partial derivatives ∂2

ijφ of the
level-set function φ, and adj

(
∇2φ

)
is the adjoint matrix of the Hessian ∇2φ. The motion of the interface Γ = Γ(t),

where t denotes the relaxation time, is then tracked by locating the level set of the corresponding level-set function
φ = φ(r, t) that solves the so-called level-set equation

∂tφ+ Fn|∇φ| = 0, [3]

where the boundary force Fn, given in Eq. [2], is extended to the entire computational box or a band centered around
the interface Γ. We start from an initial level-set function φ0 at t = 0 and solve the equation by iteration in time until
a steady-state solution is reached. To avoid the gradient ∇φ being too small which can lead to numerical instability
in locating the interface, we reinitialize the level-set function φ every few time steps in iteration. The reinitialization
is done by solving

∂tφ+ sign (φ0)(|∇φ| − 1) = 0, [4]

where φ0 is the level-set function before reinitialization, sign (φ0) is the sign of φ0, and the time t can be different
from that in the original level-set equation [3]. See (3, 5–7) for more details.

We remark that the electrostatic part of the solvation free energy, Ge[Γ], can be included as the Coulomb-
field approximation (CFA) (12, 13) or the dielectric-boundary Poisson–Boltzmann (PB) electrostatic free energy
(14–16). The CFA does not include the ionic effect but is efficient as it requires no numerical solution of partial
differential equations. The PB free energy is determined by the electrostatic potential that is the unique solution
to a boundary-value problem of the dielectric-boundary PB equation. Explicit formula of the (normal component
of the) dielectric-boundary force, defined as the negative variation −δΓGe[Γ], has been obtained (17–19). We have
implemented both CFA and PB electrostatics; cf. (6–8).

2. The Level-Set Implementation of the VISM-String Method
Let us fix all the solute atoms ri (i = 1, . . . , N) and consider two different VISM surfaces Γ0 and Γ1, represented by
two level-set functions φ0 and φ1, respectively. We use the string method (20–22) to find minimum energy paths
(MEPs) that connect these two states. A string or path here is a family of solute-solvent interfaces {Γα}α∈[0,1], or
their corresponding level-set functions {φα}α∈[0,1], that connect the two states Γ0 and Γ1, or their level-set functions
φ0 and φ1. A MEP here is a string that is orthogonal to the level surfaces of the VISM solvation free-energy functional.
In the level-set formulation, a MEP can be obtained by solving for a steady-state solution of the equation for the
level-set function φα = φα(x, t)

∂tφα = −Fn(φα)|∇φα|+ λα
∂αφα
‖∂αφα‖

for each α ∈ (0, 1),

together with a given initial string {φ(0)
α }α∈[0,1] that connects φ0 and φ1, Here, the normal component of the boundary

force Fn(φα) = −δΓG[Γα] (with φα being a zero level-set of Γα) is given in Eq. [2], ∂αφα/‖∂αφα‖ is the unit vector
tangential to the string, the constant λα is a Lagrange multiplier for enforcing particular parameterization (e.g., equal
arc-length or energy weighted arc-length parameterization) of the string, and ‖ · ‖ denotes the L2(Ω)-norm.

Let us focus now on the model ligand-pocket system (cf. Fig. 1 in the main text) with a fixed reaction coordinate
z. We implement a simplified version of the string method (21) to numerically find a MEP connecting two hydration
states Γ0 and Γ1, with their level-set functions φ0 and φ1, respectively. To do so, we select some integer M ≥ 2 and
discretize the parameter α ∈ [0, 1] by 0 = α0 < α1 < · · · < αM < αM+1 = 1, and consider the corresponding level-set
functions φαj

(j = 0, 1, . . . ,M + 1) that represent some solute-solvent interfaces. Each φαj
is called an image. These

images are discrete points of a string or path connecting φ0 and φ1. They are updated iteratively to reach a stable
steady state, representing a MEP. We set the initial images for the iteration to be

φ(0)
αj

= φ0 + αj(φ1 − φ0) (j = 1, . . . ,M). [5]

Each iteration is a two-step process: relaxation and redistribution. Suppose we know all the interior images φ(k)
αj

(j = 1, . . . ,M) after the kth iteration. In the first step, we solve the level-set equation [3] for each j (1 ≤ j ≤ M)
with the initial function φ(k)

αj but only for one time step, followed by the reinitialization (cf. Eq. [4]), and obtain a
solution φ∗αj

. These images φ∗αj
(j = 1, . . . ,M) should make the new string “closer” to being normal to the free-energy

level surfaces, but may also cluster around the two states φ0 and φ1, as they are local minimizers of the VISM
solvation free-energy functional. In the second step, we redistribute these intermediate images by linear interpolation
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to generate new and well-separated images φ(k+1)
αj . More precisely, we set s0 = 0 and sj = sj−1 + ‖φ∗αj

− φ∗αj−1
‖

(j = 1, . . . ,M + 1), where φ∗α0
= φ0 and φ∗αM+1

= φ1. We also set α∗j = sj/sM (j = 0, 1, . . . ,M + 1). For each j
(1 ≤ j ≤M), we find the unique i (1 ≤ i ≤M + 1) that depends on j such that α∗i−1 ≤ αj < α∗i . We then calculate
φ

(k+1)
αj by the linear interpolation

φ(k+1)
αj

= φ∗αi−1
+
αj − α∗i−1
α∗i − α∗i−1

(φ∗αi
− φ∗αi−1

). [6]

Once the iteration converges to a MEP, we find an interior image that has the largest VISM solvation free energy
among all the images, and identify it as a saddle point. Note that different initial images may lead to different MEPs;
cf. Fig. 3 in the main text.

Algorithm of a Simplified String Method.

Step 1. Input all the parameters ∆P , γ0, τ , ρ0, and ri, σi, and εi for all i = 1, . . . , N . Input the level-set functions
φ0 and φ1 for the two states. Input M , the number of (interior) images in the string, the parameters αj
(j = 0, 1, . . . ,M + 1) for the string images, and the initial (interior) image level-set functions φ(0)

j (j = 1, . . . ,M);
cf. Eq. [5]. Input the time step ∆t. Set the iteration counter k = 0.

Step 2. Given the interior images φ(k)
αj (j = 1, . . . ,M). For each j (1 ≤ j ≤M), solve the level-set equation [3] using

the initial solution φ
(k)
αj for one time step to obtain the image φ̄αj . Compute the image φ∗αj

by solving the
reinitialization equation [4] with φ̄αj as the initial solution.

Step 3. Compute the arc lengths s0 = 0 and sj = sj−1 + ‖φ∗αj
− φ∗αj−1

‖ (j = 1, . . . ,M + 1) and the parameters
α∗j = sj/sM (j = 0, 1, . . . ,M + 1). Generate the images φ(k+1)

αj (j = 1, . . . ,M) by Eq. [6].
Step 4. Check the stopping criteria. If failed, set k := k + 1 and go to Step 2.

To find possible multiple MEPs connecting the two states φ0 and φ1, we can alternatively apply the climbing
string method (23) to first find saddle points near φ0. In implementation, we fix the first image φ0 but allow the last
image to climb uphill in the direction tangental to the string. The string converges when the last image approaches a
saddle point close to the starting state φ0. Usually, we use more images close to the last one to more efficiently find a
saddle point. Once a saddle point is found, we then relax it to a level-set function representing a VISM surface. If
this function is φ1, then we can use the simplified string method described above, in which we keep the saddle point
as an image during the iteration, to find an MEP that connects these two states φ0 and φ1, and that passes through
the found saddle point. Otherwise, we start over with different initial images. Since we usually have at most three
significant hydration states for each reaction coordinate, we can efficiently find multiple MEPs (if exist) connecting
these states.

Algorithm of a Climbing String Method.

Step 1. Input all the parameters ∆P , γ0, τ , ρ0, and ri, σi, and εi for all i = 1, . . . , N . Input a level-set function φ0
for a VISM surface. Input M , with M + 2 the number of images in the string, the parameters {αj}M+1

j=0 for the
string images with 0 = α0 < α1 < · · · < αM+1 < 1, and the initial image level-set functions {φ(0)

αj }M+1
j=1 . Input

the time step ∆t. Set the iteration counter k = 0.
Step 2. Given the images φ(k)

αj (j = 1, . . . ,M + 1). For each j (1 ≤ j ≤M + 1), solve the level-set equation [3] using
the initial solution φ(k)

αj for one time step to obtain an image φ̄j . Solve the reinitialization equation [4] using the
initial solution φ̄j for one time step to obtain an image φ∗j .

Step 3. Update the last image

φ(k+1)
αM+1

= φ∗M+1 − 2〈φ∗M+1 − φ(k)
αM+1

, τ̂M+1〉τ̂M+1 with τ̂M+1 =
φ

(k)
αM+1 − φ

(k)
αM

‖φ(k)
αM+1 − φ

(k)
αM ‖

,

where 〈·, ·〉 denotes the L2(Ω)-inner product.
Step 4. Compute the arc lengths s0 = 0 and sj = sj−1 + ‖φ∗αj

− φ∗αj−1
‖ (j = 1, . . . ,M + 1), and set α∗j = sj/sM

(j = 0, 1, . . . ,M + 1). Update the other images to obtain φ(k+1)
αj (j = 1, . . . ,M) by Eq. [6].

Step 5. Check the stopping criteria. If failed, set k := k + 1 and go to Step 2.
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3. Algorithms for Brownian Dynamics Simulations of the Ligand Stochastic Motion

In the absence of the pocket dry-wet fluctuations, the random position z = z(t) (also denoted zt) can be determined
by the standard Brownian dynamics (BD) simulations that solve numerically the stochastic differential equation

dzt =
[
− 1
kBT

D(zt)V ′(zt) +D′(zt)
]
dt+

√
2D(zt) dξt, [7]

together with a given initial position z(0), where V (z) is the equilibrium potential of mean force (PMF) (defined in
Eq. [1] and plotted in Fig. 2 (B), both in the main text), ξt is the standard Brownian motion, and a prime stands
for derivative. The effective and position-dependent diffusion coefficient D = D(z) is a smooth interpolation of the
diffusion constants Din and Dout for the ligand inside and outside the pocket, respectively. It is given by

D(z) = Din +Dout

2 − Din −Dout

2 tanh [ν (z − zc)] , [8]

where ν > 0 is a parameter that controls the width of the transition from Din to Dout and zc is a threshold reaction
coordinate distinguishing the ligand being inside or outside the pocket. Solutions to Eq. [7] are constrained by
z(t) ∈ [zL, zR] for all t for some boundaries zL and zR, with zL close to the pocket and zR far away from the pocket,
respectively. For the binding simulation (i.e., the simulation of a binding process), we reset the value of z(t) to be
2zR − z(t) if z(t) ≥ zR, and we stop the simulation if z(t) ≤ zL. For the unbinding simulation (i.e., the simulation of
an unbinding process), we reset the value of z(t) to be zL if z(t) ≤ zL, and we stop the simulation if z(t) ≥ zR.

Algorithm for BD Simulations without the Dry-Wet Fluctuations.

Step 1. Input the diffusion constants Din and Dout, the controlling parameter ν, the threshold position zc, the total
PMF V (z), an initial ligand position zinit, and the simulation time step δt. Set Time = 0, z(0) = zinit, and
k = 0.

Step 2. Given a ligand position z(k). Calculate z(k+1) by

z(k+1) − z(k) = −
[

1
kBT

D(z(k))V ′(z(k)) +D′(z(k))
]
δt+

√
2D(z(k))δt ξ,

where ξ is a random number with the standard normal distribution.
Step 3. Set Time := Time +δt.

(a) For binding simulations: If z(k+1) ≥ zR, set z(k+1) := 2zR − z(k+1); If z(k+1) ≤ zL, then stop.
(b) For unbinding simulations: If z(k+1) ≤ zL, set z(k+1) := zL; If z(k+1) ≥ zR, then stop.

Step 4. Set k := k + 1 and go to Step 2.

To study the effect of dry-wet fluctuations on the kinetics of ligand-pocket binding/unbinding, let us define a
position-dependent, three-state, random variable η = η(z) ∈ {0, 1, 2} by η(z) = 0, 1, or 2, if the hydration state of the
system at a given reaction coordinate z is 1s-dry, 2s-dry, or 2s-wet, respectively. The (discrete) probability density of
η(z) is defined by the equilibrium probabilities P eq

i (z) (i = 0, 1, 2):

Prob ({η(z) = i}) = P eq
i (z) = e−G[Γi(z)]/kBT∑2

j=0 e
−G[Γj(z)]/kBT

, i = 0, 1, 2,

where G[Γi(z)] is the VISM solvation free energy at the ith hydration state represented by the VISM surface Γi(z), and
the sum runs over all the hydration states, at the given reaction coordinate z. To account for the fluctuations among
the three states at each reaction coordinate, we further define a potential Vfluc = Vfluc(η, z) by Vfluc(η, z) = Vi(z)
if η = i for i ∈ {0, 1, 2}, where the potential functional Vi(z), defined in Eq. [3] in the main text, is the sum of
the solvation free energy of the ith hydration state and the ligand-pocket vdW interaction energy at the reaction
coordinate z. If at a given coordinate z, there is only one or two hydration states, then we set Vi(z) = 0 for the other
states i.

We perform our continuous-time Markov chain (CTMC) BD simulations, i.e., numerically solve the following
stochastic differential equation for the ligand position z = z(t) = zt (same as that in the CTMC BD simulations part
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of section Theory and Methods in the main text):

dzt =
[
− 1
kBT

D(zt)
∂Vfluc(η(zt), zt)

∂z
+D′(zt)

]
dt+

√
2D(zt) dξt,

η(zt) ∈ {0, 1, 2} is a CTMC with the transition rate matrix− [R01(zt) +R02(zt)] R01(zt) R02(zt)
R10(zt) − [R10(zt) +R12(zt)] R12(zt)
R20(zt) R21(zt) − [R20(zt) +R21(zt)]

 ,

[9]

together with a given initial position z0 = zinit. Here, the partial derivative of Vfluc is with respect to its second
variable, ξt is the standard Brownian motion, and the rates of transitions Rij(z) from the ith state to the jth state
for all i, j = 0, 1, 2 are defined in Theory and Methods in the main text. Solutions to Eq. [9] are constrained by
z(t) ∈ [zL, zR] for all t for some boundaries zL and zR. Again, for a binding simulation, we reset the value of z(t) to
be 2zR − z(t) if z(t) ≥ zR, and we stop the simulation if z(t) ≤ zL. For an unbinding simulation, we reset the value of
z(t) to be zL if z(t) ≤ zL, and we stop the simulation if z(t) ≥ zR.

Algorithm for CTMC BD Simulations.
Step 1. Input the diffusion constants Din and Dout, the controlling parameter ν, the threshold position zc, the

potential functions V0(z), V1(z), and V2(z), an initial position zinit, and the simulation time step δt. Initialize
the hydration state η(zinit) according to the probabilities P eq

i (zinit) (i = 0, 1, 2). Set Time = 0, z(0) = zinit, and
k = 0.

Step 2. Given a ligand position z(k). Calculate z(k+1) by

z(k+1) − z(k) = −
[

1
kBT

D(z(k))V ′i (z(k)) +D′(z(k))
]
δt+

√
2D(z(k))δt ξ if η(z(k)) = i,

where ξ is a random number with the standard normal distribution.
Step 3. Update the hydration state η. If z(k+1) ≤ zc, set η = 0; else, determine η as follows:

For η = i, if e−δt
∑

j 6=i
Rij(z(k+1)) ≥ ζ, keep η = i,; otherwise, determine the transition from state i to state

j according to the probability Rij/
∑
k 6=iRik (i 6= j), where ζ is a random number uniformly distributed

between 0 and 1.
Step 4. Set Time := Time +δt.

(a) For binding simulations: If z(k+1) ≥ zR, set z(k+1) := 2zR − z(k+1); If z(k+1) ≤ zL, then stop.
(b) For unbinding simulations: If z(k+1) ≤ zL, set z(k+1) := zL; If z(k+1) ≥ zR, then stop.

Step 5. Set k := k + 1 and go to Step 2.

4. Generalized Fokker–Planck Equations and the Mean First-Passage Time

Let us denote by P̄ (z, t) the probability density of the ligand random position z = z(t) ∈ [zL, zR] in the absence of
pocket dry-wet fluctuations. It is determined by the following Fokker–Planck equation (FPE) that is associated with
the stochastic differential equation [7]:

∂P̄

∂t
= ∂

∂z

{
D(z)

[
∂P̄

∂z
+ 1
kBT

V ′(z)P̄
]}

, [10]

where V = V (z) is the equilibrium PMF defined in Eq. [1] in the main text. The initial condition for this equation is
P̄ (z, 0) = P̄ (0)(z) for some P̄ (0)(z) and the boundary conditions are designed separately for the simulation of binding
and that of unbinding:

P̄ (zL, t) = 0 and ∂P̄ (zR, t)
∂z

= 0 for binding,

∂P̄ (zL, t)
∂z

+ 1
kBT

V ′(zL)P̄ (zL, t) = 0 and P̄ (zR, t) = 0 for unbinding.
[11]

The mean first-passage time (MFPT) of binding/unbinding is given by

τMFPT(zinit) =
∫ ∞

0

∫ zR

zL

P̄ (z, t) dz dt,
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where zinit is the initial ligand position, or equivalently, the initial value of P̄ is given by P̄ (z, 0) = δ(z − zinit), the
Dirac mass concentrated at zinit. Integrating both sides of Eq. [10] with respect to time, we arrive at

− P̄ init(z, zinit) = d

dz

{
D(z)

[
dP̄ I(z)
dz

+ 1
kBT

P̄ I(z)V ′(z)
]}

, [12]

where P̄ init(z, zinit) = δ(z − zinit) is the initial probability density, and

P̄ I(z) =
∫ ∞

0
P̄ (z, t)dt.

The solution to Eq. [12] can be obtained by integrating the equation twice with the boundary conditions Eq. [11]. For
instance, the unbinding MFPT of a ligand starting at zinit without solvent fluctuations is given by

τMFPT(zinit) =
∫ zR

zL

P̄ I(z)dz

=
∫ zR

zinit

eβV (z)

D(z) dz
∫ zinit

zL

e−βV (z)dz +
∫ zR

zinit

e−βV (z)

[∫ zR

z

eβV (z′)

D(z′) dz
′

]
dz,

where β = 1/(kBT ). To get an explicit analytical solution for the MFPT of the binding, we make an assumption that
V ′(zR) = 0, which is often true when zR is far from the pocket. Under such an assumption, the binding MFPT of a
ligand starting at zinit without solvent fluctuations is obtained analogously:

τMFPT(zinit) =
∫ zR

zL

P̄ I(z)dz

=
∫ zinit

zL

eβV (z)

D(z) dz
∫ zR

zinit

e−βV (z)dz +
∫ zinit

zL

e−βV (z)

[∫ z

zL

eβV (z′)

D(z′) dz
′

]
dz.

We now consider the MFPT with dry-wet fluctuations (or the solvent fluctuations). We solve the following system
of generalized FPEs for the probability densities, P0(z, t), P1(z, t), and P2(z, t), for the probabilities of finding the
ligand at location z at time t with the system being in the states of 1s-dry, 2s-dry, and 2s-wet, respectively (24):

∂Pi
∂t

= ∂

∂z

{
D(z)

[
∂Pi
∂z

+ 1
kBT

V ′i (z)Pi
]}

+
∑

0≤j≤2, j 6=i
Rji(z)Pj −

 ∑
0≤j≤2, j 6=i

Rij(z)

Pi for i = 0, 1, 2. [13]

This is the same equation as in section Theory and Methods in the main text.
These equations correspond to the stochastic differential equation [9] for our CTMC BD simulations. They are

solved with some initial values and also for zL < z < zR, with the boundary conditions

Pi(zL, t) = 0 and ∂Pi(zR, t)
∂z

= 0 for binding,

∂Pi(zL, t)
∂z

+ 1
kBT

V ′(zL)Pi(zL, t) = 0 and Pi(zR, t) = 0 for unbinding,

where i = 0, 1, 2.
To calculate the MFPT for the ligand-pocket binding/unbinding starting from zinit, we let

P init
i (z, zinit) = P eq

i (zinit)δ(z − zinit)

be the initial probability densities for Pi with i = 0, 1, 2. Integrating both sides of the Eq. [13] with respect to time,
we have

−P init
i (z, zinit) = d

dz

{
D(z)

[
dP Ii (z)
dz

+ 1
kBT

P Ii (z)V ′i (z)
]}

+
∑
j 6=i

Rji(z)P Ij −

∑
j 6=i

Rij(z)

P Ii ,

where
P Ii (z) =

∫ ∞
0

Pi(z, t) dt. for i = 0, 1, 2.
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With certain boundary conditions, the boundary-value problem can be solved with the finite difference method. The
MFPT is then given by

τMFPT(zinit) =
2∑
i=0

∫ zR

zL

P Ii (z)dz.

This can be calculated with numerical integration.

5. Parameters

We list the values and units of all the parameters in our computations. These are the same as those described in the
main text.

Symbol Description Units Value
T Temperature Kelvin 298
∆P Pressure difference (cf. Eq. [1]) a bar 0
γ0 surface tension for a planar interface (cf. Eq. [1]) kBT/Å2 0.143
τ Tolman length (cf. Eq. [1]) Å 0.8
ρ0 bulk solvent (i.e., water) density (cf. Eq. [1]) Å−3 0.033
σwater LJ length parameter for a solvent molecule b Å 3.154
σwall LJ length parameter for a wall particle b Å 4.152
σligand LJ length parameter for the ligand b Å 3.73
εwater LJ energy parameter for a solvent molecule b kBT 0.26
εwall LJ energy parameter for a wall particle b kBT 9.67E-4
εligand LJ energy parameter for the ligand b kBT 0.5
M Number of (interior) images of a string No units 10
zc The coordinate of the pocket entrance Å −0.5
zL Smallest value of the reaction coordinate c Å −4
zR Largest value of the reaction coordinate c Å 15.5
R0 Prefactor of transition rates d ps−1 0.13
Din Diffusion constant inside the pocket (cf. Eq. [8]) e Å2/ps 1
Dout Diffusion constant outside the pocket (cf. Eq. [8]) f Å2/ps 0.26
ν The control parameter in D (cf. Eq. [8]) 1/Å 5

Table S1. Parameters.

a The term ∆P vol (Ωm) is very small compared with the other terms in Eq. [1].
b The values are taken from (25, 26). We use the Lorentz–Berthelot mixing rules to determine the LJ parameters
for the interaction of two particles.

c These values can vary.
d R0 is estimated from the relaxation timescale (Rdw +Rwd)−1 ≈ 10 ps of water fluctuations in the pocket when
the ligand is far away (27), where Rdw = R0e

−Bdw/kBT and Rwz = R0e
−Bwd/kBT with Bdw and Bwd the barriers

in the pocket dry-wet and wet-dry transitions when the ligand is far away; cf. section Theory and Methods in
the main text.

e This is a trial value. See subsection B in section 6. Additional Simulation Results.
f The value is taken from (27).

6. Additional Simulation Results

A. Minimum Energy Paths for z = 2 Å and z = 10 Å. At the reaction coordinate z = 2 Å, there are two hydration
states: 2s-wet and 1s-dry, and only one MEP is found to connect these two states. Fig. S1 shows this MEP, together
with the solute-solvent interfacial structures of the two hydration states (marked (I) and (III), respectively) and the
only transition state (marked (II)). Note that the 1s-dry has a lower solvation free energy.
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Fig. S1. The MEP connecting the only hydration states of 2s-wet (marked (I)) and 1s-dry (marked (III)) when the ligand is placed at z = 2 Å. The solute-solvent interfaces of
these hydration states, and the transition state (marked (II)) are also shown. The energy barrier in the dewetting transition from 2s-wet to 1s-dry is 2.73 kBT .

Fig. S2 shows the MEP connecting the only hydration states 2s-wet and 2s-dry for the reaction coordinate z = 10
Å. The calculated activation energy barrier is about 0.68 kBT . In contrast to the dewetting energy barrier (0.70 kBT )
for z = 6 Å (cf. Fig. 3 in the main text), one finds that the presence of the ligand with a smaller ligand-pocket
distance increases the dewetting energy barrier of the hydrophobic pocket. This is because that, when the ligand
is close, part of the solvent region with the attractive solute-solvent vdW interaction is lost in such a dewetting
transition. From an explicit-solvent point of view, the water molecules in the hydration shell of the methane particle
hinders the evaporation of water molecules from the pocket.
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Fig. S2. The MEP connecting the hydration states 2s-wet and 2s-dry with the ligand is placed at z = 10 Å. The energy barrier in the dewetting transition from 2s-wet to
2s-dry is 0.68 kBT . The solute-solvent interfaces of the hydration states 2s-wet (marked (I)) and 2s-dry (marked (III)), and that of the transition state (marked (II)) are also
shown.

B. Effect of Din. We choose two very different values of the diffusion constant Din = 1 Å2
/ps and Din = 1, 000 Å2

/ps,
and hence determine two, effective and position-dependent diffusion coefficient D(z) by Eq. [8]. With these diffusion
coefficients, we solve numerically Eq. [10], and Eqs [13], and then calculate the MFPT for the binding and unbinding
process. Fig. S3 shows that the large difference in the diffusion constant Din does not affect the MFPT with or
without the dry-wet fluctuations.
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Fig. S3. The FPE calculations of the binding and unbinding MFPT of the ligand starting at z with two different values of the diffusion coefficient Din for the ligand inside the
pocket. SolFlt stands for the solvent fluctuations, i.e., the pocket dry-wet fluctuations.

C. Evolution of Probability Density of Ligand Position. To further understand the effect of solvent fluctuations, we
investigate the decay rate of the probability densities P̄ (z, t) and Ptot(z, t) =

∑2
i=0 Pi(z, t) in binding and unbinding

processes Here, P̄ (z, t) is the probability density for the ligand random position z(t) in the absence of dry-wet
fluctuations (cf. Eq. [10]), and each Pi(z, t) (i = 0, 1, or 2) is the probability density for the ligand random position
z(t) with the system being at the ith hydration state (cf. Eq. [13]). Fig. S4 displays the evolution of the probability
densities normalized by the initial value at the positions z = 6 and z = −2 in binding and unbinding simulations,
respectively. In the binding processes, the normalized probability density decays slower when solvent fluctuations are
included, because the pocket fluctuates between dry and wet states and the PMF of the wet branch is repulsive. On
the contrary, the normalized probability density decays faster in unbinding processes, and hence a shorter residence
time when solvent fluctuations are included. This is again due to the repulsive PMF of the wet branch. The pocket
fluctuates to the wet state when the unbinding ligand approaches the entrance of the pocket.
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Fig. S4. Evolution of probability densities, P̄ (z, t) (cf. Eq. [10]) and Ptot(z, t) = P0(z, t) + P1(z, t) + P2(z, t) (cf. Eq. [13]) normalized by the initial values at z = 6
(left) and z = −2 (right) in the binding and unbinding simulations with and without solvent fluctuations. SolFlt stands for the solvent fluctuations, i.e., the pocket dry-wet
fluctuations.
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D. Sensitivity of R0. We now discuss the effect of R0 on the binding and unbinding kinetics. Fig. S5 presents the
MFPT of the binding and unbinding of ligand against the starting position zinit = z with different values of R0. We
see that the results predicted by the CTMC BD simulations and FPE calculations agree with each other perfectly.
As R0 decreases, both binding and unbinding MFPTs increase. With a smaller R0, the dewetting transition rate
decreases and the ligand stays in the branch of 2s-wet for longer time in binding processes. This explains the longer
binding MFPT with a smaller R0. For unbinding, a smaller R0 leads to a smaller wetting transition rate, restraining
the transition starting from the 1s-dry state whose PMF is attractive. This explains the increasing unbinding MFPT
with a decreasing value of R0.
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Fig. S5. The MFPT for the binding (left) and the unbinding of ligand that starts from zinit = z, predicted by the CTMC BD simulations and FPE calculations with different
values of R0.
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