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We present a new Matched Interface and Boundary (MIB) regularization method for 
treating charge singularity in solvated biomolecules whose electrostatics are described 
by the Poisson–Boltzmann (PB) equation. In a regularization method, by decomposing 
the potential function into two or three components, the singular component can be 
analytically represented by the Green’s function, while other components possess a higher 
regularity. Our new regularization combines the efficiency of two-component schemes with 
the accuracy of the three-component schemes. Based on this regularization, a new MIB 
finite difference algorithm is developed for solving both linear and nonlinear PB equations, 
where the nonlinearity is handled by using the inexact-Newton’s method. Compared 
with the existing MIB PB solver based on a three-component regularization, the present 
algorithm is simpler to implement by circumventing the work to solve a boundary value 
Poisson equation inside the molecular interface and to compute related interface jump 
conditions numerically. Moreover, the new MIB algorithm becomes computationally less 
expensive, while maintains the same second order accuracy. This is numerically verified 
by calculating the electrostatic potential and solvation energy on the Kirkwood sphere on 
which the analytical solutions are available and on a series of proteins with various sizes.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Electrostatic interactions between a biomolecule and its solvent environment play an important role in understanding 
the structure, function, dynamics, and mechanism of the biomolecules [28,49]. Computing these interactions using explicit 
solvent models is computationally expensive, and a number of less costly implicit solvent models have been developed 
[16,42]. Here we consider a model based on the Poisson–Boltzmann (PB) equation which treats the solute biomolecule as 
a low-dielectric medium with embedded atomic charges and the solvent as a high-dielectric medium with dissolved ions 
[3,14,17,32]. The solute in general may be a protein or a complex system involving membranes [9] or nucleic acids [5].

Since the PB equation has analytic solution only for the simple geometries, such as sphere and rod, in practice the equa-
tion is solved numerically. Numerical methods for solving PB equation fall into two classes, (1) grid-based methods that 
discretize the entire domain, e.g. [2,4,8,10,13,15,28,29,36], and (2) boundary integral methods that discretize the molecular 
surface, e.g. [1,7,19,24,30,34,35,48]. The numerical solution to the PB equation suffers many challenges such as (1) the in-
terfacial molecular surface is geometrically complex; (2) the biomolecule is represented by singular point charges; (3) the 
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dielectric function and electric field are discontinuous across the molecular surface; (4) the nonlinearity appears when 
ionic strength is strong; (5) the domain is unbounded. In treating these numerical challenges, particularly (1)–(3), a finite-
difference based interface method named matched interface and boundary (MIB) method stands out [10,21,46]. The MIB 
method is designed to capture discontinuities of the solutions and coefficients of the differential equations by using local 
high order interpolation assisted with the interface jump conditions. Based on the MIB method for general interface prob-
lems [50–52], the MIB PB solver is further improved to be able to maintain its designed 2nd order of convergence and 
accuracy in the presence of geometric singularities of molecular surfaces [46].

A challenging issue in the MIB PB solver is the efficient treatment of charge singularities. Conventionally, in most finite 
difference based PB solvers, Dirac delta functions in the PB equation, or singular partial charges inside a biomolecule, are 
redistributed to their neighboring grid points. This low order treatment works well in commonly used PB solvers where the 
major error is due to the neglect of interface continuity conditions, but produces a pronounced error in the MIB PB solver, 
especially when the mesh size is large. This is because the grid points involved in the MIB interface treatments may also 
carry distributed charges, which results in an interference of geometric interface and charge singularities, and leads to an 
accuracy reduction [21].

The accurate treatment of charge singularities has been studied by many authors, giving rise to a series of regularization 
approaches [8,11,12,21,25,45,53]. In these methods, the potential function is decomposed into a singular component plus 
one or two other components. Satisfying a Poisson equation with the same PB singular sources, the singular component 
can be analytically solved as Coulomb potentials or Green’s functions. After removing the singular component, the other 
potential components satisfy elliptic partial differential equations (PDEs) with a higher regularity, and the contribution of 
charge singularities is transferred into new interface jump conditions for these PDEs. Generally speaking, a three-component 
regularization [12,21,25,45] is more accurate than a two-component method [11,53], while the latter is more efficient.

The charge singularity has been resolved by using a three-component regularization [12] in the previous MIB PB algo-
rithm [21]. The charge-induced interface jump conditions are perfectly compatible with the MIB techniques for complex 
interfaces [46], so that one can treat geometric and charge singularities on an equal footing. The resulting MIB PB solver is 
capable of eliminating the interference of the geometric and charge singularities in solving the PB equation, and is of second 
order convergence. The MIB PB method is able to deliver high numerical accuracy at a grid spacing as large as the van der 
Waals radius (about 1.2Å) for macromolecules [21].

Inspired by the original idea of charge singularity regularization from [21] and [8], the present work introduces a 
novel two-component formulation which combines the efficiency of two-component schemes with the accuracy of three-
component methods. Compared with the previous three-component method [21], this new regularization becomes simpler 
to implement, because it circumvents the additional work of solving a boundary value Poisson equation inside the molecular 
interface and its related interface jump conditions computation for the regularized Poisson–Boltzmann equation. Moreover, 
the discontinuous function and flux jumps can be easily handled in the MIB discretization without introducing any addi-
tional difficulty. Thus, based on this new regularization, the MIB PB solver improves its efficiency, while maintains all good 
features including the same second order accuracy. More importantly, the reduced complexity largely simplifies the work 
needed to compute the electrostatic field and forces for molecular dynamics simulation under the MIB frame, which will be 
conducted in another related project.

The rest of the paper is organized as follows. Section 2 is devoted to the theoretical formulation and computational 
algorithm. The two-component Green’s function formulation of charge singularities is developed in the framework of the 
MIB method. The resulting two-component regularized MIB method is extensively validated in Section 3. The benchmark 
tests, such as the Kirkwood sphere [31] and a set of twenty four proteins, are used to examine the accuracy and test the 
speed of convergence of the proposed method. Comparisons with the previously established MIB PB solver are given. This 
article ends with a brief conclusion summarizing the main points.

2. Theory and algorithm

In this section, we will first briefly describe the Poisson–Boltzmann (PB) model. A summary of the matched interface 
and boundary method (MIB) will be offered next. Then, the treatment of charge singularity of the original three-component 
decomposition and the new two-component decomposition will be discussed in details. This section ends with discussions 
of the inexact-Newton’s method for addressing the nonlinearity and the formulation for computing electrostatic free energy 
of solvation.

2.1. Poisson–Boltzmann model

The PB model is illustrated in Fig. 1(a). Consider a large domain � in R3 containing the solute protein. The domain �
is divided by the molecule surface � into the molecule domain �− with dielectric constant ε− and the solvent domain 
�+ with dielectric constant ε+ , i.e., � = �− ⋃

�+ . Denote the boundary of � as ∂�. Charges in �− are partial charges 
assigned to the centers of atoms by using force field, while charges in �+ are mobile ions described by the Boltzmann 
distribution. For r ∈ R

3, applying Gauss’s law to the charge distribution in both �− and �+ leads to the PB equation

−∇ · (ε(r)∇φ(r)) + κ̄2(r) sinh (φ(r)) = ρ(r), (1)
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Fig. 1. (a) The PB model, (b) The MIB scheme illustrated in a 2-D setting with inside fictitious points in red and outside fictitious points in yellow, (c) The 
MIB scheme in finding the fictitious values at (i, j, k) and (i + 1, j, k) in the cross section of z = zk . (For interpretation of the references to color in this 
figure legend, the reader is referred to the web version of this article.)

subject to interface continuity for the potential φ and flux density εφn ,

[φ]� = 0 and [εφn]� = 0. (2)

Here n = (nx, ny, nz) is the outer normal direction of the interface �, φn = ∂φ
∂n is the directional derivative in n, and the 

notation [ f ]� = f + − f − is the difference of the function f cross the interface �.
In Eqs. (1) and (2), ε is a piecewise function for the dielectric constants in �− and �+ . Here κ is the inverse Debye 

screening length measuring ionic strength, and its modified version κ̄ is given as κ̄2 = ε+κ2. The value of κ is nonzero in 
�+ only and it can be related to ionic strength I in M or mol/L by the relation κ2 = 8.430325455I/ε+ . The source term ρ
in Eq. (1) is the summation of the charge distribution in �− using Delta function for Nc partial charges located at ri , i.e., 

ρ(r) = 4πC
Nc∑

i=1
qiδ(r − ri), where qi is the partial charge on the ith atom with units ec and C is a constant to balance the 

units. For example, when C = ec

kB T
, where ec is the fundamental charge, kB is the Boltzmann constant, and T is the absolute 

temperature, the potential φ is dimensionless. In our numerical implementation, the unit of the potential φ is ec/Å and unit 
for the length is Å, which conveniently makes C = 1. After computing φ, one needs to multiply it with a factor 332.0716
for T = 298 K to convert it to the popular unit of kcal/mol/ec for free energy calculation. The reader can refer to [18,26] for 
more details about definition and units of these coefficients.

Due to the singular partial charges in the source ρ(r), the electrostatic potential φ(r) goes to infinity as r → ri . This 
brings considerable difficulties in numerical solution of the PB equation. We will present a new regularization approach to 
remove the singularity under the matched interface and boundary (MIB) framework. On the outer boundary ∂�, a Dirichlet 
boundary condition can be assumed [26]

φ(r) = φb(r) := C
Nc∑

i=1

qie−κ |r−ri |

ε+|r − ri| . (3)

It is obviously that lim|r|→∞ φ(r) = 0, which is actually the physical boundary condition defined at the infinity. When ∂� is 
sufficiently distanced from the protein, Eq. (3) provides a fairly accurate Debye–Huckel approximation [26] to the analytical 
solution of the linearized PB equation. The accuracy of the Debye–Huckel boundary approximation, particularly for the 
nonlinear PB model, has been discussed in [6]. In the present study, the domain � is chosen to be large enough such that 
the boundary approximation error is negligible.

2.2. Matched interface and boundary (MIB) method

We use the linearized PB equation as in Eq. (4) to explain the key ideas of the MIB method for solving the elliptic 
interface problem with discontinuous coefficients

−∇ · (ε(r)∇φ(r)) + κ̄2(r)φ(r) = ρ(r). (4)

The interface � divides the whole domain into two separated parts, �− and �+ . The jump conditions across the interface 
are assumed to be
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[φ]� = g0(r), (5)

[εφn]� = g1(r), (6)

where the nonhomogeneous jump data g0(r) and g1(r) are either given or computable. We note that discontinuous function 
and flux jumps, i.e., nonzero g0(r) and g1(r), can be easily handled in the MIB scheme, without introducing any difficulty. 
The corresponding discretization matrix will be the same as that for the homogeneous case with g0(r) = g1(r) = 0, while 
the right hand side shall be modified to account for g0(r) and g1(r).

Consider a uniform Cartesian grid partition of the domain �. It is well known that the standard finite difference schemes 
lose their designed convergence near the interface and the interface jump conditions have to be used to restore the accuracy. 
To this end, all the grid points in � are classified into two types, the regular ones and the irregular ones. At the regular 
points away from the interface �, a central difference discretization of Eq. (4) is carried out, which involves a grid node 
(xi, y j, zk) and its six neighboring points. An irregular grid point is defined as a node at which the standard finite difference 
scheme involves grid points across the interface, i.e., at least one of its six neighboring points is from the other side of the 
interface. In the MIB scheme, the finite difference approximations at irregular points will be modified by using fictitious 
values from the other side of the interface. For example, consider a two-dimensional (2D) cross section z = zk shown 
in Fig. 1(c), and denote φi, j,k = φ(xi, y j, zk). We have the following modified finite difference approximation for the x
derivative

∂2

∂x2
φi+1, j,k ≈ 1

�x2
( f i, j,k − 2φi+1, j,k + φi+2, j,k), (7)

where f i, j,k is a fictitious value defined at (xi, y j, zk). The modified finite difference approximations at irregular points 
maintain the second order of accuracy, provided that the fictitious values are accurately estimated.

In considering x, y, and z derivatives at all irregular points, it is sufficient to accurately generate two layers of fictitious 
values f surrounding �, one inside and one outside. Fig. 1(b) shows an example in 2D for the MIB scheme with inside 
fictitious points in red and outside fictitious points in yellow. Physically, the fictitious values can be regarded as smooth 
extension of function values from the other side. Numerically, they are determined by discretizing jump conditions (5) and 
(6). In the MIB scheme, a fictitious value f i, j,k at (xi, y j, zk) will be represented as a linear combination of function values 
on a set of neighboring nodes Si, j,k and nonhomogeneous jump data (g0, g1)

f i, j,k =
∑

(xI ,y J ,zK )∈Si, j,k

w I, J ,K φI, J ,K + w0 g0 + w1 g1. (8)

The major task of a particular MIB approximation is to determine the points set Si, j,k and the representation weights w I, J ,K , 
w0, and w1 via discretizing Eqs. (5) and (6). Finally, Eq. (8) will be substituted into Eq. (7) to modify the x derivative 
approximation. When all necessary x, y, and z derivatives are corrected in discretizing Eq. (4), a discretized linear algebraic 
system of equations is generated, in which the nonhomogeneous data (g0, g1) only affects the right hand side of the 
equation.

A key idea in the MIB fictitious value determination is to decompose the three-dimensional (3D) jump conditions (5)
and (6) so that they can be imposed in a one-dimensional (1D) manner. In the following, we will describe the MIB interface 
treatment by considering two irregular points located at (i, j, k) and (i + 1, j, k) in the cross section of z = zk as illustrated 
in Fig. 1(c).

Assume that the interface � intersects the grid line in the x-direction at a point (io, j, k), which is located between 
(i, j, k) and (i + 1, j, k). To determine the fictitious values f i, j,k and f i+1, j,k , a derivative in the normal direction of the 
interface at point (io, j, k) has to be treated in Eq. (6). It is convenient to introduce a local coordinates (ξ,η, ζ ) such that ξ
is along the normal direction (ξ = n), and η and ζ are in the tangential plane. The coordinate transformation can be given 
as ⎡

⎣ ξ

η
ζ

⎤
⎦ = P

⎡
⎣ x

y
z

⎤
⎦ , (9)

where P is the transformation matrix

P =
⎡
⎣ sinψ cos θ sinψ sin θ cosψ

− sin θ cos θ 0
− cosψ cos θ − cos ψ sin θ sinψ

⎤
⎦ . (10)

Here θ and ψ are the azimuth and zenith angles with respect to the normal direction ξ , respectively. By differentiating 
Eq. (5) along two tangential directions, η and ζ , we can generate two additional jump conditions

[φη]� = (φ+
x p21 + φ+

y p22 + φ+
z p23) − (φ−

x p21 + φ−
y p22 + φ−

z p23) = ∂ g0

∂η
(11)

[φζ ]� = (φ+
x p31 + φ+

y p32 + φ+
z p33) − (φ−

x p31 + φ−
y p32 + φ−

z p33) = ∂ g0
, (12)
∂ζ
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where pij is the ith row and jth column component of the transformation matrix P. The right hand side terms ∂ g0
∂η and ∂ g0

∂ζ

can be calculated when the analytical form of g0 is given.
Since Eq. (9) implies⎡

⎢⎣
φξ

φη

φζ

⎤
⎥⎦ = p

⎡
⎢⎣

φx

φy

φz

⎤
⎥⎦ , (13)

Eqs. (6), (11) and (12) can be rewritten as follows:

C

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ+
x

φ−
x

φ+
y

φ−
y

φ+
z

φ−
z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎢⎣

g1
∂ g0
∂η
∂ g0
∂ζ

⎤
⎥⎦ , (14)

where

C =
⎡
⎢⎣

C1

C2

C3

⎤
⎥⎦ =

⎡
⎢⎣

p11ε
+ −p11ε

− p12ε
+ −p12ε

− p13ε
+ −p13ε

−

p21 −p21 p22 −p22 p23 −p23

p31 −p31 p32 −p32 p33 −p33

⎤
⎥⎦ , (15)

with Ci represents the ith row of matrix C. For the three jump conditions given in (14), the matrix C and right hand 
side terms are known. However, none of these conditions is easy to implement because six derivatives, φ+

x , φ−
x , φ+

y , φ−
y , 

φ+
z , and φ−

z , are coupled together. For complex solvent-molecule interfaces of macromolecules, it is often very difficult 
to numerically evaluate some of these derivatives. Therefore, in the MIB method, we avoid calculating two most difficult 
derivatives by eliminating them from (14). Symbolically, we illustrate the idea by eliminating the lth and mth elements of 
the array (φ+

x , φ−
x , φ+

y , φ−
y , φ+

z , φ−
z ), Eq. (14) then reduces to a single jump condition

(aC1 + bC2 + cC3)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ+
x

φ−
x

φ+
y

φ−
y

φ+
z

φ−
z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

= ag1 + b
∂ g0

∂η
+ c

∂ g0

∂ζ
, (16)

where

a = C2lC3m − C3lC2m (17)

b = C3lC1m − C1lC3m

c = C1lC2m − C2lC1m.

Note that the jump condition (16) actually involves four derivatives out of (φ+
x , φ−

x , φ+
y , φ−

y , φ+
z , φ−

z ), even though all six 
derivatives are shown in the equation.

A concrete example is discussed here to further illustrate Eq. (16). For the case shown in Fig. 1(c), we will generate a 
jump condition along x direction by keeping both φ+

x and φ−
x in Eq. (14). One derivative will be eliminated for each of 

y and z directions. In y direction, φ−
y is more difficult to compute at (io, j, k) than φ+

y . Thus, φ−
y will be eliminated in 

Eq. (14), while φ+
y in Eq. (14) will be calculated by using φ+ at three auxiliary points (io, j + 1, k), (io, j, k), and (io, j −

1, k) (the green solid circles). Since these auxiliary points are not grid nodes, φ+ values on auxiliary points need to be 
interpolated by using grid values exclusively from the �+ . For example, φ+(xio , y j−1, zk) will be approximated by φ values 
on (i + 1, j − 1, k), (i + 2, j − 1, k), and (i + 3, j − 1, k). After interpolation, φ+

y is expressed as a linear combination of 
some surrounding grid values, and thus is not treated as an unknown in Eq. (14). Similarly, in z direction, one eliminates 
one derivative, say φ−

z , and interpolates the other derivative, say φ+
z . In practice, care is required to select appropriate 

interpolation schemes so that the resulting MIB matrix can be optimized for arbitrarily complex solvent-molecule interfaces 
with geometric singularities [46,47]. For the present example, the jump condition (16) involves four derivatives φ+

x , φ−
x , 

φ+
y , and φ+

z , while the last two have been interpolated. Hence, Eq. (16) essentially reduces to a 1D jump condition along x
direction.
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For the present case, it is sufficient to discretize two x direction jump conditions (5) and (16) to determine the fictitious 
values f i, j,k and f i+1, j,k . In particular, φ+ and φ+

x at (io, j, k) will be approximated by the fictitious value f i, j,k and φ
values at (i + 1, j, k) and (i + 2, j, k), and φ− and φ−

x are treated similarly. After solving f i, j,k and f i+1, j,k based on the 
discretized 1D jump conditions, we can express these fictitious values as a linear combination form as shown in Eq. (8) with 
the points set and representation weights are now known. For example, for the case shown in Fig. 1(c), the points set Si, j,k
includes all brown triangles in the plane z = zk , as well as another six points in the planes z = zk−1 and z = zk+1. The MIB 
interface treatment is systematically carried out to determine all fictitious values along any mesh line and at any interface 
intersection points. More details of this procedure in treating geometric complexity and singularity can be found in [46].

We note finally that in the discretization of jump conditions (5) and (16), fictitious values determination Eq. (8), and 
finite difference derivative correction Eq. (7), it does not matter if the nonhomogeneous data g0(r) and g1(r) are vanishing 
or not. By allowing g0(r) to be nonzero, this gives us extra flexibility in designing a new regularization approach for solving 
the PB equation.

2.3. Three-component regularization

We first review our previous three-component regularization procedure. Numerically, the second and higher-order nu-
merical implementation of Delta functions on Cartesian grid points is feasible with appropriate interpolation schemes. 
However, the overlap of grid points carrying redistributed partial charges and those involved in the treatment of geo-
metric interface singularities leads to an accuracy reduction. This interference becomes inevitable when a coarse mesh is 
pursued in an interface treatment. Therefore, a Green’s function approach of the singular charges becomes attractive in the 
MIB interface scheme for the PB equation. In the existing MIB PB algorithm [21], a three-component regularization [12]
is utilized. Such an approach decomposes the solution φ into regular part φ̂ and singular part φ̄ . The latter consists of a 
singular function φ∗ , and a harmonic function φ0

φ = φ̂ + φ̄, (18)

where φ̄(r) is defined as

φ̄(r) =
{

φ∗(r) + φ0(r) r ∈ �−;
0 r ∈ �+.

(19)

Here φ∗(r) is the fundamental solution to the Poisson equation with singular charges

φ∗(r) = G(r) := C
Nc∑

i=1

qi

ε−|r − ri| (20)

which is simply the Green’s function G(r). The harmonic component φ0(r) satisfies a Laplace equation in �−

{ ∇2φ0(r) = 0 in �−;
φ0(r) = −G(r) on �.

(21)

The boundary value problem given by Eq. (21) is to be solved over an irregularly shaped domain �− with possibly geometric 
singularities on its boundary. As a solution to the PB equation, the singular part φ̄(r) is solved subject to the following jump 
conditions

[φ̄]� = 0 and [εφ̄n]� = −ε−∇(G + φ0) · n|�. (22)

Thus the equation for the correction potential φ̂(r) = φ(r) − φ̄(r) is source-free

−∇ · (ε(r)∇φ̂(r)) + κ̄2 sinh(φ̄(r) + φ̂(r)) = 0, in �, (23)

and can be rewritten as

−∇ · (ε(r)∇φ̂(r)) + κ̄2(r) sinh(φ̂(r)) = 0, in �. (24)

This equation is solved with jump conditions

[φ̂]� = 0 and [εφ̂n]� = −[εφ̄n]� = ε−∇(G + φ0) · n|�. (25)

The interface problem given by Eq. (24) with jump conditions (25) and an appropriate far-field boundary condition 
φ̂ = φb on ∂� can be solved by the MIB scheme. Since the interface � is not represented through grid nodes, in calculat-
ing boundary values for the harmonic component φ0(r) and interface normal derivatives for the regular component φ̂(r), 
sophisticated interpolations and finite difference approximations are required in numerical implementation [21].
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2.4. Two-component regularization

A new two-component regularization is proposed here, which can circumvent the work for solving the Laplace equation, 
i.e., Eq. (21), of the three-component method [12,21]. Inspired by the work by Cai et al. [8], we consider a decomposition 
of the electrostatic potential into a Coulomb component φC and a reaction field component φR F with φ = φC + φRF. The 
nonlinear PB equation (1) can then be rewritten as

−∇ · (ε∇φC (r)) − ∇ · (ε∇φR F (r)) + κ̄2 sinh(φC (r) + φR F (r)) = ρ(r), in �. (26)

The Coulomb potential satisfies the free space Poisson’s equation with the singular charges ρ{ −ε−�φC (r) = ρ(r) in R
3;

φC (r) = 0, as |r| → ∞.
(27)

Thus, φC is analytically given as φC (r) = G(r), where the Green’s function G is defined in Eq. (20). Note that ∇ · (ε∇φC ) = 0
everywhere in �− or �+ except locations having partial charges, since ε is a piecewise constant.

Physically, the reaction field potential φRF can be interpreted as electrostatic field generated by the charges induced by 
transferring the environment surrounding the solute from ε+ to ε− (solvation) [8]. By subtracting (27) from (26), we have 
a regularized PB equation for φR F

−∇ · (ε∇φR F (r)) + κ̄2 sinh(φC (r) + φR F (r)) = 0, in �− ∪ �+. (28)

Thus, φR F satisfies the following elliptic interface problem [11]

−∇ · (ε−∇φRF) = 0 in �− (29)

−∇ · (ε+∇φRF) + κ̄2 sinh (φC + φRF) = 0 in �+ (30)

[φRF] = 0 on � (31)[
ε

∂φRF

∂n

]
= (ε− − ε+)

∂G

∂n
on � (32)

φRF = φb − G on ∂� (33)

However, this two-component regularization suffers several numerical difficulties. It is pointed out in [25] that the magni-
tudes of φC and φRF are much larger than that of φ, while φC and φRF have different signs. Given that φC is analytically 
calculated, a relatively small error in φRF will produce a relatively large error in φ. The amplifying factor is as large as 
(ε+/ε− − 1) [25], which is about 79 for the present parameter setting in our numerical implementation by taking ε+ = 80
and ε− = 1. In addition, this formulation requires evaluating φC or G on all N grid points in �+ at a computational cost 
O (N2), which is very expensive for large N (although multipole expansion like treecode or fast multipole method can reduce 
this cost to O (N log N) or O (N) at the price of increased complexity in algorithm).

To overcome such numerical difficulties, Luo and his collaborators [8] proposed to solve the original potential φ instead 
of φR F in the domain �+ . Without resorting to the jump conditions, the finite difference scheme developed in [8] handles 
the dielectric interface by using an integral form of the PDE and discrete Green’s functions, and is quite simple and effective.

In order to make the regularization approach of [8] being accessible to other finite difference or finite element methods, 
one has to rigorously formulate the interface jump conditions. To this end, we propose a new elliptic interface problem with 
discontinuous function and flux jumps for the two-component regularization. In particular, we define a regularized potential 
as

φ̃ =
{

φRF in �−
φ in �+.

(34)

The jump conditions for φ̃ can be derived based on those for φ and the definition φ = φC + φR F

φ+ = φ−
R F + φ−

C , ε+ ∂φ+

∂n
= ε− ∂φ−

R F

∂n
+ ε− ∂φ−

C

∂n
, on �. (35)

Thus, the regularized PB equation of φ̃ with corresponding interface and boundary conditions are given as

−∇ · (ε−∇φ̃) = 0 in �− (36)

−∇ · (ε+∇φ̃) + κ̄2 sinh(φ̃) = 0 in �+ (37)[
φ̃
]

= G on � (38)[
ε

∂φ̃

∂n

]
= ε− ∂G

∂n
on � (39)

φ̃ = φb on ∂� (40)



32 W. Geng, S. Zhao / Journal of Computational Physics 351 (2017) 25–39
Note that φ̃ actually satisfies the same PB equation without the source

−∇ · (ε∇φ̃(r)) + κ̄2 sinh(φ̃(r)) = 0, in �− ∪ �+. (41)

Numerically, one just needs to solve one PB interface problem given in (36)–(40). Then, the original potential is recovered 
as φ = φ̃ in �+ and φ = φ̃ + G in �− , where the Green’s function G is analytically given.

The new regularization formulation could be discretized by using a finite difference or finite element method. The MIB 
discretization will be considered in this work, since the enforcement of nonhomogeneous jump conditions (38) and (39)
does not require additional work than that for jump conditions (25) in the MIB framework. Hence, the MIB algorithm based 
on this new regularization is simpler than the one developed in [21]. In particular, one does not need to solve an additional 
boundary value problem as in Eq. (21). Moreover, in jump conditions (25), the gradient of the harmonic component φ0

has to be approximated numerically, which is non-trivial, because of the complex geometry of the molecular surface [21]. 
Whereas, the present jump conditions (38) and (39) are given analytically. Therefore, the present MIB algorithm is easier to 
implement. Furthermore, the proposed MIB PB solver is more efficient than the previous one [21] while still maintains the 
second order accuracy under the MIB scheme.

2.5. Nonlinearity

The PB equation has a nonlinear term κ̄2 sinh(φ) characterizing the ionic strength subject to the electrostatic potential. 
When the ionic strength and the electrostatic potential is weak under the physiological conditions, the linearized PB equa-
tion is more frequently used. However, in chemistry and engineering circumstances, nonlinearity needs to be taken care of. 
The inexact-Newton method [10,27] developed for the original nonlinear PB equation can be simply applied to solve the 
regularized PB equation (41) in our two-component regularization.

The MIB discretization of the nonlinear PB equation results in an algebraic system of the form

F (u) = Lu + N(u) − f = 0, (42)

where u represents a vector of all unknowns in the domain �, the matrix L is generated by the MIB scheme, the nonlinear 
term N(u) is diagonal and Ni(u) = Ni(ui) = κ̄2 sinh(ui) for each i as the grid in �+ . Note that the discrete source f is not 
discretized from ρ , instead it is due to the nonhomogeneous parts of jump conditions (38) and (39) and the boundary data 
φb . The inexact-Newton method is quite an efficient way to solve the nonlinear system (42), whose formulation is given as

F ′(un)vn = −F (un) + rn,
||rn||

||F (un)|| ≤ ηn (43)

un+1 = un + vn, (44)

where F ′ is the Jacobian matrix [∂ Fi(u)/∂u j] and takes the form F ′(u) = L + N ′(u). Here, N ′ is the Jacobian matrix of 
N(u) and is also diagonal N ′(u) = N ′

i(ui) = κ̄2 cosh(ui). It is easy to see that the inexact-Newton method is a two-layer 
iterative algorithm. The correction term vn in outer iteration (44) is considered as a rough solution of inner iteration (43). 
The scheme converges linearly when ηn , the ratio of the residual rn between the function value F (u), is less than 1, and 
converges super-linearly as the sequence ηn has the property that lim

n→∞ηn = 0. Compared with the traditional Newton’s 

method, the inexact-Newton method gains efficiency by solving vn in Eq. (43) inexactly.

2.6. Electrostatic free energy and solvation energy

As described by Sharp and Honig [44], the electrostatic free energy for a solvated biomolecule is calculated by

�Gele =
∫
R3

(
φρ + �� − 1

2
ε|E|2

)
dr (45)

where φ is the electrostatic potential, ρ is the fixed charge density represented as a smeared surface charge or as a collec-
tion of point charges, �� is the excess osmotic pressure of the mobile ion cloud, and 1

2 ε|E|2 is the electrostatic stress.
In our numerical validation in the next section, we report the solvation energy as

Esol = �Gele − Ecou ≈
Nc∑

i=1

qiφR F (ri) (46)

Here for simplification, we omit the energy components related to the mobile ion pressure and the electrostatic stress, 
whose contribution are relatively smaller but computationally more challenging as integrals of discontinuous functions. 
Details of evaluating the complete functional can be found in [20,23,44].
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Table 1
Solving linear PB equation and Poisson equation on a spherical cavity with a centered charge: spherical radius r = 2, ε+ = 80, ε− = 1, κ = 1
(I = 9.48955 mol/L) for PB equation and κ = 0 for Poisson equation. Centered charge is located at (0, 0, 0) with unit charge ec .

h Poisson equation PB equation

MIB rMIB MIB rMIB

eφ ord. Esol eφ ord. Esol eφ ord. Esol eφ ord. Esol

1 4.5e-4 −81.96 4.5e-4 −81.96 6.3e-4 −82.65 6.3e-4 −82.65
1/2 7.3e-5 2.6 −81.97 7.3e-5 2.6 −81.97 1.2e-4 2.4 −82.66 1.2e-4 2.4 −82.66
1/4 2.1e-5 1.8 −81.98 2.1e-5 1.8 −81.98 3.9e-5 1.6 −82.67 3.9e-5 1.6 −82.67
1/8 5.6e-6 1.9 −81.98 5.7e-6 1.9 −81.98 1.1e-5 1.9 −82.67 1.1e-5 1.9 −82.67
1/16 1.5e-6 1.9 −81.98 1.4e-6 2.0 −81.98 2.7e-6 2.0 −82.67 2.6e-6 2.0 −82.67

3. Validation

In this section, we validate our algorithm by providing simulation results. A Kirkwood sphere will be studied first, from 
which the analytic solution of electrostatic potential is available. Then, we report results on proteins of various sizes for the 
computation of electrostatic solvation free energy and binding energies. Throughout the section, we use the notation MIB 
to represent results from the original matched interface and boundary method with three-component regularization [10,21]
to solve the PB equation. The original MIB PB package is available online through a web server at http :/ /weilab .math .msu .
edu /MIBPB/. The new MIB method based on the two-component regularization will be denoted as the rMIB scheme. The 
binary versions of the rMIB algorithm on multiple platforms such as MacOS, Linux/Unix, and Windows, will be released on 
authors’ home pages. In all computations, the length is reported with an unit Å, the electrostatic potential uses the unit of 
kcal/mol/ec , and the electrostatic energy has the unit of kcal/mol.

3.1. Kirkwood sphere with analytical solutions

The PB equation has analytical solutions available only for simple geometry. Here we use analytic solution on a sphere 
to validate the accuracy of the proposed method in the following two cases. We computed both surface potential errors and 
solvation energy. To conveniently compare results from the MIB PB solver [21], the errors are reported in the form of the 
maximum error as

eφ = Ni
max
i=1

|φtrue(xi) − φnum(xi)|
where xi are all the grid points near the surface (also called irregular points in the MIB fashion), and φtrue and φnum are 
exact solution and the numerical solution by solving the PB equation. The exact solution is originally given from Kirkwood’s 
early work for the case including the stain layer and the dielectric layer. The closed form for centric charge and spheric 
harmonics for the dielectric layer only is obtained in [18].

Case I: single centered charge
The first case is on a spherical cavity with one centered charge. The parameters of the case are included in the caption of 
Table 1. Here we also reported results of the MIB PB solver [21] for comparison purpose. From Table 1, we can see both 
methods achieved quite similar results in surface potential and solvation energy. It is shown solid 2nd order convergence in 
surface potential error eφ . As far as the solvation energy Esol is concerned, the result obtained at coarse grid (e.g. h = 1.0) 
is very close to that at the fine grid (e.g. h = 1/16). The newly proposed two-component regularization (rMIB) is as accurate 
as the original three-component regularization (MIB).

We next investigate the capability of the current method in solving the nonlinear Poisson–Boltzmann equation. The 
configuration of the nonlinear PB equation on a sphere with analytical solution is based on the reference [22] as

φ(r) =

⎧⎪⎪⎨
⎪⎪⎩

1

εR
− 1

R
+ 1

||r|| ||r|| < R,

1

ε||r|| ||r|| > R.

(47)

ρ(r) =
⎧⎨
⎩

4πδ(r) ||r|| < R,

κ̄2 sinh(
1

ε||r|| ) ||r|| > R,
(48)

where ε = ε+/ε− and R is the radius of the sphere. By defining the source term ρ of Eq. (1) according to Eq. (48), it 
can be verified that the solution in Eq. (47) satisfies Eq. (1) as well as the interface jump conditions in Eq. (2). Note that 
there are both singularity and non-smoothness involved in the present analytical solution. The singularity is from the source 
term as seen in Eq. (48) and the non-smoothness is due to the interface jump conditions in Eq. (2). Both situations could 
significantly reduce the accuracy of the spatial discretization numerically if they were not properly treated. In our study of 
the spherical case, the chosen sphere has radius R = 2Å with one centered charge of 1ec .

http://weilab.math.msu.edu/MIBPB/
http://weilab.math.msu.edu/MIBPB/
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Table 2
Solving the nonlinear PB equation on a spherical 
cavity with a centered charge: ε+ = 80, ε− = 1, 
κ = 1, and spherical radius r = 2. Centered charge 
is located at (0, 0, 0) with unit charge ec .

h eφ ord. Esol

1 1.18e-3 −81.8928
1/2 3.23e-4 1.87 −81.9687
1/4 8.76e-5 1.88 −81.9784
1/8 2.35e-5 1.90 −81.9799
1/16 6.20e-6 1.92 −81.9801

Table 3
Solving PB equation and Poisson equation on a spherical cavity with six off-centered charges: spherical radius r = 2, ε+ = 80, ε− = 1, κ = 1 for PB 
equation, and κ = 0 for Poisson equation. Unit charges ec are located at (0.2, 0.2, 0.2), (0.5, 0.5, 0.5), (0.8, 0.8, 0.8), (−0.2, 0.2, −0.2), (0.5, −0.5, 0.5), 
(−0.8, −0.8, −0.8).

h Poisson equation PB equation

MIB rMIB MIB rMIB

eφ ord. Esol eφ ord. Esol eφ ord. Esol eφ ord. Esol

1 3.9e-2 −3175.6 3.1e-2 −3181.4 3.8e-2 −3202.5 3.0e-2 −3209.0
1/2 1.1e-2 1.9 −3136.2 8.2e-3 1.9 −3137.7 1.1e-2 1.8 −3161.8 8.5e-3 1.8 −3163.3
1/4 1.6e-3 2.8 −3121.8 1.1e-3 2.9 −3122.1 1.7e-3 2.7 −3147.5 1.2e-3 2.9 −3147.8
1/8 4.6e-4 1.8 −3123.7 3.3e-4 1.7 −3123.7 4.8e-4 1.8 −3149.5 3.5e-4 1.7 −3149.5
1/16 9.0e-5 2.3 −3124.2 9.4e-5 1.8 −3124.2 9.8e-5 2.3 −3150.0 8.6e-5 2.0 −3150.0

Similarly, the detail of the parameters is included in the caption of Table 2. The configuration of the problem leads to 
identical solution as the linear case while the nonlinear challenge is well kept. The results in Table 2 show nearly 2nd order 
convergence in surface potential and similar results in solvation energy, indicating the nonlinearity of the PB equation is 
adequately addressed.

Case II: six eccentric charges
The next case investigates a more complicated situation on the spherical cavity in which six eccentric charges are dis-
tributed. The analytical solution is still available but in the forms of spherical harmonics [18,31]. The numerical results in 
Table 3 again demonstrate the similar accuracy of both MIB and rMIB in achieving second order convergence on surface 
potentials. Note the solvation energy results show more variation between values from coarse grid (h = 1, h = 1/2) and 
values from fine grid (h = 1/4, h = 1/8, h = 1/16) due to the interaction of charge locations and the interface. A special 
treatment discussed in [41] can improve the accuracy reduction caused by the interface-charge interaction.

3.2. Electrostatics on Proteins

Next we solved the PB equation on proteins, which can be used to validate the accuracy and efficiency of the method 
on complex geometry and change distribution. For simulation on proteins, the molecular surface is generated by MSMS [43]
and the partial charges for each atoms are assigned by CHARMM22 force field [37].

Case 1: Solvation energy computation for 24 proteins
For tests on proteins we first solve PB equation and compute solvation energy on a collection of 24 proteins as in [21]. 
The purpose of this test is to compare the accuracy and efficiency between MIB and rMIB PB solvers. The point we try to 
make is that rMIB obtain the same level of accuracy as MIB while it has improved efficiency since the work for solving a 
boundary value problem and some related interpolations is circumvented.

The solvation energies of the 24 proteins computed by MIB and rMIB at different mesh sizes are reported in Table 4
ordered by increased radius of gyration. With a glimpse, we could see that the results from both methods are consistent in 
two aspects: (1) at finest grid h = 0.25, the values from both methods are almost identical; (2) for both methods, when h
varies from 1.0, 0.5, to 0.25, the results converge to the finest mash h = 0.25.

To better illustrate the consistency in accuracy of both methods, we plot all the solvation energies in Fig. 2(a). It can 
be seen that for both methods at various meshes, the values are very close to each other. To further show the difference 
of both methods at various meshes, we use the result of MIB at h = 0.25 as reference to compute the difference of the 
solvation energies by subtracting the reference. The results are shown in Fig. 2(b). In this figure, we can see result of rMIB 
at h = 0.25 (solid blue line with square) is almost the same as the reference thus it looks like a horizontal line across 0 
values. Both methods converge to the result at the finest mesh h = 0.25. Result from rMIB at h = 1.0 (blue dashdot with 
square) is slightly better than that from MIB at h = 1.0 (red dashdot with circle), while result from MIB at h = 0.5 (red dash 
with circle) is slightly better than that from rMIB at h = 0.5 (red dash with square). Thus as far as accuracy is concerned, 
MIB and rMIB are similar.
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Table 4
Solving PB equation on a collection of 24 proteins with various sizes: ε+ = 80, ε− = 1, κ = 1.

PDB MIB rMIB

h = 1 h = 0.5 h = 0.25 h = 1 h = 0.5 h = 0.25

1ajj −1145.01 −1140.56 −1140.84 −1137.40 −1139.48 −1140.58
2erl −967.93 −952.80 −953.23 −965.87 −952.36 −953.06
1cbn −309.96 −303.90 −304.11 −307.72 −303.33 −304.00
1vii −915.63 −903.13 −904.52 −910.68 −902.31 −903.62
1fca −1219.89 −1205.04 −1205.69 −1216.82 −1204.44 −1205.51
1bbl −998.34 −988.56 −989.32 −994.16 −988.40 −989.09
2pde −826.65 −822.92 −823.19 −818.01 −820.97 −822.88
1sh1 −757.41 −755.11 −754.80 −749.60 −753.99 −754.50
1vjw −1254.76 −1241.67 −1242.26 −1251.02 −1241.07 −1242.05
1uxc −1159.02 −1140.56 −1141.76 −1154.21 −1139.25 −1141.43
1ptq −897.99 −874.38 −874.96 −893.86 −873.32 −874.71
1bor −859.47 −854.41 −855.23 −854.12 −853.47 −855.01
1fxd −3331.79 −3322.19 −3322.67 −3326.78 −3321.39 −3322.43
1r69 −1111.76 −1089.52 −1090.71 −1106.88 −1088.62 −1090.43
1mbg −1372.82 −1354.04 −1354.91 −1370.14 −1353.31 −1354.68
1bpi −1326.42 −1305.13 −1306.56 −1322.33 −1304.37 −1306.30
1hpt −827.18 −812.49 −814.62 −825.00 −811.56 −814.37
451c −1030.99 −1027.21 −1027.79 −1024.07 −1025.66 −1027.45
1svr −1743.19 −1712.55 −1713.71 −1733.97 −1711.11 −1713.28
1frd −2892.23 −2864.26 −2866.77 −2886.99 −2862.50 −2866.30
1a2s −1933.93 −1922.23 −1923.12 −1929.74 −1921.20 −1923.23
1neq −1767.05 −1732.89 −1735.18 −1759.10 −1731.71 −1734.75
1a63 −2419.16 −2377.39 −2378.95 −2406.88 −2374.41 −2378.26
1a7m −2196.79 −2162.70 −2164.20 −2181.92 −2160.34 −2163.61

Fig. 2. Solving PB equation on a collection of 24 proteins with various sizes: ε+ = 80, ε− = 1, κ = 1: (a) solvation energy; (b) differences of salvation 
energy adjusted by solvation energy computed with MIB at fine grid h = 0.25; (c) number of iteration for the bi-conjugate iterative solver; (d) CPU time vs 
number of unknowns. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Surface potential plotting of antibacterial protein RegIII lectin (4mth) after solving PB equations; κ = 1 for PB equations, ε− = 1, ε+ = 80; (a) Poisson 
equation, (b) linear PB equation, (c) nonlinear PB equation. (For interpretation of the references to color in this figure legend, the reader is referred to the 
web version of this article.)

We recorded the number of unknowns, number of iterations, and CPU time for all simulations. To save space, we did 
not list all the values in table but plot the results in two sub-figures. In Fig. 2(c), the number of iteration in solving the 
regularized PB equation is depicted for both methods and 24 proteins. It can be seen that solving PB equation with rMIB 
method has less number of iterations than with MIB method. Fig. 2(d) shows the CPU time comparison against number of 
unknowns for all proteins and all mesh sizes. For both MIB methods, the CPU time increases with respect to the number of 
unknowns, with a constant slope in loglog scale. We can also see that result from rMIB at various mesh size has obviously 
shortened CPU time compared with that from MIB. Quantitatively, rMIB achieves approximately 15–20% CPU time reduction 
while maintain the same level of accuracy. It worths mentioning the numerical implementation of rMIB is much more 
convenient than that of MIB.

Case 2: Surface potential study of protein 4mth[40]
This test case studies the surface potential of a protein after solving the PB equation. The protein we select here is RegIII 
lectin (PDB: 4mth) reported by Mukherjee et al. [40]. RegIII lectins, as antibacterial proteins, recognize their bacterial tar-
gets by binding peptidoglycan carbohydrate. The publication [40] revealed that the mechanistic basis for RegIII bactericidal 
activity is to bind membrane phospholipids and kill bacteria by forming a hexameric membrane-permeabilizing oligomeric 
pore.

Fig. 3 shows the surface potential of RegIII lectin by solving Poisson equation (a), linear PB equation (b), and Nonlinear 
PB equation (c). Among all three sub-plots, we can see that Fig. 3(a) has the much more obvious red-blue contrast than 
that from Fig. 3(b)(c) because Poisson model does not have any screening effects caused by mobile ions while the PB 
model does. Figs. 3(b) and 3(c) are almost the same because the electrostatic potential is small for the given κ . Note 
the sinh φ ≈ φ for small φ and the boundary condition as given in Eq. (3) leads to small value of φ, and the Boltzmann 
term has nonzero values only outside the biomolecule. For reference, the electrostatic solvation energies are −2130.7835, 
−2161.6229, −2161.6231 kcal/mol for Poisson, Linear PB, and Nonlinear PB equations respectively. The fact that the energies 
did not vary very much explains why the surface potentials in Fig. 3(a–c) are similar in pattern.

Case 3: Binding energy of BIV Tat Protein and BIV TAR RNA (PDB: 2a9x) [33]
We use this case to demonstrate the ability of rMIB to compute the binding energy between biomolecules. The biomolecules 
we choose are the BIV TAR RNA and BIV Tat Protein [33] in HIV Viral replication. The binding of the protein to the RNA 
plays a significant role in viral transcription and antiviral drug-design and in seeking drug like molecule to inhibit the 
RNA-protein interaction. The work conducted by Leeper et al. [33] demonstrated that the cyclic peptide bound BIV TAR RNA 
with an affinity comparable to that of the RNA-binding domain of the Tat protein and inhibited protein binding to the RNA. 
Here we can use rMIB to compute the binding energy between the protein and RNA thus potentially provide important 
reference for the cyclic peptide related drug design.

We computed the binding energy between BIV Tat Protein and BIV TAR RNA at different mesh size as reported in 
Table 5. The detail of the configuration is included in the caption of the table. From the table, we can see the solvation 
energy and finally the binding energy computed are very consistent at different meshes, which indicates that even at mesh 
size as coarse as h = 1, the numerical results are quite reliable. We also plot the surface potential as in the previous test 
case for the involved biomolecules in Fig. 4. Fig. 4(a) and (b) are surface potential of RNA and protein respectively, and 
(c) is the surface potential of the complex. The helical structure of RNA can still be seen in (a) even on the molecular 
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Table 5
Solvation energy and binding energy of 2a9x: ε+ = 80, ε− = 1, κ = 0.1257 (I =
0.15 mol/L); the Coulombic energy of the complex, protein, and RNA are Ecomplex

coul =
−30530.79 kcal/mol, Eprotein

coul = −6008.01 kcal/mol, and ERNA
coul = −20807.43 kcal/mol

respectively.

h Esol (complex) Esol (protein) Esol (DNA) �Esol �Ebind

1 −5816.38 −1021.94 −8893.39 4098.94 383.60
1/2 −5821.22 −1025.86 −8898.54 4103.18 387.84
1/4 −5823.39 −1026.27 −8900.52 4103.40 388.05

Fig. 4. Surface potential plot of the 2a9x: (a) RNA segment; (b) protein; (c) the RNA segment bound with the protein; (d) the opposite side (contacting 
surface in binding) of the protein. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

surface. Figure (d) is the opposite side of the protein, which binds to the RNA. The potential plot shows complimentary of 
electrostatics (red-blue) and geometry (concave up-down).
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4. Conclusion

Inspired by the original idea of charge singularity regularization from [21] and [8], the present work provides a novel 
regularization scheme, which combines the efficiency of two-component regularization approaches with the accuracy of 
three-component methods. With singular component being analytically represented by the Green’s function, a new matched 
interface and boundary (MIB) finite difference algorithm is developed for solving both linear and nonlinear PB equations. 
Compared with the existing MIB Poisson–Boltzmann (PB) solver based on a three-component regularization, the present 
algorithm is simpler, easier to implement, and faster, while maintains the same second order accuracy. In particular, our 
new algorithm circumvents the work of solving a boundary value Poisson equation inside the molecular interface and its 
related interface jump conditions computation for the regularized PB equation. Our numerical results demonstrate the solid 
second order accuracy as well as the improved efficiency on Kirkwood sphere case in which the analytical solutions are 
available. We used the newly developed two-component MIB PB solver to compute the solvation energy of a series of 24 
proteins, resolve the electrostatic surface potential of a RegIII lectin protein, and calculate the binding energy between BIV 
Tat Protein and BIV TAR RNA. These numerical results further validate the present method.

In comparison with the existing regularization approaches [8,11,12,21,25,45,53], our new scheme maintains the same 
accuracy level as the commonly used three-component methods [12,21], while enjoying the efficiency of two-component 
methods [8,11,53] by solving only one partial differential equation (PDE). A subtle issue here is that the proposed approach 
defines a boundary value problem (BVP) with a discontinuous solution across the solute-solvent boundary, whereas the 
existing three-component methods [12,21,25,45] have continuous solutions. Numerically, a discontinuous BVP is not neces-
sarily more difficult to solve. This actually depends on the underlying spacial discretization method. If a finite difference 
interface method, such as the MIB scheme, is used, a discontinuous BVP can be simply handled as in a continuous BVP case. 
This is essentially why the present two-component rMIB method outperforms the three-component MIB method [21] in all 
aspects.

However, if a finite element method (FEM) is adopted for spatial discretization, the situation could be different. For 
solving a discontinuous BVP, some advanced FEMs, such as discontinuous Galerkin (DG) [15], have to be employed. Being 
well studied in the literature, the DG method has advantages over the conventional FEM for elliptic interface problems [38,
39], but may require more degree of freedoms in computation. If one prefers to the continuous FEM, the three-component 
regularizations [12,21,25,45] are more suitable than the proposed two-component method. In particular, the regularization 
scheme of Ref. [45] could be a better choice, because of a continuous BVP and special designs for FEM.

In the future, we will take advantage of the reduced complexity to further attack the challenging problem of computing 
the electrostatic field and forces for molecular dynamics simulation under the MIB framework [20].
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