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Abstract

Let z = x + iy ∈ H := {z = x + iy ∈ C : y > 0} and θ(s; z) =
∑

(m,n)∈Z2 e−s π
y |mz+n|2 be the theta function associatedwith the lattice� = Z⊕zZ.

In this paper we consider minimization problems

min
H

θ

(

2; z + 1

2

)

+ ρθ(1; z), ρ ∈ [0,∞),

min
H

θ

(

1; z + 1

2

)

+ ρθ(2; z), ρ ∈ [0,∞),

(0.1)

where the parameter ρ ∈ [0,∞) represents the competition of two intertwining
lattices, and the particular selection of the parameters s = 1, 2 is determined by
the physical model, which can be generalized by our strategy and method proposed
here. We find that as ρ varies, the optimal lattices admit a novel pattern: they move
from rectangular (the ratio of long and short sides changes from

√
3 to 1 continu-

ously), square and rhombus (the angle changes from π/2 to π/3 continuously) to
hexagonal continuously; geometrically, up to an invariant group (a subgroup of the
classical modular group), they move continuously on a special curve; furthermore,
there exists a closed interval of ρ such that the optimal lattices is always a square
lattice. This is the first, novel and also the complete result on the minimizer prob-
lem for theta functions with parameter ρ. This is in sharp contrast to optimal lattice
shapes for a single theta function (ρ = ∞ case), for which the hexagonal lattice
prevails. As a consequence, we give a partial and positive answer to optimal lattice
arrangements of vortices in competing systems of Bose–Einstein condensates as
conjectured (and numerically and experimentally verified) byMueller andHo (Phys
Rev Lett 88:180403, 2002); this is the first progress on the Mueller–Ho conjecture.
Lastly, we mention that the strategy and method we propose here is general, and
can be used in much more general minimization problems on the lattices.
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1. Introduction and Statement of Main Results

Let z ∈ H := {z = x + iy ∈ C : y > 0} and � =
√

1
y

(
Z ⊕ zZ

)
with area of

unit cell is 1 be the lattice in R2 parameterized by z. The theta function associated
with the lattice � is defined as

θ(s;�) :=
∑

P∈�

e−πs|P|2 .

By � =
√

1
y

(
Z ⊕ zZ

)
, one has

θ(s; z) := θ(s;�) =
∑

(m,n)∈Z2

e−s π
y |mz+n|2

. (1.1)

In 1988, Montgomery [28] proved the following celebrated result:

Theorem 1.1. For all s > 0 and z ∈ H,

Minima θ(s; z)z∈H = z0, (1.2)

where z0 = 1
2 + i

√
3
2 (the triangular lattice, or called hexagonal lattice is the lattice

A2 = Z⊕ z0Z.). Equality holds if and only if z = z0 (up to the group G1 [see (3.2),
Section 3)].

For the higher dimensional cases, the corresponding minimization problems on
lattices was first investigated by Sarnak and Strombergsson [30] and recently by
Cohn et al. [12,13]. For relations with sphere packing problems, see Viazovska [34]
and Cohn et al. [12] and the references therein. We mention that minimization
problems forDedekind eta function (equivalent to the theta function (1.1) viaMellin
transform) also arise in the extremal determinants of Laplace–Beltrami Operators.
See Osgood et al. [27], Faulhuber [16], Bétermin and Sandier [3], and the reference
therein.

The celebrated Theorem 1.1 laid the foundations for many optimal lattice prob-
lems in number theory and has been frequently used in applied mathematical
and physical models such as crystallizations of particle interactions (Blanc and
Lewin [10]; Bétermin [5,6]; Bétermin and Zhang [4]), Ginzburg–Landau theory
in superconductors (Abrikosov [1]; Sandier and Serfaty [31,32], Serfaty [33]),
Ohta–Kawasaki models in di-block copolymers (Chen and Oshita [11]; Goldman
et al. [17]; Ren and Wei [29]), minimal frame operator norms (Faulhuber [15]) and
many others. The related minimization of theta and eta functions on lattices has ap-
plication to Gross–Pitaevskii theory in superfluids or Bose–Einstein condensates,
Ohta–Kawasaki models triblock copolymers (Luo et al. [24]) and many others.

In this paper, we consider a minimization problem with sum of two theta func-
tions, which represent two intertwining lattices, one lattice shifted by the center of
the other lattice; See Fig. 1 and the physical explanation in the next section.

Letρ > 0denote the relative strengthof the two lattices.Consider the functional

W1,ρ(z) := θ

(

2; z + 1

2

)

+ ρθ(1; z). (1.3)
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Fig. 1. Two lattices with centers at the lattice points and the half lattice points

It is easy to see that W1,ρ(z) is invariant under the group (see Section 3)

G2 : the group generated by z �→ −1

z
, z �→ z + 2, z �→ −z. (1.4)

The new minimization problem we consider is the following:

min
z∈H W1,ρ(z), ρ ∈ [0,∞). (1.5)

Our first main result is the following theorem which gives a complete charac-
terization of the minimization problem (1.5), as ρ varies:

Theorem 1.2. The minimization problem (1.5) admits a unique minimizer z1,ρ
which moves continuously on a special curve as the parameter ρ varies (up to
the group G2). The trajectory curve of the minimizer, denoted by �e (see Fig. 2), is
given by

�e := �ea ∪ �eb,

�ea := {z : x = 0, 1 � y �
√
3},

�eb :=
{

z : |z| = 1, 0 � x <
1

2

}

.

(1.6)

More precisely, there exist two thresholdsσ1,a = 0.04016 · · · < σ1,b = 0.83972 · · ·
such that

(1) if ρ varies in [0, σ1,a], the minimizer z1,ρ moves from
√
3i to i along the vertical

line segment �ea correspondingly;
(2) if ρ ∈ [σ1,a, σ1,b], the minimizer z1,ρ stays fixed on the corner of the curve �e,

that is,

z1,ρ ≡ i, if ρ ∈ [σ1,a, σ1,b];

(3) if ρ varies in [σ1,b,∞), the minimizer z1,ρ moves from i to 1
2 + i

√
3
2 along the

unit arc �eb. Moreover

as ρ → ∞, z1,ρ → 1

2
+ i

√
3

2
from left hand side of �eb.
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Fig. 2. The curve �e

Remark 1.1. In [24], with X. Ren, we studied another minimization problem:

min
z∈H −

(

(1 − b)

(
1

2
log(

√
y|η(z)|2)

))

+ b

(
1

2
log

(
√

y

∣
∣
∣
∣η

(
z + 1

2

)∣
∣
∣
∣

2
))

,

z = x + iy, b ∈ [0, 1],
(1.7)

where η is the Dedekind eta function

η(z) = e
π
3 π i

∞∏

n=1

(1 − e2πnzi )4. (1.8)

When b = 0, this is the minimization problem studied by Chen and Oshita [11] and
Sandier and Serfaty [32]. While Chen and Oshita used analytical method to prove
that the triangular lattice is the optimal, Sandier and Serfaty made use of a relation
between theDedekind eta function and theEpstein zeta function (Mellin transform),
and then Theorem 1.1 to arrive at the same conclusion. When 0 < b < 1, we have
showed a similar transition phenomenon from rectangle lattice to hexagonal lattice
to Theorem 1.2 in [24] for the functional in (1.7).

We also consider another minimization problem, which can be viewed as a
“conjugate” problem to (1.5):

min
z∈H W2,ρ(z), ρ ∈ [0,∞),

where W2,ρ(z) := θ

(

1; z + 1

2

)

+ ρθ(2; z).
(1.9)

The precise relation betweenW1,ρ andW2,ρ can be found in Lemma 3.3. The
minimizers of (1.9) can be characterized as follows:
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Theorem 1.3. The minimization problem (1.9) admits a unique minimizer z2,ρ
which lies on the curve �e (1.6) (up to the groupG2 (1.4)). There exist two thresholds
σ2,a = 1.190861337 · · · , σ2,b = 24.89618074 · · · such that

(1) if ρ varies from left to right on [0, σ2,a], the minimizer z2,ρ moves from
√
3i to

i on the vertical line segment �ea;
(2) if ρ ∈ [σ2,a, σ2,b], the minimizer z2,ρ stays fixed on the corner of curve (1.6),

that is z2,ρ ≡ i ;
(3) if ρ moves from left to right on [σ2,a,∞), the minimizer z2,ρ moves from left to

right along the unit curve �eb. Furthermore,

as ρ → ∞, z2,ρ → 1

2
+ i

√
3

2
from left hand side of �eb.

Remark 1.2. The values of σ1,a, σ1,b, σ2,a and σ2,b are given explicitly in terms of
Jacobi Theta functions (See Theorem 1.4 below.)

Remark 1.3. We found that the minimizers of the minimization problems (1.5) and
(1.9) admit a novel pattern: they bond together in a very special way and form a nice
geometric shape and move with the parameter in a monotone way. It is remarkable
that in a suitable range of the parameter, the minimizer is always a square lattice.
The optimal lattices have richer structures than that of Theorem 1.1.

There are somehidden connections revealed later between the twominimization
problems (1.5) and (1.9). They are like “a pair” as shown in Table 1 below. The
following theorem gives more qualitative behaviors of minimizers in Theorems 1.2
and 1.3, and is our major theorem of this paper:

Theorem 1.4. We state the almost exact formulas on the minimizers of (1.5) and
(1.9) for ρ ∈ [0,∞).

(1) The minima of W j,ρ(z), j = 1, 2 is unique for each ρ ∈ [0,∞) up to the group
G2. Furthermore,

Minimaz∈HW1,ρ(z) =

⎧
⎪⎪⎨

⎪⎪⎩

iy1,ρ, if ρ ∈ [0, ρ1),
i, if ρ ∈ [ρ1, 1/ρ2],
eiθ2,ρ , θ2,ρ = arctan 2y2,1/ρ

y22,1/ρ−1
, if ρ ∈ (1/ρ2,∞).

(1.10)

and

Minimaz∈HW2,ρ(z) =

⎧
⎪⎨

⎪⎩

iy2,ρ, if ρ ∈ [0, ρ2),
i, if ρ ∈ [ρ2, 1/ρ1],
eiθ1,ρ , θ1,ρ = arctan 2y1,1/ρ

y21,1/ρ−1
, if ρ ∈ (1/ρ1,∞).

(1.11)
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Here y1,ρ, y2,ρ ∈ (1,
√
3] for ρ ∈ [0, ρ1) and ρ ∈ [0, ρ2) respectively,

θ1,ρ, θ2,ρ ∈ (π
3 , π

2 ) for ρ ∈ (1/ρ1,∞) and ρ ∈ (1/ρ2,∞) respectively. For
the qualitative behaviors of y j,ρ, θ j,ρ, j = 1, 2, we have

d

dρ
y j,ρ < 0, for ρ ∈ [0, ρ j ); d

dρ
θ j,ρ < 0, for ρ ∈ (1/ρ j ,∞).

See more on this theorem in (3).
(2) ρ1, ρ2 in (1.10) and (1.11), respectively, are determined explicitly by

ρ1 = −Y ′′(1)
X ′′(1)

, ρ2 = −1 − B′′(1)
A′′(1)

.

Here

X (y) : = ϑ3(y)ϑ3

(
1

y

)

, Y(y) := 2

(

ϑ3(4y)ϑ3

(
4

y

)

+ ϑ2(4y)ϑ2

(
4

y

))

A(y) : = √
2ϑ3(2y)ϑ3(

2

y
), B(y) := √

2ϑ2(2y)ϑ2(
2

y
)

(1.12)

and the Jacobi theta functions are defined as

ϑ2(y) =
∑

n∈Z
e−π(n− 1

2 )2 y, ϑ3(y) =
∑

n∈Z
e−πn2 y, ϑ4(y) =

∑

n∈Z
(−1)ne−πn2 y .

(1.13)

The thresholds in Theorems 1.2 and 1.3 are given by

σ1,a = 1

σ2,b
= ρ1, σ1,b = 1

σ2,a
= 1

ρ2
,

(3) The y1,1/ρ and y2,1/ρ in (1.10) and (1.11) are implicitly determined by

y1,1/ρ is the unique solution of
Y ′(y)

X ′(y)
+ 1/ρ = 0, y ∈ (1,

√
3]

y2,1/ρ is the unique solution of 1 + B′(y)

A′(y)
+ 1/ρ = 0, y ∈ (1,

√
3].
(1.14)

Furthermore, it holds that

d

dρ
y1,ρ < 0,∀ρ ∈ [0, ρ1] and

d

dρ
y2,ρ < 0,∀ρ ∈ [0, ρ2].

The existence and uniqueness of y1,1/ρ, y2,1/ρ in the Theorems 1.2 and 1.3 are
consequences of the following theoremwhose proof will be given by Theorems 6.1
and 7.1 . (Here X (y),Y(y) and A(y),B(y) are defined in (1.12).)

Theorem 1.5. The critical points and monotonicity of quotients of derivatives.

• The function y �→ Y ′(y)
X ′(y)

, y > 0 has only one critical point at y = 1, and it
holds that

(Y ′(y)

X ′(y)

)′
< 0, y ∈ (0, 1) and

(Y ′(y)

X ′(y)

)′
> 0, y ∈ (1,∞).
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• The function y �→ B′(y)
A′(y)

, y > 0 has only one critical point at y = 1, and it
holds that

(B′(y)

A′(y)

)′
< 0, y ∈ (0, 1) and

(B′(y)

A′(y)

)′
> 0, y ∈ (1,∞).

Theorem 1.2 has direct applications to theMueller–Ho functional andMueller–
Ho Conjecture in vortices arrangements for competing systems of Bose-Einstein
condensates, as we explain in the next section.

We should also point out that, our strategy and method in proving Theorems 1.2
and 1.4 can be used in solving more general minimization problems

min
H

θ

(

2t; z + 1

2

)

+ ρθ(t; z), ρ ∈ [0,∞),

min
H

θ

(

t; z + 1

2

)

+ ρθ(2t; z), ρ ∈ [0,∞),

(1.15)

with arbitrary t > 0. We have a pattern similar to Theorem 1.4 for the problem
(1.15).

It is natural to consider the following pair of minimization problems from the
point of view pure mathematical interest:

min
H

θ

(

s; z + 1

2

)

+ ρθ(t; z), ρ ∈ [0,∞),

min
H

θ

(

t; z + 1

2

)

+ ρθ(s; z), ρ ∈ [0,∞),

(1.16)

with arbitrary s, t > 0.
It turns out that the minimization problem (1.15) is the critical case of problem

(1.16) in the sense of the parameters s, t to have the completely continuous phase
transitions as found in Theorem 1.4.

The minimization results of problems (1.15) and (1.16) can be generalized
directly to the sum of two completely monotone functions on the lattices.

These are left to further work.

2. Applications to Mueller–Ho Conjecture

Aswehavementioned inSection 1, the problemoffinding optimal lattice shapes
arises in many physical models. Besides those examples mentioned in Section 1,
other examples is the so-called vortices in Bose–Einstein condensates. Vortices in
Bose–Einstein condensates are also called topological defects, correspond to a zero
of the order parameter with a circulation of the phase. When they get numerous,
these vortices arrange themselves on a lattice. In fact, in rotatingBose–Einstein con-
densates (BEC), vortices were first observed in two-component BEC’s (Matthews
et al. [25]); it is observed experimentally that the shape of the lattice can be either
hexagonal or square depending on the rotational velocity of the condensate. Since
then, following the pioneering work of Mueller and Ho [26], many authors have
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investigated the lattice shape in two component BEC’s and for instance Kasamatsu
et al. [20,21]; related works include Keeli and Oktel [19] who numerically calcu-
late the elastic coefficients of the lattice. In Kuokanportti et al. [22], the authors
investigate the case of different masses and attractive interactions.

The ground state of a two-component condensate is well described by a Gross-
Pitaevskii energy depending on the wave functions of each component which are
coupled by an interaction term. The construction of the Bose–Einstein condensates
with large number of vortices was deduced in Ho [18] (one-component case) and
Mueller and Ho [26] (two-component case), with the potential energy given by

V = 1

2
g1|
1|4 + 1

2
g2|
2|4 + g12|
1|2|
2|2,

where g12 represents the competing strength between the two components of Bose
gas. We omit the details of the construction of the model here. In Mueller and
Ho [26] they have reduced the minimization problems on lattices to the minimiza-
tion problems for the Mueller–Ho functional

min
z∈H,(a,b)

EM H (z; a, b), α ∈ [−1, 1], where EM H (z) := θ(1; z) + αJ (z; a, b).

(2.1)

Here � =
√

1
y

(
Z ⊕ zZ

)
denotes the lattice of one-component Bose gas A,

and the theta function θ(1; z) (defined at (1.1)) represents the self-interaction
part of single component of A or B, that is, the so-called Abrikosov energy (See
Abrikosov [1]). The functional

J (z; a, b) =
∑

(m,n)∈Z2

e− π
y |mz−n|2 cos(2π(ma + nb)) (2.2)

characterizes the competing strength of two-component A and B. α = g12√
g1g2

represents the strength of competition between two competing components A and
B. The vector (a, b) characterizes the relative position of the these lattice shape.
See Fig. 1 when (a, b)=( 12 ,

1
2 ).

Mathematically, byPoissonSummationFormula, the energy functionalJ (z; a, b)

is the energy of translated lattice by the vector {a, b}, namely

J (z; a, b) = θ(1;� + {a, b}). (2.3)

Here the lattice � is parameterized by � =
√

1
y

(
Z ⊕ zZ

)
. The formula (2.3) is

also pointed out in Mueller and Ho [26].
It is interesting to compare the two-component case with the single-component

case. In the latter system, energyminimization reduces tominimizing θ(1; z)whose
only local minimum is the triangular lattice, where z = z0 = ei π

3 and θ(1; z0) =
1.1596 (by Theorem 1.1); the square lattice z = i is a saddle point with θ(1; i) =
1.1803. For two-component case, the minimum of EM H (z; a, b) depends on the
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relative strength α and the relative position of the lattices, as conjectured byMueller
and Ho [26] (supported by numerical computations and experimental results).

Mueller–Ho Conjecture:For a two-componentBose gas, themost favorable lattice
minimizing θ(1; z) + αJ (z; a, b) are

(a) α < 0: the vortices of the two components coincidewith each other (a = b = 0)
to form a triangular lattice (z = ei π

3 ).
(b) 0 < α < 0.172: the vortex lattice in each component remains triangular.

However one lattice is displaced to the center of the triangle of the other a =
b = 1

3 . The lattice type (characterized by z = z0 = ei π
3 ) remains constant

within this interval.
(c) 0.172 < α < 0.373: (a, b) jumps from the center of the triangle (that is, half

of the unit cell) to the center of the rhombic unit cell a = b = 1
2 . The angle

jumps from 60o to 67.95o at α = 0.172, and increases continuously to 90o as α

increases to 0.372. As a result, the lattice shape type is no longer fixed and the
unit cell is rhombus. The modulus b

a , however, remains fixed across this region.
(d) 0.373 < α < 0.926: the two lattices are "mode locked" into a centered square

structure throughout the entire interval (z = i, a = b = 1
2 ).

(e) 0.926 < α < 1: the lattice type again varies continuously with interaction α.
Each component’s vortex lattice has a rectangular unit cell (angle= π

2 ) whose
aspect ratio |z| increases with α. At α = 1, the aspect ratio is

√
3.

Remark 2.1. Both Rb87 and Na23 have interaction parameters with the range (d),
that is, 0.373 < α < 0.926 (see Mueller and Ho [26] and the references therein).

For more on the vortex shape and Bose–Einstein condensates, including the
construction of theoretical models and numerical and experimental results, we refer
to [20,21,25] and the references therein. In [19] the authors considered Tkachenko
modes and verified the same numerical results as in Mueller–Ho Conjecture. It
seems that the Mueller–Ho conjecture is a universal phenomenon, as commented
by Bétermin [7] that “the same phenomenon in Mueller–Ho results is also expected
in other physical and biological models involving infinite lattices and competitive
interactions”. See also numerical computations in Bétermin et al. [9] for systems
with alternating charges ±1.

To study the minimizer of the Muller–Ho functional EM H (z; a, b) = θ(1; z) +
αJ (z; a, b) with respect to (z; a, b), we first need to identify the critical points of
EM H which satisfy

∇zθ(1; z) + α∇zJ (z; a, b) = 0, (2.4)

∇(a,b)J (z; a, b) = 0. (2.5)

To consider the global minimumof θ(1; z)+αJ (z; a, b), a necessary condition
is that (a, b)must be a minimum of J (z; a, b). Thus we first focus on critical point
equation (2.5).

For the function J (z; a, b) with respect to (a, b), one sees clearly that

J (z; a + 1, b) = J (z; a, b), J (z; a, b + 1) = J (z; a, b) (2.6)

J (z; 1 − a, 1 − b) = J (z; a, b). (2.7)
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Theperiodicity and symmetry imply that (a, b) �→ J (z; a, b)has four universal
critical points, which are denoted by

w0 := (0, 0), w1 :=
(
1

2
, 0

)

, w2 :=
(

0,
1

2

)

, w3 := w1 + w2 =
(
1

2
,
1

2

)

.(2.8)

We call “universal” here since they are independent of the lattice structures that is,
z. Clearly, the critical point w0 is the global maxima of J (z; a, b) with respect to
(a, b). For critical points w1, w2, w3, we have the following partial classification
result (the proof will be given in Section 9):

Lemma 2.1. Let z = iy, y > 0. It holds that

• w1, w2 are the saddle points of J (z; a, b) with respect to (a, b). Explicitly, the
Hessian at each point can be expressed by

D2 J (z; a, b) |{z=iy,(a,b)=w1} = 16π2ϑ3

(
1

y

)

ϑ ′
3

(
1

y

)

ϑ4(y)ϑ ′
4(y) < 0

D2 J (z; a, b) |{z=iy,(a,b)=w2} = 16π2ϑ3(y)ϑ ′
3(y)ϑ4

(
1

y

)

ϑ ′
4

(
1

y

)

< 0.

• w3 is the local minimum of J (z; a, b) with respect to (a, b). Explicitly, one has
the Hessian expression

D2 J (z; a, b) |{z=iy,(a,b)=w3} = 16π2ϑ4(y)ϑ ′
4(y)ϑ4

(
1

y

)

ϑ ′
4

(
1

y

)

> 0.

For (a, b) = (0, 0),J (z; 0, 0) = θ(1; z). Combining Theorem 1.1 and us-
ing the fact that w0 is the global maxima of J (z; a, b), we have the following
proposition which confirms the (a) part of Mueller–Ho Conjecture:

Proposition 2.1. For α ∈ [−1, 0], the minimizer of the functional EM H (z; a, b) =
θ(1; z) + αJ (z; a, b) is achieved at z0 = 1

2 + i
√
3
2 and (a, b) = (0, 0).

Besides the above 4 universal critical points, there may be other additional pair
critical points. (Note that by symmetry if (a, b) is a critical point then (1−a, 1−b)

is also a critical point.) We have

Lemma 2.2. If z = i , then (a, b) = ( 13 ,
1
3 ) is not a critical point of J (z; a, b);

while (a, b) = ( 13 ,
1
3 ) (and (a, b) = ( 23 ,

2
3 )) is a critical point of J (z; a, b) if

z = 1
2 + i

√
3
2 .

The proof of Lemma 2.2 will be given in “Appendix 1”.
On the critical point equation (2.5), the numerical simulation suggests the fol-

lowing conjecture:

Conjecture 2.1. The function J (z; a, b) with respect to the a, b has either 4 or 6
critical points depending on modulus of the tori z. Let �4(resp. �6) be the subset
of H which corresponds to tori z having four (resp. six) critical points. It holds that
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a : Alterative: either 4 or 6 critical points, that is,

H = �4 ∪ �6, �4 ∩ �6 = ∅.

b : Rectangular tori has only four critical points and the hexagonal one has six.

i ∈ {z |: Re(z) = 0, Im(z) > 0} ⊂ �4,
1

2
+ i

√
3

2
∈ �6.

c : Invariance:

z ∈ �4 ⇒ �(z) ∈ �4; z ∈ �6 ⇒ �(z) ∈ �6.

Here the modular group is

� := SL2(Z) = {
(

a b
c d

)

, ad − bc = 1, a, b, c, d ∈ Z}. (2.9)

Remark 2.2. This conjecture has some similarity to the discovery in Lin and Wang
[23], in which they showed surprisingly that the Green function on the
two-dimensional torus has either 3 or 5 critical points. Furthermore, once Con-
jecture (2.1) is proved, we can recover Lin–Wang’s Theorem ([23]).

In summary, we see that (a, b) = ( 13 ,
1
3 ) is not always a critical point of J (z; a, b)

for z ∈ H, while (a, b) = ( 12 ,
1
2 ) is always a critical point of J (z; a, b) for all

z ∈ H. Moreover (a, b) = ( 12 ,
1
2 ) is a local minimum at least for z = iy, y > 0.

When (a, b) = w3 = ( 12 ,
1
2 ) we can simplify the Mueller–Ho functional using

the following (whose proof will be given in Section 9):

Lemma 2.3.

J
(

z; 1
2
,
1

2

)

= 2θ

(

2,
z + 1

2

)

− θ(1; z).

As a consequence the Mueller–Ho functional becomes

EM H

(

z; 1
2
,
1

2

)

= (1 − α)θ(1; z) + 2αθ

(

2,
z + 1

2

)

. (2.10)

Applying Theorem 1.4 with ρ = 1−α
2α , we have the following:

Theorem 2.1. For the Mueller–Ho functional EM H (z; 1
2 ,

1
2 ), there exist thresholds

σa, σb ∈ (0, 1) such that

(A) For α ∈ [0, σa], the minimizer is rhombic lattice(eiθα ), and the angle increase
from π

3 to π
2 ;

(B) For α ∈ [σa, σb], the minimizer is square lattice;
(C) For α ∈ [σb, 1], the minimizer is rectangular lattice(iy1, 1−α

2α
) and the ratio of

long side and short side increases from 1 to
√
3.
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Table 1. Minimizers of EM H (z; 1
2 , 1

2 ): numerical aspect by the minimizer formulas (2.12)

values of α Lattice shape Values of α Lattice shape
α ∈ [0, σa] Rhombic lattice=eiθα α ∈ [σb, 1] Rectangular lattice=iy1, 1−α

2α
α = 0 θα = π

3 α = σb i
α = 0.05 θα = 1.083383631 · · · α = 0.93 i1.145857964 · · ·
α = 0.1 θα = 1.122437655 · · · α = 0.94 i1.280334718 · · ·
α = 0.15 θα = 1.165251963 · · · α = 0.95 i1.378964867 · · ·
α = 0.20 θα = 1.213239200 · · · α = 0.96 i1.463132141 · · ·
α = 0.25 θα = 1.268922810 · · · α = 0.97 i1.538538467 · · ·
α = 0.30 θα = 1.337831332 · · · α = 0.98 i1.607675336 · · ·
α = 0.35 θα = 1.439448210 · · · α = 0.99 i1.671897256 · · ·
α = σa θα = π

2 α = 1 i
√
3

(D) The thresholds σa and σb are determined by

σa = σ2,a

2 + σ2,a
= B′′(1) + A′′(1)

B′′(1) − A′′(1)
, σb = 1

1 + 2σ1,a
= X ′′(1)

X ′′(1) − 2Y ′′(1)
.

(2.11)

See A,B,X ,Y in (1.12). Within these relations, the approximate values with
arbitrary accuracy can be calculated,

σa = 0.3732155067 · · · , σb = 0.9256496973 · · · .

(E) An alternative expression of rhombic lattice,

zmin =
y2
2, 1−α

2α
− 1

y2
2, 1−α

2α
+ 1

+ i
2y2, 1−α

2α

y2
2, 1−α

2α
+ 1

= eiθα , θα = arctan

⎛

⎝
2y2, 1−α

2α

y2
2, 1−α

2α
− 1

⎞

⎠ ,

α ∈ (0, σa). (2.12)

Qualitatively, there has

d

dα
θα > 0, α ∈ (0, σa)

d

dα
y1, 1−α

2α
> 0, α ∈ (σb, 1).

(2.13)

Here y j, 1−α
2α

, j = 1, 2 are located precisely in (1.14).

To illustrate the pattern of the vortices shape, we calculate some particular
values by the theoretical analysis(minimizer formula (2.12)) in Table 1.

Proposition 2.1 and Theorem 2.1 give a partial answer to the (a), (c), (d) and (e)
part ofMueller–HoConjecture.We also locate the precise formulas of the numerical
thresholds in the Conjecture. Theorem 2.1 shows that as the competition strength
between the two Bose gases increases the lattice structures moves from hexagonal,
rhombus, square to rectangular. (See Figs. 3, 4).



Minima of Theta Functions 151

Fig. 3. The lattice shape predicted and drew by Mueller and Ho [26]

Fig. 4. Two-component Bose gas in lattices. First row from left to right: a rectangular lattice
and a square lattice. Second row from left to right: a rhombic lattice and a hexagonal lattice

Finally we discuss the (b) part of Mueller–Ho Conjecture. In the Mueller–Ho
Conjecture, the expected lattice structure when α is small is triangular lattice, and
the relative position of the two components A, B is characterized by (a, b) =
( 13 ,

1
3 ). To see this, there is a clear competition between θ(1; z) + αJ (z; 1

2 ,
1
2 ) and

θ(1; z) + αJ (z; 1
3 ,

1
3 ) when α is small. Thus the upper bound of α preserving the



152 Senping Luo & Juncheng Wei

triangular lattice structure is determined by

α0 := max
α∈[0,1]

{

α | θ

(

1; 1
2

+ i

√
3

2

)

+ αJ
(
1

2
+ i

√
3

2
; 1
3
,
1

3

)

� min
z∈H

(
θ(1; z) + αJ

(

z; 1
2
,
1

2
)

)}

.

(2.14)

To find α0, one first uses minz∈H
(
θ(1; z) + αJ (z;w3)

)
� θ(1; i) + αJ (i; 1

2 ,
1
2 )

to obtain a rough bound

α0 �
θ(1; i) − θ(1; 1

2 + i
√
3
2 )

J
(
1
2 + i

√
3
2 ; 1

2 ,
1
2

)
− J (

i; 1
2 ,

1
2

) := 0.2419435012 · · · . (2.15)

By Theorem 2.1, one deduces that

max
α∈[0,1]

{

α | θ

(

1; 1
2

+ i

√
3

2

)

+ αJ
(
1

2
+ i

√
3

2
; 1
3
,
1

3

)

�
(

θ(1; eiθα ) + αJ
(

eiθα ; 1
2
,
1

2

))}

.

(2.16)

In view of (2.15), the upper bound α0 satisfies the equation

θ

(

1; 1
2

+ i

√
3

2

)

+ αJ
(
1

2
+ i

√
3

2
; 1
3
,
1

3

)

= θ(1; eiθα ) + αJ
(

eiθα ; 1
2
,
1

2

)

.

(2.17)

Equation (2.17) gives the upper bound in (b) of Mueller–Ho Conjecture which is

α0 = 0.1726645 · · · , θα0 = 1.186248384 · · · . (2.18)

Remark 2.3. Several comments on Mueller–Ho conjecture are in order.

• The bounds 0.172, 0.373 and 0.926 are located exactly by the explicit or implicit
equation in (2.11) and (2.17).

• The case (a) in Mueller–Ho conjecture is confirmed by Proposition 2.1.
• The cases (c,d,e) in Mueller–Ho conjecture are confirmed by Theorem 2.1. All
the expressions have exact formulas by implicit variable determined by explicit
equations.

• The behaviors of lattice shapes varying with parameter α is proved in (E) of
Theorem 2.1.

• A complete proof Mueller–Ho conjecture is still needed. The Theorem 2.1
answers the main cases positively, however, it remains open to prove that the
minimizers of {I(z) + αJ (z; a, b)} admit only three possibilities, that is,
(1) (a, b) = (0, 0).
(2) (a, b) = ( 13 ,

1
3 ).
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(3) (a, b) = ( 12 ,
1
2 ).

In case (2), the corresponding z is 1
2 + i

√
3
2 . Cases (1), (3) are universal critical

points but have significant meaning.

Remark 2.4. (Alternative meaning of Theorem 2.1) TheTheorem2.1 serves to prove
Mueller—Ho conjecture firstly as seen in Remark 2.3. However, we would like to
point out, Theorem 2.1 can be seen as an independent Theorem to describe the
lattice structures. Recall that (a, b) ∈ [0, 1]2 which characterizes the relative dis-
placement between the two lattices corresponding to the two components. Assume
that the component has relative displacement (a, b) = ( 12 ,

1
2 )(vortices of one com-

ponent on the center of another), then lattice structures are completely classified
by Theorem 2.1.

In summary, we give the exact expressions and locate analytically the behav-
iors of the lattice shapes in Mueller–Ho conjecture. Our result is only a partial
result, however, we have a complete proof of Mueller–Ho Conjecture as long as
the conjecture on the critical points (Conjecture (2.1)) is proved.

The rest of the paper is organized as follows: in Section 3, we collect some
basic invariance properties of the functionals W1,ρ(z) and W2,ρ(z) and discuss
the intricate relations between these two functionals. In Section 4, we prove a
fundamental monotonicity property of the theta function θ(s; z+1

2 ). The conjugate
monotonicity ofW1,ρ(z) andW2,ρ(z) are established in Section 5. In Sects. 6 and
7, we classify the shape ofW1,ρ(z) andW2,ρ(z) on the y−axis for all ρ ∈ [0,∞)

respectively. In Section 8, we prove Theorems 1.2, 1.3 and 1.4 , the method of the
proof relies on the properties established in Sections 3–7. In Section 9, we prove
the properties on Mueller–Ho functional and Theorem 2.1.

In the remaining part of the paper we use the common notation
∑

m,n :=
∑

(m,n)∈Z2 so that the theta function becomes θ(s; z) = ∑
(m,n) e−sπ 1

y |mz+n|2 . We
also use the notation

π =
(

a b
c d

)

⇔ π(τ) = aτ + b

cτ + d
. (2.19)

3. Some Preliminaries

In this section we present some simple symmetries of the two theta functions
θ(s; z) and θ(s; z+1

2 ) and the associated fundamental domains. As a result we
establish the precise connection betweenW1,ρ(z) and W2,ρ(z).

Let H denote the upper half plane and � denote the modular group (defined at
(2.9)).

We use the following definition of fundamental domain which is slightly dif-
ferent from the classical definition (see [28]):

Definition 3.1. (page 108, [14]) The fundamental domain associated to group G is
a connected domain D satisfies that

• For any z ∈ H, there exists an element π ∈ G such that π(z) ∈ D;
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• Suppose z1, z2 ∈ D and π(z1) = z2 for some π ∈ G, then z1 = z2 and
π = ±I d.

By Definition 3.1, the fundamental domain associated to modular group � is

D� :=
{

z ∈ H : |z| > 1, −1

2
< x <

1

2

}

, (3.1)

which is open. Note that the fundamental domain can be open. (see [p. 30, [2]]).
Next we introduce another two groups related to the functionalsW1,ρ andW2,ρ .

The generators of these groups are given by

G1 : the group generated by τ �→ −1

τ
, τ �→ τ + 1, τ �→ −τ , (3.2)

G2 : the group generated by τ �→ −1

τ
, τ �→ τ + 2, τ �→ −τ . (3.3)

It is easy to see that the fundamental domains associated to group G j , j = 1, 2
denoted by DG1 ,DG2 are

DG1 :=
{

z ∈ H : |z| > 1, 0 < x <
1

2

}

(3.4)

DG2 := {z ∈ H : |z| > 1, 0 < x < 1} . (3.5)

Clearly we have that

G1 ⊇ G2, DG1 ⊆ DG2 .

As in [28], the fundamental domain for the single theta function θ(s; z) isDG1 .
As we will show in this section the fundamental domain for the sum of two theta
functions W1,ρ,W2,ρ is DG2 , which is larger. This leads to fundamental difficulty
in finding the minimizers.

The next lemma characterizes the basic symmetries of the theta functions θ(s; z)
and θ(s; z+1

2 ). The proof is trivial so we omit it.

Lemma 3.1. There are two invariant properties for θ(s; z), θ(s; z+1
2 ):

• For any s > 0, any γ ∈ G1 and z ∈ H, θ(s; γ (z)) = θ(s; z).
• For any s > 0, any γ ∈ G2 and z ∈ H, θ(s; γ (z)+1

2 ) = θ(s; z+1
2 ).

A corollary of Lemma 3.1 yields

Lemma 3.2. For any ρ ∈ R, γ ∈ G2 and z ∈ H,

W1,ρ(γ (z))=W1,ρ(z), W2,ρ(γ (z))=W2,ρ(z).

Next,we introduce thenonlinear connectionbetween the two functionalsW1,ρ (τ )

and W2,ρ(τ ).
Let w ∈ G2 be w : τ �→ τ−1

τ+1 and its the inverse be τ : w �→ 1+w
1−w

. We have
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Lemma 3.3.

θ

(

s; τ + 1

2

)

= θ(s;w), θ(s; τ) = θ

(

s; w + 1

2

)

. (3.6)

W1,ρ(τ ) = ρ · W2,1/ρ(w), W2,ρ(τ ) = ρ · W1,1/ρ(w). (3.7)

Or, equivalently,

W1,ρ(w) = ρ · W2,1/ρ(τ ), W2,ρ(w) = ρ · W1,1/ρ(τ ).

Proof. We check that θ(s; τ+1
2 ) = θ(s;

1+w
1−w

+1
2 ) = θ(s; 1

1−w
) = θ(s;w) since the

map w �→ 1
1−w

∈ G1. Similarly θ(s; w+1
2 ) = θ(s;

τ−1
τ+1+1

2 ) = θ(s; τ
τ+1 ) = θ(s; τ)

since the map τ �→ τ
1+τ

∈ G1. This proves (3.6), (3.7) and (3.8) follows from (3.6).
��

Lemma 3.3 builds a connection between the two functionals W1,ρ(τ ) and
W2,ρ(τ ) via a special element in G2. As an application of Lemma 3.3, we have
the following lemma which transfers the computations on unit circles to straight
lines:

Lemma 3.4. Suppose |w| = 1, w = w1 + iw2, w2 > 0. It holds that

∂

∂w1
Wp,ρ(w) = ρ

√
1 − w2

1

1 − w1

∂

∂τ2
Wq,1/ρ

⎛

⎝i

√
1 − w2

1

1 − w1

⎞

⎠

∂

∂w2
Wp,ρ(w) = −ρ

w1

1 − w1

∂

∂τ2
Wq,1/ρ

⎛

⎝i

√
1 − w2

1

1 − w1

⎞

⎠ ,

where p �= q ∈ {1, 2}.
Proof. Let τ := τ(w) = 1+w

1−w
. We use Lemma 3.3. Let τ = τ1 + iτ2, then

τ1 = 1 − w2
1 − w2

2

(1 − w1)2 + w2
2

, τ2 = 2w2

(1 − w1)2 + w2
2

, (3.8)

and

∂τ2

∂w1
= 4(1 − w1)w2

((1 − w1)2 + w2
2)

2
,

∂τ2

∂w2
= 2((1 − w1)

2 − w2
2)

((1 − w1)2 + w2
2)

2
. (3.9)

Differentiating the identities in Lemma 3.3, we get

∂

∂w j
Wp,ρ(w) = ρ

2∑

k=1

∂

∂τk
Wq,1/ρ(τ )

∂τk

∂w j
, j = 1, 2. (3.10)

On the other hand, for |w| = 1, w2 > 0, by (3.8) and (3.9)

τ1||w|=1,w2>0 = 0, τ2||w|=1,w2>0 =
√
1 − w2

1

1 − w1

(3.11)
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and

∂τ2

∂w1
||w|=1,w2>0 =

√
1 − w2

1

1 − w1
,

∂τ2

∂w2
||w|=1,w2>0 = − w1

1 − w1
. (3.12)

From Theorem 3.2, Wp,ρ(−τ) = Wp,ρ(τ ), p = 1, 2. It follows that

∂

∂τ1
Wp,ρ(iτ2) = 0, ∀τ2 > 0, p = 1, 2. (3.13)

Plugging (3.11), (3.12) and (3.13) into (3.10), one gets the result.
��

4. Monotonicity of θ
(
s; z+1

2

)

The main purpose of this section is to establish the monotonicity of the func-
tional θ(s; z+1

2 ) on its fundamental domain DG2 (defined at (3.3)), which is

Theorem 4.1. • For any s > 0, it holds that

∂

∂x
θ

(

s; z + 1

2

)

> 0, ∀ z ∈ DG2 .

• Or equivalently, via the map z �→ z+1
2 , for any s > 0,

∂

∂x
θ(s; z) < 0, ∀ z ∈ �C1 .

Here

�C1 := {z | 0 < x <
1

2
, y >

√
x − x2}.

Remark 4.1. In Lemma 1 of [28] Montgomery proved that

∂

∂x
θ(s; z) < 0, ∀ z ∈ �C0 :=

{

z ∈ H : y >
1

2
, 0 < x <

1

2

}

(4.1)

Theorem 4.1 improves this result to a larger domain �C1 as �C0 ⊂ �C1 . Further-
more, �C1 contains a corner at z = 0, which makes the proof much more involved.
We have to divide �C1 into four different cases to overcome this difficulty.

We state two corollaries related to the functionals W j,ρ(z), j = 1, 2.

Corollary 4.1. For any s > 0,

∂

∂x
θ(s; z) > 0, ∀z ∈ �C2 .

Here

�C2 :=
{

z | 1
2

< x < 1, y >
√

x − x2
}

.
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Proof. Since z �→ 1− z ∈ G1, by Lemma 3.1, we have θ(s; 1− z) = θ(s; z). Thus

∂

∂x
θ(s; 1 − z) = − ∂

∂x
θ(s; z). (4.2)

The result follows by (4.2) and Theorem 4.1.
��

By Theorem 4.1 and Corollary 4.1 we have

Corollary 4.2. For any ρ > 0,

∂

∂x
W j,ρ(z) > 0, ∀z ∈ RL , j = 1, 2.

Here

RL := �C2 ∩ DG2 =
{

z | 1
2

< x < 1, |z| > 1

}

.

In the remaining part of this section, we prove Theorem 4.1. To prove Theo-
rem 4.1, we use some delicate analysis of the Jacobi theta function and Poisson
summation formula.

We first recall the following well-known Jacobi triple product formula:

∞∏

m=1

(1 − x2m)(1 + x2m−1y2)

(

1 + x2m−1

y2

)

=
∞∑

n=−∞
xn2 y2n

, (4.3)

for complex numbers x, y with |x | < 1, y �= 0.
The Jacob theta function is defined as

ϑJ (z; τ) :=
∞∑

n=−∞
eiπn2τ+2π inz,

and the classical one-dimensional theta function is given by

ϑ(X; Y ) := ϑJ (Y ; i X) =
∞∑

n=−∞
e−πn2X e2nπ iY . (4.4)

Hence by the Jacobi triple product formula (4.3), it holds that

ϑ(X; Y ) =
∞∏

n=1

(1 − e−2πnX )(1 + e−2(2n−1)π X + 2e−(2n−1)π X cos(2πY )).

(4.5)

The next two Lemmas improve the bounds in Montgomery [28]. We provide
the proof of Lemma 4.1 and omit the proof of Lemma 4.2 which is similar.
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Lemma 4.1. Assume X > 1
5 . If sin(2πY ) > 0, then

−ϑ(X) sin(2πY ) � ∂

∂Y
ϑ(X; Y ) � −ϑ(X) sin(2πY ).

If sin(2πY ) < 0, then

−ϑ(X) sin(2πY ) � ∂

∂Y
ϑ(X; Y ) � −ϑ(X) sin(2πY ).

Here

ϑ(X) := 4πe−π X (1 − μ(X)), ϑ(X) := 4πe−π X (1 + μ(X)),

and

μ(X) :=
∞∑

n=2

n2e−π(n2−1)X . (4.6)

The proof is almost the same as in Lemma 1 of [28]. However, to show the method
and show how the bounds can be improved, we provide the details here. The new
thing here iswe introduce the new functionμ(X) (in (4.6)) in estimating the bounds,
this provides more accurate and powerful tool in the proof of our monotonicity
theorem (Theorem 4.1).

Proof. Taking logarithmic on both sides of (4.5) and differentiating ∂
∂Y , we have

−
∂

∂Y ϑ(X; Y )

sin(2πY )
= 4π

∞∑

n=1

e−(2n−1)π X ϑ(X; Y )

1 + e−2(2n−1)π X + 2e−(2n−1)π X cos(2πY )

= 4π
∞∑

n=1

e−(2n−1)π X
∞∏

m �=n,m=1

(1 − e−2πm X )(1 + e−2(2m−1)π X

+ 2e−(2m−1)π X cos(2πY )). (4.7)

One sees from (4.7) that the function − ∂
∂Y ϑ(X;Y )

sin(2πY )
has a period 1, is decreasing on

[0, 1
2 ] and is an even function for Y .
Thus

lim
Y→ 1

2

−
∂

∂Y ϑ(X; Y )

sin(2πY )
� −

∂
∂Y ϑ(X; Y )

sin(2πY )
� lim

Y→0
−

∂
∂Y ϑ(X; Y )

sin(2πY )
. (4.8)

By L’Hospital’s rule we have

1

2π

∂2

∂Y 2ϑ(X; Y ) |Y= 1
2
� −

∂
∂Y ϑ(X; Y )

sin(2πY )
� − 1

2π

∂2

∂Y 2ϑ(X; Y ) |Y=0 (4.9)
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From (4.4), we have that

∂2

∂Y 2ϑ(X; Y ) |Y=0 = 4πe−π X (1 +
∞∑

n=2

n2e−π(n2−1)X )

1

2π

∂2

∂Y 2ϑ(X; Y ) |Y= 1
2

= 4π
∞∑

n=1

(−1)n−1n2e−n2π X

� 4πe−π X

(

1 −
∞∑

n=2

n2e−π(n2−1)X

)

.

(4.10)

Combining (4.8), (4.9) and (4.10), we obtain the proof of the Lemma.
��

Lemma 4.2. Assume X < min{ π
π+2 ,

π
4 logπ

} = π
π+2 . If sin(2πY ) > 0, then

−ϑ(X) sin(2πY ) � ∂

∂Y
ϑ(X; Y ) � −ϑ(X) sin(2πY ).

If sin(2πY ) < 0, then

−ϑ(X) sin(2πY ) � ∂

∂Y
ϑ(X; Y ) � −ϑ(X) sin(2πY ).

Here

ϑ(X) := πe− π
4X X− 3

2 ; ϑ(X) := X− 3
2 .

In view of (4.4), by Poisson Summation Formula, one has

ϑ(X; Y ) = X− 1
2
∑

n∈Z
e− π(n−Y )2

X . (4.11)

Thus the two-dimensional theta function can be written in terms of
one-dimensional theta function as follows:

θ(s; z) =
∑

(m,n)∈Z2

e−sπ 1
y |nz+m|2 =

∑

n∈Z
e−sπyn2

∑

m∈Z
e− sπ(nx+m)2

y

=
√

y

s

∑

n∈Z
e−sπyn2ϑ

( y

s
;−nx

)
=
√

y

s

∑

n∈Z
e−sπyn2ϑ

( y

s
; nx

)

= 2

√
y

s

∞∑

n=1

e−sπyn2ϑ
( y

s
; nx

)
.

(4.12)

Now we are ready to prove Theorem 4.1.
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Proof. By Mellin transform, (see [28]), θ( 1s ; z) = sθ(s; z). Thus we only need
to consider the case s � 1. For simplicity, we use

∑
n� 1

2x
,
∑

n> 1
2x

to denote
∑

n� 1
2x ,n�1,

∑
n> 1

2x ,n�1 respectively. From (4.12), we have

− ∂

∂x
θ(s; z) = −2

√
y

s

∞∑

n=1

ne−πsyn2 ∂

∂Y
ϑ
( y

s
; Y
)

|Y=nx

= 2

√
y

s

⎛

⎜
⎝−

∑

n� 1
2x

ne−πsyn2 ∂

∂Y
ϑ

⎛

⎜
⎝

y

s
; Y )|Y=nx −

∑

n> 1
2x

ne−πsyn2 ∂

∂Y
ϑ(

y

s
; Y

⎞

⎟
⎠ |Y=nx

⎞

⎟
⎠

= 2

√
y

s

(
Ea

s,x (z) + Eb
s,x (z)

)
, (4.13)

where

Ea
s,x (z) := −

∑

n� 1
2x

ne−πsyn2 ∂

∂Y
ϑ(

y

s
; Y )|Y=nx , Eb

s,x (z)

:= −
∑

n> 1
2x

ne−πsyn2 ∂

∂Y
ϑ(

y

s
; Y )|Y=nx .

(4.14)

For Ea
s,x (z), by Lemma 4.1, we have that

Ea
s,x (z) �

∑

n� 1
2x

ne−πsyn2ϑ(
y

s
) sin(2πnx) � e−πsyϑ(

y

s
) sin(2πx).

(4.15)

Notice that all the terms in the summation of (4.15) are nonnegative.
Let n0 be the smallest integer such that n > 1

2x . By Lemma 4.1,

|Eb
s,x (z)| �

∑

n> 1
2x

ne−πsyn2ϑ
( y

s

)
| sin(2πnx)|

�
∑

n> 1
2x

n2e−πsyn2ϑ
( y

s

)
| sin(2πx)|

= n2
0e−πsyn20ϑ(

y

s
) sin(2πx) · (1 + δ(x)) ,with

δ(x) :=
∞∑

k=1

(

1 + k

n0

)2

e−πsy(2kn0+k2).

(4.16)

To estimate δ(x), note that yn0 >
√
1−x
2
√

x
,

δ(x) �
∞∑

k=1

(

1 + 2k

n0
+ k2

n2
0

)

e−2πsykn0 �
∞∑

k=1

(

1 + 2k

n0
+ k2

n2
0

)

e
−π

√
1−x√

x
k

= e−q(x)

1 − e−q(x)
+ 2

n0

e−q(x)

(1 − e−q(x))2
+ 1

n2
0

e−q(x)(1 + e−q(x))

(1 − e−q(x))3

� e−q(x)

1 − e−q(x)
+ 4x

e−q(x)

(1 − e−q(x))2
+ 4x2

e−q(x)(1 + e−q(x))

(1 − e−q(x))3

(4.17)
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with q(x) := π
√
1−x√

x
. Denote that

δq(x) := e−q(x)

1 − e−q(x)
+ 4x

e−q(x)

(1 − e−q(x))2
+ 4x2

e−q(x)(1 + e−q(x))

(1 − e−q(x))3
.

It is easy to see that δq(x) is monotonically increasing on [0, 1
2 ] and hence δ(x) �

δq( 12 ) = 0.188822585 · · · < 1
5 . Then by (4.16) and (4.17), one has

|Eb
s,x (z)| � 6

5
n2
0e−πsyn20ϑ(

y

s
) sin(2πx). (4.18)

Combining (4.13), (4.15) with (4.18), one gets

− ∂

∂x
θ(s; z) � 2

√
y

s
sin(2πx)e−πsyϑ

( y

s

)
(

ϑ
( y

s

)

ϑ(
y
s )

− 6

5
n2
0e−πsy(n20−1)

)

, (4.19)

with n0 = [ 1
2x ] + 1.

Let

Es,x (z) := ϑ(
y
s )

ϑ(
y
s )

− 6

5
n2
0e−πsy(n20−1). (4.20)

By (4.19) it suffices to prove that Es,x (z) > 0.
�C1 has a corner z = 0 which induces the difficulty to get the lower bound

estimate for Es,x (z). Thus we divide the proof into four cases.

Case a: y
s � 1

2 , x ∈ (0, 1
3 ]. In this case, s

y � 2 and
√
1−x(1−4x2)

x
3
2

− 1√
x−x2

> 0. By

Lemma 4.2,

Es,x (z) �
(

πs

y
− 2

)

e− πs
4y − 6

5
n2
0e−πsy(n20−1)

� (2π − 2)e
− πs

4
√

x−x2 − 3

10x2
e
−πs

√
x−x2

(
1

4x2
−1
)

= 3

10x2
e
−πs

√
x−x2

(
1

4x2
−1
)
⎛

⎜
⎝
20π − 20

3
x2e

πs
4

(√
1−x(1−4x2)

x
3
2

− 1√
x−x2

)

− 1

⎞

⎟
⎠

� 3

10x2
e
−πs

√
x−x2

(
1

4x2
−1
)
⎛

⎜
⎝
20π − 20

3
x2e

π
4

(√
1−x(1−4x2)

x
3
2

− 1√
x−x2

)

− 1

⎞

⎟
⎠

> 0 (4.21)

where the last inequality follows from elementary calculus because x ∈ (0, 1
3 ).
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Case b: y
s � 1

2 , x ∈ [ 13 , 1
2 ]. In this case, n0 = [ 1

2x ] + 1 � 1
2x + 1

2 and we have

Es,x (z) �
(

πs

y
− 2

)

e− πs
4y − 6

5
n2
0e−πsy(n20−1)

� (2π − 2)e− πs
4y − 6

5

(
1

2x
+ 1

2

)2

e
−πsy

((
1
2x + 1

2

)2−1

)

= 3(1 + x)2

10x2
e
−πsy

((
1
2x + 1

2

)2−1

) ⎛

⎝ (20π − 20)x2

9(1 + x)2
e
πs

(

y (1+x)2−4x2

4x2
− 1

4y

)

− 1

⎞

⎠

� 3(1 + x)2

10x2
e−πsy(( 1

2x + 1
2 )2−1)

⎛

⎝ (20π − 20)x2

9(1 + x)2
e
πs

(√
x−x2 (1+x)2−4x2

4x2
− 1

4
√

x−x2

)

− 1

⎞

⎠

� 3(1 + x)2

10x2
e−πsy(( 1

2x + 1
2 )2−1)

⎛

⎝ (20π − 20)x2

9(1 + x)2
e
π

(√
x−x2 (1+x)2−4x2

4x2
− 1

4
√

x−x2

)

− 1

⎞

⎠

> 0

where we have used the following inequalities whose computation is left to the
reader:

√
x − x2

(1 + x)2 − 4x2

4x2
− 1

4
√

x − x2
> 0, x ∈

[

0,
1

2

]

,

(20π − 20)x2

9(1 + x)2
e
π

(√
x−x2 (1+x)2−4x2

4x2
− 1

4
√

x−x2

)

− 1 > 0, x ∈
[

0,
1

2

]

.

(4.22)

Case c: y
s � 1

2 , x ∈ [0, 2
5 ]. In this case, ys � s2

2 � 1
2 . By Lemma 4.1,

Es,x (z) �
1 − μ(

y
s )

1 + μ(
y
s )

− 6

5
n2
0e−πsy(n20−1) �

1 − μ( 12 )

1 + μ( 12 )
− 3

10x2
e
− π(1−4x2)

8x2

�
(
1 − μ( 12 )

1 + μ( 12 )
− 3

10x2
e
− π(1−4x2)

8x2

)

|x= 2
5
= 0.1556238052 > 0.

The monotonically increasing of 3
10x2

e
− π(1−4x2)

8x2 on (0, 2
5 ] is used here; similarly,

we use 3(1+x)2

10x2
e− π

2

(
( 1+x

2x )2−1
)

is monotonically increasing on [ 13 , 1
2 ] in the Case d.

Case d: y
s � 1

2 , x ∈ [ 13 , 1
2 ]. In this case, n0=[ 1

2x ] + 1 � 1
2x + 1

2 and y � s2
2 � 1

2 .
By Lemma 4.1,

Es,x (z) �
1 − μ(

y
s )

1 + μ(
y
s )

− 6

5
n2
0e−πsy(n20−1) �

1 − μ( 12 )

1 + μ( 12 )
− 3(1 + x)2

10x2
e− π

2

(
( 1+x

2x )2−1
)

�
(1 − μ( 12 )

1 + μ( 12 )
− 3(1 + x)2

10x2
e− π

2

(
( 1+x

2x )2−1
))

|x= 1
2
= 0.7866071958 · · · > 0.

Combining cases (a)–(d), (4.19) and (4.20), the proof of Theorem 4.1 is com-
plete.

��
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5. Monotonicity of W1,ρ(z) and W2,ρ(z)

Let the closure of the left-half fundamental domain corresponding to G2 be

R2 =
{

z ∈ H : 0 � x � 1

2
, |z| � 1

}

.

In this section, we aim to establish the following property of the pairW j,ρ(z), j =
1, 2: there exists ρ∗ such that for ∀z ∈ R2, ∂

∂x W1,ρ(z) � 0 when 0 � ρ � ρ∗,
and ∂

∂x W2,ρ(z) � 0 when 0 � ρ � 1
ρ∗ . (In fact we will choose ρ∗ = 1

20 ). We
call this pair monotonicity is the conjugate monotonicity of the functionals. This
property plays an important role in finding the minimizers and will be proved in
Propositions 5.1 and 5.2 .

We begin with

Proposition 5.1. For 0 � ρ � ρ∗ := 1/20, it holds that

∂

∂x
W1,ρ(z) � 0

for ∀z ∈ R2. The equality holds only when x = 0 or 1
2 .

Proof. From (4.12), we obtain that

∂

∂x
W1,ρ (z) = ∂

∂x

(√
y

4

∑

n

e−πyn2ϑ

(
y

4
; n

x + 1

2

)

+ ρ
√

y
∑

n

e−πyn2ϑ(y; nx)

)

=
√

y

2

∞∑

n=1

ne−πyn2 ∂

∂Y
ϑ
( y

4
; Y
)

|Y=n x+1
2

+ 2ρ
√

y
∞∑

n=1

ne−πyn2 ∂

∂Y
ϑ(y; Y )|Y=nx

)

=
√

y

2
e−πy ∂

∂Y
ϑ
( y

4
; Y
)

|Y= x+1
2

+ √
ye−4πy ∂

∂Y
ϑ
( y

4
; Y
)

|Y=x+1

+ 2ρ
√

ye−πy ∂

∂Y
ϑ(y; Y )|Y=x + 4ρ

√
ye−4πy ∂

∂Y
ϑ(y; Y )|Y=2x

+
√

y

2

∞∑

n=3

ne−πyn2 ∂

∂Y
ϑ
( y

4
; Y
)

|Y=n x+1
2

+ 2ρ
√

y
∞∑

n=3

ne−πyn2 ∂

∂Y
ϑ (y; Y ) |Y=nx

= Wa
1,x (z) + Wb

1,x (z) + Wc
1,x (z)

(5.1)

where Wa
1,x (z),Wb

1,x (z) and Wc
1,x (z) are defined at the last equality.

By Lemma 4.1, we see that

Wa
1,x (z) + Wb

1,x (z) �
√

y

2
e−πyϑ

( y

4

)
sin(πx) − √

ye−4πyϑ
( y

4

)
sin(2πx)

− 2ρ
√

ye−πyϑ(y) sin(2πx) − 4ρ
√

ye−4πyϑ(y)| sin(4πx)|.
(5.2)

Since | sin(nx)| � n| sin(x)| for any x ∈ R2, again by Lemma 4.1, we have

Wc
1,x (z) � −

√
y

4

∞∑

n=3

n2e−πyn2ϑ
( y

4

)
sin(2πx)

− 2ρ
√

y
∞∑

n=3

n2e−πyn2ϑ(y) sin(2πx).

(5.3)
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Plugging (5.2) and (5.3) in (5.1), we get

∂

∂x
W1,ρ(z) �

√
y

2
e−πyϑ

( y

4

)
sin πx − √

ye−4πyϑ
( y

4

)
sin(2πx)

(

1 + 1

4

∞∑

n=3

n2e−πy(n2−4)

)

− 2ρ
√

ye−πyϑ(y) sin(2πx)

(

1 +
∞∑

n=2

n2e−πy
(
n2−1

)
)

= √
ye−πy sin(πx)

(
1

2
ϑ(

y

4
) − 2e−3πyϑ(

y

4
) cos(πx)(1 + σ1)

−4ρϑ(y) cos(πx)(1 + σ2)
)

� √
ye−πy sin(πx)

×
(
1

2
ϑ
( y

4

)
− 2e−3πyϑ

( y

4

)
(1 + σ1) − 4ρϑ(y)(1 + σ2)

)

,

(5.4)

where

σ1(y) := 1

4

∞∑

n=3

n2e−πy(n2−4), σ2(y) :=
∞∑

n=2

n2e−πy(n2−1),

and σ1(y), σ1(y) are small. (In fact σ1(
√
3
2 ) ≈ 2.781 · 10−6, σ2(

√
3
2 ) ≈ 1.14105 ·

10−3.)
By the lower and upper bound estimates in Lemma 4.1, from (5.4), we see that

∂

∂x
W1,ρ(z) � √

ye−πy sin(πx)
(
2π
(
1 − μ

( y

4

))
e− πy

4

− 8πe−3πy
(
1 + μ

( y

4

))
e− πy

4 (1 + σ1)

−16ρπ(1 + μ(y))e−πy(1 + σ2)
)

= 4π
√

ye− 5πy
4 sin(πx)

(
1

2

(
1 − μ

( y

4

))
− 2(1 + σ1)e

−3πy

(
1 + μ

( y

4

))

−4ρ(1 + σ2)e
− 3πy

4 (1 + μ(y))
)

= 4π
√

ye− 5πy
4 sin(πx)ϑW1,ρ (y)

(5.5)

where ϑW1,ρ (y) is defined at the last equality.
It suffices to prove that

ϑW1,ρ (y) > 0.

First it is easy to see that

∂

∂ρ
ϑW1,ρ (y) > 0, y > 0. (5.6)
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Since the functions μ(y), σ1, σ2 are decreasing on y > 0, it follows that

∂

∂y
ϑW1,ρ (y) > 0, y > 0. (5.7)

A direct calculation gives

ϑW1,ρ (y)|
y=

√
3
2 ,ρ= 1

20
= 0.1933 · · · > 0,

which implies

ϑW1,ρ > 0, for y �
√
3

2
, ρ � 1

20

by the monotonicity properties (5.6) and (5.7). ∂
∂x W1,ρ(y) vanishes only when

x = 0 or 1
2 by (5.5). The proof is completed.

��
We then have a similar monotonicity forW2,ρ(z).

Proposition 5.2. For ρ � 1
ρ∗ = 20, it holds that

∂

∂x
W2,ρ(z) � 0

for ∀z ∈ R2. The equality holds only when x = 0 or 1
2 .

Proof. The proof is similar to Proposition 5.1. Using (4.12), we see that

∂

∂x
W2,ρ� (z) = ∂

∂x

(√
y

2

∑

n

e− 1
2πyn2ϑ

(
y

2
; n

x + 1

2

)

+ ρ

√
y

2

∑

n

e−2πyn2ϑ
( y

2
; nx

)
)

=
√

y

2

∞∑

n=1

ne− 1
2πyn2 ∂

∂Y
ϑ
( y

2
; Y
)

|Y=n x+1
2

+ 2ρ

√
y

2

∞∑

n=1

ne−2πyn2 ∂

∂Y
ϑ
( y

2
; Y
)

|Y=nx

=
√

y

2
e− 1

2πy ∂

∂Y
ϑ
( y

2
; Y
)

|Y= x+1
2

+ 2

√
y

2
e−2πy ∂

∂Y
ϑ
( y

2
; Y
)

|Y=x+1

+ 2ρ

√
y

2
e−2πy ∂

∂Y
ϑ
( y

2
; Y
)

|Y=x

+
√

y

2

∞∑

n=3

ne− 1
2πyn2 ∂

∂Y
ϑ
( y

2
; Y
)

|Y=n x+1
2

+ 2ρ

√
y

2

∞∑

n=2

ne−2πyn2 ∂

∂Y
ϑ
( y

2
; Y
)

|Y=nx

= Wa
2,x (z) + Wb

2,x (z) + Wc
2,x (z), (5.8)

where Wa
2,x (z),Wb

2,x (z) and Wc
2,x (z) are defined at the last equality.
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By Lemma 4.1, we also have

Wa
2,x (z) + Wb

2,x (z) �
√

y

2
e− 1

2πyϑ
( y

2

)
sin(πx)

− (2 + 2ρ)

√
y

2
e−2πyϑ

( y

2

)
sin(2πx).

Since | sin(nx)| � n| sin(x)| for any x ∈ R2, again by Lemma 4.1, we see that

Wc
2,x (z) � −1

2

√
y

2

∞∑

n=3

n2e− 1
2πyn2ϑ

( y

2

)
sin(2πx)

− ρ

√
y

2

∞∑

n=2

n2e−2πyn2ϑ
( y

2

)
sin(2πx).

Plugging the above inequality into (5.8), we get that

∂

∂x
W2,ρ(z) �

√
y

2
e− 1

2πyϑ
( y

2

)
sin(πx) − (2 + 2ρ + σ3(y)

+ ρσ4(y))

√
y

2
e−2πyϑ

( y

2

)
sin(2πx)

=
√

y

2
e− 1

2πy sin(πx)
(
ϑ
( y

2

)
− (4 + 4ρ

+2σ3(y) + 2ρσ4(y)) cos(πx)e− 3
2πyϑ

( y

2

))
,

(5.9)

where

σ3(y) := 1

2

∞∑

n=3

n2e− 1
2πy(n2−4), σ4(y) :=

∞∑

n=2

n2e−2πy(n2−1).

σ3(y), σ4(y) are functions with small L∞ norm. (In fact σ3(
√
3
2 ) ≈ 5.00388 ·

10−3, σ4(
√
3
2 ) ≈ 3.255011 · 10−7.)

By the lower and upper bound estimates in Lemma 4.1, from (5.9) one deduces
that

∂

∂x
W2,ρ(z) �

√
y

2
e− 1

2πy sin(πx)
(
4π
(
1 − μ

( y

2

))
e− πy

2

−4π(4 + 4ρ + 2σ3(y) + 2ρσ4(y)) cos(πx)e−2πy
(
1 + μ

( y

2

)))

� 4π

√
y

2
e−πy sin(πx)

((
1 − μ

( y

2

))

−(4 + 4ρ + 2σ3(y) + 2ρσ4(y)) cos(πx)e− 3
2πy

(
1 + μ

( y

2

)))
.
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Let

ϑW2,ρ (z) : =
(
1 − μ

( y

2

))
− (4 + 4ρ + 2σ3(y) + 2ρσ4(y))

cos(πx)e− 3
2πy

(
1 + μ

( y

2

))
.

Then

∂

∂x
W2,ρ(z) � 4π

√
y

2
e−πy sin(πx) · ϑW2,ρ (y) (5.10)

It suffices to prove that

ϑW2,ρ (z) > 0, for z ∈ R�, ρ � 1

ρ�

= 20.

Now obviously

∂

∂ρ
ϑW2,ρ (y) < 0; ∀y > 0, and

∂

∂x
ϑW2,ρ (z) > 0; ∀x ∈

[

0,
1

2

]

,∀y > 0.

(5.11)

Observe that the functions μ(y), σ3, σ4 are decreasing on y > 0. It follows that

∂

∂y
ϑW2,ρ (z) > 0, ∀y > 0. (5.12)

To complete the proof, we prove that ϑW2,ρ (z) is positive on the following three
unbounded rectangular domains:

Ra =
{

z | x ∈
[

0,
1

4

]

, y �
√
15

4

}

; Rb =
{

z | x ∈
[
1

4
,
3

8

]

, y �
√
55

8

}

;

Rc =
{

z | x ∈
[
3

8
,
1

2

]

, y �
√
3

2

}

.

It is clear that

R2 ⊂ Ra ∪ Rb ∪ Rc. (5.13)

A direct calculation gives

ϑW2,ρ (z)|x=0,y=
√
15
4 ,ρ=20

= 0.0450964128 · · · > 0

ϑW2,ρ (z)|x= 1
4 ,y=

√
55
8 ,ρ=20

= 0.1583739562 · · · > 0

ϑW2,ρ (z)|x= 3
8 ,y=

√
3
2 ,ρ=20

= 0.3525036217 · · · > 0.

This yields

ϑW2,ρ (z) > 0, for z ∈ Ra ∪ Rb ∪ Rc

by the monotonicity properties (5.11) and (5.12). Therefore by (5.13)

ϑW2,ρ (z) > 0, for z ∈ R2.

By (5.10) ∂
∂x W2,ρ∗(z) vanishes only at x = 0 or 1

2 . This completes the proof.
��
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6. The Behavior of W1,ρ(z) on the y−Axis

In this section, we study the property of the functionalW1,ρ on the y−axis. We
will prove that on the y−axis, depending on ρ, W1,ρ(z) has either 1 or 3 critical
points. This gives the precise characterization of the minimizers of W1,ρ(z) on
the y−axis. The proof relies crucially on a novel property of Jacob theta function
proved in Theorem 6.1 below.

Proposition 6.1. There exists a threshold ρ1 which is the unique solution of ∂2

∂y2

W1,ρ(yi) |y=1= 0, (in fact, ρ1 = −Y ′′(1)
X ′′(1) ∼ 0.04016680351 · · · ), such that

1. if ρ ∈ [ρ1,+∞), the function y → W1,ρ(yi), y > 0 admits only one critical
point at y = 1, and ∂

∂yW1,ρ(yi) < 0 if y ∈ (0, 1) and ∂
∂yW1,ρ(yi) > 0 if

y ∈ (1,∞);
2. if ρ ∈ [0, ρ1), the function y → W1,ρ(yi), y > 0 admits only three critical

points at y1,ρ , 1 and 1
y1,ρ

, where y1,ρ ∈ (1,
√
3]. Moreover

∂

∂y
W1,ρ(yi) < 0 if y ∈

(

0,
1

y1,ρ

)

,

∂

∂y
W1,ρ(yi) > 0 if y ∈

(
1

y1,ρ
, 1

)

,

∂

∂y
W1,ρ(yi) < 0 if y ∈ (1, y1,ρ

)
,

∂

∂y
W1,ρ(yi) > 0 if y ∈ (y1,ρ,∞)

.

The critical point y1,ρ is the unique solution of ∂
∂yW1,ρ(yi) = 0, y ∈ (1,

√
3].

Furthermore if ρ ∈ [0, ρ1], then

∂y1,ρ
∂ρ

< 0. (6.1)

To prove Proposition 6.1, we need to use some properties of the Jacobi theta
functions defined at (1.12)–(1.13). They satisfy the transformation properties

ϑ3

(
1

y

)

= √
yϑ3(y), ϑ2

(
1

y

)

= √
yϑ4(y)

ϑ4

(
1

y

)

= √
yϑ2(y), ϑ4(y) = ϑ3(4y) − ϑ2(4y).

(6.2)

It is easy to see that for z = yi

θ(s; yi) =
∑

m

∑

n

e−s π
y (n2+m2 y2)

, θ

(

s; yi + 1

2

)

=
∑

m

∑

n

e−2s π
y (( m

2 +n)2+ m2
4 y2)

.

(6.3)

Wefirst express θ(s; yi), θ(s; yi+1
2 ) as products of Jacobi theta functions,which

is a starting point of our analysis.
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Lemma 6.1. It holds that

θ(s; yi) = ϑ3(sy)ϑ3

(
s

y

)

, θ(s; yi + 1

2
) = ϑ3(2sy)ϑ3

(
2s

y

)

+ ϑ2(2sy)ϑ2

(
2s

y

)

.

Proof. The first one is straightforward:

θ(s; yi) =
∑

n

e−s π
y n2

∑

m

e−sπym2 = ϑ3(sy)ϑ3

(
s

y

)

.

For the second one,

θ

(

s; yi + 1

2

)

=
∑

m

∑

n

e−2s π
y (( m

2 +n)2+ m2
4 y2) =

∑

p≡q( mod 2)

e− sπ
2 ( 1y p2+yq2)

=
∑

p=2m′,q=2n′
e− sπ

2 ( 1y p2+yq2) +
∑

p=2m′+1,q=2n′+1

e− sπ
2 ( 1y p2+yq2)

=
∑

m′
e−2sπ 1

y m′2 ∑

n′
e−2sπyn′2

+
∑

m′
e− 2sπ

4
1
y (2m′+1)2

∑

n′
e− 2sπ

4 y(2n′+1)2

= ϑ3(2sy)ϑ3

(
2s

y

)

+ ϑ2(2sy)ϑ2

(
2s

y

)

.

��
The next Lemma follows from Lemma 3.1. We single it out for the convenience

of our analysis here.

Lemma 6.2. For any s > 0, θ(s; yi) and θ(s; yi+1
2 ) both satisfy the functional

equation

H
(
1

y

)

= H(y). (6.4)

Consequently, H′( 1y ) = −y2H′(y). In particular, H′(1) = 0, that is, y = 1 is

always a critical point of θ(s; yi), θ(s; yi+1
2 ).

For s = 1, by Lemma 6.1 and transformation (6.2), we obtain

Lemma 6.3.

θ(1; yi) = √
yϑ2

3 (y),

θ

(

2; yi + 1

2

)

=
√

y

2

(
ϑ3(4y)ϑ3

( y

4

)
+ ϑ2(4y)ϑ4

( y

4

))
.

(6.5)
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To prove Proposition 6.1, we first prove a monotonicity property of θ(1; yi)
and θ(2; yi+1

2 ) in Lemma 6.4, which can be viewed as the particular case of Propo-
sition 6.1. Then we establish the key Theorem 6.1, in which a novel property about
the quotient of Jacobi theta functions is proved.

The following Lemma is known in [8,28]:

Lemma 6.4. • The function y → θ(s; yi), y > 0, has only one critical point at
y = 1. Furthermore

∂

∂y
θ(s; yi) < 0 for y ∈ (0, 1); ∂

∂y
θ(s; yi) > 0 for y ∈ (1,∞).

• For any s > 0, the function y → θ(s; yi+1
2 ), y > 0, has three critical points at√

3
3 , 1 and

√
3.

Wenow state Theorem6.1whose proof ismuch involved.We use a combination
of functional equations, error terms analysis and several new observations. Let

X (y) := ϑ3(y)ϑ3

(
1

y

)

= √
yϑ2

3 (y),

Y(y) := 2

(

ϑ3(4y)ϑ3

(
4

y

)

+ ϑ2(4y)ϑ2

(
4

y

))

= √
y
(
ϑ3(4y)ϑ3

( y

4

)
+ ϑ2(4y)ϑ4

( y

4

))
.

Theorem 6.1. The function y �→ Y ′(y)
X ′(y)

, y > 0 has only one critical point at y = 1.

Furthermore
(Y ′(y)
X ′(y)

)′
< 0 for y ∈ (0, 1) and

(Y ′(y)
X ′(y)

)′
> 0 for y ∈ (1,∞).

Proof. Denote Z(y) := Y ′(y)
X ′(y)

. By Lemma 6.4, the function Z(y) is well-defined.
By Lemma 6.2, we also have

X ′
(
1

y

)

= −y2X ′(y), Y ′
(
1

y

)

= −y2Y ′(y). (6.6)

Hence

Z
(
1

y

)

= Z(y),

and

Z ′
(
1

y

)

= −y2Z ′(y). (6.7)

Consequently, Z ′(1) = 0, that is, y = 1 is the critical point of Z(y).
By (6.7), it suffices to prove that

Z ′(y) > 0, for y ∈ (1,∞). (6.8)
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By the explicit expression of Jacobi theta functions (1.13) and (6.2), we start with

X (y) = √
y

(

1 + 2
∞∑

n=1

e−πn2 y

)2

=
(√

y + 4
√

ye−πy + 4
√

ye−2πy + 4
√

ye−4πy
)

+
⎛

⎝4
√

y
∞∑

n=3

e−πn2 y + 4
√

y

( ∞∑

n=2

e−πn2 y

)2

+ 8
√

y
∞∑

n=2

e−π(n2+1)y

⎞

⎠

:= Xa(y) + Xe(y)

where Xa(y) and Xe(y) are defined at the last equality. Xa is the major part and Xe

is the error part. In fact, we have that, for some constant C > 0,

‖Xe(y)‖C2 � C
√

ye−5πy, for y > 1. (6.9)

For Y(y), again by (1.13) and (6.2), one first has

√
yϑ3(4y)ϑ3(

y

4
) = √

y

(

1 + 2
∞∑

n=1

e−4πn2y

)(

1+2
∞∑

n=1

e− 1
4πn2 y

)

= √
y + 2

√
ye− 1

4πy + 2
√

ye−πy+2
√

ye− 9
4πy+4

√
ye−4πy

+ 2
√

y
∞∑

n=2

e−4πn2y + 2
√

y
∞∑

n=5

e− 1
4πn2y

+ 4
√

y
∞∑

n=1

e−4πn2y
∞∑

n=1

e− 1
4πn2y .

We regroup the terms as

√
yϑ2(4y)ϑ4

( y

4

)
= √

ϑ2(4y)
(
ϑ3(y) − ϑ2(y)

) = √
yϑ2(4y)ϑ3(y)

−√
yϑ2(4y)ϑ2(y)

= 2
√

y
∞∑

n=1

e−π(2n−1)2y + 4
√

y
∞∑

n=1

e−π(2n−1)2y
∞∑

n=1

e−πn2 y

−4
√

ye− 5
4πy

(

1 +
∞∑

n=2

e−π((n− 1
2 )2− 1

4 )y

)(

1 +
∞∑

n=2

e−π((2n−1)2−1)y

)

= 2
√

ye−πy + 4
√

ye−2πy − 4
√

ye− 5
4πy − 4

√
ye− 13

4 πy

+4
√

y

( ∞∑

n=2

e−π((2n−1)2+1)y +
∞∑

n=2

e−π(n2+1)y +
∞∑

n=2

e−π(2n−1)2y
∞∑

n=2

e−πn2 y

)

−4
√

ye− 5
4πy

( ∞∑

n=3

e−π((n− 1
2 )2− 1

4 )y +
∞∑

n=2

e−π((2n−1)2−1)y
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+
∞∑

n=2

e−π((n− 1
2 )2− 1

4 )y ·
∞∑

n=2

e−π((2n−1)2−1)y

)

.

Now let the approximate part of Y(y) be

Ya(y) := √
y + 2

√
ye− 1

4πy + 4
√

ye−πy + 2
√

ye− 9
4πy + 4

√
ye−2πy

+ 4
√

ye−4πy − 4
√

ye− 5
4πy − 4

√
ye− 13

4 πy

and the error part by

Ye(y) := 2
√

y
∞∑

n=2

e−4πn2 y + 2
√

y
∞∑

n=5

e− 1
4πn2 y + 4

√
y

∞∑

n=1

e−4πn2 y
∞∑

n=1

e− 1
4πn2 y

+ 4
√

y

( ∞∑

n=2

e−π((2n−1)2+1)y +
∞∑

n=2

e−π(n2+1)y +
∞∑

n=2

e−π(2n−1)2 y
∞∑

n=2

e−πn2 y

)

− 4
√

ye− 5
4πy

( ∞∑

n=3

e−π((n− 1
2 )2− 1

4 )y +
∞∑

n=2

e−π((2n−1)2−1)y

+
∞∑

n=2

e−π((n− 1
2 )2− 1

4 )y ·
∞∑

n=2

e−π((2n−1)2−1)y

)

.

Then

Y(y) = Ya(y) + Ye(y) (6.10)

and we have following estimate for Ye(y):

‖Ye(y)‖C2 � C
√

ye− 17
4 πy .

To prove (6.8), we divide the proof into two regions of y: the large y case
y ∈ [1.1,∞) and the small y case y ∈ (1, 1.1).
Case (a): y ∈ [1.1,∞). In this case we have

Z ′(y) = Y ′′(y)X ′(y) − X ′′(y)Y ′(y)

(X ′(y))2
.

By Lemma 6.4, to prove Case (a) it suffices to prove that

Y ′′(y)X ′(y) − X ′′(y)Y ′(y) > 0 if y ∈ (1.1,∞).

By (6.9) and (6.10), there holds

Y ′′X ′ − Y ′X ′′ =
(
Y ′′

aX ′
a − X ′′

a Y ′
a

)
+
(
Y ′′

e X ′ − Y ′
eX ′′ + Y ′′

aX ′
e − X ′′

e Y ′
a

)

where
(
Y ′′

aX ′
a −X ′′

a Y ′
a

)
and

(
Y ′′

e X ′−Y ′
eX ′′+Y ′′

aX ′
e −X ′′

e Y ′
a

)
are the approximate

part and the error part of Y ′′X ′ −Y ′′X ′ respectively. We shall use the approximate
part to control the error part.
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To obtain the lower bound of
(
Y ′′

aX ′
a − X ′′

a Y ′
a

)
, after subtracting some proper

factor( 16y
π

e
1
4πy), one finds that

y → 16y

π
e
1
4πy

(
Y ′′

aX ′
a − X ′′

a Y ′
a

)
(y) (6.11)

is monotonically increasing.

For the error part
(
Y ′′

e X ′ − Y ′
eX ′′ + Y ′′

aX ′
e − X ′′

e Y ′
a

)
, one has the estimate

|
(
Y ′′

e X ′ − Y ′
eX ′′ + Y ′′

aX ′
e − X ′′

e Y ′
a

)
(y)| � C

√
ye− 17

4 πy, (6.12)

which decays to zero very fast.
Combining (6.11) with (6.12), one deduces that

Y ′′X ′ − X ′′Y ′ > 0 if y ∈ [1.1,∞). (6.13)

The detailed proof of (6.11), (6.12) and (6.13) will be provided in the Appendix
2.

This proves that

Z ′(y) > 0 if y ∈ [1.1,∞). (6.14)

Case (b): y ∈ (1, 1.1). In this case 0 < 1 − y < 0.1. To prove

Z ′(y) =
(Y ′(y)

X ′(y)

)′
> 0, on y ∈ (1, 1.1), (6.15)

it suffices to prove that

(Y ′′(y)

X ′′(y)

)′
> 0,∀ y ∈ (1, 1.1),

given that

X ′(1) = Y ′(1) = 0 (6.16)

which follows from (6.6). In fact, there exists y1, y2 ∈ (1, y) such that

(Y ′(y)

X ′(y)

)′ = Y ′′(y)X ′(y) − Y ′(y)X ′′(y)

X ′2(y)
= X ′′(y)

X ′(y)

(Y ′′(y)

X ′′(y)
− Y ′(y)

X ′(y)

)

= X ′′(y)

X ′(y) − X ′(1)

(Y ′′(y)

X ′′(y)
− Y ′(y) − Y ′(1)

X ′(y) − X ′(1)

)

= X ′′(y)

X ′′(y2)(y − 1)

(Y ′′(y)

X ′′(y)
− Y ′′(y1)

X ′′(y1)

)

(6.17)

using (6.16).
We also have that

X ′′(y) > 0, if y ∈ (1,∞) (6.18)
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by the same decomposition method as used above. We omit the details here. (Ac-
tually, we only need (6.18) holds for small interval such as (1, 1.2]).

Moreover,
(Y ′′(y)
X ′′(y)

)′
> 0 implies

Y ′′(y)

X ′′(y)
− Y ′′(y1)

X ′′(y1)
> 0. (6.19)

Then the claim follows from (6.19), (6.18) and (6.17).
For the derivative of the quotient of second order derivatives, one has

(Y ′′(y)

X ′′(y)

)′ = Y ′′′(y)X ′′(y) − Y ′′(y)X ′′′(y)

X ′′2(y)
.

Define

fXY (y) := Y ′′′(y)X ′′(y) − Y ′′(y)X ′′′(y).

Equivalently, to show (6.15) one needs to show that

fXY (y) > 0 for y ∈ (1, 1.1). (6.20)

Differrentiating(6.6), the functionsX (y) and Y(y) both satisfy the following func-
tional equations

H′′
(
1

y

)

= 2y3H′(y) + y4H′′(y)

H′′′
(
1

y

)

= −6y4H′(y) − 6y5H′′(y) − y6H′′′(y).

(6.21)

Plugging y = 1 in (6.21) and using (6.16), one deduces

X ′′′(1) = −3X ′′(1), Y ′′′(1) = −3Y ′′(1). (6.22)

From (6.22), one has

fXY (1) = 0. (6.23)

Then to prove (6.20), by (6.23), it suffices to prove that

f ′
XY (y) > 0 for y ∈ (1, 1.1). (6.24)

Proceed by (6.9) and (6.10)

f ′
XY = Y ′′′′X ′′ − Y ′′X ′′′′

=
(
Y ′′′′

a X ′′
a − Y ′′

aX ′′′′
a

)
+
(
X ′′

e Y ′′′′ + Y ′′′′
e X ′′

a − X ′′′′
e Y ′′ − Y ′′

e X ′′′′
a

)
.

(6.25)

We use
(
Y ′′′′

a X ′′
a − Y ′′

aX ′′′′
a

)
and

(
X ′′

e Y ′′′′ + Y ′′′′
e X ′′

a − X ′′′′
e Y ′′ − Y ′′

e X ′′′′
a

)
as the

approximate and error parts of f ′
XY respectively.
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For the approximate part, after subtracting some proper factor, one finds

y → 512y4

π
e
1
4πy

(
Y ′′′′

a X ′′
a − Y ′′

aX ′′′′
a

)
(y) (6.26)

is monotonically decreasing on (1, 1.2).
For the error part, one has the following estimate

|
(
X ′′

e Y ′′′′ + Y ′′′′
e X ′′

a − X ′′′′
e Y ′′ − Y ′′

e X ′′′′
a

)
(y)| � Cye−5πy, (6.27)

which has fast decay.
Combining (6.26), (6.27) and (6.25), we can prove that

f ′
XY (y) > 0 if y ∈ (1, 1.11]. (6.28)

The detailed proof of (6.26), (6.27) and (6.28) will be given in the Appendix 2.
This completes the proof.

��
Finally we give the proof of Proposition 6.1.

Proof. By Lemma 6.2, y = 1 is a critical point of W1,ρ(yi). Furthermore

∂

∂y
W1,ρ

(
1

y
i

)

= −y2
∂

∂y
W1,ρ(yi)(y). (6.29)

By Lemma 6.4, we have

X ′(y) > 0 if y ∈ (1,∞) and Y ′(
√
3) = 0. (6.30)

Hence we obtain that

∂

∂y
W1,ρ(yi) > 0 if y ∈ (

√
3,∞). (6.31)

To study the monotonicity of W1,ρ(yi) on the interval (1,
√
3), we rewrite

∂
∂yW1,ρ(yi) as

∂

∂y
W1,ρ(yi) = ∂

∂y

(

θ

(

2; yi + 1

2

)

+ ρθ(1; yi)

)

= Y ′(y) + ρX ′(y)

= X ′(y) ·
(Y ′(y)

X ′(y)
+ ρ

)
.

(6.32)

By (6.30), the zeroes of ∂
∂yW1,ρ(yi) on (1,

√
3) satisfy the following functional

equation

Y ′(y)

X ′(y)
+ ρ = 0, y ∈ (1,

√
3). (6.33)

Furthermore, by Theorem 6.1, we see that

Y ′(y)

X ′(y)
+ ρ is strictly increasing on (1,

√
3). (6.34)
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(6.34) and (6.33) imply that ∂
∂yW1,ρ(yi) admits at most one zero on (1,

√
3). This

fact combined with (6.31) yields that ∂
∂yW1,ρ(yi) admits either one or three critical

points on (0,∞).
Since X ′(1) = Y ′(1) = 0, Y ′(1)

X ′(1) = Y ′′(1)
X ′′(1) .

At the other end point
√
3, since Y ′(

√
3) = 0 (see (6.30)), we have that

Y ′(
√
3)

X ′(
√
3)

+ ρ = 0 + ρ > 0, ρ > 0.

By (6.34), we see that the Equation (6.33) has a zero if and only if

Y ′′(1)
X ′′(1)

+ ρ < 0. (6.35)

The condition in (6.35) is

ρ < ρ1 := −Y ′′(1)
X ′′(1)

. (6.36)

Combining (6.35),(6.36) with (6.31), one has

∂

∂y
W1,ρ(yi) > 0 on (1,∞) provided ρ � ρ1.

This and (6.29) give the proof of part 1 of Proposition 6.1. (For the case ρ = 0,
y1,ρ = √

3 by (6.30).)
In the case when ρ ∈ (0, ρ1), there exists an unique root of (6.33) as y1,ρ ∈

(1,
√
3). By duality (6.29), there exists another root 1

y1,ρ
∈ (

√
3
3 , 1). Therefore part

2 of Proposition 6.1 follows from (6.29) and (6.34).
Finally (6.1) follows from (6.34).
This completes the proof.

��

7. The Behavior of W2,ρ(z) on the y−Axis

LetW2,ρ(z) := θ(1; z+1
2 )+ρθ(2; z)be the conjugate ofW1,ρ(z). In this section

we prove similar properties of Section 6 forW2,ρ . As in Section 6,W2,ρ(yi) admits
either 1 or 3 three critical points depending on different vales of ρ. These are stated
in Proposition 7.1. The proof relies critically on a novel property of the classical
theta functions proved in Theorem 7.1.

Proposition 7.1. There exists a threshold ρ2 which is the unique solution of

∂2

∂y2
W2,ρ(yi) |y=1= 0

(in fact ρ2 = −1 − B′′(1)
A′′(1) , numerically, ρ2 = 1.190861337 · · · ) such that
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1. when ρ ∈ [0, ρ2), the function y → W2,ρ(yi), y > 0 admits only three
critical points at y2,ρ , 1 and 1

y2,ρ
, where y2,ρ ∈ (1,

√
3]. Furthermore we

have ∂
∂yW2,ρ(yi) < 0 if y ∈ (0, 1

y2,ρ
), ∂

∂yW2,ρ(yi) > 0 if y ∈ ( 1
y2,ρ

, 1),
∂
∂yW2,ρ(yi) < 0 if y ∈ (1, y2,ρ), and ∂

∂yW2,ρ(yi) > 0 if y ∈ (y2,ρ,∞)

The critical point y2,ρ is the unique solution of ∂
∂yW2,ρ(yi) = 0, y ∈ (1,

√
3].

Moreover, if ρ ∈ (0, ρ2), then

∂y2,ρ
∂ρ

< 0. (7.1)

2. when ρ ∈ [ρ2,+∞), the function y → W2,ρ(yi), y > 0 admits only one critical
point at 1, and we have ∂

∂yW2,ρ(yi) < 0 if y ∈ (0, 1), ∂
∂yW2,ρ(yi) > 0 if y ∈

(1,∞).

As in Section 6, by Lemma 6.1 and transformation (6.2), we have that

Lemma 7.1.

θ(2; yi) =
√

y

2
ϑ3(2y)ϑ3(

y

2
), θ(1; yi + 1

2
) =

√
y

2

(
ϑ3(2y)ϑ3(

y

2
)

+ ϑ2(2y)ϑ4(
y

2
)
)
.

Recall by (1.13) and (6.2),

A(y) := √
2ϑ3(2y)ϑ3(

2

y
) = √

yϑ3(2y)ϑ3(
y

2
), B(y) := √

2ϑ2(2y)ϑ2(
2

y
)

= √
yϑ2(2y)ϑ4(

y

2
).

Next we state Theorem 7.1, which provides the key argument to prove Propo-
sition 7.1.

Theorem 7.1. The function y �→ B′(y)
A′(y)

, y > 0 has only one critical point at y = 1,

and furthermore
( B′(y)
A′(y)

)′
< 0, y ∈ (0, 1) and

( B′(y)
A′(y)

)′
> 0, y ∈ (1,∞).

Proof. By Lemma 6.2,

A′
(
1

y

)

= −y2A′(y), B′
(
1

y

)

= −y2B′(y). (7.2)

Let

C(y) := B′(y)

A′(y)
.

Then

C
(
1

y

)

= C(y).
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Hence

C′( 1
y
) = −y2C′(y). (7.3)

In particular, C′(1) = 0, that is, y = 1 is the critical point of C(y). This, combining
with Lemma 6.4, shows that the C(y) by the quotient form is well defined.

By (7.3), it suffices to prove that

C′(y) > 0 y ∈ (1,∞).

To prove this, we need to divide it into two parts of y: the small case y ∈ [k,∞)

and the large case y ∈ (1, k), where the parameter k is sightly bigger than 1 and
will be determined later. (In fact k = 1.05.)
Case (a): y ∈ [k,∞). One has

C′(y) = B′′(y)A′(y) − A′′(y)B′(y)

(A′(y))2
.

Then we need to estimate the lower bound of B′′(y)A′(y) − A′′(y)B′(y).
By (1.13),

A(y) = √
y

(

1 + 2
∞∑

n=1

e−2πn2y

)(

1 + 2
∞∑

n=1

e− π
2 n2 y

)

=
(√

y + 2
√

ye− πy
2 + 4

√
ye−2πy + 4

√
ye− 5

2πy + 4
√

ye−4πy

+ 2
√

ye− 9
2πy

+2
√

y

( ∞∑

n=2

e−2πn2 y +
∞∑

n=4

e− π
2 n2 y

))

+
(

4
√

ye− 5
2πy

( ∞∑

n=2

e− 1
2π(n2−1)y +

∞∑

n=2

e−2π(n2−1)y

+
∞∑

n=2

e− 1
2π(n2−1)y ·

∞∑

n=2

e−2π(n2−1)y

))

:= Aa(y) + Ae(y)

(7.4)

where Aa(y) and Ae(y) are defined at the last equality. Ae(y) is the error part
which will be proved to satisfy

‖Ae‖C2 � C
√

ye− 13
2 πy .



Minima of Theta Functions 179

For B(y), by (1.13), we rewrite as

B(y) = √
yϑ2(2y)

(
ϑ3(2y) − ϑ2(2y)

)

= 2
√

y
∞∑

n=1

e−2πy(n− 1
2 )2 + 4

√
y

∞∑

n=1

e−2πy(n− 1
2 )2

∞∑

n=1

e−2πn2 y

− 4
√

y

( ∞∑

n=1

e−2πy(n− 1
2 )2

)2

=
(
2
√

ye− 1
2πy + 4

√
ye− 5

2πy + 2
√

ye− 9
2πy − 4

√
ye−πy

)

+ (2
√

y
∞∑

n=3

e− 1
2 (2n−1)2πy + 4

√
ye− 5

2πy
( ∞∑

n=2

e− 1
2 ((2n−1)2−1)πy

+
∞∑

n=2

e−2(n2−1)πy

+
∞∑

n=2

e− 1
2 ((2n−1)2−1)πy

∞∑

n=2

e−2(n2−1)πy
)

− 8
√

y
∞∑

n=2

e− 1
2 (2n−1)2πy

− 4
√

y
( ∞∑

n=2

e− 1
2 (2n−1)2πy

)2)

:= Ba(y) + Be(y),

where Ba(y) and Be(y) are defined at the last equality. That is, we have

B(y) = Ba(y) + Be(y), (7.5)

where Ba(y),Be(y) is the approximate part and the error part of B(y) respectively.
We have the following estimate

‖Be‖C2 � C
√

ye− 13
2 πy, y � 1.

To prove that

C′(y) > 0 if y ∈ (k,∞), (7.6)

it suffices to prove that

B′′(y)A′(y) − A′′(y)B′(y) > 0 if y ∈ (k,∞).

By (7.4), there holds

B′′A′ − A′′B′ =
(
B′′

aA′
a − A′′

aB′
a

)
+
(
B′′

eA′ − B′
eA′′ + B′′

aA′
e − A′′

eB′
a

)
.

Here
(
B′′

aA′
a −A′′

aB′
a

)
and

(
B′′

eA′ −B′
eA′′ +B′′

aA′
e −A′′

eB′
a

)
are the approximate

and error part of B′′A′ − A′′B′ respectively.
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To estimate the approximate part, we use the monotonicity of a weighted func-
tion, that is

y → 4y

π
e
1
2πy

(
B′′

aA′
a − A′′

aB′
a

)
(y) (7.7)

is strictly increasing.
For the error term, we have the following control

∣
∣
(B′′

eA′ − B′
eA′′ + B′′

aA′
e − A′′

eB′
a

)
(y)
∣
∣ � C

√
ye− 13

2 πy, y � 1 (7.8)

which decays fast.
Combining (7.7) and (7.8), one deduces that

(
B′′A′ − A′′B′)(y) > if y ∈ [1.05,∞). (7.9)

This proves that

C′(y) > 0 if y ∈ [1.05,∞). (7.10)

The detailed proofs of (7.7), (7.8) and (7.9) will be given in the Appendix 2.
Case (b): y ∈ (1, k).

To prove

(B′(y)

A′(y)

)′
> 0, on y ∈ (1, k), (7.11)

by (6.17), it suffices to prove that

(B′′(y)

A′′(y)

)′
> 0, on y ∈ (1, k),

given that

A′(1) = B′(1) = 0 (7.12)

which follows from (7.2). Here as in (6.18), we need A′′(y) > 0 in small interval
such as (1, 1.2] (we omit the details here).

To proceed, we notice that

(B′′(y)

A′′(y)

)′
= B′′′(y)A′′(y) − B′′(y)A′′′(y)

A′′2(y)
. (7.13)

Define

fAB(y) := B′′′(y)A′′(y) − B′′(y)A′′′(y).

Same as (6.23), we see that

fAB(1) = 0. (7.14)
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Then to prove (7.11), it suffices to prove that

f ′
AB(y) > 0 for y ∈ (1, k). (7.15)

Now by (7.4) and (7.5) we can write as

f ′
AB = B′′′′A′′ − B′′A′′′′

=
(
B′′′′

a A′′
a − B′′

aA′′′′
a

)
+
(
B′′′′

e A′′ − B′′
eA′′′′ + B′′′′

a A′′
e − A′′′′

e B′′
a

)
.
(7.16)

The main part is
(
B′′′′

a A′′
a − B′′

aA′′′′
a

)
which is is not monotonically decreasing

or increasing. Instead, a weighted

y → 32y4

π
e
1
2πy

(
B′′′′

a A′′
a − B′′

aA′′′′
a

)
(y) (7.17)

is strictly decreasing on (1,∞).
For the error part in (7.16), one deduces the following upper bound estimate,
∣
∣
∣
(
B′′′′

e A′′ − B′′
eA′′′′ + B′′′′

a A′′
e − A′′′′

e B′′
a

)
(y)

∣
∣
∣ � C

√
ye− 13

2 πy, y � 1 (7.18)

which decays very fast.
Combining (7.17), (7.18) and (7.16), we can show that

f ′
AB(y) > 0 if y ∈ (1, 1.12]. (7.19)

The detailed proof of (7.17), (7.18) and (7.19) is tedious and will be given in
the Appendix 2. This completes the proof.

��
Finally we give the proof of Proposition 7.1.

Proof. By Lemma 6.2, the functional W2,ρ(yi) satisfies the functional equations

H′
(
1

y

)

= −y2H′(y). (7.20)

Hence H′(1) = 0, that is, y = 1 is a critical point of W2,ρ(yi).
By (7.20), we just need to consider the functionalW2,ρ(yi) on (1,∞). For this,

one uses Theorem 7.1 by rewriting ∂
∂yW2,ρ(yi) as

√
2

∂

∂y
W2,ρ(yi) = ∂

∂y

(√
2θ

(

1; yi + 1

2

)

+ ρ
√
2θ(2; yi)

)

= A′(y) + B′(y) + ρA′(y)

= A′(y) ·
(

1 + B′(y)

A′(y)
+ ρ

)

.

(7.21)

By Lemma 6.4, we see that

A′(y) > 0 y ∈ (1,∞) and 1 + B′(
√
3)

A′(
√
3)

= 0. (7.22)
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By Theorem 7.1, it holds that

d

dy

(
1 + B′(y)

A′(y)
+ ρ

)
> 0, y ∈ (1,∞). (7.23)

From (7.23), in view of (7.21) and (7.22), we infer that

∂

∂y
W2,ρ(yi) admits at most one zero point on (1,∞).

By (7.22), we see that

∂

∂y
W2,ρ(yi) > 0 if y ∈ (

√
3,∞). (7.24)

Then one further concludes that the admissible zero point of ∂
∂yW2,ρ(yi) must lie

on (1,
√
3] (if exists).

Next we consider the function 1 + B′(y)
A′(y)

+ ρ for ρ > 0 ∈ (1,
√
3). At the end

point
√
3, we have that

(

1 + B′(y)

A′(y)
+ ρ

)

|y=√
3= 0 + ρ = ρ > 0 (7.25)

because of (7.22).
Since A′(1) = B′(1), at the other end point 1, one evaluates
(

1 + B′(y)

A′(y)
+ ρ

)

|y=1 = 1 + ρ + lim
y→1

B′(y)

A′(y)
= 1 + ρ + lim

y→1

B′′(y)

A′′(y)

= 1 + ρ + B′′(1)
A′′(1)

(7.26)

by L’Hospital’s rule.
In view of (7.25) and (7.26), one deduces from (7.23) that

(
1 + B′(y)

A′(y)
+ ρ

)
admits one zero point on (1,

√
3)

it equivalents to1 + ρ + B′′(1)
A′′(1)

< 0,

(7.27)

which implies that

ρ < ρ2 := −1 − B′′(1)
A′′(1)

.

It follows that by (7.21) and (7.27), for ρ � ρ2, ∂
∂yW2,ρ(yi) admits no zero on

(1,∞). Therefore the part 2 of Proposition 7.1 follows from (7.20).

For ρ ∈ (0, ρ2), we denote the zero root of
(
1 + B′(y)

A′(y)
+ ρ

)
(and hence also

of ∂
∂yW2,ρ(yi)) as y2,ρ . Then by (7.27) y2,ρ ∈ (1,

√
3). Thus by (7.20) there is
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another zero point 1
y2,ρ

∈ (
√
3
3 , 1) of ∂

∂yW2,ρ(yi). By (7.24), (7.20), (7.23) and
(7.21), the part 1 of Proposition 7.1 is proved.

Finally from (7.23), we have that

d

dρ
y2,ρ < 0,∀ρ ∈ [0, ρ2].

This proves (7.1). (For ρ = 0, one has y2,ρ = √
3 by (7.22)). The proof is thus

completed.
��

8. Proofs of Theorems 1.2, 1.3 and 1.4

In this section, we are ready to finish the proof of the main results of Theo-
rems 1.2, 1.3 and 1.4 . To make the presentation clear, we introduce the following
notations to denote various geometric sets:

H : = {z | y > 0},
�a : = {z | |z| � 1, 0 � x < 1},
�b : =

{

z | |z| � 1, 0 � x � 1

2

}

∪
{

z | |z| = 1,
1

2
� x < 1

}

,

�c : =
{

z | |z| � 1, 0 � x � 1

2

}

,

�d : =
{

z | |z| = 1, 0 � x � 1

2

}

∪ {z | x = 0, 1 � y < ∞}
,

�e : =
{

z | |z| = 1, 0 � x � 1

2

}

∪
{

z | x = 0, 1 � y �
√
3
}

,

�ea : =
{

z | x = 0, 1 � y �
√
3
}

,

�eb : =
{

z | |z| = 1, 0 � x <
1

2

}

.

We divide the proof into the following steps:
Step 1: Reducing minimization problem from H to → �a .

This is a consequence of Theorem 3.2 and the properties of the fundamental
group (3.3) and fundamental domain (3.5):

min
z∈H W1,ρ(z) ≡ min

z∈�a
W1,ρ(z), min

z∈H W2,ρ(z) ≡ min
z∈�a

W2,ρ(z). (8.1)

Step 2: Reducing minimization problem from �a to �b.
This follows from Corollary 4.2:

min
z∈�a

W1,ρ(z) ≡ min
z∈�b

W1,ρ(z), min
z∈�a

W2,ρ(z) ≡ min
z∈�b

W2,ρ(z).

Step 3: Reducing minimization problem from �b to �c.



184 Senping Luo & Juncheng Wei

We first show that

min
z∈{z||z|=1, 12�x<1}

W j,ρ(z) ≡ W1,ρ

(
1

2
+ i

√
3

2

)

, j = 1, 2. (8.2)

One can further conclude that the minimizer 1
2 + i

√
3
2 is unique by the monotonicity

shown below.
In fact, by Propositions 6.1 and 7.1 , we see that

∂

∂y
W j,ρ(yi) > 0, y ∈ [√3,∞), j = 1, 2. (8.3)

By the special map z �→ w := z−1
z+1 , the set {yi, y ∈ [√3,∞)} is mapped

bijectively to {|z| = 1, 1
2 � Re(z) < 1}. By Lemmas 3.4 and (8.3) we see that both

W1,ρ(z) and W2,ρ(z) are monotonically decreasing along the set {|z| = 1, 1
2 �

x < 1}. This proves (8.2).
By (8.2), we conclude that

min
z∈�b

W1,ρ(z) ≡ min
z∈�c

W1,ρ(z), min
z∈�b

W2,ρ(z) ≡ min
z∈�c

W2,ρ(z).

Step 4: Reducing minimization problem from �c to �d .
In this case, let ρ∗ = 1

20 be as in Propositions 5.1. For ρ ∈ [0, ρ∗], Proposi-
tion 5.1 implies that

min
z∈�c

W1,ρ(z) ≡ min
z∈�d

W1,ρ(z), ρ ∈ [0, ρ∗].

For ρ ∈ (ρ∗,∞), using Lemmas 3.3, 5.2, and (8.2), we get that

min
z∈�c

W1,ρ(z) ≡ ρ min
w∈�c

W2,1/ρ(w), 1/ρ ∈ (0, 1/ρ∗)

≡ ρ min
w∈�d

W2,1/ρ(w), 1/ρ ∈ (0, 1/ρ∗)

≡ min
z∈�d

W1,ρ(z), ρ ∈ (ρ∗,∞).

Therefore, we obtain that

min
z∈�c

W1,ρ(z) ≡ min
z∈�d

W1,ρ(z), ρ ∈ [0,∞). (8.4)

By Theorem 3.3, (8.2) and (8.4), we have that

min
z∈�c,ρ∈[0,∞)

W2,ρ(z), ≡ ρ min
w∈�c,1/ρ∈[0,∞)

W1,1/ρ(w),

≡ ρ min
w∈�d ,1/ρ∈[0,∞)

W1,1/ρ(w),

≡ min
z∈�d ,ρ∈[0,∞)

W2,ρ(z).

(8.5)

Step 5: Reducing minimization problem from �d to �e.
This follows from (8.3).
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In summary, from Steps 1–5, we conclude that

min
z∈H W1,ρ(z) ≡ min

z∈�e
W1,ρ(z), min

z∈H W2,ρ(z) ≡ min
z∈�e

W2,ρ(z). (8.6)

From (8.6), we just need to find the minimizer in a much smaller curve�e. But this
gives no information about uniqueness or multiplicity of the minimizers. In fact,
one can further rule out the possible minimizers ofW j,ρ(z), j = 1, 2 in a large set.
Namely, for z ∈ �a\�e, there is no any possible minimizer for minz∈�a W1,ρ(z),
minz∈�a W2,ρ(z). The possible multiplicity of minimizer is admitted only in Step
1, see (8.1). Therefore, one can conclude the reduction in (8.6) is unique up to
the group transformation G2. In the next step we will show that minz∈�e W1,ρ(z),
minz∈�e W2,ρ(z) exists , is unique and can be located precisely.

Let w be the map w(z) = z−1
z+1 whose inverse is z(w) = 1+w

1−w
. Under this map

we have z = yi ∈ �ea �→ w = y2−1
y2+1

+ i 2y
y2+1

∈ �eb, w = u + iv ∈ �eb �→ z =
i
√
1−u2
1−u ∈ �ea .

We note that

ρ1 < 1/ρ2 < ρ2 < 1/ρ1.

See in Propositions 6.1 and 7.1 .
Now we consider the minimizer ofW1,ρ(z) on �e. We divide things into three

cases.

Case 1. ρ ∈ [ρ1, 1/ρ2].
In this case, ρ � ρ1, 1/ρ � ρ2. Then by Propositions 6.1 and 7.1 , bothW1,ρ(z)

and W2,ρ(z) are monotonically increasing on �ea along positive y axis direction.
Then it follows thatW1,ρ(z) is monotonically increasing on�eb clockwise. There-
fore, the minimizer ofW1,ρ(z) on �e is uniquely achieved at z = i , that is, in this
case the minimizer of W1,ρ(z) is always i , a fixed point representing the square
lattice.
Case 2. ρ ∈ (0, ρ1).

In this case, 1/ρ > 1/ρ1 > ρ2. Then by Proposition 7.1,W2,1/ρ(z) is monoton-
ically increasing on�ea along positive y axis direction. It follows from Lemma 3.4
or Theorem 3.3 that W1,ρ(z) is monotone increasing on �eb clockwise. On the
other hand, by Proposition 6.1,W1,ρ(z) admits a unique minimizer at y = iy1,ρ ∈
i(1,

√
3) on�ea . We conclude thatW1,ρ(z) has a uniqueminimizer at z1,ρ = iy1,ρ ,

where y1,ρ ∈ (1,
√
3) on �e.

Case 3. ρ ∈ (1/ρ2,∞).
In this case, since 1/ρ < ρ2, by Proposition 7.1, W2,1/ρ(z) has a unique min-

imizer at y = y2,1/ρ ∈ (1,
√
3) on �ea . Then by Theorem 3.3 or Lemmas 3.4,

W1,ρ(·) has a unique minimizer

z1,ρ = y22,1/ρ − 1

y22,1/ρ + 1
+ i

2y2,1/ρ
y22,1/ρ + 1

∈ inner points of �eb. (8.7)
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On the other side, one has ρ > 1/ρ2 > ρ1. Then by Proposition 6.1, W1,ρ(z) is
monotone increasing on �ea along the positive y axis direction. Therefore, (8.7)
gives the minimizer of W1,ρ(z) on �e.

This proves Theorems 1.2 and 1.4 . Theorem 1.3 follows from Theorem 1.2
and Lemma 3.3.

9. Proof of Mueller–Ho Functional and Mueller–Ho Conjecture

Proof of Lemma 2.1. Since the computation is elementary, we omit the details
here.

Proof of Lemma 2.3.

J
(

z; 1
2
,
1

2

)

=
∑

m,n

e− π
y |mz−n|2 cos((m + n)π)

=
∑

m,n

e− π
y |mz−n|2(1 + cos((m + n)π)

)−
∑

m,n

e− π
y |mz−n|2

=
∑

m,n

e− π
y |mz−n|22 cos2

(
(m + n)π

2

)

− θ(1; z)

=
∑

m+n=2k,k∈Z
2e− π

y |mz+n|2 − θ(1; z)

= 2
∑

m,k

e− π
y |m(z+1)−2k|2 − θ(1; z)

= 2
∑

m,k

e
− 2π

Im( z+1
2 )

|m z+1
2 −k|2 − θ(1; z)

= 2θ

(

2; z + 1

2

)

− θ(1; z).

��
Proof of Theorem 2.1. This follows by Theorems 1.2, 1.3 and 1.4 , by the relation
ρ = 1−α

2α . ��
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11. Appendix A: Proof of Lemma 2.2

Recall that

J (z; a, b) =
∑

(m,n)∈Z2

e− π
y |mz−n|2 cos(2π(ma + nb)). (10.1)

In this appendix we show that when the lattice is square type, then ( 13 ,
1
3 ) is not a

critical point while when the lattice is hexagonal (or triangular), it is a critical point.
First we show that

Lemma 11.1.

∂

∂a
J (z; a, b)|z=i,(a,b)=( 13 , 13 ) = ∂

∂b
J (z; a, b)|z=i,(a,b)=( 13 , 13 ) < 0. (10.2)

This implies that J (z; a, b) is not always critical point for any lattice shape.

Proof.

∂

∂a
J (z; a, b)|z=i,(a,b)=( 13 , 13 ) = −2π

∑

m,n

me−π(m2+n2) sin

(
2π(m + n)

3

)

∂

∂a
J (z; a, b)|z=i,(a,b)=( 13 , 13 ) = −2π

∑

m,n

ne−π(m2+n2) sin

(
2π(m + n)

3

)

.

(10.3)

It is clear that

∂

∂a
J (a, b; z)|z=i,(a,b)=( 13 , 13 ) = ∂

∂b
J (a, b; z)|z=i,(a,b)=( 13 , 13 ).

Let

A :=
∑

m,n

e−π(m2+n2) sin

(
2π(m + n)

3

)

m.

Equivalently, we show that

A > 0.

Grouping by m + n = 3k + j, j = 0, 1, 2, we have

A

sin(π
3 )

=
∑

m+n≡1( mod 3)

me−π(m2+n2) −
∑

m+n≡2( mod 3)

me−π(m2+n2). (10.4)

For the first part in (10.4), splitting the summation by m > 0 or m < 0, we have
(dropping the mod 3)

∑

m+n≡1

e−π(m2+n2)m =
∑

m>0,m+n≡1

me−π(m2+n2) −
∑

m>0,m+n≡2

me−π(m2+n2)
(10.5)
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For the second part in (10.4), similarly, one has
∑

m+n≡2

e−π(m2+n2)m =
∑

m>0,m+n≡2

me−π(m2+n2) −
∑

m>0,m+n≡1

me−π(m2+n2).(10.6)

By (10.5) and (10.6), we have
∑

m+n≡2

me−π(m2+n2) = −
∑

m+n≡1

me−π(m2+n2)
(10.7)

and by (10.4)

A

2 sin(π
3 )

=
∑

m>0,m+n≡1

me−π(m2+n2) −
∑

m>0,m+n≡2

me−π(m2+n2). (10.8)

Notice that e−π is one term in the first summation in (10.8), it suffices to prove that
∑

m>0,m+n≡2

me−π(m2+n2) < e−π .

Now we have

∑

m>0,m+n≡2

e−π(m2+n2)m =
∞∑

m=1

∑

k∈N
me−π(m2+(3k+2)2)

=
∞∑

m=1

me−πm2 ∑

k∈N
e−π(3k+2)2 < (e−π + 4e−4π )(e−π + 2e−4π ) < e−π .

This completes the proof. ��
Next we show that (a, b) = ( 13 ,

1
3 ) is a critical point when z = 1

2 + i
√
3
2 .

Proof. We first claim that

∑

(m,n)∈Z2

e−x(m2+n2−mn)m sin

(
2π(m + n)

3

)

= 0, for ∀x > 0. (10.9)

To prove (10.9), it suffices to prove that

∑

n

e−x(m2+n2−mn) sin

(
2π(m + n)

3

)

= 0, for ∀x > 0. (10.10)

In fact,

∑

n

e−x(m2+n2−mn) sin

(
2π(m + n)

3

)

= −e− 3
4 xm2 ∑

n

e− x
4 (2n−m)2 sin

π(2n − m)

3

= 0.

(10.11)
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In the last equality, one uses 2n − m, n ∈ Z and takes all the even or odd integers
when m is even or odd.
By simple calculation, now the second part of Lemma 2.2 is equivalent to

∑

m,n

e− π
2y

(
(m−n)2y2+(m+n)2

)

m sin
2π(m + n)

3
= 0, if y = √

3 (10.12)

which is of consequence of (10.9). This completes the proof.
��

12. Appendix 2: The Rest of Proof in Theorems 6.1 and 7.1

In this appendix, we finish the technical proofs of Theorems 6.1 and 7.1 .
Throughout this appendix we frequently use the following Lemma whose proof is
straightforward calculus and is omitted:

Lemma 12.1. Let f (y)( j) denote d j

dy j f (y). For , j = 1, 2, 3, 4, there holds

• For a > 0, b > 0,

(
ybe−ay

)′
< 0, if y >

b

a
;
(

ybe−ay
)′′

> 0, if y >
b + √

b

a
.

• For a > 0,

(−1) j
(√

ye−ay
)( j)

> 0, if y > f j (a).

Here

f1(a) = 1

2a
, f2(a) = 1 + √

2

2a
, f3(a) = 1

a
, f4(a) = 1

2a
.

• For y � 1 and an > 0
∣
∣
∣
∣
∣
∣

( ∞∑

n=k

√
ye−an y

)( j)
∣
∣
∣
∣
∣
∣
� (1 + σ j,k)

√
y(ak)

j e−ak y,

σ j,k =
∞∑

n=k+1

(
an

ak

) j

e−(an−ak ).

In applying Lemma 12.1, we will choose k by the desired estimates.
The structure of this appendix is organized as follows. (6.11)⇔ Lemma 12.2;
(6.12)⇔ Lemma 12.3; (6.13)⇔ Lemma 12.4; (6.26)⇔ Lemma 12.5; (6.27)⇔
Lemma 12.6; (6.25)⇔ Lemma 12.7; (7.7)⇔ Lemma 12.8; (7.8)⇔ Lemma 12.9;
(7.9)⇔ Lemma 12.10; (7.17)⇔ Lemma 12.11; (7.18)⇔ Lemma 12.12; (7.19)⇔
Lemma 12.13.
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12.1. The Rest of Proof in Theorem 6.1

Lemma 12.2. y �→ 16y
π

e
1
4πy

(
Y ′′

aX ′
a − X ′′

a Y ′
a

)
(y), y ∈ [1,∞) is monotonically

increasing.

Proof. Calculating and grouping the terms, we get

16y

π
e
1
4πy

(
Y ′′

aX ′
a − X ′′

a Y ′
a

)
(y)

=
(
πy − 2496e−7πyπ2y2 − 144e−7πy − 700e−6πyπy − 1440e−5πyπ2y2

− 288e−5πy − 2176e−4πyπy

− 840e−3πyπ2y2 − 108e−3πy − 243e−2πyπy − 110e−πyπy − 6
)

+
(
696e−7πyπy + 2016e−6πyπ2y2 + 168e−6πy + 1008e−5πyπy

+ 2208e−4πyπ2y2 + 768e−4πy

+ 234e−3πyπy + 192e−2πyπ2y2 + 162e−2πy + 24e−πyπ2y2 + 132e−πy
)
.

(11.12)

Denote the terms in first and second brackets of 16y
π

e
1
4πy

(
Y ′′

aX ′
a − X ′′

a Y ′
a

)
(y) by

P+
XY and P−

XY respectively. One has 16y
π

e
1
4πy

(
Y ′′

aX ′
a − X ′′

a Y ′
a

)
(y) = P+

XY (y) +
P−
XY (y) by (11.12). It remains to prove that

(
P+
XY + P−

XY
)′

> 0, y ∈ [1,∞).

It is clear that the leading order term is πy, this gives that
(
P+
XY + P−

XY
)′

> 0

when y is large.
By Lemma 12.1, one has

(
P+
XY

)′
> π,

(
P−
XY

)′
< 0,

(
P+
XY

)′′
< 0,

(
P−
XY

)′′
> 0 if y � 1.

(11.13)

Direct calculation shows that
(
P−
XY

)′ |y=2.2= −3.012967072 · · · . Thenby (11.13)

(
P+
XY + P−

XY
)′

(y) > π − 3.012967072 · · · > 0, if y � 2.2. (11.14)

Next we prove that

(
P+
XY + P−

XY
)′

(y) > 0, for y ∈ [1, 2.2]. (11.15)
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To prove (11.15), we regroup the terms by

P+
XY (y) + P−

XY (y)

= (πy − 6) + e−πy(−110πy + 24π2y2 + 132)

+ e−2πy(−243πy + 192π2y2 + 162)

+ e−3πy(−840π2y2 − 108 + 234πy)

+ e−4πy(−2176πy + 2208π2y2 + 768)

+ e−5πy(−1440π2y2 − 288 + 1008πy)

+ e−6πy(−700πy + 2016π2y2 + 168)

+ e−7πy(−2496π2y2 − 144 + 696πy).

(11.16)

To prove (11.16), one divides the interval [1, 2.2] into, say, ten subintervals, [1, 2.2)
= ∪9

i=0[ai , ai+1). In each intervals, by careful calculations, we can show that the
function is positive on each interval.

��
Lemma 12.3. The following estimates hold: |

(
Y ′′

e X ′−Y ′
eX ′′+Y ′′

aX ′
e−X ′′

e Y ′
a

)
(y)|

� (44π2 + 18π + 36πy)e− 17
4 πy .

Remark 12.1. The coefficient of the bound is not sharp, but the exponential term
captures the main feature.

Proof. By Lemma 12.1, one infers that

|Y ′
e(y)| � 18π

√
ye− 17

4 πy, |Y ′′
e (y)| � 290π2

4
√

ye− 17
4 πy,

|X ′
e(y)| � 41π

√
ye−5πy, |X ′′

e (y)| � 201π2√ye−5πy

For X ′,X ′′,Y ′
a,Y ′′

a , by their expressions, one has

|X ′(y)| � 3

5
√

y
, |X ′′(y)| �

(
1

4y3/2
+ 2

√
y

)

,

|Y ′
a(y)| �

(
1√
y

+ 2
√

y

)

, |Y ′
a(y)| �

(
1

4y3/2
+ 2

√
y

)

.

Thus, one can get the result.
��

Lemma 12.4. It holds that
(
Y ′′X ′ − Y ′′X ′

)
(y) > 0, y ∈ [1.1,∞).

Proof. It remains to prove that 16y
π

e
1
4πy

(Y ′′X ′ − Y ′′X ′) (y) > 0, y ∈ [1.1,∞).

By Lemmas 12.2 and 12.3 ,
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16y

π
e
1
4πy

(
Y ′′X ′ − Y ′′X ′)(y)

= 16y

π
e
1
4πy

(
Y ′′

aX ′
a − X ′′

a Y ′
a

)
(y)

+ 16y

π
e
1
4πy

(
Y ′′

e X ′ − Y ′
eX ′′ + Y ′′

aX ′
e − X ′′

e Y ′
a

)
(y)

� 16y

π
e
1
4πy

(
Y ′′

aX ′
a − X ′′

a Y ′
a

)
(y) − 16y

π
(44π2 + 18π + 36πy)e−4πy

�
(16y

π
e
1
4πy

(
Y ′′

aX ′
a − X ′′

a Y ′
a

)
(y) − 16y(44π + 18 + 36y)e−4πy

)
|y=1.1

= 0.001671778 · · · , y ∈ [1.1,∞)

> 0, y ∈ [1.1,∞).

In the second last step, one uses the fact that y �→ −16y(44π+18+36y)e−4πy, y >

1 is strictly increasing.
��

Lemma 12.5. y → 512y4

π
e
1
4πy

(
Y ′′′′

a X ′′
a −Y ′′

aX ′′′′
a

)
(y) is monotonically decreasing

on (1, 1.2).

Proof. By direct calculations, one regroups the terms by

512y4

π
e

1
4 πy

(
Y ′′′′

a X ′′
a − Y ′′′′

a X ′′′′
a

)
(y)

= −π3y3 + 8π2y2 + 84πy − 144

+ e−πy
(

− 240π5y5 − 9240πy − 6320π2y2 + 1392π4y4 + 350π3y3 + 3168
)

+ e−2πy
(

− 11232π5y5 − 14877π3y3 − 20412πy − 32856π2y2 + 36096π4y4 + 3888
)

+ e−3πy
(

− 348240π4y4 − 2592 + 178854π3y3 + 209040π5y5 + 19656πy + 91536π2y2
)

+ e−4πy
(

− 804576π5y5 − 121856π3y3 − 472576π2y2

− 182784πy + 1465533π4y4 + 18432
)

+ e−5πy
(

− 140064π64y4 − 6912 + 160272π3y3 + 685440π5y5

+ 84672πy + 284544π2y2
)

+ e−6πy
(

− 570500π3y3 − 3628800π5y5 − 58800πy

− 301280π2y2 + 3100608π4y4 + 4032
)

+ e−7πy
(

− 5236608π4y4 − 3456 + 862344π3y3 + 7527936π5y5

+ 361152π2y2 + 58464πy
)
.

(11.17)

The rest is found through careful calculations by taking derivatives.
��
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Lemma 12.6. There has |
(
Y ′′′′

e X ′′−Y ′′
e X ′′′′+Y ′′′′

a X ′′
e −X ′′′′

e Y ′′
a

)
(y)| � 16( 174 π)4

√
ye− 17

4 πy, y � 1.

Remark 12.2. The coefficient of the bound is rather rough but is enough to get our
result. The exponential power captures the main feature.

Proof. By Lemma 12.1, one infers that

|Y ′′
e (y)| � 4

(
17

4
π

)2

(1 + σYe,2)
√

ye− 17
4 πy, |Y ′′′′

e (y)|

� 4

(
17

4
π

)4

(1 + σYe,4)
√

ye− 17
4 πy

(11.18)

and

|X ′′
e (y)| � 8(5π)2(1 + σXe,2)

√
ye−5πy, |X ′′′′

e (y)|
� 8(5π)4(1 + σXe,4)

√
ye−5πy .

(11.19)

Here σXe, j , σYe, j , j = 2, 4 are small and can be bounded by 1
4 . For X ′′,X ′′′′,Y ′′

a
and Y ′′′′

a , by their explicit expressions, one has

|X ′′′′(y)| � 10, |X ′′(y)| � 1.2, |Y ′′′′
a (y)| � 1

10
, |Y ′′′′

a (y)| � 1, y � 1.

(11.20)

Combining (11.18), (11.19) with (11.20), one gets the estimate.
��

Lemma 12.7. There holds
(
Y ′′′′X ′′ − Y ′′X ′′′′

)
(y) > 0, y ∈ [1, 1.11].

Proof. It suffices to prove that 512y4

π
e
1
4πy

(
Y ′′′′X ′′ − Y ′′X ′′′′

)
(y) > 0, y ∈

[1, 1.11]. By the decomposition and Lemmas 12.5 and 12.6 , we obtain that

512y4

π
e
1
4πy

(
Y ′′′′X ′′ − Y ′′X ′′′′)(y)

= 512y4

π
e
1
4πy

(
Y ′′′′

a X ′′
a − Y ′′

aX ′′′′
a

)
(y)

+ 512y4

π
e
1
4πy

(
Y ′′′′

e X ′′ − Y ′′
e X ′′′′ + Y ′′′′

a X ′′
e − X ′′′′

e Y ′′
a

)
(y)

� 512y4

π
e
1
4πy

(
Y ′′′′

a X ′′
a − Y ′′

aX ′′′′
a

)
(y) − 72

5
· 174π3y9/2e−4πy

� 512y4

π
e
1
4πy

(
Y ′′′′

a X ′′
a − Y ′′

aX ′′′′
a

)
(y) |y=1.11

− 72

5
· 174π3y9/2e−4πy |y=1, y ∈ [1, 1.11]

= 158.4646175 · · · − 130.0476135 · · ·
> 0.

(11.21)

��
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12.2. The Rest of Proof in Theorem 7.1

Lemma 12.8. The function y → 4y
π

e
1
2πy

(
B′′

aA′
a −A′′

aB′
a

)
(y), y > 1 is monotone

increasing.

Proof. By direct calculations, one regroups the terms by

4y

π
e
1
2πy

(
B′′

aA′
a − A′′

aB′
a

)
(y)

=
(
πy − 3 − 288e−8πyπ2y2 − 12e−8πy − 144e− 9

2πy − 72e−3πy

− 48e− 5
2πy − 84e−5πy − 12πe−πy y

− 8πe− 1
2πy y − 768π2e− 9

2πy y2 − 128π2e− 5
2πy y2 − 240y2e−3πyπ2

− 504e−5πyπ2y2 − 52e−6πyπy

− 99e−4πyπy − 10e−2πyπy
)

+
(
68e−8πyπy + 240e−6πyπ2y2 + 12e− 1

2πy + 12e−6πy + 33e−4πy

+ 6e−2πy + 12e−πy + 96πe− 5
2πy y

+ 480πe− 9
2πy y + 8π2e−πy y2 + 168ye−3πyπ + 64e−4πyπ2y2

+ 48e−2πyπ2y2 + 308e−5πyπy
)

(11.22)

Denote the terms in the first and second bracket of (11.22) byP+
AB andP−

AB. Then

4y

π
e
1
2πy

(
B′′

aA′
a − A′′

aB′
a

)
(y) = P+

AB(y) + P−
AB(y). (11.23)

It remains to prove that P+
AB(y) + P−

AB(y) > 0, y > 1.
By Lemma 12.1,

(
P+
AB(y)

)′
(y) > π,

(
P+
AB(y)

)′′
(y) < 0,

(
P−
AB(y)

)′
(y) < 0,

(
P−
AB(y)

)′′
(y) > 0

(11.24)

Since
(
P−
AB(y)

)′
(y) |y=1.82= −3.051954266 · · · , one has

P+
AB(y) + P−

AB(y) �π − 3.051954266 · · · , y ∈ [1.82,∞) > 0. (11.25)

It remains to prove thatP+
AB(y)+P−

AB(y) > 0 on the bounded interval (1, 1.82]. To
this end, we divide the interval (1, 1.82] into 10 smaller subintervals, and compute
the derivatives on each interval to arrive the result. ��
Lemma 12.9. There holds: |

(
B′′

eA′ − B′
eA′′ + B′′

aA′
e − A′′

eB′
a

)
(y)| � 8( 138 π)2

√
ye− 13

2 πy, y � 1.
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By Lemma 12.1, one has for j = 1, 2, . . .

|A( j)
e (y)| � 4(1 + σAe, j )

(
13

2
π

) j √
ye− 13

2 πy,

|B( j)
e (y)| � 4(1 + σBe, j )

(
13

2
π

) j √
ye− 13

2 πy .

(11.26)

Here the σAe, j , σBe, j are small and can be bounded by 1
2 . For A′,A′,B′

a,B′′
a , by

their explicit expressions, one deduces that

|A′(y)| � 0.3, |A′′(y)| � 1

2
, |B′

a(y)| � 1

5
, |B′′

a (y)| � 1

5
. (11.27)

Combining (11.26) and (11.27), one gets the estimate.

Lemma 12.10. There holds
(
B′′A′ − A′′B′

)
(y) > 0 if y ∈ [1.05,∞).

Proof. Equivalently, it suffice to prove that 4y
π

e
1
2πy

(
B′′A′−A′′B′

)
(y) > 0 if y ∈

[1.05,∞). By Lemmas 12.8 and 12.9 , we deduce that

4y

π
e
1
2πy

(
B′′A′ − A′′B′)(y)

= 4y

π
e
1
2πy

(
B′′

aA′
a − A′′

aB′
a

)
(y)

+ 4y

π
e
1
2πy

(
B′′

eA′ − B′
eA′′ + B′′

aA′
e − A′′

eB′
a

)
(y)

� 4y

π
e
1
2πy

(
B′′

aA′
a − A′′

aB′
a

)
(y) − 1352πy3/2e−6πy

�
(4y

π
e
1
2πy

(
B′′

aA′
a − A′′

aB′
a

)
(y) − 1352πy3/2e−6πy

)
|y=1.05

= 0.001189906301 · · ·
> 0.

(11.28)

Here we use the fact that y �→ −y3/2e−6πy, y > 1 is strictly increasing in the
second last inequality.

��

Lemma 12.11. y → 32y4

π
e
1
2πy

(
B′′′′

a A′′
a − B′′

aA′′′′
a

)
(y) is strictly decreasing on

(1, 1.12).
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Proof. By Direct calculations, one regroups the terms by

32y4

π
e

1
2 πy

(
B′′′′

a A′′
a − B′′′′

a A′′′′
a

)
(y)

= −π3y3 + 4π2y2 + 21πy − 18

+ e− 1
2 πy(32π3y3 + 72 − 64π2y2 − 168πy)

+ e−πy(176π4y4 + 72 − 48π5y5 − 252πy − 304π2y2 − 132π3y3)

+ e−2πy(2784π4y4 + 36 − 960π5y5 − 2150π3y3 − 1160π2y2 − 210πy)

+ e− 5
2 πy(6144π5y5 + 4224π3y3 + 2016πy + 4864π2y2 − 11264π4y4 − 288)

+ e−3πy(8568π3y3 + 16800π5y5 + 9504π2y2 + 3528πy − 28320π4y4 − 432)

+ e−4πy(2007π3y3 + 28800π5y5 + 8708π2y2 + 3213πy − 32320π4y4 − 306)

+ e−5πy(99792π5y5 + 18172π3y3 + 23632π2y2 + 6468πy − 140112π4y4 − 504)

+ e−6πy(49660π3y3 + 336960π5y5 + 27920π2y2 + 5460πy − 295200π4y4 − 360).

(11.29)

Using the explicit expression in (11.29) and dividing the interval (1, 1.12) into 10
smaller intervals and calculating the derivatives on each interval, we obtain the
result.

��

Lemma 12.12. The error estimate holds:

∣
∣
∣
(B′′′′

e A′′ − B′′
eA′′′′ + B′′′′

a A′′
e − A′′′′

e B′′
a

)
(y)

∣
∣
∣ � 8

(
13

2
π

)4 √
ye− 13

2 πy .(11.30)

Remark 12.3. The coefficient of the bound is rather rough but is enough to get our
result. The exponential power captures the main feature.

Proof. Using the explicit expressions of A and Ba , after tedious estimates, we
arrive at

|A′′′′(y)| � 8, |B′′′′
a (y)| � 5. (11.31)

This, combining with (11.26) and (11.27), gives the estimate.
��

Lemma 12.13. It holds that

(
B′′′′A′′ − B′′A′′′′)(y) > 0, y ∈ [1, 1.12]. (11.32)
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Proof. It is equivalent to proving that 32y4

π
e
1
2πy

(
B′′′′A′′ − B′′A′′′′

)
(y) > 0, y ∈

[1, 1.12]. By Lemmas 12.11 and 12.12 , we have that

32y4

π
e
1
2πy

(
B′′′′A′′ − B′′A′′′′)(y)

= 32y4

π
e
1
2πy

(
B′′′′

a A′′
a − B′′

aA′′′′
a

)
(y)

+ 32y4

π
e
1
2πy

(
A′′

2B′′′′ + B′′′′
2 A′′

a − A′′′′
2 B′′ − B′′

2A′′′′
a

)
(y)

� 32y4

π
e
1
2πy

(
B′′′′

a A′′
a − B′′

aA′′′′
a

)
(y) − 264π3y9/2e−6πy

� 32y4

π
e
1
2πy

(
B′′′′

a A′′
a − B′′

aA′′′′
a

)
(y) |y=1.12 −264π3y9/2e−6πy |y=1

= 49.93918473 · · · − 0.09227517899 · · ·
> 0.

(11.33)

��
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