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Abstract

Lletz =x+iye H:={z=x+iy e C:y > 0}and6(s;2) =
5T 2
D (mnyez? € $3Imz+n1" be the theta function associated with the lattice A = Z@zZ.
In this paper we consider minimization problems

1
min (2; %) +p0(1:2), p € [0,00),
0.1)

. z+1
rrﬁne I;T +00(2;2), p €l0,00),

where the parameter p € [0, 00) represents the competition of two intertwining
lattices, and the particular selection of the parameters s = 1, 2 is determined by
the physical model, which can be generalized by our strategy and method proposed
here. We find that as p varies, the optimal lattices admit a novel pattern: they move
from rectangular (the ratio of long and short sides changes from /3 to 1 continu-
ously), square and rhombus (the angle changes from 7 /2 to 7 /3 continuously) to
hexagonal continuously; geometrically, up to an invariant group (a subgroup of the
classical modular group), they move continuously on a special curve; furthermore,
there exists a closed interval of p such that the optimal lattices is always a square
lattice. This is the first, novel and also the complete result on the minimizer prob-
lem for theta functions with parameter p. This is in sharp contrast to optimal lattice
shapes for a single theta function (p = oo case), for which the hexagonal lattice
prevails. As a consequence, we give a partial and positive answer to optimal lattice
arrangements of vortices in competing systems of Bose—Einstein condensates as
conjectured (and numerically and experimentally verified) by Mueller and Ho (Phys
Rev Lett 88:180403, 2002); this is the first progress on the Mueller—Ho conjecture.
Lastly, we mention that the strategy and method we propose here is general, and
can be used in much more general minimization problems on the lattices.
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1. Introduction and Statement of Main Results

Letz e H := {z=x+iye(C:y>O}andA=\/E<Z€BzZ) with area of

unit cell is 1 be the lattice in R? parameterized by z. The theta function associated
with the lattice A is defined as

0(s; A) := Ze_”“mz.

PeA

By A = \/g(Z @ zZ), one has

B(s:2) =01 0)= oS S Imatnl®, (1.1)

(m,n)eZ?
In 1988, Montgomery [28] proved the following celebrated result:
Theorem 1.1. Forall s > 0 and z € H,

Minima 0(s; 2);eH = 20, (1.2)

where 7o = % +i ‘/7§ (the triangular lattice, or called hexagonal lattice is the lattice
Ay = Z.® z07Z.). Equality holds if and only if z = zo (up to the group G [see (3.2),
Section 3)].

For the higher dimensional cases, the corresponding minimization problems on
lattices was first investigated by Sarnak and Strombergsson [30] and recently by
Cohnetal. [12,13]. For relations with sphere packing problems, see Viazovska [34]
and Cohn et al. [12] and the references therein. We mention that minimization
problems for Dedekind eta function (equivalent to the theta function (1.1) via Mellin
transform) also arise in the extremal determinants of Laplace—Beltrami Operators.
See Osgood et al. [27], Faulhuber [16], Bétermin and Sandier [3], and the reference
therein.

The celebrated Theorem 1.1 laid the foundations for many optimal lattice prob-
lems in number theory and has been frequently used in applied mathematical
and physical models such as crystallizations of particle interactions (Blanc and
Lewin [10]; Bétermin [5,6]; Bétermin and Zhang [4]), Ginzburg-Landau theory
in superconductors (Abrikosov [1]; Sandier and Serfaty [31,32], Serfaty [33]),
Ohta—Kawasaki models in di-block copolymers (Chen and Oshita [11]; Goldman
et al. [17]; Ren and Wei [29]), minimal frame operator norms (Faulhuber [15]) and
many others. The related minimization of theta and eta functions on lattices has ap-
plication to Gross—Pitaevskii theory in superfluids or Bose—FEinstein condensates,
Ohta—Kawasaki models triblock copolymers (Luo et al. [24]) and many others.

In this paper, we consider a minimization problem with sum of two theta func-
tions, which represent two intertwining lattices, one lattice shifted by the center of
the other lattice; See Fig. 1 and the physical explanation in the next section.

Let p > Odenote the relative strength of the two lattices. Consider the functional

1
Wi p(z) =06 (2; Z; ) + p0(1; 2). (1.3)
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Fig. 1. Two lattices with centers at the lattice points and the half lattice points

It is easy to see that W ,(z) is invariant under the group (see Section 3)

1
G, : the group generated by z+—> ——, z+>z+2, z+> —2z.  (14)
z

The new minimization problem we consider is the following:
min W , € [0, 00).
min 1.0(2), p €[0,00) (1.5)

Our first main result is the following theorem which gives a complete charac-
terization of the minimization problem (1.5), as p varies:

Theorem 1.2. The minimization problem (1.5) admits a unique minimizer 21 ,
which moves continuously on a special curve as the parameter p varies (up to
the group Go). The trajectory curve of the minimizer, denoted by 2, (see Fig. 2), is
given by

Qe 1= Qg U Qyp,

Qe i ={z:x=0,1<y <3}, (1.6)

1
er::{z:|z|:1,0§x<§}.

More precisely, there exist two thresholds o1, = 0.04016 - -- < 01, = 0.83972- - -
such that

(1) if pvaries in [0, 01 4], the minimizer 71 , moves from V3itoi along the vertical
line segment Q.4 correspondingly;

(2) if p € [01,a, O1,5], the minimizer 21, stays fixed on the corner of the curve Q2,,
that is,

Up =1L, If p€l014,01p];

/3

(3) if p varies in [o1 p, 00), the minimizer z1,, moves from i to % + %5 along the
unit arc Qep. Moreover

1 3
asp— 00, 1,p—> 3 —i—i\/?_ from left hand side of Qep.
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= Q..

0.5 ) 0.5 1 s
Fig. 2. The curve 2,

Remark 1.1. In [24], with X. Ren, we studied another minimization problem:

. b 11 5 b 11 ‘ z+1 2
rzrél]ﬁ_<( — )<§ 0g(ﬁ|77(Z)| )>>+ 5 0og ﬁ’)( ) ) ’(1.7)

z=x+1iy, bel0,1],
77(2) — e@ﬂl 1_[(1 _ 627'[1’111)4. (18)

n=1

When b = 0, this is the minimization problem studied by Chen and Oshita [11] and
Sandier and Serfaty [32]. While Chen and Oshita used analytical method to prove
that the triangular lattice is the optimal, Sandier and Serfaty made use of a relation
between the Dedekind eta function and the Epstein zeta function (Mellin transform),
and then Theorem 1.1 to arrive at the same conclusion. When 0 < b < 1, we have
showed a similar transition phenomenon from rectangle lattice to hexagonal lattice
to Theorem 1.2 in [24] for the functional in (1.7).

where 7 is the Dedekind eta function

We also consider another minimization problem, which can be viewed as a
“conjugate” problem to (1.5):

min W ,(z), p € [0, 00),
zeH
(1.9)

z+1
where W ,(z) :=0 | 1; — + 00(2; 2).

The precise relation between W , and W , can be found in Lemma 3.3. The
minimizers of (1.9) can be characterized as follows:
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Theorem 1.3. The minimization problem (1.9) admits a unigue minimizer z2 ,
which lies on the curve 2, (1.6) (up to the group G (1.4)). There exist two thresholds
02,4 = 1.190861337---, 02 = 24.89618074 - - - such that

(1) if p varies from left to right on [0, 02 41, the minimizer z2 , moves from V3i to
i on the vertical line segment Q¢q;

(2) if p € [02,4, 02,p), the minimizer z5 , stays fixed on the corner of curve (1.6),
thatis 23, =1,

(3) if p moves from left to right on [03 4, 00), the minimizer zo , moves from left to
right along the unit curve Q.p. Furthermore,

1 .3 ,
as p — 00, 22,5 —> 3 + 17 Jfrom left hand side of Qp.

Remark 1.2. The values of 01 4, 01, 02,4 and o2 are given explicitly in terms of
Jacobi Theta functions (See Theorem 1.4 below.)

Remark 1.3. We found that the minimizers of the minimization problems (1.5) and
(1.9) admit a novel pattern: they bond together in a very special way and form a nice
geometric shape and move with the parameter in a monotone way. It is remarkable
that in a suitable range of the parameter, the minimizer is always a square lattice.
The optimal lattices have richer structures than that of Theorem 1.1.

There are some hidden connections revealed later between the two minimization
problems (1.5) and (1.9). They are like “a pair” as shown in Table 1 below. The
following theorem gives more qualitative behaviors of minimizers in Theorems 1.2
and 1.3, and is our major theorem of this paper:

Theorem 1.4. We state the almost exact formulas on the minimizers of (1.5) and
(1.9) for p € [0, 00).

(1) The minima of W, ,(2), j = 1, 2 is unique for each p € [0, 00) up to the group
Go. Furthermore,

iy, if pel0,p1),
MinimazegWi ,(z) = 3 i if p€lp1,1/p2],

e, 6, , = arctan 22U p e (1/p2, 00).

Y210~
(1.10)

and

i¥2,0, if pel0,p),
Minima,egWs, p(z) = { if pelp1/p1l,

Yi.1/p

L if pe(1/p1,00).
(1.11)

i 2
e @, , = arctan

v N

A/p
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Here y1 5, y2,p € (1, V3] for p € [0, p1) and p € [0, p2) respectively,
010,020 € (5, %) for p € (1/p1,00) and p € (1/p2, 00) respectively. For
the qualitative behaviors of y; .0} p. ] = 1,2, we have

d d
@yj,p <0, for p €10, pj); %Gj,p <0, for p e (1/pj, 00).

See more on this theorem in (3).
(2) p1, p2 in (1.10) and (1.11), respectively, are determined explicitly by

_ Yo o, B0
P Ty T T aay
Here
1 4 4
X(y):=03(0)03 (*) , Y(@y) =2 (1?3(4y)193 (*) + 92(4y) (*))
Y Y Y12)

2 2
AG) 1= V20329)93(5). BO) = V20:2092(5)
and the Jacobi theta functions are defined as

9200 =3¢ TV, 93) = F e, da) = P (-1

nez nez nez
(1.13)
The thresholds in Theorems 1.2 and 1.3 are given by
1 1 1
Ola= —— =PI, Olh= =—,
02,b 02,a P2
(3) The y1,1/p and y2.1/, in (1.10) and (1.11) are implicitly determined by
/
Y1,1/p IS the unique solution of y/(y) +1/p=0,y € (1, V3]

X' (1.14)

B'(y)

2 41/p=0, 1, V3.
A,(y)+/p ye( ]

Y2,1/p IS the unique solution of 1+
Furthermore, it holds that
d 0.Vp € [0, p1] and 2 0.¥p € [0, o]
— <0, , and — <0, , p2].
dpyl,p 14 P1 dpyZ,p 14 P2

The existence and uniqueness of y1,1/p, ¥2,1/, in the Theorems 1.2 and 1.3 are
consequences of the following theorem whose proof will be given by Theorems 6.1
and 7.1 . (Here X (y), Y(y) and A(y), B(y) are defined in (1.12).)

Theorem 1.5. The critical points and monotonicity of quotients of derivatives.

o The function y +—> 3}(/,—8;, y > 0 has only one critical point at y = 1, and it

holds that
( V')
X'(y)

)/ <0, ye(0,1)and (%)/ =0, ye(l, o).
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o The function y +—> %%, y > 0 has only one critical point at y = 1, and it

holds that
B'(y) )’ B'(y)\
PN Z0, ye, 1) and(—) =0, ye,o0).
( A'(y) A'(y)

Theorem 1.2 has direct applications to the Mueller—Ho functional and Mueller—
Ho Conjecture in vortices arrangements for competing systems of Bose-Einstein
condensates, as we explain in the next section.

We should also point out that, our strategy and method in proving Theorems 1.2
and 1.4 can be used in solving more general minimization problems

. z+1
nﬁné) 2t; > + p0(t;2), p €0, 00),
(1.15)

. 741
mﬁlln(? t;T +p0(2t;z), p €]0,00),

with arbitrary ¢ > 0. We have a pattern similar to Theorem 1.4 for the problem
(1.15).

It is natural to consider the following pair of minimization problems from the
point of view pure mathematical interest:

1
min 0 (s; it
H

. z+1
m}lﬂn9 B + p0(s;2), p €0, 00),

) + p0(t; 2), p €0, 0),
(1.16)

with arbitrary s, t > 0.

It turns out that the minimization problem (1.15) is the critical case of problem
(1.16) in the sense of the parameters s, ¢ to have the completely continuous phase
transitions as found in Theorem 1.4.

The minimization results of problems (1.15) and (1.16) can be generalized
directly to the sum of two completely monotone functions on the lattices.

These are left to further work.

2. Applications to Mueller—-Ho Conjecture

As we have mentioned in Section 1, the problem of finding optimal lattice shapes
arises in many physical models. Besides those examples mentioned in Section 1,
other examples is the so-called vortices in Bose—Einstein condensates. Vortices in
Bose—Einstein condensates are also called topological defects, correspond to a zero
of the order parameter with a circulation of the phase. When they get numerous,
these vortices arrange themselves on a lattice. In fact, in rotating Bose—Einstein con-
densates (BEC), vortices were first observed in two-component BEC’s (Matthews
et al. [25]); it is observed experimentally that the shape of the lattice can be either
hexagonal or square depending on the rotational velocity of the condensate. Since
then, following the pioneering work of Mueller and Ho [26], many authors have
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investigated the lattice shape in two component BEC’s and for instance Kasamatsu
et al. [20,21]; related works include Keeli and Oktel [19] who numerically calcu-
late the elastic coefficients of the lattice. In Kuokanportti et al. [22], the authors
investigate the case of different masses and attractive interactions.

The ground state of a two-component condensate is well described by a Gross-
Pitaevskii energy depending on the wave functions of each component which are
coupled by an interaction term. The construction of the Bose—Einstein condensates
with large number of vortices was deduced in Ho [18] (one-component case) and
Mueller and Ho [26] (two-component case), with the potential energy given by

1 1
V= §(§’1|‘1’1|4 + Egzl‘l’zl4 + g2 W 7|, 2,

where g1, represents the competing strength between the two components of Bose
gas. We omit the details of the construction of the model here. In Mueller and
Ho [26] they have reduced the minimization problems on lattices to the minimiza-
tion problems for the Mueller—Ho functional

min Eyp(z;a,b),a € [—1,1], where Eyg(z) :=0(1;2) +aJ(z;a,b).
zeH, (a,b)
2.1)

Here A = \/g (Z ® zZ) denotes the lattice of one-component Bose gas A,

and the theta function 6(1; z) (defined at (1.1)) represents the self-interaction
part of single component of A or B, that is, the so-called Abrikosov energy (See
Abrikosov [1]). The functional

T 2
J(z a,b) = Z e VM o2 (ma + nb)) (2.2)
(m,n)eZ?
characterizes the competing strength of two-component A and B. o« = —\/%

represents the strength of competition between two competing components A and
B. The vector (a, b) characterizes the relative position of the these lattice shape.
See Fig. | when (a, b)=(3, ).

Mathematically, by Poisson Summation Formula, the energy functional 7 (z; a, b)
is the energy of translated lattice by the vector {a, b}, namely

J(z;a,b) =0(1; A + {a, b}). 2.3)

Here the lattice A is parameterized by A = \E (Z @ zZ) . The formula (2.3) is
also pointed out in Mueller and Ho [26].

It is interesting to compare the two-component case with the single-component
case. In the latter system, energy minimization reduces to minimizing 6 (1; z) whose
only local minimum is the triangular lattice, where z = z9 = ¢ and 0(1;z9) =
1.1596 (by Theorem 1.1); the square lattice z = i is a saddle point with 6(1; i) =
1.1803. For two-component case, the minimum of gy (z; a, b) depends on the
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relative strength « and the relative position of the lattices, as conjectured by Mueller
and Ho [26] (supported by numerical computations and experimental results).

Mueller-Ho Conjecture: For a two-component Bose gas, the most favorable lattice
minimizing 6(1; z) + «J (z; a, b) are

(a) o < 0:the vortices of the two components coincide with each other (a = b = 0)
to form a triangular lattice (z = ¢ %).

(b) 0 < o < 0.172: the vortex lattice in each component remains triangular.
However one lattice is displaced to the center of the triangle of the other a =
b = % The lattice type (characterized by z = z9 = ¢'3) remains constant
within this interval.

(¢) 0.172 < @ < 0.373: (a, b) jumps from the center of the triangle (that is, half
of the unit cell) to the center of the rhombic unit cella = b = % The angle
jumps from 60° to 67.95° at « = 0.172, and increases continuously to 90° as «
increases to 0.372. As a result, the lattice shape type is no longer fixed and the
unit cell is rhombus. The modulus S, however, remains fixed across this region.

(d) 0.373 < o < 0.926: the two lattices are "mode locked" into a centered square
structure throughout the entire interval (z =i,a = b = %).

(e) 0.926 < o < 1: the lattice type again varies continuously with interaction «.
Each component’s vortex lattice has a rectangular unit cell (angle= 7) whose

aspect ratio |z| increases with «. At @ = 1, the aspect ratio is /3.

Remark 2.1. Both Rb®7 and Na?? have interaction parameters with the range (d),
that is, 0.373 < o < 0.926 (see Mueller and Ho [26] and the references therein).

For more on the vortex shape and Bose—Einstein condensates, including the
construction of theoretical models and numerical and experimental results, we refer
to [20,21,25] and the references therein. In [19] the authors considered Tkachenko
modes and verified the same numerical results as in Mueller—Ho Conjecture. It
seems that the Mueller—Ho conjecture is a universal phenomenon, as commented
by Bétermin [7] that “the same phenomenon in Mueller—Ho results is also expected
in other physical and biological models involving infinite lattices and competitive
interactions”. See also numerical computations in Bétermin et al. [9] for systems
with alternating charges +1.

To study the minimizer of the Muller—Ho functional &y (z; a, b) = 6(1; z) +
o J(z; a, b) with respect to (z; a, b), we first need to identify the critical points of
Ey g which satisfy

V.0(1;2) +aV.J(z;a,b) =0, (2.4)
VianJ(z;a,b) =0. (2.5)

To consider the global minimum of 6(1; z) +« .7 (z; a, b), anecessary condition
is that (a, b) must be a minimum of 7 (z; a, b). Thus we first focus on critical point

equation (2.5).
For the function 7 (z; a, b) with respect to (a, b), one sees clearly that
J@Za+1,b)=7J(a,b), J(a, b+1)=7J(za,b) (2.6)

J(@1—a,1-b)=J(za,b). 2.7)
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The periodicity and symmetry imply that (a, b) +— J(z; a, b) has four universal
critical points, which are denoted by

1 1 1 1
wo := (0,0), w; := (E’O) , Wy 1= <O, E) , W3 = w) + wy = (5, §>(2.8)

We call “universal” here since they are independent of the lattice structures that is,
z. Clearly, the critical point wy is the global maxima of 7 (z; a, b) with respect to
(a, b). For critical points w1, wa, w3, we have the following partial classification
result (the proof will be given in Section 9):

Lemma 2.1. Let z = iy, y > 0. It holds that
e wi, wy are the saddle points of J (z; a, b) with respect to (a, b). Explicitly, the
Hessian at each point can be expressed by
2 2 1 / 1 /
D7J(z; a, D) liz=iy,(a,b)=w) = 167703 3 03 Y Da(y)04(y) <0

1 1
D?J(z; a, b) lz=iy,(a,p)=w} = 167203 ()95 (y) 94 (;) 04 <;) < 0.

e w3 is the local minimum of J (z; a, b) with respect to (a, b). Explicitly, one has
the Hessian expression

1 1
D?J(z:a,b) |(z=iy.(a.by=ws) = 167°04(3)04(y) D4 (;) 9 (;) > 0.

For (a,b) = (0,0), J(z;0,0) = 6(1; z). Combining Theorem 1.1 and us-
ing the fact that wy is the global maxima of 7(z; a, b), we have the following
proposition which confirms the (a) part of Mueller—-Ho Conjecture:

Proposition 2.1. For o € [—1, 0], the minimizer of the functional Eyrg (z; a, b) =
0(1; z) + «J (z; a, b) is achieved at 7o = % + i“/7§ and (a, b) = (0, 0).

Besides the above 4 universal critical points, there may be other additional pair
critical points. (Note that by symmetry if (a, b) is a critical point then (1 —a, 1 —b)
is also a critical point.) We have

Lemma 2.2. If z = i, then (a,b) = (%, %) is not a critical point of J(z; a, b);

while (a,b) = (3, 1) (and (a,b) = (}, %)) is a critical point of J(z; a,b) if
_14:43

Z=5+1i5.

The proof of Lemma 2.2 will be given in “Appendix 1”.
On the critical point equation (2.5), the numerical simulation suggests the fol-
lowing conjecture:

Conjecture 2.1. The function J (z; a, b) with respect to the a, b has either 4 or 6
critical points depending on modulus of the tori z. Let Q4 (resp. Q26) be the subset
of Hwhich corresponds to tori z having four (resp. six) critical points. It holds that
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a : Alterative: either 4 or 6 critical points, that is,
H=Q4UQq QuNQs=1>0.

b : Rectangular tori has only four critical points and the hexagonal one has six.

i €{z]:Re(z) =0,Im(z) > 0} C Qq4, % —H? € Q.
c : Invariance:
7€ Q4 =T(2) € Q4;2€ Q= T'(2) € Q.
Here the modular group is

ab

r= SL2(Z)={<cd

),ad—bc:l,a,b,c,deZ}. 2.9)

Remark 2.2. This conjecture has some similarity to the discovery in Lin and Wang
[23], in which they showed surprisingly that the Green function on the
two-dimensional torus has either 3 or 5 critical points. Furthermore, once Con-
jecture (2.1) is proved, we can recover Lin—Wang’s Theorem ([23]).

In summary, we see that (a, b) = (%, %) is not always a critical point of 7 (z; a, b)
for z € H, while (a, b) = (%, %) is always a critical point of J(z; a, b) for all
z € H. Moreover (a, b) = (%, %) is a local minimum at least for z =iy, y > 0.

When (a, b) = w3 = (%, %) we can simplify the Mueller—Ho functional using
the following (whose proof will be given in Section 9):

11 z+1
J(z,§,§>_29 (2, 5 )—9(1,1).

As a consequence the Mueller—Ho functional becomes

Lemma 2.3.

11 +1
Emn (z; 5 5) = (1 —a)0(1: 2) + 2a6 (2, < . ) . (2.10)

Applying Theorem 1.4 with p = lg—a"‘, we have the following:

Theorem 2.1. For the Mueller—Ho functional Ey g (z; %, %), there exist thresholds
04, 0p € (0, 1) such that

A) For a € [0, o4, the minimizer is rhombic lattice(¢'%), and the angle increase
g
b1 .
Jrom 3 10 %, o .
(B) For o € (0,4, 0p], the minimizer is square lattice;
C) For a € [oyp, 1], the minimizer is rectangular lattice(iy, 1-« ) and the ratio o
8 1
* 2a

long side and short side increases from 1 to \/3.
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Table 1. Minimizers of £y (2; % %): numerical aspect by the minimizer formulas (2.12)

values of o Lattice shape Values of o Lattice shape

o € [0, 04] Rhombic lattice=e!% o € [op, 1] Rectangular lattice=i Y 12;0
a=0 Ou = 5 a = oy i -
a =0.05 0y = 1.083383631 - - - a=0.93 i1.145857964 - - -

a=0.1 On = 1.122437655 - - - a=0.94 i1.280334718 - - -

a =0.15 Oy = 1.165251963 - - - a=0.95 i1.378964867 - - -
a=0.20 6y = 1.213239200 - - - a=0.96 i1.463132141 - --
a=0.25 Oy = 1.268922810 - - - a=0.97 i1.538538467 - -

a =0.30 Oy = 1.337831332 - -- a =098 i1.607675336 - - -

a =0.35 Oy = 1.439448210 - - - a=0.99 i1.671897256 - - -

a = oy Oy = % a=1 i3

(D) The thresholds o, and o} are determined by

_ oa B+ A'(D R X"(1)
2400, B =AY 7 14201, X)) =2Y"(1)°
2.11)

See A, B, X, in (1.12). Within these relations, the approximate values with
arbitrary accuracy can be calculated,

o, = 0.3732155067 - - -, op = 0.9256496973 - - - .

(E) An alternative expression of rhombic lattice,

-1 2y2 lfoc . 2)/21—705
+i = ¢'% ¢, = arctan 2—2" ,
R a+1 -
* 2a

2
y2

Zmin =
2
y2

N‘_' N"—

a € (0, Ua). (2.12)
Qualitatively, there has

d
—60y, >0, ae(0,0,)
da

d
dozyl 1« >0, o€ (op,1).

(2.13)

Here Vj e Jj = 1,2 are located precisely in (1.14).

To illustrate the pattern of the vortices shape, we calculate some particular
values by the theoretical analysis(minimizer formula (2.12)) in Table 1.

Proposition 2.1 and Theorem 2.1 give a partial answer to the (a), (c), (d) and (e)
part of Mueller—Ho Conjecture. We also locate the precise formulas of the numerical
thresholds in the Conjecture. Theorem 2.1 shows that as the competition strength
between the two Bose gases increases the lattice structures moves from hexagonal,
rhombus, square to rectangular. (See Figs. 3, 4).
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Fig. 3. The lattice shape predicted and drew by Mueller and Ho [26]
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Fig. 4. Two-component Bose gas in lattices. First row from left to right: a rectangular lattice
and a square lattice. Second row from left to right: a rhombic lattice and a hexagonal lattice

Finally we discuss the (b) part of Mueller—Ho Conjecture. In the Mueller—Ho
Conjecture, the expected lattice structure when « is small is triangular lattice, and
the relative position of the two components A, B is characterized by (a, b) =
(%, %). To see this, there is a clear competition between 6(1; z) + « 7 (z; %, %) and
0(l;2) +aJ(z; %, %) when « is small. Thus the upper bound of « preserving the



152 SENPING LUO & JUNCHENG WEI

triangular lattice structure is determined by

1 V3 1 V311

= 01, = +i— —+i—; =, =

ag aren[g?il]{al (,2+12>+aj(2+12,3,3>
(2.14)

11
< mi . P
< %ﬁ(é(l,z)—kaj <z, 5 2))}.

To find o, one first uses min.ep (0(1; 2) + 7 (z; w3)) < (13 0) + aJ (5 5, %)
to obtain a rough bound

0(1;i) —0(1; L + i)
CI(b i) T8 )

@ :=0.2419435012--- . (2.15)

By Theorem 2.1, one deduces that

A I V311
max [a|0(1,§+17>+aj(§+1 — )

ael0,1] 233

(2.16)
, o 11
< (61; ¢ Wa: — ) )t
(e vaa (i3 3))
In view of (2.15), the upper bound « satisfies the equation
1 V3 1 V311 : o, 11
Ol s +i— St o | =0 By —, ).
( 2+12)+aj<2+12 33) (1;e )—l—aj(e 22)
(2.17)

Equation (2.17) gives the upper bound in (b) of Mueller—-Ho Conjecture which is
oo = 0.1726645 - - - , 0y, = 1.186248384 - - - . (2.18)

Remark 2.3. Several comments on Mueller—Ho conjecture are in order.

e The bounds 0.172,0.373 and 0.926 are located exactly by the explicit or implicit
equation in (2.11) and (2.17).

e The case (a) in Mueller—Ho conjecture is confirmed by Proposition 2.1.

e The cases (c,d,e) in Mueller—Ho conjecture are confirmed by Theorem 2.1. All
the expressions have exact formulas by implicit variable determined by explicit
equations.

e The behaviors of lattice shapes varying with parameter « is proved in (E) of
Theorem 2.1.

e A complete proof Mueller-Ho conjecture is still needed. The Theorem 2.1
answers the main cases positively, however, it remains open to prove that the
minimizers of {Z(z) + «J (z; a, b)} admit only three possibilities, that is,

(1) (a,b) = (0,0).
2) (a.b) = (4, D).
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(3) (@, b) = (3, 3).
In case (2), the corresponding z is % +i */7§ Cases (1), (3) are universal critical
points but have significant meaning.

Remark 2.4. (Alternative meaning of Theorem2.1) The Theorem 2.1 serves to prove
Mueller—Ho conjecture firstly as seen in Remark 2.3. However, we would like to
point out, Theorem 2.1 can be seen as an independent Theorem to describe the
lattice structures. Recall that (a, b) € [0, 1]* which characterizes the relative dis-
placement between the two lattices corresponding to the two components. Assume
that the component has relative displacement (a, b) = (%, %)(Vortices of one com-
ponent on the center of another), then lattice structures are completely classified
by Theorem 2.1.

In summary, we give the exact expressions and locate analytically the behav-
iors of the lattice shapes in Mueller—-Ho conjecture. Our result is only a partial
result, however, we have a complete proof of Mueller—-Ho Conjecture as long as
the conjecture on the critical points (Conjecture (2.1)) is proved.

The rest of the paper is organized as follows: in Section 3, we collect some
basic invariance properties of the functionals W ,(z) and W, ,(z) and discuss
the intricate relations between these two functionals. In Section 4, we prove a
fundamental monotonicity property of the theta function 6 (s; %). The conjugate
monotonicity of Wy ,(z) and W ,(z) are established in Section 5. In Sects. 6 and
7, we classify the shape of W ,(z) and W, ,(z) on the y—axis for all p € [0, 00)
respectively. In Section 8, we prove Theorems 1.2, 1.3 and 1.4 , the method of the
proof relies on the properties established in Sections 3—7. In Section 9, we prove
the properties on Mueller—Ho functional and Theorem 2.1.

In the remaining part of the paper we use the common notation »_, . :=

; . —s70 5y Imz+nl?
> (m.nyez2 SO that the theta function becomes 0(s; z) = 3, ,ye . We
also use the notation
at +b

ab
n:(c d><:>ﬂ(t)=cr+d. (2.19)

3. Some Preliminaries

In this section we present some simple symmetries of the two theta functions
0(s; z) and 6(s; %) and the associated fundamental domains. As a result we
establish the precise connection between W ,(z) and W» ,(2).

Let H denote the upper half plane and I denote the modular group (defined at
(2.9)).

We use the following definition of fundamental domain which is slightly dif-
ferent from the classical definition (see [28]):

Definition 3.1. (page 108, [14]) The fundamental domain associated to group G is
a connected domain D satisfies that

e For any z € H, there exists an element 7 € G such that 7(z) € D;
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e Suppose z1,22 € D and 7 (z1) = z» for some 7 € G, then z; = 7z and
n ==xId.

By Definition 3.1, the fundamental domain associated to modular group I is

1 1
Dr = H : 1, —= -1, 3.1
r {ZE |z| > 2<x<2} 3.1

which is open. Note that the fundamental domain can be open. (see [p. 30, [2]]).
Next we introduce another two groups related to the functionals Wy , and W .
The generators of these groups are given by

1

Gy : the group generatedby 7+ ——, t—>1+1, 7> —T, ((3.2)
T
1

Gs : the group generatedby 7+ ——, T—>1+2, T —T. (3.3)
T

It is easy to see that the fundamental domains associated to group G;, j = 1,2
denoted by Dg, , Dg, are

Dglzz{zeH:|z|>l,0<x<%} (3.4)
={zeH:|z] >1, 0<x < 1}. (3.5)
Clearly we have that
G1 2 G2, Dg, € Dg,.

As in [28], the fundamental domain for the single theta function 6 (s; z) is Dg, .
As we will show in this section the fundamental domain for the sum of two theta
functions Wy ,, Wh , is Dg,, which is larger. This leads to fundamental difficulty
in finding the minimizers.

The nextlemma characterizes the basic symmetries of the theta functions 6 (s; z)
and 6 (s; ZH) The proof is trivial so we omit it.

Lemma 3.1. There are two invariant properties for 6(s; z), 0(s; Z'H)

e Foranys > 0,anyy € Gyand z € H, 0(s; y(2)) = 0(s; 2).
e Foranys > 0, anyy € Gy and z € H, 6(s; y(Z)H) = 0(s; %).
A corollary of Lemma 3.1 yields

Lemma 3.2. Forany p € R, y € Gy and z € H,

Wi p(y @)=W1,p(2), Wa,p(y (2)=W2,5(2).

Next, we introduce the nonlinear connection between the two functionals W , (7)
and W, , (7).
T 14w

LetweGybew: 1> ﬁ and its the inverse be 7 : w > 1= -. We have
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Lemma 3.3.
| |
0 <s; r; > —0(s:w), O(s:7) =0 <s; w: ) . (3.6)
Wi,p(®) = p - Wa1/0w), Wa ,(T) = p- Wi 1/,(w). (3.7)

Or, equivalently,

Wie(w) = p - Wa1/p(T), Wa,p(w) = p- Wi 1/,(7).

1+w+

Proof. We check that 6 (s; r"’1) =0(s; —%—) =06(s; ) = 6(s; w) since the

> T—w
map w ﬁ € Gi. Similarly 6(s; w+1) = 6(s; ’“+ ) =0(s; ) =06(s; 1)
since the map 7 — H—Lr € Gj. This proves (3.6), (3.7) and (3.8) follows from (3.6).
O

Lemma 3.3 builds a connection between the two functionals W ,(r) and
Wh ,(t) via a special element in G>. As an application of Lemma 3.3, we have
the following lemma which transfers the computations on unit circles to straight
lines:

Lemma 3.4. Suppose |lw| = 1, w = wy + iwy, wy > 0. It holds that

9 1/l—w%a ' l—wf

owq pp(W) =p 1 —wy 3_‘(2 a1/p | ! 1—w;
wi d 1 - w%
Tun p.o(W) = —Pma—m a.1/p ll——wl ,

where p # q € {1, 2}.

Proof. Lett := t(w) = l+w . We use Lemma 3.3. Let t = 71 4+ i1, then

2 2
o= (11_ 511)2 :};5, n= T jlu)}i s (3.8)
and
dm __4d-wpwy o A0 -w)towy)
dwr  (I—w)?+wdh? dwr (1 —w)?+wd)?
Differentiating the identities in Lemma 3.3, we get
Wp,p(w) —pZ 3o 1/p(f) J=12 (3.10)

On the other hand, for [w| = 1, wy > 0, by (3.8) and (3.9)

Y1 —wi 3.11)

Tiljwl=1.wy>0 = 0. Taljwi=1.wy>0 = o
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and
2
L1} _yITe om W G
31,()1 lw|=1,w2>0 1 w1 s 8w2 lw|=1,w2>0 1 wll
From Theorem 3.2, W, ,(=T) = W,, ,(1), p = 1, 2. It follows that
0
a—W,,,p(irg) =0, Vip, >0,p=1,2. (3.13)
71

Plugging (3.11), (3.12) and (3.13) into (3.10), one gets the result.

- 2+l
4. Monotonicity of 6 (s; <3*)

The main purpose of this section is to establish the monotonicity of the func-

tional 6 (s; %) on its fundamental domain Dg, (defined at (3.3)), which is

Theorem 4.1. e For any s > 0, it holds that

0 z+1
a—xe (s; T) >0, YVzeDg,.

e Or equivalently, via the map z — %,for any s > 0,

9
—0(s:2) <0, Yze€Qg.
0x
Here
1
Qc, ={z10<x < E,y>\/x—x2}.

Remark 4.1. In Lemma 1 of [28] Montgomery proved that

ad 1 1
a@(s;z)<0, ‘v’zchozzizeH:y>§,0<x<§} “4.1)

Theorem 4.1 improves this result to a larger domain Q¢, as Q¢, C ¢, . Further-
more, (¢, contains a corner at z = 0, which makes the proof much more involved.
We have to divide 2¢, into four different cases to overcome this difficulty.

We state two corollaries related to the functionals W; ,(z), j = 1, 2.

Corollary 4.1. For any s > 0,
a
—0(s;2) >0, Vz € Qc,.
ax

Here

1
ch::{z|§<x<1,y>\/x—x2}.
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Proof. Sincez — 1—7 € Gy, by Lemma 3.1, we have 0(s; 1 —7) = 6(s; z). Thus
0 0

—0(s; 1 —7) = ——0(s; 2). 4.2)
0x 0x

The result follows by (4.2) and Theorem 4.1.

By Theorem 4.1 and Corollary 4.1 we have

Corollary 4.2. For any p > 0,

d
P 0@ >0, VzeRy, j=1,2.

Here
1
Ri=Qc,NDg =1zl 5 <x<Llz>1r.

In the remaining part of this section, we prove Theorem 4.1. To prove Theo-
rem 4.1, we use some delicate analysis of the Jacobi theta function and Poisson
summation formula.

We first recall the following well-known Jacobi triple product formula:

): Z x”zyzn, (4.3)

n=—0oo

x2m—1

[Ta—x>a+xm""y% <1 +
m=1

for complex numbers x, y with |x| < 1, y # 0.
The Jacob theta function is defined as

o0
.2 .
y(z;7) = Z el r+2mnz’
n=—oo
and the classical one-dimensional theta function is given by

o0
X Y):=0,0Y;iX) = Z e~ X iy (4.4)

n=—oo

Hence by the Jacobi triple product formula (4.3), it holds that
(0,¢]
DX Y) = [[(1 =) (1 4 &2 DTX 4 0= Gn=DTX cos 27 Y)).
n=1

4.5)

The next two Lemmas improve the bounds in Montgomery [28]. We provide
the proof of Lemma 4.1 and omit the proof of Lemma 4.2 which is similar.
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Lemma 4.1. Assume X > % Ifsin2nY) > 0, then
—9(X)sin@rY) < %z&‘(X; Y) £ —9(X)sin(2wY).

IfsinnY) < 0, then

-9 (X)sin2nY) < %z&‘(X; Y) < —9(X) sin(2nY).

Here
D(X) = dme (1 — n(X)), F(X) :=dme "X (1 + pn(X)),
and
p(X) =Y P DX, (4.6)
n=2

The proof is almost the same as in Lemma 1 of [28]. However, to show the method
and show how the bounds can be improved, we provide the details here. The new
thing here is we introduce the new function p(X) (in (4.6)) in estimating the bounds,
this provides more accurate and powerful tool in the proof of our monotonicity
theorem (Theorem 4.1).

Proof. Taking logarithmic on both sides of (4.5) and differentiating aiy’ we have

F] . 0 .
v 4ot Zef(anl)ﬂX X Y)
sin(2rY) = 1 4+ e 2@n=DrX 4 2o=Cn=DrX co5(27Y)
o0 o
— 4]_[ Ze—(Zn—l)ﬂX l—[ (1 _ e—ZﬂmX)(l + e—2(2m—l)7TX
n=1 m#n,m=1
126~ @m=DTX (o527 YY), 4.7)
0 from (4.7) that the function — 3221 1 iod 1, is decreasi
ne sees from (4.7) that the function —“imexy) has a period 1, is decreasing on
[0, %] and is an even function for Y.
Thus
9 . 9 . 9 .
I LRI, Lo L1052 0] ws)
y—1 sin(2wY) sin(2wY) Y—0 sin(2wY)
By L’Hospital’s rule we have
1 02 L0 Y) 1 02
——9(X; Y < < 9 (X:Y) |ly=o  (49)
a2t XD = =Gy = Tt e D Ir=o
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From (4.4), we have that

2 o]
_ 2
mﬂ(x; Y) |y=0 = 4me 7’X(1-|-ane (1 =DX
n=2
. aYzz?(X Y) |Y—i — 477 Z( = 1p2en 2r X 4.10)

n=1
o0
> dge X (1 — ane_”("z_l)x) .
n=2

Combining (4.8), (4.9) and (4.10), we obtain the proof of the Lemma.

Lemma 4.2. Assume X < min{-% Ifsin2nY) > 0, then

T+2° 4log7r} = n+2
—9(X)sinrY) < aiyﬁ(X; Y) £ —9(X)sin(2nY).
Ifsin2nY) < 0O, then
-9 (X)sin2nY) < %zﬁ‘(X; Y) £ —9(X)sin(2wY).
Here

D(X) = me X3, D(X):=X2.

In view of (4.4), by Poisson Summation Formula, one has

r(n—y)2
POGY) =X 1Y e T @.11)

nez

Thus the two-dimensional theta function can be written in terms of
one-dimensional theta function as follows:

R 2 —emvn? _ smlnxdm)?
0(s;z) = E e Ty lnatmlt E e ST E e y

(m,n)eZ? nez meZ

T () [T (o) i
nez
IS _,m)

Now we are ready to prove Theorem 4.1.
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Proof. By Mellin transform, (see [28]), 9(%; z) = s0(s; z). Thus we only need

to consider the case s = 1. For simplicity, we use ) - L Doe L 1o denote
=ix X
Don<l a>10 D2on L 4> respectively. From (4.12), we have
=7 N= =

9 [y o 20y
_59(‘“ 7)=-2 E r;nefn.r)n ﬁﬁ (;1 Y) |y =nx
[y —nsyn? 0 y - y
=2 ? (— Z ne TS 8719 (S; Y)‘Y:nx - Z ne ns)n 79(;7 Y) |Y_nx)

ngﬁ n>2A
= 2\/E (.0 +e8@), (4.13)
)
where
_ 2 0 y b
EL @) == Y ne ™ (S Y lymne E0,()
n<L
(4.14)
=- 2 1 292 ¥)
Yy s
n> ZX

For £, (z), by Lemma 4.1, we have that

£ (2) 2 ; ne*“ynzg(f)sin(zmx) > e*WQ(%)sin(znx). “15)
”_Zx

Notice that all the terms in the summation of (4.15) are nonnegative.
Let no be the smallest integer such that n > % By Lemma 4.1,

2 ()] = Z ne ™G (i}) | sin(2nx)|

n> 2/\
Z n2e=Towm’ ( )|sm(27rx)|
n>k (4.16)
= n2e ™05 () sin@rx) - (1 +8(x)) , with
S

00 £ \2 2
§(x) = Z (1 + n_o) e*ﬂsy(anoJrk )'

k=1

[IA

. V1=x
To estimate 6 (x), note that yng > NV

0 2 2 -
%k k K2\
HOED (1+—+—2> _2’””"“’<§ <1+—+ ) o

k=1 o m n
e—4™) 2 e~ 4™ 1 e 9™ (] 4+ 9™
T 1t T 0 —ema2 T 2T ( —at0)3 ) @17
—e no ( —e ) ngy ( —e )
e—4X) e—4() 2e—q(X)(1 + 9%

T 1 =4 +ax (1 —e—4())2 +ax (1 —e=4))3
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ze_q(")(l + 1)

with g (x) := n—”l\/?. Denote that
e e
8y (x) = = + 4x 1 o-a) + 4x

It is easy to see that §, (x) is monotonically increasing on [0, %] and hence §(x) <
%. Then by (4.16) and (4.17), one has

84(%) =0.188822585 - - - <

(1 — e=4())3

6 L
€0, < 2nj e*””’”%ﬁ(%)sin(znx).

Combining (4.13), (4.15) with (4.18),
0
—8—9(s 7) >2\/751n(27rx)e sy

withng = [51+ L.

one gets

)|

Let
(2) == 19(%) _ §n26—nsy(n(2)—1)
s X 5(%) 5 0 .
By (4.19) it suffices to prove that & (z) > 0.

Qc, has a corner z = 0 which induces the difficulty to get the lower bound

estimate for & (z). Thus we divide the proof into four cases.

Casea: 2 <

< 2,x € (0, g] In this case,
2
Lemma 4.2, *
6 B 2
s x(Z) (7 - 2) e 4’ — gn(z) sy (np—1)
_ s 1
g (271’ —2)6 e 3 e—rrsx/x—xz(m—l)
10x2
xs [ VI=x(1—4x2
3 msdi (1) [ 20m =20 4%—
= —— 4x —x“e x2
10x2 3
T —XxX(l— .\’2
3 —nsx/x—x2<L2_1) 207 — 20 2 Z(%_
= e 4 ——x"e x2
10x2 3

>0

1

(4.18)

- gnge“ﬂ"ﬁ‘)) , (4.19)

(4.20)

2
>2and V1= x(l 4x°)

Vx—x

2

421

where the last inequality follows from elementary calculus because x € (0, %).

> 0. By
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Caseb: £ < %,x € [%, %] In this case, noy = [2x] +12 2X + % and we have

_xs 6 '
Ex(2) 2 (E — 2) e — 711%6_””("0_1)
y 5

2
6/1 1)\2 Anwy((%<+%) *1)
>@r -2 H — o=+ )
2@r=2e ¥ -3 (2 +2) ¢
3004207 —rs((d+4) 1) [(@0r — 20022 syt ) |
T, - ¢ : -
10x2 9(1 4 x)?
02422
L300 gy (@020 (et )
= 10x2 9(1 + x)?
02 _ax2
5 30497 ey [ (207 20022 o ;ﬂz><-1
= 10x2 9(1 + x)2
>0

where we have used the following inequalities whose computation is left to the
reader:

1 2 4x? 1 1
\/x—xz( +x) o >0, xel|0,=|,
4x2 2

A =zt (4.22)
_ 2 —— 40242 ’
@ur =202 (s ) T
9(1 + x)2 2

Casec: + > %,x e [0, %]. In this case, ys > % > % By Lemma 4.1,

1
1- :U“(%) _ gnze—my(n -1 > — M(_) 3 e_”(lg;;éxz)
I+u@) 57 Tpud) 1022

1 — u(t 3 _al4?)
> u(%> ———e¢  ® | |,_2=0.1556238052 > 0.
I+ u(z) 10 ’

5s,x (2) 2

 x(1—4x2) .
82 on (0, 5]is used here; similarly,

The monotonically increasing of
M —7( o)

T0x Tor¢

we use is monotonically increasing on [%, %] in the Case d.

Cased: * > 2,x € [ ]. In this case, noz[%] +12 %—I—% and y = % > %
By Lemma 4. 1,
L=p®) 65 i > —n(z) 30 +0? g ()
a5 L+ p1(3) 10x2
(1 -z 3a +x)26_%((12+7x)2_1)) -

L4+pu(3)  10x2 =2

Combining cases (a)—(d), (4.19) and (4.20), the proof of Theorem 4.1 is com-

plete.

5s,x (2) 2

v

= (.7866071958 - - - > 0.

O
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5. Monotonicity of W ,(z) and W> ,(z)

Let the closure of the left-half fundamental domain corresponding to G, be
1
Rzz{zeH:O§x§§,|z|ZI}.

In this section, we aim to establish the following property of the pair W; ,(z), j =
1, 2: there exists p, such that for Yz € R, %Wlﬁp(z) > 0when 0 < p < p,,
and %Wz,p(z) > 0when0 < p < pi (In fact we will choose p, = %). We

call this pair monotonicity is the Conjug*ate monotonicity of the functionals. This
property plays an important role in finding the minimizers and will be proved in
Propositions 5.1 and 5.2 .

We begin with

Proposition 5.1. For 0 < p < p, := 1/20, it holds that
0 Wi ,(z) 20
ax P Y=

. 1
for¥z € Ra. The equality holds only when x = 0 or 5.
Proof. From (4.12), we obtain that

) ) y o2 y x—+1 o2
T W@ = (2 e (2t S ey
o Vir@ 3x< il e <4 n— >+pﬁ A e ) HX>>

VY i > 0 y a ]
= Y- —nyn . S —mryn® .
) ;ne BY0(4’Y>IY:n% +2p\/;n§:1ne aYﬂ(y’ Y)|Y:nx)

— ﬁ -y 3 y. —4my d y
—76 afyﬂ(i,y)h/:% +ye 3719<Z;y)|Y=x+1 (5.1)

.0 a4, 0
+20/5e T S0 (i Vly=s +4py/ye 4”}53;0<y;13|y22x

ﬁ = —myn® 0 y. - —myn? 3 .
+T;ne : 50<Z’Y)|Y=n%+2p\/§n2=;ne ” ﬁﬁ()'y Y)|Y=nx
=W @ +W L@+ WL
where WY (2), W{’!x (z) and WY | (2) are defined at the last equality.
By Lemma 4.1, we see that
b A= Y\ —dry g (VN o
@ +W) () 2 Te Y <Z> sin(rx) — /ye 709 (Z> sin(2mx) 52)
—2p/ye O (y) sin2rx) — 4p/ye VI (y)| sin(4mx)|.

Since | sin(nx)| < n|sin(x)| for any x € R, again by Lemma 4.1, we have

VR 2= (Y
C > 2 —myn g (2 .
Wi, (@) 2 7 E_%n e % (4) sin(2 x)
" (5.3)

o
- Zpﬂz n2e_”y"25(y) sin(2mx).
n=3
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Plugging (5.2) and (5.3) in (5.1), we get

0 _
awl,p(z) = geﬂ’yﬁ (%) sinx — ﬁe%”yz? (%) sin(2mwx)
1 & 2
(1 + 7 nZ;nze_”y(” _4)>

_ Zpﬁe*ﬂyﬁ(y) sin(2m x) <] + aneﬂy(nzl))
54

n=2
Cry Loy
= /ye ™V sin(mx) (52(2) —
—4pB (y) cos(x)(1 + 02))
= J/ye Y sin(mrx)

x<1ﬁ(z)—2@4”5(%>(L+m)—4p50X1+aﬁ>,

2e*3”5(%) cos(wx)(1 + o1)

27 \4
where
i 2 —av(n2 ad 2
e —my(n-—4) R 2 —my(m-—1)
o1(y) = 4Z:3n e . 0a(y) = Z;n e ,
n= n=

and o1 (y), 01 () are small. (In fact o7 (¥2) ~ 2.781 - 1075, 62(%42) ~ 1.14105 -
1073)
By the lower and upper bound estimates in Lemma 4.1, from (5.4), we see that

Ty

%WW(Z) = J/ye ™ sin(wx) (271 (1 — i (%)) e &
— 83y (1 +un (%)) e_%(l + o)
—16p7 (1 4 pn(y))e ™ (1 + 02))

Ty

— 4n e F sin(nx) (% (1 _ (%)) —2(1 40D (55)
(1 (3))
—4p(1+a2e” T (14 1))

= 471’\/?6_? sin(rx)dyy, , ()

where 9y, ,(y) is defined at the last equality.
It suffices to prove that

dw, ,(y) > 0.

First it is easy to see that

a
a—ﬁwl,p(y) >0, y>0. (5.6)
I%
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Since the functions w(y), o1, o2 are decreasing on y > 0, it follows that

d
—dw, () >0, y>0. (5.7)
ay *
A direct calculation gives
) =0.1933--- >0
Wl‘p(y)|y:§,p:% 9 >V,
which implies
V3 1
dw,, >0, fory>7,p§%

by the monotonicity properties (5.6) and (5.7). %Wl, o(y) vanishes only when
x=0or5 by (5.5). The proof is completed.
O

We then have a similar monotonicity for W ,(z).

Proposition 5.2. For p < p—l* = 20, it holds that

0
—W =0
ax 2,p(Z) =

forVz € Ro. The equality holds only when x = 0 or %

Proof. The proof is similar to Proposition 5.1. Using (4.12), we see that

%wmr(z)— 3( Sy et 19( Hl) [Z o ( ))
e R Cog [
+ 2;0\/?;:ne_z’”’”2 Pyl (% Y) ly=nx
- @e—%ﬂy%ﬁ (3:7) Iy + 2\/%—2”%0 (5:7) lr=sin
+2p@e—m%ﬁ (; ) o
\f et a7? (57) e

+ 2;0\/72n —2myn® © (% Y) ly=nx

= WS () + WE () + W5 (), (5.8)

where Wg L (), Wé" ,(2) and W§ . (2) are defined at the last equality.



166 SENPING LUO & JUNCHENG WEI

By Lemma 4.1, we also have
W@+ 8,0 2 [Le b () since)

—02+ 2p)\/§e27’y5 (%) sin(27x).

Since | sin(nx)| < n|sin(x)| for any x € R, again by Lemma 4.1, we see that
1 > 1.2
Wi (2) 2 —5@2n e 27 5(%) sin(2mx)
n=>:

o0
— ,o\/gz n2e= 2Ty <§) sin(2m x).

n=2

Plugging the above inequality into (5.8), we get that
0 y 1 N .
W) 2\ [2e73 0 (2) sinGrx) = 2+ 20 + 03(9)
0x 2 2

+ p64(y))\/§e2”y5 (%) sin(2mx) 59

- \/ge—%ny sin(7x) (Q (%) —(4+4p

+203(y) + 2p04(y)) cos(nx)e’%”yﬁ (%)) ,

where

1 & S D N e s
o3(y) = 3 ane T G (y) = Z,ﬂe 2y (n®=1)
n=3 n=2

03(y), o4(y) are functions with small L% norm. (In fact 03(‘/7§) ~ 5.00388 -
1073, 04(*3) ~3.255011 - 1077.)

By the lower and upper bound estimates in Lemma 4.1, from (5.9) one deduces
that

%Wz,p(Z) 2 \/ge;ny sin(mrx) (47t (1 —n (%)) e 7
y

—47 (4 + 4p + 203(y) + 2p04(y)) cos(mx)e Y (1 +u (—)))

2
> 47[\/%@71}} sin(rx) ((l — U (%))

—(4+4p + 2039) + 2004()) cos(rx)e 2™ (14 1 (%))) '
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Let
s, (D)= (1= (3)) = G449 +2030) +2p04 ()
cos(rrx)e_%”y (1 + (%)) .
Then

d
W, (2) Z 4w /%e—”y sin(rx) - oy, () (5.10)
It suffices to prove that
1
dw,,(2) >0, forzeRr,p < p_ = 20.
r

Now obviously

0 0 1
—79W2,p (y) <0;Vy >0, and aﬁwz_p (z) > 0;Vx € |:0, §:| ,Vy > 0.

ap
(5.11)
Observe that the functions @ (y), 03, o4 are decreasing on y > 0. It follows that
B
—dw, ,(2) >0, Vy > 0. (5.12)
dy 5

To complete the proof, we prove that 9y, , (2) is positive on the following three
unbounded rectangular domains:

1 V15 13 V55
pr— — >_ - —_— —_— - >_ .
Ra :z|x6[0,4],y: ) },Rb {z|x6[4,8],y: 3 }

31 V3
= — > -
Rc {Z|X€|:8,2i|»y: 2 }'

It is clear that

Ra CRaURpUR,. (5.13)
A direct calculation gives
w,, (Z)|x=0,y=¥,p=2o = 0.0450964128 --- > 0
ow,, (z)I)C:%’y:@”():20 = 0.1583739562--- > 0
dw,, (Z)|x:%,y=§,p=2o = 0.3525036217 --- > 0.

This yields
w,, (@) >0, forz € Ra URp UR,
by the monotonicity properties (5.11) and (5.12). Therefore by (5.13)
w, , (@) >0, forz € Rs.

By (5.10) %Wz,p* (z) vanishes only at x = 0 or % This completes the proof.
|



168 SENPING LUO & JUNCHENG WEI

6. The Behavior of W, ,(z) on the y—Axis

In this section, we study the property of the functional W , on the y—axis. We
will prove that on the y—axis, depending on p, W ,(z) has either 1 or 3 critical
points. This gives the precise characterization of the minimizers of W ,(z) on
the y—axis. The proof relies crucially on a novel property of Jacob theta function
proved in Theorem 6.1 below.

Proposition 6.1. There exists a threshold py; which is the unique solution of %

Wi, (i) |y=1= 0, (in fact, py = %ﬁ})) ~ 0.04016680351 - - - ), such that

1. if p € [p1, +00), the function y — W ,(yi),y > 0 admits only one critical
point at y = 1, and %Wl,p(yi) < 0ify € (0,1) and %Wl,p(yi) >0if
y € (1, 00);

2.if p € [0, p1), the function y — W ,(yi),y > 0 admits only three critical
points at y1,,, 1 and ﬁ, where y1 , € (1, «/5]. Moreover

0 1
W0 <01y € (o, —) ,
V1,0
1
W00 > 01y € (== 1>,
1,

Ewl,p(yi) <0 lfy € (Lyl,p)’
0 . .
5Wl,p(yl) >0ifye (yl,,o, OO) .

The critical point y1, is the unique solution of %Wl,p(yi) =0, ye(1,3].
Furthermore if p € [0, p1], then
8yl,p
ap

To prove Proposition 6.1, we need to use some properties of the Jacobi theta
functions defined at (1.12)—(1.13). They satisfy the transformation properties

9 (%) I3, ﬁ2(> N

<0. 6.1)

1 6.2)
94 (;> = /y0(), D4(y) = 93(4y) — 92(4y).

It is easy to see that for z = yi

O(syi) = 3 Y e T, e(s yl“) ZZ 2T (P
m n

(6.3)

We firstexpress 0 (s; yi), 6(s; %) as products of Jacobi theta functions, which
is a starting point of our analysis.
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)

Lemma 6.1. It holds that

6(s: yi) = 93(sy) 3 (%) oG 2
2s
+ 9 (2sy)D> (7) .

Proof. The first one is straightforward:

0G5 yi) = 3¢ T 3 e = (s G) ‘
n

m

For the second one,

yitl ST+ _ ~Z (4 p+yg?)
(g g o

p=q( mod 2)
_ ST _sml 2 2
— Z e (1)+yq)+ Z e 7 (5P +yq7)
p=2m’,q=2n" p=2m’+1,q=2n"+1

Ze—kn%m/z Z 6723‘71)111/2
/

n'
25 1

+Ze_7
n

2s 2s
= 13(2sy)V3 (7) + 92 (2s5y)7 (7> .

L (2m/+1)2 Z — BTy 20/ +1)2

/

O

The next Lemma follows from Lemma 3.1. We single it out for the convenience
of our analysis here.

Lemma 6.2. For any s > 0, 6(s; yi) and 0(s; ”H) both satisfy the functional
equation
1
H{—-)=H©O). (6.4)
y
Consequently, 'H’(l) = —y>H'(y). In particular, H'(1) = 0, that is, y = 1 is
yl+1

always a critical point of 0(s; yi), 6(s;
For s = 1, by Lemma 6.1 and transformation (6.2), we obtain

Lemma 6.3.
0(1; yi) = /y93(y),

0 (2 yi ;_ 1) \é_ (193(4}’)193 (%) + 92 (4y) s (%)) ' (6.5)




170 SENPING LUO & JUNCHENG WEI

To prove Proposition 6.1, we first prove a monotonicity property of 6(1; yi)
and 0(2; %) in Lemma 6.4, which can be viewed as the particular case of Propo-
sition 6.1. Then we establish the key Theorem 6.1, in which a novel property about
the quotient of Jacobi theta functions is proved.

The following Lemma is known in [8,28]:

Lemma 6.4. o The function y — 0(s; yi), y > 0, has only one critical point at
y = 1. Furthermore

i19(s yi) < 0fory e (0,1); 849(3 yi) > 0 fory € (1, 00).

)z+l

e Foranys > 0, the function y — 0(s; =5—), ¥y > 0, has three critical points at

‘/Tg, 1 and /3.

We now state Theorem 6.1 whose proof is much involved. We use a combination
of functional equations, error terms analysis and several new observations. Let

X() —ﬁs(y)%( ) VI3 (),

4 4
Y(@y) =2 <ﬁ3(4y)193 (;) + 92 (4y) (;))

=y (ﬁ3(4y)193 ( ) + 92(4y)04 (4))

V'
X(y)’

Furthermore ym) < O0forye (0,1)and (M)/ > 0 fory e (1,00)
X7(y) y e X'(y) y &, 00)

Theorem 6.1. The function y +— vy > 0 has only one critical pointaty = 1.

Proof. Denote Z(y) := X, ) By Lemma 6.4, the function Z(y) is well-defined.
By Lemma 6.2, we also have

1 1
X' (—) =y X' (), YV (—) =V ). (6.6)
y y
Hence
1
Z (—) =Z(),
y
and
/ 1 2~/
Z(5)=rZm. (6.7)

Consequently, Z'(1) = 0, that is, y = 1 is the critical point of Z(y).
By (6.7), it suffices to prove that

Z'(y) >0, forye(l,o0). (6.8)
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By the explicit expression of Jacobi theta functions (1.13) and (6.2), we start with

2
oo
X(y) =y (1 +2)° e’”‘2>’)
n=1
= (V3 +Hay3e™ +ay5e ™ 4y )

o0 o0 2 o0
n=3

n=2 n=2

= A (y) + Xe(y)

where X, (y) and X, (y) are defined at the last equality. & is the major part and X,
is the error part. In fact, we have that, for some constant C > 0,

XMz £ Cfye™>™, fory > 1. (6.9)
For ) (y), again by (1.13) and (6.2), one first has

Vs (4y)z‘/‘3(§) =V (1 +23° e—4”"2>’) <1+2 > e—imﬂy)
n=1

n=1

= Y 25 4 2 5e 42 ye 1T 44, fye

o [e¢)
F2FY e Lo Y e
n=2 n=>5

o o
2, 1_2
LAy Y ety Sty
n=1 n=1
We regroup the terms as

VI3 (3) = VO (3300 = 9200) = VIR24n()
—V/y92(4y)02(y)

00 'S} 00
_ zﬁze—n@n—l)zy + 4ﬂze—n(2n—l)2y Ze—nnzy
n=1 n=1 n=1
_3 > _ _ly2_ 1 > _ 12—
_4ﬁe 14+ Ze w((n—5)"—71)y 1+ Ze 7(2n—1)"=1y

n=2 n=2

, , 5 13
=2/ye Y 44 /ye Y — 4. /ye i — 4 /ye” 7y
00 00 00 00
+4ﬁ (Z e—n((Zn—l)z-H)y + Ze—n(nz-i-l)y + Ze—n(2n—l)2y Ze—nnzy)
n=2 n=2 n=2 n=2

oo oo
—4fye i (Z e (=5 =1)y | Ze—n«zn—nz—m

n=3 n=2
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o0 o0
+Ze*”<<"" —9y . Zen«znlﬂl)y).
n=2 n=2

Now let the approximate part of ) (y) be

Va(y) i= /7 + 2J5¢ 7 4+ 43¢ + 2 /51 4 ye
+4/5e T — 4 f5eT I — 4 freT

and the error part by

ye(y) _ZIZE—Mmy_’_ZfZe 4m1y+4fze—4nnyze—zrmy

n=2 n=5 n=1
+a4y (Z efrr((anl)erl)y + Zefﬂ(n2+l)y + Z[mznqﬂy Zer{nzy>
n=2 n=2 n=2 n=2
o0 o0
— 4 ye i (Z —m((n=5)7=y 4 3 e~ T(@n=1)=1)y
=3 n=2

o0
+3 T (=)= D)y | 3 e—n((Zn—1>2—1>y> .
n=2 n=2
Then

V() =Va(y) + Ve(y) (6.10)

and we have following estimate for ), (y):

_1
1 Vel 2 < Cﬁe 77y

To prove (6.8), we divide the proof into two regions of y: the large y case
y € [1.1, 00) and the small y case y € (1, 1.1).
Case (a): y € [1.1, 00). In this case we have

V'MHX'(y) = X" (MY ()
(X' (y))? '

By Lemma 6.4, to prove Case (a) it suffices to prove that
V'NX' () = X"MY'(y) >0 if y e (1.1, 00).

By (6.9) and (6.10), there holds

Z'(y) =

VX —Yx" = (y(/l/X(i _ X:y;) + (yé/X/ _ nyX” + yo/z/XL/ _ X!J’;)

where (y,;’ X! - X;y;) and (ng’ VXL YIX X;’yg,) are the approximate

part and the error part of )" X’ — V" X’ respectively. We shall use the approximate
part to control the error part.
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To obtain the lower bound of (J},’l/ X, —Xx y;), after subtracting some proper

1
—=e4™Y), one finds that

factor(

16 ,
y = 2 (VA - XV, o) (6.11)
is monotonically increasing.
For the error part (yg X =YX +yx - X/ y;), one has the estimate
(V02 = V2" + VX = XV S Ce ™, (6.12)

which decays to zero very fast.
Combining (6.11) with (6.12), one deduces that

V'X —X"Y >0 if yell.l,c0). (6.13)

The detailed proof of (6.11), (6.12) and (6.13) will be provided in the Appendix
2.
This proves that

Z'(y) >0 if ye[l.1,00). (6.14)

Case (b): y € (1, 1.1). In thiscase 0 < 1 — y < 0.1. To prove

Z(y) = (y’(y)

X,(y))/ > 0,0ny € (1, L1), (6.15)

it suffices to prove that

(m

X”(y)> >0,V ye(l, L,

given that
XMH=Y1)=0 (6.16)
which follows from (6.6). In fact, there exists y;, y» € (1, y) such that

(y’(y))/ _ V'NX'(y) =Y X" (y) _ X" (y) (y”(y) B y’()’))
X'(y) X2 (y) X'(y) \X"(y)  X'(y)
_ X" (y) (3’”()’) _Y» —37/(1))

X'(y) - XMH\NX"(y)  AX(y)—A'(D)

_ A0 (V) Yoy
X"(y2)(y — D\NX"(y) X" (y1)

6.17)

using (6.16).
‘We also have that

X' (y) >0, ifye(,o0) (6.18)
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by the same decomposition method as used above. We omit the details here. (Ac-
tually, we only need (6.18) holds for small interval such as (1, 1.2]).

VAR "
Moreover, (W) > (0 implies

') Yoy _
Xy X

Then the claim follows from (6.19), (6.18) and (6.17).
For the derivative of the quotient of second order derivatives, one has

<y//(y) )/ _ y///(y)X//(y) _ y//(y)X///(y)
X" (y) X" (y) '

(6.19)

Define

fxy) =YY" MX"(y) = Y' WMX" ().

Equivalently, to show (6.15) one needs to show that

fxy() >0 for y e (1, 1.1). (6.20)

Differrentiating(6.6), the functions X' (y) and ) (y) both satisfy the following func-
tional equations

4 1 ! 1/
. (;> — 23 H () + ¥ H )

f (6.21)
H" (;) = 6" H'(y) = 65’ 1" () = y°H" ().

Plugging y = 11in (6.21) and using (6.16), one deduces

X" ==3X"(1), Y"1)=-=-3Y"(1). (6.22)
From (6.22), one has
fay@) =0. (6.23)
Then to prove (6.20), by (6.23), it suffices to prove that

f)’(y(y) >0 for y e (1,1.1). (6.24)

Proceed by (6.9) and (6.10)
f‘/X‘y — y////X// _ y//X////
— (y(/l///X‘;/ _ y;/X‘;///) + (Xe//y//// + yé///X‘;/ _ Xg////y// _ yé/X(;///)'
(6.25)
We use (yg//Xa// _ yL/l/Xl;///) and (Xe//y//// + yé///Xa// _ Xe////y// _ yé/Xa////) as the

approximate and error parts of f )/(y respectively.
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For the approximate part, after subtracting some proper factor, one finds

4
vy Sliy e%ny (yc/sz(f _ y(;’X!”) ) (6.26)

is monotonically decreasing on (1, 1.2).
For the error part, one has the following estimate

|<Xé/y//// + yé///X‘i/ _ Xé///y// _ ng;”’) (y)| § Cye—sj'[y’ (6-27)

which has fast decay.
Combining (6.26), (6.27) and (6.25), we can prove that

Fey®) >0 if ye (1, L11]. (6.28)

The detailed proof of (6.26), (6.27) and (6.28) will be given in the Appendix 2.
This completes the proof.

]
Finally we give the proof of Proposition 6.1.
Proof. By Lemma 6.2, y = 1 is a critical point of W ,(y7). Furthermore
=W G’) = WL 6D 0) (6.29)
By Lemma 6.4, we have
X'(y) >0 if ye(l,00) and Y'(+3)=0. (6.30)
Hence we obtain that
%Wl,p(yi) >0 if y e (v/3,00). (6.31)

To study the monotonicity of W ,(yi) on the interval (I, V3), we rewrite
%Wl, o(¥i) as

O iy = 2L (g2 2! 6(1: yi)) =)' X
5 l,p(yl)—5< <,T>+P(»yl))— )+ pX'(y)

X (f(((y)) +0).

(6.32)

By (6.30), the zeroes of W1 p(yi) on (1, V3 3) satisfy the following functional
equation

V()
+p=0, ye(l,V3). (6.33)
X' (y) Y
Furthermore, by Theorem 6.1, we see that
/
Y (y) + p is strictly increasing on (1, «/_) (6.34)

X'(y)
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(6.34) and (6.33) imply that %Wl,p(yi) admits at most one zero on (1, «/§), This

fact combined with (6.31) yields that %WL »(¥1) admits either one or three critical
points on (0, 00).

Since X'(1) = V'(1) = 0, ¥ = 33

At the other end point /3, since y'(ﬁ) = 0 (see (6.30)), we have that

Y(/3)
X'(\/3)
By (6.34), we see that the Equation (6.33) has a zero if and only if

y//(l)
X7(1)

+p=04+p>0, p>0.

+p<0. (6.35)

The condition in (6.35) is

RO
X”(l) '

Combining (6.35),(6.36) with (6.31), one has

(6.36)

p < p1i=

d
a—Wl,p(yi) >0 on (1,00) provided p = py.
y

This and (6.29) give the proof of part 1 of Proposition 6.1. (For the case p = 0,
Y1.p = /3 by (6.30).)

In the case when p € (0, p1), there exists an unique root of (6.33) as y; , €
1, /3). By duality (6.29), there exists another root ﬁ € (‘/Tg, 1). Therefore part
2 of Proposition 6.1 follows from (6.29) and (6.34).

Finally (6.1) follows from (6.34).

This completes the proof.

7. The Behavior of WV, ,(z) on the y—Axis

LetWs ,(z) := 6(1; %)—i—p@ (2; z) be the conjugate of W, (z). In this section
we prove similar properties of Section 6 for W, ,. Asin Section 6, W, ,(yi) admits
either 1 or 3 three critical points depending on different vales of p. These are stated
in Proposition 7.1. The proof relies critically on a novel property of the classical
theta functions proved in Theorem 7.1.

Proposition 7.1. There exists a threshold py which is the unique solution of

82
sz,p(yi) |y:1: 0

(in fact pp = —1 — %ﬁ% numerically, py = 1.190861337 - - - ) such that
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1. when p € [0, p2), the function y — W ,(yi),y > 0 admits only three
critical points at y2 ,, 1 and ﬁ, where y> , € (1, «/§]. Furthermore we
have F-Wa p(vi) < 0 if y € (0, 5=), ;W (i) > 0 if y € (5. 1),
s Wap(vi) < 0if y € (L ya,p), and FWa,p(3i) > 0 if y € (32,5, 20)

The critical point y; , is the unique solution of %Wz,p(yi) =0, ye(,3]
Moreover, if p € (0, p2), then
3y2,,o
ap

<0. (7.1)

. When p € [p2, +00), the function y — W ,(yi), y > 0 admits only one critical
point at 1, and we have B%Wz,p(yi) <0ifye(,1), %Wz,p(yi) >0ifye
(1, 00).

As in Section 6, by Lemma 6.1 and transformation (6.2), we have that

Lemma 7.1.

4+ 1
0(2: yi) =\/§ﬁ3<2y>03(§), o(1: y’; )=\/§(03(2y>ﬁ3<§>

+ ﬂ2<2y>ﬁ4(§)).

Recall by (1.13) and (6.2),
2 2
A(y) == \/5193(2”193(;) = ﬂm(zy)z%(%), B(y) == \/5192(2)7)192(;)

= 3022943,

Next we state Theorem 7.1, which provides the key argument to prove Propo-
sition 7.1.

Theorem 7.1. The function y %%, y > 0 has only one critical pointaty = 1,
/ / , /
and furthermore (%2—{3) <0, ye(,1)and (%2—{3) >0, ye(l,o00).

Proof. By Lemma 6.2,

1 1
A <-> =AW, B (—) = —y2B'(y). (7.2)
y y
Let
B'(y)
C = .
» A ()
Then

1
¢ (—) =C().
y
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Hence
1
C’(;) = —y2C'(y). (7.3)

In particular, C'(1) = 0, thatis, y = 1 is the critical point of C(y). This, combining
with Lemma 6.4, shows that the C(y) by the quotient form is well defined.
By (7.3), it suffices to prove that

C'(y) >0 ye(,o0).

To prove this, we need to divide it into two parts of y: the small case y € [k, 00)
and the large case y € (1, k), where the parameter k is sightly bigger than 1 and
will be determined later. (In fact k = 1.05.)

Case (a): y € [k, 00). One has

B”(y)A’(y) —A”(y)B/(y)
(A'(y))? '

C'(y) =

Then we need to estimate the lower bound of B”(y) A’ (y) — A" (y)B ().
By (1.13),

o0 o
A) =y (1 +2 Z 6_2”"2y> <1 +2 Z e‘g’“z)’)
n=1 n=1
= (ﬁ + Zﬁe_% +4/ye ™ 4 4ﬁe_%”>’ + 4 /ye Y

+ Zﬁe_%”y

0]

n=4

n=2

o o
+ <4ﬁe—§ny (Z e3P =Dy 4 Ze—zn(nz—l)y

n=2 n=2

00 00
+ Ze—%n(nz—l)y . Ze—Zn(nz—l)y)>
n=2

n=2
= A (y) + Ae(y)

where A, (y) and A.(y) are defined at the last equality. A.(y) is the error part
which will be proved to satisfy

13
[Aellcz = C/ye” 27,



Minima of Theta Functions 179

For B(y), by (1.13), we rewrite as

B = v/59229)(932) = 92(2))

00 0 00
— Zﬁze—bfy(n—%)z +4ﬁze—2ny(n—%)2 Zg—Znnzy
n=1 n=1 n=1

00 2
By
n=1
= (2\/§e_%”y —{—4\/}(3_%7”' + Zﬁe_%”y - 4\/§e_ﬂy>

o0

o
FQUFY eI g e (Y H @by
n=3 n=2
o0
+ 2672(11271)71)’
n=2
o0

o0 o0
+ Ze—%((zn—nz—l)ny Ze—Z(nz—l)ny) _ 8ﬁZ - h@n—1?my
n=2 n=2

n=2
o 2
Cags(D et
n=2
= Ba(y) + Be(y),
where B, (y) and B, (y) are defined at the last equality. That is, we have
B(y) = Ba(y) + Be(y), (7.5)

where B, (y), B.(y) is the approximate part and the error part of B(y) respectively.
We have the following estimate

13

1Bellcz € Cyfye 27, y = 1.
To prove that
C'(y) >0 if y € (k, 00), (7.6)
it suffices to prove that
B'" WA (y) = A"(MB'(y) > 0 if y € (k, 00).
By (7.4), there holds

B'A — A'B = (BgA; - A;’B;) + (BZA/ —BA +BIA — AgB;).

Here (B;’ A, — A, Bg) and (B;’.A’ - B,A"+ B, A, — A} B;) are the approximate
and error part of B” A" — A" B’ respectively.
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To estimate the approximate part, we use the monotonicity of a weighted func-
tion, that is

4y 17'[ /) / ! /
y— el Y(Ba’Aa _ A;Ba)(y) 1.7

is strictly increasing.
For the error term, we have the following control

13

|(BIA —B,A" +BJA, — A/B) )| S Cyye 2™, y=1 (1.8

which decays fast.
Combining (7.7) and (7.8), one deduces that

(B”A’ - A”B’)(y) > if y € [1.05, 00). (7.9)
This proves that
C'(y) > 0 if y € [1.05, 00). (7.10)

The detailed proofs of (7.7), (7.8) and (7.9) will be given in the Appendix 2.
Case (b): y € (1, k).

To prove
<i//g))>/>0,onye(l,k), (7.11)
by (6.17), it suffices to prove that
(if/—g;)l > 0,ony € (1, k),
given that

Ay =B1)=0 (7.12)

which follows from (7.2). Here as in (6.18), we need .A”(y) > 0 in small interval
such as (1, 1.2] (we omit the details here).
To proceed, we notice that

<l’>’”(y) )’ _ B"OMA' ) — B"OMA” ()

= 7.13
A//(y) A//Z(y) ( )

Define

fa(y) = B"(MA"(y) = B"(»)A" (y).

Same as (6.23), we see that

fap(1) =0. (7.14)
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Then to prove (7.11), it suffices to prove that
f,/AB(J’) >0 for y e (1,k). (7.15)
Now by (7.4) and (7.5) we can write as
fJ/AB — B////A// _ B//A////
— <B;///AZ _ BZAZN) + <Bé///A// _ B;/A//// + B;///A/e/ _ Ale///B/a/) (716)

The main part is (Bg’ A — BA ) which is is not monotonically decreasing
or increasing. Instead, a weighted

32y%

y —

A (B AL~ BLAL) ) 1

is strictly decreasing on (1, 00).
For the error part in (7.16), one deduces the following upper bound estimate,

‘(BgUAN _ B;/A//// +BZ”.AZ _ AZ//BZ)(y)‘ é Cﬁe—L;ﬂ)" y 2 1 (7.18)

which decays very fast.
Combining (7.17), (7.18) and (7.16), we can show that

fas) >0 if ye,1.12]. (7.19)

The detailed proof of (7.17), (7.18) and (7.19) is tedious and will be given in
the Appendix 2. This completes the proof.
0

Finally we give the proof of Proposition 7.1.

Proof. By Lemma 6.2, the functional W, ,(yi) satisfies the functional equations
/ 1 _ 294/
H ; =—y"H(y). (7.20)

Hence H'(1) = 0, that is, y = 1 is a critical point of Wh , (yi).
By (7.20), we just need to consider the functional W, ,(yi) on (1, co). For this,
one uses Theorem 7.1 by rewriting aa—vwz,p(yi) as

V22w, iy = & <J§9 (1; yit 1) + pV260(2; yi))
ay dy 2

=AY +B)+pAK) (7.21)

, B'(y) )
=A L+ —= .
6)) < +A/(y)+'0

By Lemma 6.4, we see that

BW3 _,
A'(V3)

A(y)>0 ye(l,00) and 1+ (7.22)
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By Theorem 7.1, it holds that

d B
d (1 =AS))
dy A'(y)
From (7.23), in view of (7.21) and (7.22), we infer that

+p) =0, ye(l,o0). (7.23)

B_WZ’p(yi) admits at most one zero point on (1, 00).
y

By (7.22), we see that
0
W, (1) = 0 if y e (v/3, 00). (7.24)
y

Then one further concludes that the admissible zero point of %Wz p(yi) must lie
on (1, \/§] (if exists).

Next we consider the function 1 + %% + pfor p > 0 € (1, /3). At the end
point \/g, we have that

B'(y) B B
(1 + A0y) + p) lyeyz=0+p=p>0 (7.25)

because of (7.22).
Since A’(1) = B'(1), at the other end point 1, one evaluates

B'(y) ) . B . B'(y)
1+ + —1=14p+ lim =14+ 0+ lim
( A T T Mgy T T R TGy
B”(l) ( . )
=1
+po+ ()
by L’Hospital’s rule.
In view of (7.25) and (7.26), one deduces from (7.23) that
B/
(1 + /(y) + p) admits one zero point on (1, V3)
A'(y)
B(1) (7.27)
it equivalents tol + p + ) <0,
which implies that
. B//(l)
<ppi=—1—-—".
P < p2 A1)

It follows that by (7.21) and (7.27), for p 2 p2, %Wz’p(yi) admits no zero on
(1, 00). Therefore the part 2 of Proposition 7.1 follows from (7.20).

For p € (0, p2), we denote the zero root of (1 + %% + ,0) (and hence also
of %Wz,p(yi)) as y2 ». Then by (7.27) y2 , € (1, V/3). Thus by (7.20) there is
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ammHZﬂommtﬁ;e(%;Dof%MQAﬂ)ByUQQJTmLUQSaM
(7.21), the part 1 of Proposition 7.1 is proved.
Finally from (7.23), we have that

d
@)’Z,p < 07 VIO € [07 p2]

This proves (7.1). (For p = 0, one has y; , = V3 by (7.22)). The proof is thus
completed.
O

8. Proofs of Theorems 1.2, 1.3 and 1.4

In this section, we are ready to finish the proof of the main results of Theo-
rems 1.2, 1.3 and 1.4 . To make the presentation clear, we introduce the following
notations to denote various geometric sets:

H:={z]y>0),
Q:=(z]lzl 21,0 x <1,

1 1
Qp = zllzlzl,nggz U{lezl=l,§§x<l},
1
Qe = Z||Z|Zl,0§x§§,
1
Qq:= zllz|=1,0§x§§ Ufzl x=0,1Zy <0},
1
m:=z|m=LO§x§§L%zM:Ql§y§Jﬂ,
Qeai={2|x=0,1§y§x/§},
1
Qep 1 = Z||z|=l,0§x<§

We divide the proof into the following steps:
Step 1: Reducing minimization problem from H to — €2,,.

This is a consequence of Theorem 3.2 and the properties of the fundamental
group (3.3) and fundamental domain (3.5):

min Wi p(2) = min Wi,p(2), min Wh p(2) = min Wa,p(2). (8.1)

Step 2: Reducing minimization problem from 2, to 2.
This follows from Corollary 4.2:

min W ,(z) = min W ,(z), min W» ,(z) = min W ,(2).
7€y, 7€ 7€, 7€

Step 3: Reducing minimization problem from <2, to <2..
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We first show that
. VA
min Wip@=Wiplz+i—),j=12 (8.2)
zefzllzl=1,4 Sx <1} 2 2

7

One can further conclude that the minimizer % +i 73 is unique by the monotonicity
shown below.
In fact, by Propositions 6.1 and 7.1 , we see that

3
5Vv,~,p(yi) >0, ye[v3,00),j=12. (8.3)

By the special map z — w = %, the set {yi,y € [+/3,00)} is mapped
bijectively to {|z| = 1, % < Re(z) < 1}. By Lemmas 3.4 and (8.3) we see that both

Wi, p(z) and W ,,(z) are monotonically decreasing along the set {|z| =1, % <
x < 1}. This proves (8.2).
By (8.2), we conclude that

min W ,(z) = min Wy ,(z), min W ,(z) = min W ,(2).
7€Qy 7€Q¢ 7€ 7€Q,

Step 4: Reducing minimization problem from 2, to ;.
In this case, let p, = 21—0 be as in Propositions 5.1. For p € [0, p4], Proposi-
tion 5.1 implies that

min Wip(2) = min Wi,p(2), p € [0, pil.

For p € (p4, 00), using Lemmas 3.3, 5.2, and (8.2), we get that
min Wi ,(2) = p min Wa,1,(w), 1/p € (0, 1/p1)
7€, WER

=p min Wy 1/,(w), 1/p € (0, 1/px)
wey
= min W , , .
angjl 1,0(2), p € (px, 00)
Therefore, we obtain that
zneléln Wi ,,(2) = ngg}j Wih,p(2), p € [0, 00). (8.4)
By Theorem 3.3, (8.2) and (8.4), we have that

min )Wz,p(z), =p

7€, pe[0,00

min W])]/p(w),
we.,1/pel0,00)

= min w ,
P weQd,l/lpe[O,oo) L1/p(w) (8.5)

)W2,,0(Z)-

min
7€Qy4,p€[0,00

Step 5: Reducing minimization problem from 2, to €2,.
This follows from (8.3).
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In summary, from Steps 1-5, we conclude that

min Wi, p(2) = min Wi, p(2), min Wh p(2) = min Wh p(2). (8.6)

From (8.6), we just need to find the minimizer in a much smaller curve €2,. But this
gives no information about uniqueness or multiplicity of the minimizers. In fact,
one can further rule out the possible minimizers of W; ,(z), j = 1, 2 in a large set.
Namely, for z € ,\€2,, there is no any possible minimizer for min;cq, W1 ,(2),
mingecq, W, ,(z). The possible multiplicity of minimizer is admitted only in Step
1, see (8.1). Therefore, one can conclude the reduction in (8.6) is unique up to
the group transformation G». In the next step we will show that min cq, W1 ,(2),
mingeq, Wh, ,(2) exists , is unique and can be located precisely.

Let w be the map w(z) = 2 +1 whose inverse is z(w) = H'w . Under this map

wehavez:yieQear—)w— eer,w—u—i—lveerr—)z_

V=2
IT: (S Qea.

We note that

p1 <1/p2 < p2 <1/p1.

See in Propositions 6.1 and 7.1 .
Now we consider the minimizer of W ,(z) on .. We divide things into three
cases.

Case 1. p € [p1, 1/p2].

Inthiscase, p = p1, 1/p 2 p2. Then by Propositions 6.1 and 7.1, both W ,(z)
and W, ,(z) are monotonically increasing on 2., along positive y axis direction.
Then it follows that W ,(z) is monotonically increasing on €2, clockwise. There-
fore, the minimizer of Wi ,(z) on €, is uniquely achieved at z = i, that is, in this
case the minimizer of W ,(z) is always i, a fixed point representing the square
lattice.

Case 2. p € (0, p1).

Inthiscase, 1/p > 1/p1 > p2. Then by Proposition 7.1, W, 1,,(z) is monoton-
ically increasing on €2,, along positive y axis direction. It follows from Lemma 3.4
or Theorem 3.3 that W; ,(z) is monotone increasing on €2, clockwise. On the
other hand, by Proposition 6.1, W ,(z) admits a unique minimizer at y =iy , €
i (1, 4/3) on $2,. We conclude that Wi p(z) has aunique minimizer atzy , = iy1,p,
where y; , € (1, «/3) on 2.

Case 3. p € (1/p2, 00).

In this case, since 1/p < p2, by Proposition 7.1, W> 1/,(z) has a unique min-
imizer at y = y1/, € (1, V3) on Q4. Then by Theorem 3.3 or Lemmas 3.4,
Wi, (+) has a unique minimizer

2

it —1 ; 2y2.1/p
2 2

Yol ¥t

Zl,p = € inner points of 2. 8.7



186 SENPING LUO & JUNCHENG WEI

On the other side, one has p > 1/p2 > pj. Then by Proposition 6.1, W ,(z) is
monotone increasing on 2., along the positive y axis direction. Therefore, (8.7)
gives the minimizer of W ,(z) on €2,.

This proves Theorems 1.2 and 1.4 . Theorem 1.3 follows from Theorem 1.2
and Lemma 3.3.

9. Proof of Mueller-Ho Functional and Mueller-Ho Conjecture

Proof of Lemma 2.1. Since the computation is elementary, we omit the details
here.

Proof of Lemma 2.3.
11 T nz—nl?
J <z; X 5) =Y e 7" cos(om + nym)
m,n
_ Z Flmz— nl 1 + cos((m + n)JT)) — Ze_%|MZ—nI2
m,n
bid 2
= Ze_?l'"z_"l 2 cos? <—(m —;n)n) —0(1; 2)
m,n
T T L T
m+n=2k,keZ
b4 2
_ zze—ylm(z—l-l)—yf\ _ 9(1; Z)
m,k

mz+l —k|2

=2 = —6(1:2)

1
—20 (2; Z; ) —0(1; 2).

O

Proof of Theorem 2.1. This follows by Theorems 1.2, 1.3 and 1.4 , by the relation
l—o

P="- -
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11. Appendix A: Proof of Lemma 2.2

Recall that

J(z;a,b) = Z ¢~y Imanl? cos(2m (ma + nb)). (10.1)

(m,n)eZ?
In this appendix we show that when the lattice is square type, then (%, %) isnota

critical point while when the lattice is hexagonal (or triangular), it is a critical point.
First we show that

Lemma 11.1.
da J&a, b)|z——i,(a,h)=(%’%) b J@a, b)|2=ia(0»b)=(%’%) <0. (102)

This implies that 7 (z; a, b) is not always critical point for any lattice shape.

Proof.
9 o202 . [ 2m(m + n)
. — +
EJ(Z, a, bﬂz:i,(a,b):(%,%) = 2m Zme o417 gin (T)
m,n
’ (10.3)
0 22 (2m(m+n)
: - +
%j(z, a, D)l i apy=(L. 4 = 27 Zne 1) gin <T) :
m,n
It is clear that
a . a .
%j(a, b; Z)|z=i,(a,b)=(%,%) = Ej(ay b; Z)|z=i,(a,b)=(%,%)‘
Let
_ . (27 (m+n)
A= 71(m2+n2)
Ze sin — 5 m
m,n
Equivalently, we show that
A > 0.
Groupingby m +n =3k + j, j =0, 1,2, we have
A —(m>4n?) —(m?+n?)
sin(%) > me - > me - (10.4)

m+n=1( mod 3) m+n=2( mod 3)

For the first part in (10.4), splitting the summation by m > 0 or m < 0, we have
(dropping the mod 3)

—n(m2+n2) _ —7T(m2+n2)_ —n(m2+n2)
Ze m= Z me Z me (10.5)

m+n=1 m>0,m+n=1 m>0,m+n=2
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For the second part in (10.4), similarly, one has

—rr(m2+n2) _ —Jr(m2+n2) _ —n(m2+n2)
D¢ m= >, me > me (10.6)

m+n=2 m>0,m+n=2 m=>0,m+n=1
By (10.5) and (10.6), we have
—ﬂ(m2+n2) _ —Jr(m2+n2)
D me == D me (10.7)
m+n=2 m+n=1
and by (10.4)
5 _A,, - ¥ e 3 ) (108)
Sm(g) m>0,m+n=1 m>0,m+n=2

Notice that e is one term in the first summation in (10.8), it suffices to prove that

P S _
E me TITHNY) o

m>0,m+n=2
Now we have
2 2 as 2 2
Z efn(m +n )m — Z Zmefn(m +Q3k+2)°)
m>0,m+n=2 m=1keN

o)
— Z me—ﬂmz Ze—ﬂ(?)k-i-z)z < (6—7'[ + 4e—477)(e—77 + 26—47T) < e—]‘[.
m=1 keN

This completes the proof. O

SfS

Next we show that (a, b) = (%, %) is a critical point when z = % +1i

Proof. We first claim that

2
Z e—x(m2+n2—mn)m Sin <M) = 0’ for V_x > 0 (109)
(m,n)eZ?

To prove (10.9), it suffices to prove that
2
Ze—x(m2+n2—mn) sin (M) =0, for Vx > 0. (10.10)
n 3
In fact,

Zefx(m2+n27mn) sin (27[(7” + l’l))
3

n

3.2 _xy_y2 . wT(2n —m) (10.11)
zxm § : 7 (2n—m)
—e - e S —3

=0.
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In the last equality, one uses 2n — m, n € Z and takes all the even or odd integers
when m is even or odd.
By simple calculation, now the second part of Lemma 2.2 is equivalent to

— 2 (mem)?y 2
Ze 2y((m n)2}2+(m+n)2)msinwzo’ if y:ﬁ (10.12)

m,n

which is of consequence of (10.9). This completes the proof.

12. Appendix 2: The Rest of Proof in Theorems 6.1 and 7.1

In this appendix, we finish the technical proofs of Theorems 6.1 and 7.1 .
Throughout this appendix we frequently use the following Lemma whose proof is
straightforward calculus and is omitted:

Lemma 12.1. Let f(y)m denote %f(y). For,j =1,2,3,4, there holds

e Fora > 0,b > 0,

(ﬁewy<o,yy>§;(ﬁe@y>o7ﬁy>b+¢?

a

e Fora > 0,

. %)
(—1)J(ﬁe_ay> o0, ify> fi@.
Here

1+42
2a

1 1 1
fi(a) = % Sfa(a) = , f3a) = =, fala) = —.
a a 2a

eFory=landa, >0
o0 )
(Z ﬁe—“"y) < (I +0j0v@r) e,
n=k

. An g —(an—ag)
Ojk = Z — ) e " .

a
netr1 N

In applying Lemma 12.1, we will choose k by the desired estimates.

The structure of this appendix is organized as follows. (6.11)<> Lemma 12.2;
(6.12)< Lemma 12.3; (6.13)< Lemma 12.4; (6.26)< Lemma 12.5; (6.27)&
Lemma 12.6; (6.25)< Lemma 12.7; (7.7)< Lemma 12.8; (7.8)< Lemma 12.9;
(7.9)¢ Lemma 12.10; (7.17)< Lemma 12.11; (7.18)< Lemma 12.12; (7.19)<
Lemma 12.13.
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12.1. The Rest of Proof in Theorem 6.1

Lemma 12.2. y — lg—ye%’” (y;;x; - X!yé’z)(y), y € [1,00) is monotonically
increasing.

Proof. Calculating and grouping the terms, we get

b (v - 23 o)

= (ny — 2496¢” "V 72 y? — 14477 — 7006V ry — 14400V 22
—288e ™Y — 2176 ¥y
— 840e 32y — 108e 3 — 243"V ry — 110e ' rry — 6) (11.12)
+(696¢ ™y + 20160772y 4 16867 4 1008y
+2208¢ 4V 2y 4 7684V
+ 234wy + 192 y? 4+ 162e 77 + 24 7y 132{’”’).

Denote the terms in first and second brackets of %e%” Y (yg/ X —x/ yg) (y) by

P}y and P, respectively. One has %e%” (y;;x; — X;’y;)(y) = P}y(y) +
/!

P;;y(y) by (11.12). It remains to prove that (P:{,y + P;y> >0, yell,o0).

/
It is clear that the leading order term is 'y, this gives that (P;y + P;Q,> >0
when y is large.
By Lemma 12.1, one has

/

4
>0 if y>1.
(11.13)

/ / 4
(P}y> > 7, (P}y> <0, <P}y) <0, (P;(y>
/
Direct calculation shows that (P;Q,) ly—2.2= —3.012967072 - -- . Thenby (11.13)

/
(P;y n 73;0,) (y) > 7 —3.012967072--- > 0, if y =22. (11.14)

Next we prove that

(P;y + P/;y) (y) > 0, for ye[l,2.2]. (11.15)
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To prove (11.15), we regroup the terms by

Pry» +Pry»)
= (ny = 6)+ e ™ (= 1107y + 2477y + 132)
+ 7P (=2437y + 19277y + 162)
+ 7Y (=8407 %y — 108 + 2347y)
+ e~ (=2176my + 22087 %) 4 768)
+ e (—144072 y? — 288 + 10087 y)
+ ¢~ (=7007y + 20167%y? + 168)
+ eV (=249672y? — 144 + 6967 y).
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(11.16)

To prove (11.16), one divides the interval [ 1, 2.2] into, say, ten subintervals, [1, 2.2)
= U?zo[ai, ai+1). In each intervals, by careful calculations, we can show that the

function is positive on each interval.

O

Lemma 12.3. The following estimates hold: | (y;’)c/ VX YIX X;/yg) )|

< (4472 4+ 187 + 367 y)e 17

Remark 12.1. The coefficient of the bound is not sharp, but the exponential term

captures the main feature.
Proof. By Lemma 12.1, one infers that

T 29072 _ i
V(0] S 187 /ye™ +7 |V, (»)] £ NATZEEMER

X (p)] < 4l fye > 12 ()] £ 201702 fye >

For X7, X", Y/, Y/, by their expressions, one has

1
X' = 7 X" ()] = (W +2ﬁ),

1 1
VIS (—=+207 ). VI £ (=75 +2v7 ) -
4y3/

vy

Thus, one can get the result.

Lemma 12.4. It holds that (y”X/ _ y”X/) (y) >0, ye[l.l,o0).

Proof. It remains to prove that %e%”)’ (V'X =Y'X')(y) >0, yel[l.l,o0).

By Lemmas 12.2 and 12.3 ,
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@e%ny (y//X/ _ y//;() )

T

16 Loy (17 4o 1~y
10y ed™y (y X — Xaya)(y)

16y 1_.
+ Tye4n} (yé/X/ _ yéX” + y(:/Xe/ _ Xe//yé) (y)

16 16
16Y 4ay (y”x’ X;’yg)(y) - %(447[2 187 + 367y)e 4T

IIV

1A%

16 :
( ﬂy i (y”)(/ Xa”y;>(y) — 16y (447 + 18 + 36y)e‘4”>’) ly=1.1

=0.001671778 --- ,y € [1.1, 00)
>0, yell.l,o0).
In the second last step, one uses the fact that y > —16y (447 +18436y)e 4™ y >
1 is strictly increasing.
m]
Lemma 12.5. y — Slﬂﬂe%” ()}L;”’X{;’ —nga’”’) (y) is monotonically decreasing
on (1,1.2).

Proof. By direct calculations, one regroups the terms by

512y*
b3
= —73y® 4+ 872y? 4 84wy — 144

e%ny (yz/zw‘X! _ y;///X!N> )

+ e—”y( — 2407%y% — 92407y — 6320722 + 139274 y* + 350733 + 3168)

+ e*z’”'( — 11232755 — 1487773 y® — 204127y — 3285672y + 3609674 y* + 3888)

+ e*3”~V( — 3482407 y* — 2592 + 17885473y 4 20904077 y° 4 196567y + 9153672 y2)
+ e*“”( — 80457677 y° — 1218567 y> — 47257672 y?

— 1827847y + 1465533y + 18432) (11.17)
+ e*S’U‘( — 140064764y* — 6912 + 16027273y + 68544077 y°

+ 846727y + 28454472 yz)

+ e—ﬁﬂy( — 57050073y — 36288007°y> — 588007y

— 30128072 y? + 310060874 y* + 4032)

+ e*W( — 523660874 y* — 3456 + 86234473 y® + 75279367 y°

136115272y + 5846471y).

The rest is found through careful calculations by taking derivatives.
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Lemma 12.6. There has | (yg”zc” —YVIX R Y X — X;/”yg) )| £ 16(X )4

etz

Remark 12.2. The coefficient of the bound is rather rough but is enough to get our
result. The exponential power captures the main feature.

Proof. By Lemma 12.1, one infers that

17 \?2 7
RAGIEE (;n) (1+ 0y, 25 ™ 19 O)]
(11.18)

17 \*
= 4(?”) (1 + 0y, 4)/ye 4™
and
1X7 ()] £ 8(51)2(1 4 ox, ) /ye ™, 1 X ()]
<8G5 (1 + 0x,.4)/ye .

Here oy, j, 0y, j, j = 2,4 are small and can be bounded by 4—1‘. For X", X", Y/
and )", by their explicit expressions, one has

(11.19)

1
X" (=10, |X" (0] 1.2, (0] £ 0 V"<, y2 1
(11.20)
Combining (11.18), (11.19) with (11.20), one gets the estimate.

Lemma 12.7. There holds (y””X” - y”x””)(y) =0, yel[l, L11].

Proof. Tt suffices to prove that ﬂﬂe%”y(y”w” — y”X””)(y) >0, ye€
[1, 1.11]. By the decomposition and Lemmas 12.5 and 12.6 , we obtain that

Sliy4ei”y (y////X// . y//XW> )
_ 512y4e%ny (y////X// o y”XW/) ()
= a “a ata
512y 4 Loy (N 17 A1 VIaY 1M1~
+ et (ye X _yeX +ya XL’_XK ya)(y)
4
> 512y e%ny <yz/le‘;/ _ y;/X;”) (v) — ? . 1747T3y9/2€—47ty (11.21)
T
512y4
> T[y e%ny (y;///Xa// _ y[/l/X;///> ) |y:1.11
2

7
-5 174723y 2e 4 |y, y e [1, 1.11]

= 158.4646175--- — 130.0476135 - - -
> 0.
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12.2. The Rest of Proof in Theorem 7.1
Lemma 12.8. The function y — %e%” (B;/A; — AZBZ,)(y), y > 1 is monotone
increasing.
Proof. By direct calculations, one regroups the terms by

2edm (B4, - ALY )
T

= (ny 328807822 1278 L (44727 _ 720737

— 48073V _ 84e™STY _ 2me™y

—8me™1™y — 76872 2™ y? — 12872~ 3™V  240y2e~ 3 2

— 504e ™V g2 y? — 52¢ TV y

(11.22)

—99¢ ¥y — 10@72’”7[)/)
n (68e—8”yny 4240670 12y 4 12727 4 12670TY 4 33¢74TY
+ 672 £ 1277 + 967167%”3’)1
44801 y + 872e "™ y? + 168ye TV + Gde V2 y?
+48¢ 2y 4 308e75”y7ry>

Denote the terms in the first and second bracket of (11.22) by leB and P ;5. Then

4 ) /! / i / —
;ye%’” (BaAa - AaBa)(y) = Pl + PO, (11.23)

It remains to prove that P}B(y) + P;B(y) >0, y>1.
By Lemma 12.1,

(Pis®) 0 =7 (Phs) 0) <0, (Pag) 0 <0,

p (11.24)
(Pas) 01 >0

U
Since (73;\8()))) () ly=1.82= —3.051954266 - - -, one has

Phs() +Pag(y) 2w —3.051954266 -,y € [1.82,00) > 0. (11.25)

It remains to prove that PZB(y)—}—P;‘B(y) > 0 onthe bounded interval (1, 1.82]. To
this end, we divide the interval (1, 1.82] into 10 smaller subintervals, and compute
the derivatives on each interval to arrive the result. O

Lemma 12.9. There holds: |(5;/A/ —BLA" + BIA, — A;/B;)(yn < 8(8x)?

13

Jye Ty 2 1
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By Lemma 12.1, one has for j = 1,2, ...

AY ()] <40 +04,.)) (1—71) e,
;3 (11.26)
1B (y)] < 4(1 4 o5, ,)(—ﬂ) «/_e_*”’

Here the 04, ;, 033, ; are small and can be bounded by % For A', A", B, B, by
their explicit expressions, one deduces that

AWMI=03, AWM= 5. IBDWI= 2. 1B = (11.27)

1
5

| —

1
>
Combining (11.26) and (11.27), one gets the estimate.

Lemma 12.10. There holds (B”A’ - A”B’)(y) =0 if ye[1.05,00).

Proof. Equivalently, it suffice to prove that £ 62” Y (B’ "A—-A"B ) »=>0if ye
[1.05, 00). By Lemmas 12.8 and 12.9 , we deduce that

4%6%” (B4 - A"B)»)

N 4y Loy (12 g/ 274
= e (B AL~ AaBa)(y)

4
+ ;ye%”y (B;’A’ —~BLA"+BlA, - A;’B;) (y)

A (11.28)
> 2 Y %’W(B”.A’ AZB;)(y) — 13527 y3/2e 6™y

T

4y 1., _

> (?ezm (B,’;A’a - AZB;)(y) — 13527y % 6’”) ly=1.05
= 0.001189906301 - - -
> 0.

Here we use the fact that y — —y3/2¢707Y y > 1 is strictly increasing in the
second last inequality.

O

Lemma 12.11. y — %e%” (BZ”A’a’ - BZAZ”) (y) is strictly decreasing on
(1, 1.12).
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Proof. By Direct calculations, one regroups the terms by

0% e (A - B AL )
= —7r3y3 -1—4712y2 + 21wy — 18
T e 13213y} + 72 — 64n2y? — 1687y)
+ e 1767ty + 72 — 4877 yS — 2527y — 3047 2y? — 13273y)
+ 72 (2784n* y* + 36 — 96077y — 215073 y® — 116072 y? — 2107 y) (11.29)
e 36144755 + 422473y + 20167y + 486472y — 1126474 y* — 288)
+¢737 (856873 v + 168007° y° + 950472y% 4 35287y — 283207 y* — 432)
+ =4 (200773 y? + 2880077 y3 + 870872 y? + 32137y — 32320m*y* — 306)
+ e (9979277 y° + 1817273 y3 + 2363272 y% 4 6468wy — 14011274 y* — 504)

+¢757Y (4966073 y + 33696077y + 2792072 y? + 54607y — 2952007 y* — 360).

Using the explicit expression in (11.29) and dividing the interval (1, 1.12) into 10
smaller intervals and calculating the derivatives on each interval, we obtain the
result.

O

Lemma 12.12. The error estimate holds:

13 \* :
(B A" = BLA™ + B AL — ALB) (0| <8 (771) Jye ET11.30)

Remark 12.3. The coefficient of the bound is rather rough but is enough to get our
result. The exponential power captures the main feature.

Proof. Using the explicit expressions of A and B,, after tedious estimates, we
arrive at

A" DI =8, 1B (DI =5. (11.31)

This, combining with (11.26) and (11.27), gives the estimate.

Lemma 12.13. It holds that

(B””A” - B”A””) () >0,y e[l 1.12]. (11.32)
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Proof. It is equivalent to proving that 3%T—y4e%”y (B””A” - B”A””)(y) >0,y €
[1, 1.12]. By Lemmas 12.11 and 12.12 , we have that

10.

11.

12.

13.

32)146%”}, (B////A// _ B//A////> (y)
T
32y* 1
— = e2™Y (BZNAZ _ BZAZ”)()))
32y4 lﬂ 1 /111 v " !l uay v
422 Y(AZB FBYA — AB — BYA! )(y)
4 (11.33)
> 32y e%”y (B;WAZ _ B;/A:lm> () — 2647T3y9/26—67ry
T
32y*
> ny 2™ (Bg”AZ - B;’A/a’”)()’) ly=1.12 =267y 20y |,
=49.93918473--. —0.09227517899 - - -
> 0.
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