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Knot Optimization for Biharmonic B-splines on
Manifold Triangle Meshes

Fei Hou, Ying He, Hong Qin, and Aimin Hao

Abstract—Biharmonic B-splines, proposed by Feng and Warren, are an elegant generalization of univariate B-splines to planar and
curved domains with fully irregular knot configuration. Despite the theoretic breakthrough, certain technical difficulties are imperative,
including the necessity of Voronoi tessellation, the lack of analytical formulation of bases on general manifolds, expensive basis
re-computation during knot refinement/removal, being applicable for simple domains only (e.g., such as Euclidean planes, spherical
and cylindrical domains, and tori). To ameliorate, this paper articulates a new biharmonic B-spline computing paradigm with a simple
formulation. We prove that biharmonic B-splines have an equivalent representation, which is solely based on a linear combination of
Green’s functions of the bi-Laplacian operator. Consequently, without explicitly computing their bases, biharmonic B-splines can bypass
the Voronoi partitioning and the discretization of bi-Laplacian, enable the computational utilities on any compact 2-manifold. The new
representation also facilitates optimization-driven knot selection for constructing biharmonic B-splines on manifold triangle meshes. We
develop algorithms for spline evaluation, data interpolation and hierarchical data decomposition. Our results demonstrate that
biharmonic B-splines, as a new type of spline functions with theoretic and application appeal, afford progressive update of fully irregular
knots, free of singularity, without the need of explicit parameterization, making it ideal for a host of graphics tasks on manifolds.

Index Terms—Biharmonic B-splines, Green’s functions, manifold triangle meshes, implicit representation, knot optimization

✦

1 INTRODUCTION

Various types of spline functions, such as tensor-product
B-splines, NURBS, and T-splines, have been broadly de-
ployed in geometric design, data fitting, shape analysis,
and many other graphics applications [1], because of many
powerful and attractive properties. For example, their basis
functions are localized, piecewise polynomials, and form a
partition of unity; the resulting spline has certain order of
smoothness and can model complicated geometry in a free-
form manner. In principle, the above-mentioned splines are
built on planar domains with restricted knot configuration,
such as regular grids and T-junctions, so it is highly desir-
able to seek brand new spline schemes upon arbitrary curved
domains with fully irregular knot sets.

Biharmonic B-splines, proposed by Feng and Warren [2],
are one such novel advancement, that extends univariate
B-splines to planar and curved domains. In [2], the key ob-
servation is that the discrete bi-Laplacian is a well-behaved
analog of divided differences. Given a compact smooth
manifold M and a set of knots {ti}

m
i=1, ti ∈ M, the bihar-

monic B-spline basis function ψi, associated with knot ti, is
defined using Green’s functions of the bi-Laplacian operator∇2 on the Voronoi cells around ti. Feng and Warren showed
that these basis functions are localized and form a partition
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of unity on domains without boundary. In sharp contrast
to conventional B-splines, the knots of biharmonic B-splines
are totally free without any additional constraint. They do
not rely on any user-specified planar/volumetric parame-
terization and are free of singularity [2], [3]. Nevertheless,
the flexibility of biharmonic B-splines comes with a high
price: (1) The need of Voronoi tessellation is unavoidable,
and computing such a Voronoi diagram on a curved domain
is expensive; (2) The computation of the distance function
is lacking an analytical formulation on general surfaces,
indicating that the bases do not have a closed-form expres-
sion; (3) The bases must be re-evaluated wherever domain
re-configuration is carried out during knot refinement and
coarsening; and (4) Bi-Laplacian operators are well defined
on simple domains (e.g., such as Euclidean planes, spherical
and cylindrical domains, and tori), yet discretizing the bi-
Laplacian operator on manifold is non-trivial.

To combat the aforementioned difficulties, the overarch-
ing goal of this paper is to expand the horizon of biharmonic
B-splines at both theoretic and practical fronts. We promote
the use of biharmonic B-splines through a novel, yet simpler,
and equivalent formulation. Rather than the conventional
means of computing their basis functions directly, and then
formulating biharmonic B-spline as a linear combination
of control points and accompanying basis functions, we
advocate a fundamentally different approach in this paper.
Through theoretic exploration, we are capable of implicitly
formulating a biharmonic B-spline as a linear combination
of Green’s functions of bi-Laplacian operator without explic-
itly expressing B-splines’ bases. Compared with the conven-
tional explicit representation based on control points and
basis functions, our implicit representation can completely
bypass the Voronoi tessellation and the discretization of bi-
Laplacian operator, and enable the construction of bihar-
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monic B-spline on any compact smooth 2-manifold.

The proposed implicit representation naturally and el-
egantly brings forth two fundamental properties, which
otherwise cannot be easily derived in the explicit repre-
sentation. First, each Green’s function is associated with
a single knot, facilitating an optimization-driven knot se-
lection for spline construction. Second, we prove that the
linear combination of two biharmonic B-splines is still a
biharmonic B-spline, whose knot set is simply the union
of the knot sets of input splines. Such property is highly
desirable to manifold data analysis and processing, where
the user can easily combine multiple spline functions into
a single representation without adding extra knots. It is
worth noting that both knot optimization and the linear
combination feature are not available to the conventional
B-splines. For example, a degree-k B-spline basis function
involves k+1 knots, making the knot optimization difficult.
Also, adding two tensor-product B-splines with different
knot vectors requires many additional knots to enforce the
correct topology of knot pattern.

We develop a new computational framework for con-
structing biharmonic B-splines on triangular meshes. Our
framework consists of algorithms for spline evaluation,
optimal knot selection, data interpolation and hierarchi-
cal data decomposition. We compare biharmonic B-splines
with least-square meshes [4][5], an elegant compact surface
representation scheme that is also based on discrete basis
functions. Least-square mesh can recover the geometry from
the connectivity of the input mesh and a sparse set of control
vertices with geometry, hence it is ideal for surface com-
pression and progressive transmission. Thanks to its free-
knot nature, biharmonic B-spline affords progressive update
of fully irregular knots, is free of singularity, and can be
constructed without the need of explicit parameterization,
making it ideal for a host of signal processing tasks on
manifolds.

The remaining of the paper is organized as follows: Sec-
tion 2 reviews the related work on spline functions, discrete
Laplacian and manifold data modeling techniques. Then
Section 3 introduces the mathematical background of Feng
and Warren’s biharmonic B-splines [2]. Section 4 presents
our implicit representation and the linear combination prop-
erty, Section 5 details the computational framework of con-
structing biharmonic B-splines on triangle meshes. Section 6
introduces the optimization-driven knot selection for spline
construction, followed by applications on data interpolation
and hierarchical data decomposition in Section 7. Section 8
compares our method with existing work. Finally, Section 9
discusses the limitations and points out future work.

2 RELATED WORK

There is a large body of literature on spline functions and
their applications to data fitting and interpolation. Due to
page limitation, this section reviews only the most related
work. We refer readers to [6] for a comprehensive review.

Biharmonic B-splines generalize the univariate B-spline
to curved domains by making use of the connection be-
tween divided difference and discrete Laplacian. Feng and
Warren [2] constructed biharmonic B-spline bases from the

divergence theorem and employed finite difference to ap-
proximate the boundary integral. Hou et al. [3] improved
the numerical accuracy and stability of biharmonic B-splines
by quadratic programming.

Laplacian and bi-Laplacian operators are widely-used
differential operators in graphics with various applications,
such as heat kernel signature [7], surface parameteriza-
tion [8], volume parameterization [9], spectral graph [10],
and biharmonic distance [11], etc. In geometry process-
ing, the discrete Laplacian operator has been well studied
in literature. Meyer et al. [12] proposed the cotangent-
weighted discrete Laplacian operator for triangulated 2-
manifold. Hildebrandt et al. [13] constructed strongly con-
sistent discrete Laplacian-Beltrami operators on polyhedral
surface. Wardetzky et al. [14] reviewed various properties
of the discrete Laplacian operators. Many methods use
iterated Laplacian for discrete bi-Laplacian [15][11]. Feng
and Warren [2] continued to improve them to achieve cubic
precision by making use of additional constraints. Rusta-
mov [16] proposed multiscale biharmonic kernels, produc-
ing localized basis functions on different scales. In the limit
of large scales, the multiscale biharmonic kernel converges
to Green’s function of the biharmonic equation. The kernels
are also shape-aware, robust to noise, tessellation and partial
object. However, the basis functions do not form partition of
unity.

Green’s functions are the fundamental solution of a
linear differential operator. Observing that Green’s function
of the Laplacian operator has a unique critical point on
star-shaped volume, Xia et al. [17] presented a volumetric
parameterization for star shapes. Based on Green’s func-
tions of bi-Laplacian operator, Lipman et al. [11] presented
biharmonic distance, which provides a nice trade-off be-
tween nearly geodesic distances for small distances and
global shape-awareness for large distances. Recently, Wang
et al. [18] developed a denoising algorithm which uses
Green’s functions of Laplacian operator as dictionary for
feature and noise decoupling.

Knots optimization aims at finding the optimal number
of knots and their locations in order to produce a spline
satisfying certain accuracy constraints. It is a challenging
problem to B-splines, since the basis functions are highly
non-linear functions of knots. Miyata and Shen [19] pre-
sented adaptive free-knot splines that allow selection of knot
numbers and replacement of knots at any location. Kang et
al. [20] proposed an ℓ1 optimization algorithm to determine
the optimal number of knots and their locations for uni-
variate B-splines. Recently, Brandt et al. [21] formulated the
optimal spline approximation as an ℓ0-regularized quadratic
problem and solved it using a modified random coordinate-
descent method. Although these algorithms work well for
generating optimal spline curves, it is non-trivial to extend
them to the surface case, in which knots are frequently
constrained with certain patterns, such as regular grid. To
our knowledge, there is no existing work to address the knot
optimization problem for constructing spline surfaces.

3 PRELIMINARY

This section briefly reviews the mathematical background of
biharmonic B-splines. Refer to [2] for the technical details.
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(a) Knots T (b) Green’s function φti(x) (c) Basis function ψi(x) (d) Control points {λj}mj=1 (e) Spline
∑m

j=1 λjψj(x)

Fig. 1: The illustration of biharmonic B-spline on sphere. (a) The knots (in green) and the Voronoi diagram. (b) Green’s
function of bi-Laplacian centered at knot tj , which is evaluated discretely by [11] (refer to Section 5 for details). (c) The
basis function ψj for Voronoi cell Vj is localized, which is evaluated by a variant of [3]. All basis functions form a partition
of unity

∑
j ψj(x) ≡ 1 for all x ∈ S

2. (d) The color in each Voronoi cell indicates the control point λj ∈ [0, 1]. (e) The

biharmonic spline f : S2 → R is a smooth function defined on the sphere.

3.1 Basis Functions

Let M be a compact smooth 2-manifold and T = {ti}mi=1,
ti ∈ M, be a set of knots onM. The Voronoi diagram V =⋃m

i=1 Vi forms a partition ofM and Vi is the Voronoi cell of
knot ti.

For arbitrary points x, y ∈ M, Green’s function of the
bi-Laplacian operator

∇2 is

∇2φy(x) = δy(x)−
1

area(M)
. (1)

where δy(x) is the Dirac delta function centered at y and
area(M) is the area of the manifold M. For compact
smooth manifold, there always exists a symmetric solution
(i.e. φy(x) = φx(y)) to Equation (1) [22].

Denote by ∂Vj the boundary of Voronoi cell Vj . By the
divergence theorem, one has

∫

Vj

∇2φy(x) dσ =

∫

∂Vj

∂

∇

φy(x)

∂−→n
ds, (2)

where −→n is the outward unit normal to the boundary
∂Vj , dσ and ds are the area and line integral elements,

respectively. Let cj =
area(Vj)
area(M) denote the area ratio. When

y ∈ Vj , the above integral is 1− cj , otherwise −cj .
Then the basis function for Voronoi cell Vj is defined as

ψj(x) = cj +
∑

i

nijφti(x), (3)

where
∑

i nijφti(x) is a boundary sum that approximates
the line integral on the right hand side of Equation (2).

Feng and Warren [2] showed that the basis functions
are localized. Moreover, they form a partition of unity∑

j ψj(x) ≡ 1 for any x ∈ M, since Green’s functions on
common Voronoi edge of adjacent Voronoi cells cancel (i.e.,∑

i,j nijφti(x) = 0) and
∑m

j=1 cj = 1. Therefore, {ψj(x)}mj=1

are the analog of the basis functions of the conventional B-
spline.

Remark. Note that the biharmonic B-spline’s basis function
ψj depends on the neighboring Voronoi cells of Vj . Since
the knots {ti}mi=1 can be distributed on M in an arbitrary
manner, there is no fixed relation between the basis function
and knots. In sharp contrast, the basis functions of univari-
ate B-splines are associated with fixed number of knots. For

example, the basis function of a cubic B-spline always has 5
knots. Indeed, the loose connection between the biharmonic
bases and the knots endows the biharmonic B-spline with
the flexibility of modeling based on fully irregular knots.

3.2 Biharmonic B-splines

The biharmonic B-spline function f :M→ R
d is given by

f(x) =
m∑

j=1

λjψj(x), (4)

where λj ∈ R
d is the control point. Using matrix represen-

tation, the biharmonic B-spline and its basis functions can
be written as

f = ΛTΨ, (5)

Ψ = c+NΦ, (6)

where c = [c1, . . . , cm]T , Ψ(x) = [ψ1(x), . . . , ψm(x)]T ,
Φ(x) = [φ1(x), . . . , φm(x)]T , Λ = [λ1, . . . , λm]T , and
N = [nij ]m×m.

Similar to univariate B-splines, biharmonic B-splines also
possess the knot insertion property. Feng and Warren [2]
proved a refinement theorem for inserting new knots while
keeping the spline function unchanged. Let ΛT

0 Ψ0 be a
biharmonic B-spline defined on knot set T0. Given a refined
knot set Tk ⊃ T0, there exist the control points ΛT

k such that
ΛT

0 Ψ0 = ΛT
kΨk.

3.3 Discretizing the Bi-Laplacian Operator

A key component in biharmonic B-splines is to discretize
the bi-Laplacian operator

∇2 on M. We denote by vij
the common Voronoi edge of Vi and Vj (i.e., the bi-
sector of ti and tj), and eij the dual Delaunay edge.
Let A be a diagonal matrix whose i-th
entry is the area of Vi and L the discrete
Laplacian matrix

Lij =





∑
k lik, if i = j
−lij , if Vi

⋂
Vj 6= ∅

0 otherwise

where lij =
|vij |
|eij |

. A common way to

discretize the bi-Laplacian operator

∇2
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is N = LA−1L. However, as pointed out by Feng and
Warren [2], this discrete bi-Laplacian operator has only
linear precision on irregular grids, which may cause some
numerical issues, such as non-localized basis functions. To
fix this issue, Feng and Warren [2] proposed a simple

method that approximates ∂

∇

φ

∂−→n
with cubic precision on the

Voronoi edges. Hou et al. [3] proposed a two-stage linear
least-square method to discretize

∇2, where the first stage
computes the optimal coefficient lij of the discrete Laplacian
and the second stage optimizes the difference mask nij .
In this paper, we discretize the basis functions using the
technique in [3], which is numerically stable.

The discretized bi-Laplacian has the following proper-
ties: 1) The difference masks nij add up to zero,

∑m
i=1 nij =

0, since the sum of discrete Laplacian coefficients vanishes
and the contributions of Green’s functions on common
edges of adjacent Voronoi cells cancel out. 2) The matrix
N has a rank of m− 1.

4 IMPLICIT REPRESENTATION

This section presents a simple and equivalent representation
of biharmonic B-spline, which can significantly reduce the
computational cost of spline construction and evaluation.
Observing that the basis functions {ψj} consist of Green’s
functions {φti} of bi-Laplacian, we investigate the relation
between biharmonic B-splines and Green’s functions and
show that any biharmonic B-spline has an equivalent repre-
sentation based on Green’s functions.

Theorem 1 (Equivalent Representation). A biharmonic B-
spline function f(x) =

∑
j λjψj(x) on a compact mani-

foldM can be written as

f(x) = a+
∑

i

wiφti(x), (7)

where
∑

i wi = 0 and a =
∑

i λici. Conversely, each
linear combination of Green’s functions a +

∑
i wiφ(ti)

with
∑

iwi = 0 and an arbitrary a corresponds to a
unique biharmonic B-spline.

Proof. The first statement is obvious, since

f(x) = ΛTΨ = ΛT c+ΛTNΦ = ΛT c+(NΛ)
T
Φ = a+wTφ,

where a =
∑m

j=1 λjcj , w = [w1, . . . , wm]T and wi =∑m
j=1 λjnij . Fixing j, the sum

∑
i nij = 0. Therefore, we

have
∑

iwi =
∑

j λj(
∑

i nij) = 0, for any 1 ≤ i ≤ m.
Next we prove the converse is also true. Define the

augmented matrices Ñ ,

[
N

cT

]
and w̃ =

[
w

a

]
. Recall

that
∑

i nij = 0 and rank(N) = m − 1. Since the cjs add

up to 1, the augmented matrix Ñ has a rank m. Also note

that
∑

i wi = 0, we have rank([Ñ, w̃]) = rank(Ñ) = m.
Therefore, the system of linear equations

ÑΛ = w̃, (8)

has a unique solution.
As a result, the given linear combination of Green’s

functions can be written as

a+
m∑

i=1

wiφi(x) = w̃T

[
Φ(x)
1

]
=

(
ÑΛ

)T
[

Φ(x)
1

]

= ΛT
(
NTΦ(x) + c

)
= ΛTΨ(x),

where the last equation comes from the fact that NTΦ =
NΦ = Ψ− c. Therefore, the weighted sum of Green’s func-
tions corresponds to a unique biharmonic B-spline

∑
j λjψj

for every x ∈M.
Throughout this paper, we call Equation (4) the explicit

representation of the biharmonic B-spline, which explicitly
reveals the relation between control points λj and basis
functions ψj . In contrast, we call the Green’s function
based representation (Equation (7)) implicit, since the control
points are “hidden” in the coefficients of Green’s functions
wi.

Although the implicit representation seems to be unnat-
ural at the first glance, it has three unique advantages over
the explicit representation:

Firstly, unlike the basis function ψj(x) which depends
on the neighboring Voronoi cells of Vj , each Green’s func-
tion φi(x) is fully determined by ti’s location. Therefore,
we can define a biharmonic B-spline without the Voronoi
tessellation. Besides, local refinement is straightforward in
the implicit representation, since we can add or delete a
knot without changing the other Green’s functions. In sharp
contrast, the existing methods [2][3] have to re-tessellate the
domain and re-compute the affected basis functions.

Secondly, the implicit representation reveals some re-
markable results, which are quite vague in the explicit
representation. For example, the knot insertion theorem in
the explicit representation [2] has to re-compute the control
points to keep the spline function unchanged. With our
implicit representation, knot insertion becomes dramatically
simple and intuitive: we can simply set the coefficient of
the newly-inserted knots to 0 without changing the func-
tion f(x). Also, the biharmonic B-spline bases are linear
independent and the linear combination of two biharmonic
B-spline (possibly with different knot configurations) is a
biharmonic B-spline.

Theorem 2 (Linear Combination). Let f1 : M → R
d (resp.

f2) be a biharmonic B-splines defined on knots T1 (resp.
T2). Then the linear combination α1f1+α2f2, α1, α2 ∈ R,
is also a biharmonic B-spline defined on knots T1

⋃
T2.

Proof. Let T1 = {s1, . . . , sm} and T2 = {t1, . . . , tn}.
By Theorem 1, f1(x) = a1 +

∑m
i=1 wi,1φsi(x) with∑m

i=1 wi,1 = 0. f2(x) has a similar form. Since
α1

∑m
i=1 wi,1 + α2

∑n
j=1 wj,2 = 0, α1f1(x) + α2f2(x) is a

weighted sum of Green’s functions defined on knots T1
⋃
T2

such that the coefficients add up to 0.
It is worth noting that the conventional tensor product

B-splines do not have the linear combination property. Al-
though the linear combination of two splines with different
knot vectors can be written into a single spline, one has to
insert many extra knots to ensure the correct topology of the
knot configuration.

The linear combination property is not obvious at all
in the explicit representation, since one must re-tessellate
the Voronoi diagram for knots T1

⋃
T2, then re-form the

basis functions, and finally, re-compute the control points.
In sharp contrast, our implicit representation allows reusing
the existing Green’s functions of f1 and f2, and the new co-
efficient can also be easily computed by linear combination.
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5 BIHARMONIC B-SPLINES ON TRIANGLE

MESHES

It is known that there exist symmetric Green’s functions on
compact and sufficiently smooth manifolds [22]. However,
except for a few simple manifolds, neither the geodesic
distance nor Green’s function has an analytic expression
on general manifold. Thus, one has to resort to numer-
ical techniques for constructing biharmonic B-splines. In
this section, we present a new computational framework
for constructing biharmonic B-splines on triangle meshes,
which are a dominant scheme for 3D representation.

Let M = (V,E, F ) be a closed manifold triangle mesh
and V , E, and F are the sets of vertices, edges and faces,
respectively. Denote n = |V | the number of vertices of M
and the set of knots T = {t1, t2, . . . , tm}, ti ∈ M . Since the
knots ti are arbitrary points on M , T does not necessarily
coincide with the vertex set V . When a knot ti falls in a
triangular face, say fj ∈ F , we can add ti to V and re-
tessellate fj to three triangles. Thus, throughout the paper,
we assume that the knot set T is the subset of the vertex set
V , i.e., T ⊆ V .

We define the discrete biharmonic B-spline f : M → R
d

as

f(x) = a+
m∑

i=1

wiφti(x), a, wi ∈ R
d,

where the coefficients add up to 0,
∑

i wi = 0, and φti(x)
are the discrete Green’s function centered at knot ti.

Define gij = φti(vj) the Green’s function centered at knot
ti evaluating at vertex vj . We denote by G = (gij)n×m the
discrete Green’s function on M . Lipman et al. [11] proved
that LA−1LG = I− 1

n
11T . Denote by Mj the j-th column

of matrix M. They showed that Gj = x− 1
T
x

1T1
1, where x is

a particular solution to LA−1Lx = (I− 1
n
11T )j . To get the

particular solution, replace the first row and the first column
of LA−1L by zeros and set the diagonal entry at their
intersection to 1. Also replace the first row of (I − 1

n
11T )j

by 0. As pointed out in [11], this kind of linear system
can be solved very efficiently by first performing Cholesky
factorization of LA−1L and then performing two backward
substitutions for every given vector on the right hand side.

Given the coefficients w and a, we can evaluate the
spline f(x) at mesh vertices by first computing a particular
solution of (LA−1L)x = w and then shifting its average to
the constant a. See lines 2-3 in Algorithm 1.

Note that each Green’s function gij = φti(vj) is eval-
uated at mesh vertices vj . Due to the lack of analytical
formulation of Green’s function on meshes, we have to
seek numerical techniques to approximate φti(x) for a point
x ∈ M but x /∈ V . We observe that the simple linear
interpolation produces poor results, since Green’s functions
are highly nonlinear. In our implementation, rather than
for an arbitrary point x, we approximate discrete Green’s
function for vertices of the planar subdivision1 of M .

Let M ′ = (V ′, E′, F ′) be a planar subdivision (in one or
a few rounds) ofM , thus, V ⊂ V ′. For each Green’s function
φti(x), we use biharmonic interpolation

∇2φti(x) = 0 for
any x ∈ V ′. Since V ′ is the superset of V , Green’s functions

1. The planar subdivision is to split each edge at its middle point.

on some of its vertices have known values, which are used
as the constraints.

Let L′ be the Laplacian matrix for mesh M ′. We first
re-organize L′ into L′ = [Ll,Lr], so that each column of
Lr corresponds to a vertex of the original mesh M , on
which Green’s function is already known. Then, we factorize
the matrix LT

l Ll using Cholesky decomposition. Next, we
compute Green’s function for each vertex of V ′ in a column-
by-column manner. See lines 5-12.

Algorithm 1: Spline Evaluation

Input : Coefficients w and a, and the planar
subdivided mesh M ′

Output: Function values f = [. . . , f(vk), . . .]
T , vk ∈ V

′

1 if V ′ = V then
2 Compute a particular solution of (LA−1L)x = w;
3 f ← a1+ x− 1

n
11Tx;

4 else
5 Construct the Laplacian matrix L′ of the M ′;
6 Reorganize L′ = [Ll,Lr];
7 Factor LT

l Ll using Cholesky decomposition;
8 f ← 0;
9 for each knot tj ∈ T do

10 Compute Green’s function Gj centered at knot
tj ;

11 Solve

[
LT
l Ll 0

0 In×n

]
x =

[
0

Gj

]
using

backward substitutions;
12 f ← f + wjx;

13 f ← f + a1;

Remark 1. Since the discrete Green’s function Gn×m is a
dense matrix, our spline evaluation algorithm does not store
it explicitly, which is very expensive. Instead, we compute
each Green’s function on the fly (see line 10).

Remark 2. Biharmonic B-spline is parameterization-free,
making it different than the conventional B-splines. To eval-
uate the biharmonic B-spline f(x) at a point x, we require
that x is on the domain mesh M . Thus, in Algorithm 1, the
mesh M ′ must be a planar subdivision of M , with exactly
the same geometry. As Figure 2 shows, for a point x /∈ M ,
the value f(x) makes no sense.

6 KNOT OPTIMIZATION

As shown in Section 7.1, biharmonic B-spline can perfectly
represent any vector-valued data defined on a triangle mesh
by taking all vertices as knots. We can also fit a bihar-
monic B-spline to the given data within the user-controlled
number of knots. Thanks to our implicit representation that
associates each Green’s function a single knot, we are able
to develop a ℓ1-based scheme towards better numerical
robustness and accuracy.

Let s = [s1, . . . , sn]
T , si ∈ R

d be the input discrete signal
defined on the mesh vertices. To ease the representation
of our matrix oriented algorithm, we rewrite s in an n-
by-d matrix S ∈ R

n×d, where the i-th row of S is the d-
dimensional data stored at vertex vi.

Given a spline f : M → R
d which is defined on the

knot set T and has coefficients w, we denote by Sf the
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Mesh M Planar subdivision

Butterfly subdivision Loop subdivision

Fig. 2: Evaluating the splines using planar subdivision and
other subdivision schemes. Only planar subdivision pro-
duces correct results. With Loop subdivision and butterfly
subdivision, the subdivided mesh M ′ has different geome-
try than the domain mesh M . Thus, the value f(x) makes
no sense for a point x /∈ M . The red curves are the images
of the edges of M .

approximated data, i.e., the i-th row of Sf is f(vi) ∈ R
d. Our

goal is to find the knot set T with as few as possible knots
and the corresponding coefficients w so that ‖S−Sf‖2F ≤ ǫ,
where ǫ is the user-specified error bound.

Our algorithm consists of two steps. We first deter-
mine the number of knots and their knot locations via
the weighted ℓ1 optimization. Then, fixing the knots, we
compute the coefficients {wi} and a for the biharmonic
spline f(x) = a+

∑
i wiφi(x).

Step 1) Optimal Knot Selection. ℓ1-norm minimization has
proven highly effective to discover the sparsity in the op-
timization problem. A naı̈ve way to determine T with the
fewest knots is as follows: First, take a very large pool of
candidate knots, e.g, T = V . Then, minimize the following
ℓ1-norm of coefficients {wi}:

min
w
‖w‖1, subject to ‖S− Sf‖

2
F ≤ ǫ.

A small coefficient wj means the contribution of φj(x) is not
significant, as a result, we can ignore tj without increasing
the fitting error too much. This method is conceptually
simple, however, it is not practical due to 2 reasons: 1) as
T = V , it is very expensive to store the discrete Green’s
function G ∈ R

|V |×|V |, which is a dense matrix; and 2) even
though one has sufficient memory to store G, solving the
quadratic programming on such dense matrix is extremely
time consuming.

Observe that the spline coefficients w = LA−1LS for the
interpolatory spline (see line 2 in Algorithm 2). Inspired by

the work of [18], we minimize the fitting error ‖S − S
(j)
f ‖

2
F

under reweighted ℓ1 constraint [23] for better approxima-

tion of ℓ0 norm. In the j-th iteration, we minimize the

following energy to obtain an optimal S
(j)
f ,

min
S

(j)
f

‖S− S
(j)
f ‖

2
F ,

subject to
∑

i

‖w
(j)
i (LA−1LS

(j)
f )i‖1 < K, i ∈ Z

(LA−1LS
(j)
f )i = 0, i ∈ Z (9)

where ‖ · ‖F denotes the Frobenius norm, (·)i denotes the i-
th row of the matrix, and K ∈ R

+ is the number of knots we
want to use, which controls the sparsity of the coefficients w
and the fitting error. Z is the set of knots whose coefficients

are zero and Z is the complement of Z . w
(j)
i is the weight of

the i-th knot,

w
(j+1)
i =

1

‖(LA−1LS
(j)
f )i‖1 + ǫ

, (10)

where ǫ = 1 × 10−7 is to avoid numerical problems.

We initialize the weights w
(1)
i as 1

‖(LA−1LS)i‖1+ǫ
and label

the knots, whose weights ‖(LA−1LS)i‖1 are among the
smallest 40%, to set Z . Inspired by the feature-sign search
algorithm [24] to predict the coefficient signs, we set the
coefficients of elements in Z to zero instead of assigning
them large weights as in [23] and [18]. Computational
results show that this strategy can improve the performance
significantly.

Remark. It is difficult to develop a knot selection scheme
in the explicit representation [2][3], due to the complicated
relationship between knots and the basis functions ψj(x):
the basis functions have various number of knots and con-
versely each knot is associated to various number of basis
functions. With our implicit representation, each knot deter-
mines a unique Green’s function and vice versa, making it
the ideal representation for knot optimization.

Step 2) Spline Construction. Since the above ℓ1-optimization
mainly aims at finding a set of sparse knots T ⊂ V , the
resulting coefficients w are not optimal. Thus, fixing the
knots T , we further optimize Sf by the following linear
constrained quadratic programming:

min
Sf

‖S− Sf‖
2
2 (11)

subject to (LA−1LSf )j = 0, ∀vj ∈ V \ T , (12)

where (LA−1LSf )j is the j-th row of matrix LA−1LSf .
The constraints in Equation (12) apply to the non-selected
vertices and make their corresponding coefficients wi zero.
We solve this linear constrained quadratic programming by
Lagrange multiplier.

7 APPLICATIONS AND RESULTS

The proposed implicit representation has several favorable
properties for modeling and processing discrete vector-
valued data on manifolds. For example, our data interpola-
tion algorithm does not require any global solver, thus, it is
efficient and numerically stable. Our data fitting algorithm
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Input rgb data, |V | = 49, 986 1,443 knots (2.89%) 3,998 knots (8.00%) 5,974 knots (11.95%)

24.1dB 28.8dB 31.6dB

Fig. 3: Fitting vector-valued data (i.e., rgb color) defined on a genus-8 model. Top: the input data and the knots. The

percentage shows the knot-vertex ratio, i.e., |T |
|V | . Bottom: the reconstructed data.

K = 3, 000, 2, 941 knots, ε = 0.056%, T = 494s 2, 941 control vertices, ε = 0.14%, T = 106s

K = 5, 000, 4, 903 knots, ε = 0.039%, T = 535s 4, 903 control vertices, ε = 0.11%, T = 171s

K = 8, 000, 7, 753 knots, ε = 0.027%, T = 534s 7, 753 control vertices, ε = 0.091%, T = 269s

Fig. 4: Comparing biharmonic B-splines with LS-meshes in terms of approximation error and runtime performance.
Biharmonic B-splines determine the knots by ℓ1 optimization, whereas LS-meshes choose the control vertices by greedy
selection combined with local error maxima. With the same number of knots and control vertices, biharmonic B-splines
consistently outperform LS-meshes in terms of approximation error. However, LS-meshes are 2 to 5 times faster to construct
than biharmonic B-splines. We visualize the fitting errors using colors, where warm colors indicate large error and cold
colors small error.

allows knot optimization on a fully irregular knot config-
uration – such a property is not available to the conven-
tional tensor-product B-splines and triangular B-splines. The
implicit representation also enables linear combination of
biharmonic B-splines defined on different knots, providing
a natural way for hierarchical data decomposition.

7.1 Data Interpolation

Define s = [s1, . . . , sn]
T , where si ∈ R

d is the data defined
at vertex vi. Our goal is to find a biharmonic B-spline f :
M → R

d interpolating the given data, that is, f(vi) = si,
i = 1, . . . , n. The following theorem states that such spline
always exists and is unique if the knot set coincides with the
vertex set T = V .

Theorem 3 (Data Interpolation). Given a triangle meshM =
(V,E, F ) and any data s = [s1, . . . , sn]

T , si ∈ R
d defined

on the vertices of M , there exists a unique biharmonic B-
spline f : M → R

d whose knot set T coincides with
the vertex set T = V such that f interpolates the data
exactly, i.e., f(vi) = si, i = 1, . . . , n.

Proof. We show that there exist unique coefficients a ∈ R

and w such that s = a1 + Gw. Since T = V and
m = n, we simply denote by G the discrete Green’s function
G = [φti(tj)]m×m. Since a1 + Gw = [G,1][wT , a]T , it is
equivalent to prove rank([G,1]) = rank([G,1, s]).

Denote G = [g1,g2, . . . ,gm]. Recall that 1Tgj = 0, j =
1, . . . ,m and rank(G) = m− 1.

Let
∑m−1

i=1 kigi + km1 = 0. Multiply 1T on both
sides of the equation. We derive km1T1 = 0, thus
km = 0. Since g1,g2, . . . ,gm−1 are linearly independent,
k1 = k2 . . . = km−1 = 0. Therefore, rank([G,1]) =
m. Since rank([G,1]) 6 rank([G,1,b]) 6 m, we have
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Algorithm 2: Knot Optimization

Input : Triangle mesh M = (V,E, F ), input data
S ∈ R

n×d defined on mesh vertices, the
maximal number of knots K , the maximal
number of iterations Imax

Output: The knot set T and the coefficients w and a
of the biharmonic B-spline function
f(x) = a+

∑
i wiφi(x)

1 T ← V ;

2 Initialize set Z and Z;
3 Initialize the weights wi =

1
‖(LA−1LS)i‖1

;

4 i← 0;
5 while i < Imax and |T | ≥ K do
6 Solve the optimization in Equation (9);
7 Update T ;
8 Update weights by Equation (10);
9 i++;

10 Fixing T , solve the optimization in Equation (11);
11 Compute the coefficients w← LA−1LS and
a← 1

m
1TS;

rank([G,1]) = rank([G,1,b]) = m, which completes the
proof.

Algorithm 3: Data Interpolation with Linear Time
Complexity

Input : Triangle mesh M = (V,E, F ) and data
s = [s1, . . . , sn]

T defined at mesh vertices V
Output: The coefficients w and a of

f(x) = a+
∑m

i=1 wiφi, a, wi ∈ R
d, such that

f(vi) = si, i = 1, . . . , n
1 T ← V and m← n;
2 w ← LA−1Ls;
3 a← 1

m
1T s;

Since the discrete Green’s function G is a dense matrix,
it is not space efficient to store the matrix when the mesh is
of high resolution. In fact, we can compute the coefficients
wi and a without the discrete Green’s function G. By
Theorem 3, there exist w and a such that s = a1 + Gw.
Multiplying LA−1L to both sides of this equation, we have
LA−1Ls = aLA−1L1 + LA−1LGw. Note that L1 = 0

and LA−1LG = I− 1
m
11T , LA−1Ls = w − 1

m
11Tw, and

1Tw = 0. We obtain w = LA−1Ls and a = 1
m
1T s, which

implies that a is just the average of input data s and the co-
efficient wi approximates the integral of bi-Laplacian

∇2si.
Since our data interpolation algorithm neither requires dis-
crete Green’s function nor solves any linear system, it is
numerically stable and has a linear time complexity O(n).

Although our algorithm is designed for closed triangle
meshes, it can handle open meshes by double covering.
Also note that the Max Planck model in Figure 5 has one
boundary. Gluing two identical copies along their common
boundary, we obtain a closed mesh, on which our bihar-
monic B-spline can be defined.

(a) (b)

Fig. 5: The Max Planck model is an open mesh. We first
convert it to a closed mesh by double covering and then
construct the interpolatory spline on the double-covered
mesh. Therefore, the number of knots in the spline is almost
twice of the number of vertices (excluding the boundary
vertices). (a) Interpolated mesh |V | = 8, 745 (double cover).
(b) Spline |V | = 34, 974.

7.2 Hierarchical Data Decomposition

The linear combination property allows us to decompose
the input vector-valued data into a hierarchical structure.
We adapt the knot optimization algorithm for data decom-
position. Given a d-dimensional data S ∈ R

n×d defined on
mesh vertices, our goal is to find a sequence of biharmonic
B-splines S1, S2, · · · , such that

∑
i Si approximates S well.

Similar to data fitting, we adopt the ℓ1 optimization to
determine the optimal knot locations. For the i-th layer, we
solve the following optimization problem:

min
Si

‖Ci(S−
i∑

j=1

Sj)‖
2
F ,

s.t.
∑

k

‖wk(LA
−1LSi)k‖1 < Ki, k ∈ Z

(LA−1LSi)k = 0, k ∈ Z

(13)

where the diagonal weight matrix Ci is the user-
specified weight and Ki is the maximal number of knots
for spline Si. The last layer can be simply set as the
residue. Thanks to the linear combination property, users
can easily modify the data via manipulating the coefficients,
i.e., S1 +

∑
i≥2 λiSi, where λi ≥ 0. Figure 6 demonstrates

hierarchical data decomposition and details enhancement
and exaggeration on the Armadillo and Bunny models. We
decompose the input models into 3 layers and represent
the first two by biharmonic B-splines and the third layer
as the residue, i.e., S = S1 + S2 + S3. We can control the
spline quality by specifying spatially-varying weights on 3D
models. For example, the region-of-interests (in purple) are
given large weights in the first and second layers so that
the resulting splines S1 + S2 reconstruct the details in these
regions very well. The non-selected regions, receiving few
knots, are smooth and lack details. Thanks to the linear
combination property, we can enhance and exaggerate the
details by manipulating the coefficient for the third layer S3,
which encodes the high-frequency details.

7.3 Results

We implemented our algorithm in C++ with trimesh2 and
tested it on a laptop with an Intel i7 CPU2.40GHz. The
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Algorithm 4: Hierarchical data decomposition

Input : Triangle mesh M = (V,E, F ), input data
S ∈ R

n×d defined at vertices, the number of
decomposed layers m, and the weight Ci and
the number of knots Ki for the i-th layer

Output: The decomposed data S1, . . . ,Sm, where
S = S1 + · · ·+ Sm

1 i← 1;
2 while i < m do

3 Initialize set Z and Z;

4 Initialize the weights wk = 1
‖(LA−1LS)k‖1

, k ∈ Z ;

5 Solve the optimization in Equation (13);
6 S← S− Si;
7 i← i+ 1;

8 Sm ← S;

S S1 S1 + S2 S1 + S2 + 2.0S3S1 + S2 + 3.0S3

Fig. 6: Hierarchical data decomposition.

models are rendered by 3DS Max with auto-smoothing
preprocessing. It is worth noting that our data interpolation
and data fitting algorithms can be applied to any vector-
valued data defined on triangle meshes. For simplicity, in
this paper, we demonstrate the efficacy of our algorithms on
the coordinate functions for geometry modeling.

The data interpolation algorithm is highly efficient, since
it directly computes the coefficients w and a, hereby has a
linear time complexity. The data fitting algorithm consists
of two steps, i.e., knot optimization and spline construction.
The first step determines the optimal knots from a very large
pool (i.e., the set of all vertices), thus, its performance highly
depends on the mesh complexity. The second step is fairly
efficient and takes only a few minutes on the test models.
See Table 1 for the mesh complexity and runtime perfor-
mance of the data fitting algorithm. The performance of the
evaluation algorithm depends on both mesh complexity and
the number of knots. It takes 162 seconds to compute 60K
points on the 2,094-knot spline for the Heptoroid mesh with
15K vertices.

Figure 4 visualizes the fitting results on the Dragon
model. We can see that the parameter K (i.e., the maximal
number of knots) directly controls the fitting quality.

Even though the Green’s functions are globally sup-
ported, the basis functions of biharmonic B-spline ψ(x) are
localized and form a partition of unity. After deriving the
formulation of f(x) = a+

∑
i ωiφti(x), we evaluate the basis

functions ψ(x) and convert the f(x) to f(x) =
∑

i λiψi(x).
The conversion algorithm is detailed in the proof of Theo-

Model |V | |T | Tk (s) iter Tf (s) ǫ

2,941 442s 4 52s 0.056%

Dragon 99,999 4,903 489s 4 45s 0.039%

7,753 485s 4 49s 0.027%

Armadillo 172,974 6,873 668s 1 164s -
24,182 604s 1 150s -

Heptoroid 21,826 3,124 192s 4 33s 0.044%

Bunny 72,020 2880 271s 1 79s -
11,409 247s 1 75s -
1,443 263s 6 33s 24.1dB

4-kid 49,986 3,998 252 5 30s 28.8dB

5,974 256s 5 27s 31.6dB

Gargoyle 28,632 264 72s 1 13s -

TABLE 1: Runtime performance of knot optimization. The
timings are broken down into knot optimization Tk and data
fitting Tf . |V |: the number of vertices in the mesh; |T |: the
number of knots in the spline; ǫ: the normalized mean error;
iter: the number of iterations in the knot optimization step.

rem 1.
We evaluate the basis functions ψi(x) in a manner simi-

lar to the method proposed by Hou et al. [3], but with more
neighboring knots for robustness. Figure 7 demonstrates
free-form deformation using biharmonic B-splines. Similar
to the method in Section 7.2, we first decompose the model
S into the sum of two frequency components S1, S2, with
equal weights. Then we evaluate the basis functions ψ(x)
of the knots of S1, so, we can convert the formulation of
S1 to Feng and Warren’s formulation. We adjust the control
points λi of certain knots to deform the shape of S1 locally
and finally add S1, S2 together to derive the deformed
shape. Rather than evaluating the spline using the explicit
representation with updated λi, we compute the control
coefficients ωi by f(x) = a+

∑
i ωiφti(x) and then compute

the new vertices by Algorithm 1 with V ′ = V . Since
the matrix LA−1L has been predecomposed and remains
unchanged during deformation, we just need a backward
substitution to solve the equation. Thanks to the localized
basis functions, the splines are deformed locally.

It is worth noting that in [25], if the handles are changed,
the basis functions must be recomputed, while our bihar-
monic B-spline basis functions remain unchanged if the knot
configuration does not change.

8 COMPARISONS & DISCUSSIONS

8.1 Comparison with Least Square Meshes

Least square meshes (LS-meshes), proposed by Sorkine and
Cohen-Or [4][5], are an elegant, compact and efficient rep-
resentation of irregular triangle meshes. Let G = (V,E) the
graph associated to the triangle mesh M = (V,E, F ). The
graph-Laplacian L of G is defined as follows:

Lij =





1, if i = j
− 1

di
, if (i, j) ∈ E

0, otherwise.

Let C = {vsi |vsi ∈ V, 1 ≤ i ≤ m,m ≪ n} be a sparse set of
control vertices. LS-meshes approximate the geometry of M
by solving the following linear least-squares problem

min
x
‖Lx‖2 +

∑

vj∈C

‖xj − vj‖
2,
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Spline f Green’s function φBasis function ψ

Control points Deformed control ptsDeformed spline

Fig. 7: Data decomposition and local control using the
explicit representation, which is constructed using [2]. Al-
though Green’s functions φ are globally defined, the bihar-
monic basis functions ψ are localized. Therefore, one can
directly manipulate the control points to edit the spline.

Biharmonic
B-splines

Tensor-product
B-splines

T-splines
Triangular
B-Splines

Localization Yes Yes Yes Yes
Partition
of Unity

Yes Yes Yes Yes

Knot
configuration

Arbitrary
Regular

grid

Regular
grid
with

T-junctions

Triangulation

Parameterization No Yes Yes Yes
Singularity No Yes Yes Yes

Linear
combination

Yes No No No

Basis
function

Analytical
or discrete

(Rational)
polynomial

Rational
polynomial

Polynomial

Knot
insertation

Yes Yes Yes No

Knot
optimization

Easy Difficult N.A. N.A.

Evaluation Expensive Efficient Efficient Efficient
Derivative Expensive Efficient Efficient Efficient

TABLE 2: Comparison of various splines.

with the solution x = (MTM)−1MTb, where

M =

(
L

F

)
, Fij =

{
1 j = si
0 otherwise

(14)

bk =

{
0 k ≤ n

vsk−n
n < k ≤ n+m.

(15)

For matrix (MTM)−1MT , Sorkine and Cohen-Or
showed that the columns corresponding to the control ver-
tices are in fact basis functions, called LS basis, so that
one can represent the geometry as a linear combination
of them. The LS basis has several favorable properties for
geometry modeling and processing. The basis functions
are derived from both the mesh connectivity and limited
geometrical information, and can be applied to meshes

of arbitrary topology and connectivity. They tag specific
“geometrically important” control vertices, hereby they are
geometry-aware. Comparing with other popular basis, such
as eigenvectors of Laplacian, the LS basis is fast to compute.

A critical step of LS-mesh construction is to choose
control vertices to bring the LS-mesh close to the original
mesh and minimize the approximation error. The greedy
approach places control vertices one-by-one at vertices with
highest reconstruction error. This method is able to achieve
the best distribution of the control points and hence the
smallest geometric error, but it is computationally expensive
since it requires solving the least-squares system in each
step. To improve the performance, Sorkine and Cohen-Or
combined the greedy selection with local error maxima,
which computes the LS-mesh every K steps and marks the
vertex with maximal error as a control point, like in the
greedy method. In the K − 1 steps in between, it selects
control points by computing local maxima of the error. They
observed that the combined approach is more practical in
making the tradeoff between the approximation error and
computation time.

LS-meshes and our method share four common fea-
tures. First, both the LS basis and Green’s function φi of
bi-Laplacian are defined on the entire mesh. Thus, both
methods represent the geometry as a linear combination
of global functions. Second, both methods avoid explicit
computation of the underlying basis in order to achieve
good performance. Third, both methods can be defined on
smooth manifolds and triangle meshes. Fourth, both the
LS basis and biharmonic B-spline basis are approximately
localized (i.e., the function values drop to 0 quickly, but they
are not exactly 0) and they form partition of unity. However,
there are fundamental differences between LS-meshes and
biharmonic B-splines, which are listed as follows:

1) For biharmonic B-splines, the implicit representa-
tion and explicit representation are complementary to each
other: Green’s functions are globally defined and easy to
compute, whereas the biharmonic B-spline basis functions
are localized and form partition of unity. Therefore, users
can choose the proper representation depending on their
applications. Our implicit representation allows us to de-
couple the knots in Green’s functions, hereby we can solve
the problem of knot optimization, which is a central and
challenging problem in spline theory. We note that each
LS-basis function is also associated with several knots.
However, it is not clear whether their basis functions have
the knots-decoupled feature. Therefore, it is technically chal-
lenging to optimize the knots using LS-meshes. With the
same number of knots in biharmonic B-splines and the
number of control vertices in LS-meshes, we observe that
biharmonic B-splines consistently outperform LS-meshes
in terms of approximation error. However, LS-meshes are
faster to compute than biharmonic B-splines. See Figure 4.

2) LS-meshes are a compact representation, which recov-
ers the geometry from the connectivity of the input mesh
and a sparse set of control vertices with geometry, therefore,
they are ideal for geometry compression and progressive
transmission. Biharmonic B-splines, in contrast, take more
space than LS-meshes, since we have to store the entire
mesh. However, biharmonic B-splines enable knot optimiza-
tion and evaluation on any planar subdivision of the domain
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mesh, hence are promising for signal processing.
Figure 8 demonstrates biharmonic B-splines on fitting

time-varying data on a 50K-vertex double covering Bird
model. For a fair comparison, both the biharmonic B-splines
and the LS-meshes are given the same number of knots
and control vertices (4,927 on average, roughly 10% of the
number of mesh vertices). Biharmonic B-splines are superior
in terms of PSNR and evaluation time, whereas LS-meshes
are more efficient to construct. Given the same number
of knots and control points, the biharmonic B-splines are
3.47dB more accurate than LS-meshes. To recover the geom-
etry from a sparse set of control points, LS-meshes solve
a linear system Mx = b (see Equations (14) and (15)),
where the matrix M ∈ R

(n+m)×(n+m) and the vector b are
dependent of the control points. Since the vertices selected
as the control points are varying frame by frame, the matrix
M is not a constant, hence it is time consuming for LS-
meshes to recover their geometries. In contrast, biharmonic
B-splines represent each frame of the data using coefficients
w and vector a. To recover the geometry, biharmonic B-
splines solve a linear system LA−1Lx = w. Note that the
left-hand side LA−1L ∈ R

n×n is data independent, hence
can be pre-decomposed. As a result, given different w,
biharmonic B-splines simply perform a forward/backward
substitution to solve the geometry x. Computational results
show that evaluating biharmonic B-splines is 40 times faster
than that of LS-meshes, and construction of LS-meshes is 3
times more efficient than that of biharmonic B-splines. See
the statistics in Figure 8.

Remark 1. In the continuous setting, the integral in
Equation (2) falls to zero out of the Voronoi cell Vj , hence the
basis functions ψj are strictly localized. However, on trian-
gle meshes, the integration is approximated by a weighted
sum of discrete Green’s functions (see Equation (3)), which
are not strictly zeros along the boundary of Vj . Therefore,
the local property of biharmonic B-splines on meshes does
not hold strictly. Nevertheless, we observe that such an
approximate local property works pretty well in real-world
examples. See the local control in shape deformation in
Figure 7.

Remark 2. In [25], Botsch and Kobbelt developed a
variant of LS-meshes for freeform modeling. Their basis
functions rely on the size of the handle and support regions,
which is user-specified and could be global. Also, they are
mainly designed for efficient computation and lack of geom-
etry meanings. Other similar basis functions, such as [26][27]
for cage deformation, are defined in Euclidean spaces rather
than on manifolds.

8.2 Comparison with Conventional Splines

In this section, we thoroughly compare biharmonic B-
splines with the conventional splines, such as tensor-
product B-splines [28], T-splines [29] and triangular B-
splines [30], in terms of knots, basis functions, and domains.
Table 2 summarizes the properties of various splines.

The knots of the conventional splines must follow the
required pattern, e.g., the knots of tensor-product B-splines
form a regular grid. Most of the conventional splines sup-
port knot insertion and deletion, however, it is technically
challenging to find the optimal location of knots. To our

Frame 1 Ours 32.67dB LS-mesh 29.11dB

Frame 20 Ours 32.69dB LS-mesh 29.13dB

Frame 40 Ours 32.87dB LS-mesh 29.51dB

Frame 60 Ours 32.86dB LS-mesh 29.42dB

Frame 80 Ours 32.75dB LS-mesh 29.34dB

Ours LS-mesh
Average PSNR (dB) 32.74 29.27

Average evaluation time (ms) 28.54 1254.20
Average fitting time (s) 386.60 123.31

Fig. 8: Comparison of biharmonic B-splines and LS-meshes
on representing time-varying data. Columns 1, 2 and 4 show
the original data, and the reconstructed data by biharmonic
B-splines and LS-meshes, respectively. Columns 3 and 5
visualize the normalized fitting error, where warm colors
and cold colors indicate large and small errors respectively.
This figure shows 5 frames of the 100-frame data. See also
the accompanying video.

knowledge, knot optimization is only available to the uni-
variate B-splines and tensor-product B-splines [20]. In sharp
contrast, the knots of biharmonic splines are completely
free. As a result, knot operations, such as insertion, deletion
and optimization, are straightforward in biharmonic splines.
Moreover, thanks to the free knot configuration, biharmonic
B-spline has the unique linear combination property.

The basis functions of all types of splines are localized
and they form a partition of unity, therefore, they offer intu-
itive modeling via manipulation of control points. The basis
functions of the conventional splines are piecewise (rational)
polynomials, which are efficient and numerically stable to
compute. In contrast, except for a few simple domains (such
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3,124 (14.3%) knots ǫ = 0.044%

Fig. 9: Thanks to its parameterization-and-singularity-free
property, biharmonic spline can be easily defined on 3D
surfaces of complicated topology, which are quite difficult
for conventional splines. The percentage shows the knot-
vertex ratio.

as Euclidean planes, spheres, cylinders, and tori), there is
lack of analytic solution of biharmonic equation on general
manifold. Therefore, the basis functions of biharmonic B-
splines do not have close-form formula and we have to
seek numerical techniques to evaluate the spline, which is
expensive compared with the conventional splines.

Since the conventional splines are all defined on pla-
nar domains, one needs the global parameterization for
extending them to manifold domains. However, computing
a high quality parameterization (i.e., with low shape distor-
tion) is expensive, especially for models with complicated
geometry and topology. More importantly, as pointed out
in [31], singularities are unavoidable if the domain does not
have an affine atlas. In sharp contrast, biharmonic B-spline
does not require the parameterization at all and is free of
singularities, making it ideal for a host of graphics tasks
on manifold. Figure 9 demonstrates biharmonic B-splines
on models with complicated geometry and topology, which
pose great challenge to conventional splines.

8.3 Comparison with Coordinates

Coordinates are a powerful technique for many graphics ap-
plications, such as interpolation and shape editing. Popular
examples include mean value coordinates [32], [33], Green
coordinates [34], local barycentric coordinates [27], bounded
biharmonic weights [35], [26], affine generalized barycentric
coordinates [36], and many others. Coordinates have many
favorable properties, such as localized, non-negative and
partition of unity. Note that all the coordinates are defined
in Euclidean spaces and extending them to curved surfaces
is expensive due to the frequent computation of geodesic
distances [37], [38]. In contrast, biharmonic B-splines are
based on Green’s functions of bi-Laplacian operator, which
can be defined on manifolds. Moreover, it has analytic
expression on simple domains, such as spheres. However,
due to fewer degrees of freedom in the discrete case, the
basis functions of biharmonic B-splines on triangle meshes
are not strictly non-negative.

8.4 Relation to Polyharmonic Splines

Polyharmonic splines [39] are popular tools for scattered
data interpolation in many dimensions. A polyharmonic

spline in R
k is a function of the form

f(x) =
N∑

j=1

λjφk(‖x− xj‖) + p(x),

where xj are centers that the interpolated spline shall pass,
λj are the weights of the basis functions, and p is a low-
degree polynomial satisfying the vanishing moment condi-

tion
∑N

j=1 λjp(xj) = 0. The basis functions are radial basis
functions of the form:

φk(r) =

{
rk for k odd,
rk ln(r) for k even.

Although the proposed implicit representation of bihar-
monic B-splines has a similar form as the polyharmonic
splines, the two types of splines differ in two aspects:
First, the basis functions (i.e., radial basis functions) of
the polyharmonic B-splines are global, whereas the basis
functions of biharmonic B-splines (i.e., ψ) are localized.
Thus, biharmonic B-splines allow local editing using its
explicit representation. Second, polyharmonic spline based
data interpolation and fitting solves a dense linear system,
which is computationally expensive for large scale datasets.
In contrast, our fitting algorithm solves a sparse system.

5,000 vertices, 701 knots Spline

30,000 vertices, 701 knots Spline

Fig. 10: As Green’s functions are intrinsic to the geometry of
domain M , the biharmonic B-spline is also intrinsic, hereby
insensitive to the resolution and tessellation of M .

8.5 Explicit vs Implicit

Biharmonic B-splines have equivalent implicit and explicit
representations. Each representation has its own merits and
applications. As demonstrated above, the proposed implicit
representation is superior for construction, evaluation and
knot optimization. The explicit representation is desired in
the applications which require direct manipulation of con-
trol points, such as spline editing shown in Figure 7. Note
that the two representations are interchangeable. To recover
the control points from the implicit representation, one just
solves the linear system (see Equation (8)). As the matrix

Ñ can be pre-factored, solving the system takes only linear
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time. Therefore, the implicit representation complements to
the explicit one and users can freely choose the desired
representation for their applications.

9 CONCLUSION

We presented the implicit representation of the biharmonic
B-splines towards significant computational gain and im-
mediate application benefits. This new representation com-
pletely avoids the Voronoi tessellation and the discretization
of bi-Laplacian operator, and enables the computational util-
ities on any compact 2-manifold. We developed a new com-
putational framework for constructing biharmonic B-splines
on triangular meshes and advanced the new application
frontiers of the biharmonic B-splines, including data inter-
polation, knot optimization, and hierarchical data decompo-
sition. Our framework facilitates optimization-driven knot
selection towards better numerical robustness and accuracy.
Our results demonstrate that biharmonic B-splines, as a
new type of spline functions with much more theoretical
and application appeal, afford progressive update of fully
irregular knots, are free of singularity, and void the need
of explicit parameterization, making it ideal for a host of
graphics tasks on manifolds.

Limitations and future work. The proposed biharmonic
B-spline framework has several issues, which are worthy of
further study.

• Due to the discrete nature of Green’s functions on tri-
angle meshes, it is expensive to evaluate biharmonic
B-splines. We believe that the multi-scale approach or
parallel computation can improve the performance
of Algorithm 1.

• Our current implementation did not address the
issue of sharp features, which is often required for
modeling man-made objects. Sharp features can be
introduced into biharmonic splines by restricting the
region of the basis functions. For example, the knots
on the left side of a feature cannot affect the region on
its right side. We will address this problem in future
work.

• Although our method can handle open meshes via
double covering, the computational cost is also dou-
bled. Directly defining biharmonic B-spline on open
meshes is an interesting direction.

• We did not address the computation of derivatives of
biharmonic B-spline, thus, our method is limited to
applications involving the function value only, such
as data interpolation, fitting and denoising, shown
in this paper. It is desired to investigate along this
direction in the future.
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differential-geometry operators for triangulated 2-manifolds,” in
Visualization and Mathematics III, ser. Mathematics and Visualiza-
tion. Springer, 2003, pp. 35–57.

[13] K. Hildebrandt and K. Polthier, “On approximation of the Laplace-
Beltrami operator and the Willmore energy of surfaces,” Comput.
Graph. Forum, vol. 30, no. 5, pp. 1513–1520, 2011.

[14] M. Wardetzky, S. Mathur, F. Kälberer, and E. Grinspun, “Discrete
Laplace operators: No free lunch,” in Proceedings of the Symposium
on Geometry Processing, 2007, pp. 33–37.

[15] A. Jacobson, E. Tosun, O. Sorkine, and D. Zorin, “Mixed finite
elements for variational surface modeling,” Computer Graphics
Forum, vol. 29, no. 5, pp. 1565–1574, 2010.

[16] R. M. Rustamov, “Multiscale biharmonic kernels,” Computer
Graphics Forum, vol. 30, no. 5, pp. 1521–1531, 2011.

[17] J. Xia, Y. He, S. Han, C. Fu, F. Luo, and X. Gu, “Parameterization of
star-shaped volumes using Green’s functions,” in Proc. of Geometric
Modeling and Processing, 2010, pp. 219–235.

[18] R. Wang, Z. Yang, L. Liu, J. Deng, and F. Chen, “Decoupling noise
and features via weighted ℓ1-analysis compressed sensing,” ACM
Trans. Graph., vol. 33, no. 2, pp. 18:1–18:12, 2014.

[19] S. Miyata and X. Shen, “Adaptive free-knot splines,” Journal of
Computational and Graphical Statistics, vol. 12, no. 1, pp. 197–213,
2003.

[20] H. Kang, F. Chen, Y. Li, J. Deng, and Z. Yang, “Knot calculation
for spline fitting via sparse optimization,” Computer-Aided Design,
vol. 58, pp. 179–188, 2015.

[21] C. Brandt, H.-P. Seidel, and K. Hildebrandt, “Optimal spline ap-
proximation via ℓ0-minimization,” Computer Graphics Forum (Proc.
EUROGRAPHICS), vol. 34, no. 2, pp. 617–626, 2015.

[22] F. John, Partial Differential Equations. Springer, 1982.
[23] E. Candès, M. Wakin, and S. Boyd, “Enhancing sparsity by

reweighted ℓ1 minimization,” Journal of Fourier Analysis and Ap-
plications, vol. 14, no. 5-6, pp. 877–905, 2008.

[24] H. Lee, A. Battle, R. Raina, and A. Y. Ng, “Efficient sparse coding
algorithms,” in In NIPS. NIPS, 2007, pp. 801–808.

[25] M. Botsch and L. Kobbelt, “An intuitive framework for real-time
freeform modeling,” ACM Trans. Graph., vol. 23, no. 3, pp. 630–634,
Aug. 2004.

[26] Y. Wang, A. Jacobson, J. Barbič, and L. Kavan, “Linear subspace de-
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