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Abstract

Persistent homology is constrained to purely topological persistence, while

multiscale graphs account only for geometric information. This work intro-

duces persistent spectral theory to create a unified low-dimensional multi-

scale paradigm for revealing topological persistence and extracting geometric

shapes from high-dimensional datasets. For a point-cloud dataset, a filtration

procedure is used to generate a sequence of chain complexes and associated

families of simplicial complexes and chains, from which we construct persis-

tent combinatorial Laplacian matrices. We show that a full set of topological

persistence can be completely recovered from the harmonic persistent spec-

tra, that is, the spectra that have zero eigenvalues, of the persistent combina-

torial Laplacian matrices. However, non-harmonic spectra of the Laplacian

matrices induced by the filtration offer another powerful tool for data analy-

sis, modeling, and prediction. In this work, fullerene stability is predicted by

using both harmonic spectra and non-harmonic persistent spectra, while the

latter spectra are successfully devised to analyze the structure of fullerenes

and model protein flexibility, which cannot be straightforwardly extracted

from the current persistent homology. The proposed method is found to pro-

vide excellent predictions of the protein B-factors for which current popular

biophysical models break down.

KEYWORD S

persistent spectral analysis, persistent spectral graph, persistent spectral theory, spectral data

analysis

1 | INTRODUCTION

Graph theory, a branch of discrete mathematics, concerns the relationship between objects. These objects can be either
simple vertices, that is, nodes and/or points (zero simplexes), or high-dimensional simplexes. Here, the relationship
refers to connectivity with possible orientations. Graph theory has many branches, such as geometric graph theory,
algebraic graph theory, and topological graph theory. The study of graph theory draws on many other areas of mathe-
matics, including algebraic topology, knot theory, algebra, geometry, group theory, combinatorics, and so on. For exam-
ple, algebraic graph theory can be investigated by using either linear algebra, group theory, or graph invariants. Among
them, the use of learning algebra in graph study leads to spectral graph theory (SGT).

Precursors of the spectral theory have often had a geometric flavor. An interesting spectral geometry question
asked by Mark Kac was “Can one hear the shape of a drum?”1 The Laplace-Beltrami operator on a closed Rie-
mannian manifold has been intensively studied.2 Additionally, eigenvalues and isoperimetric properties of
graphs are the foundation of the explicit constructions of expander graphs.3 Moreover, the study of random walks
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and rapidly mixing Markov chains utilized the discrete analog of the Cheeger inequality.4 The interaction
between spectral theory and differential geometry became one of the critical developments.5 For example, the
spectral theory of the Laplacian on a compact Riemannian manifold is a central object of de Rham-Hodge the-
ory.2 Note that the Hodge Laplacian spectrum contains the topological information of the underlying manifold.
Specifically, the harmonic part of the Hodge Laplacian spectrum corresponds to topological cycles. Connections
between topology and SGT also play a central role in understanding the connectivity properties of graphs.6-9 Sim-
ilarly, as the topological invariants revealing the connectivity of a topological space, the multiplicity of 0 eigen-
values of a 0-combinatorial Laplacian matrix is the number of connected components of a graph. Indeed, the
number of q-dimensional holes can also be unveiled from the number of 0 eigenvalues of the q-combinatorial
Laplacian.10-13 Nonetheless, SGT offers additional non-harmonic spectral information beyond topological
invariants.

The traditional topology and homology are independent of metrics and coordinates and thus retain little geometric
information. This obstacle hinders their practical applicability in data analysis. Recently, persistent homology has been
introduced to overcome this difficulty by creating low-dimensional multiscale representations of a given object of inter-
est.14-19 Specifically, a filtration parameter is devised to induce a family of geometric shapes for a given initial data. Con-
sequently, the study of the underlying topologies or homology groups of these geometric shapes leads to the so-called
topological persistence. Like the de Rham-Hodge theory that bridges differential geometry and algebraic topology, per-
sistent homology bridges multiscale analysis and algebraic topology. Topological persistence is the most important
aspect of the popular topological data analysis (TDA)20-23 and has had tremendous success in computational biology24,25

and worldwide competitions in computer-aided drug design.26

Graph theory has been applied in various fields.27 For example, SGT is applied to the quantum calculation of
π-delocalized systems. The Hückel method, or Hückel molecular orbital theory, describes the quantum molecular
orbitals of π-electrons in π-delocalized systems in terms of a kind of adjacency matrix that contains atomic connectivity
information.28,29 Additionally, the Gaussian network model (GNM)30 and anisotropic network model (ANM)31 repre-
sent protein Cα atoms as an elastic mass-and-spring network by graph Laplacians. These approaches were influenced
by the Flory theory of elasticity and the Rouse model.32 Like traditional topology, traditional graph theory extracts very
limited information from data. In our earlier work, we have proposed multiscale graphs, called multiscale flexibility
rigidity index (mFRI), to describe the multiscale nature of biomolecular interactions,33 such as hydrogen bonds, electro-
static effects, van der Waals interactions, hydrophilicity, and hydrophobicity. A multiscale spectral graph method has
also been proposed as generalized GNM and generalized ANM.34 Our essential idea is to create a family of graphs with
different characteristic length scales for a given dataset. We have demonstrated that our multiscale weighted colored
graph (MWCG) significantly outperforms traditional spectral graph methods in protein flexibility analysis.35 More
recently, we demonstrate that our MWCG outperforms other existing approaches in protein-ligand binding scoring,
ranking, docking, and screening.36

The objective of the present work is to introduce the persistent spectral graph as a new paradigm for the multiscale
analysis of the topological invariants and geometric shapes of high-dimensional datasets. Motivated by the success of
persistent homology25 and multiscale graphs36 in dealing with complex biomolecular data, we construct a family of
spectral graphs induced by a filtration parameter. In the present work, we consider the radius filtration via the Vietoris-
Rips complex, while other filtration methods can be implemented as well. As the filtration radius is increased, a family
of persistent q-combinatorial Laplacians is constructed for a given point-cloud dataset. The diagonalization of these per-
sistent q-combinatorial Laplacian matrices gives rise to persistent spectra. It is noted that our harmonic persistent spec-
tra of 0-eigenvalues fully recover the persistent barcode or persistent diagram of persistent homology. Additional
information is generated from non-harmonic persistent spectra, namely, the non-zero eigenvalues and associated eigen-
vectors. In combination with a simple machine learning algorithm, this additional spectral information is found to pro-
vide a powerful new tool for the quantitative analysis of molecular data, including the prediction of a set of protein B-
factors for which existing standard predictors fail to work.

2 | THEORIES AND METHODS

In this section, we give a brief review of SGT and simplicial complex to establish notations and provide essential back-
ground. Subsequently, we introduce persistent spectral analysis.
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2.1 | Spectral graph theory

Graph structure encodes inter-dependencies among constituents and provides low-dimensional representations of high-
dimensional datasets. One of the representations frequently used in SGT is to associate graphs with matrices, such as
the Laplacian matrix and adjacency matrix. Analyzing the spectra from such matrices leads to the understanding of the
topological and spectral properties of the graph.

Let V be the vertex set, and E be the edge set. For a given simple graph G(V, E) (a simple graph can be either con-
nected or disconnected), the degree of the vertex v � V is the number of edges that are adjacent to v, denoted deg(v).
The adjacency matrix A is defined by

A Gð Þ= 1 if vi and v j are adjacent,

0 otherwise:

�
ð1Þ

and the Laplacian matrix ℒ is given by

L Gð Þ=
deg við Þ if vi = v j,

−1 if vi and v j are adjacent,

0 otherwise:

8><
>: ð2Þ

Obviously, the adjacency matrix characterizes the graph connectivity. The above two matrices are related through
diagonal matrix D

L=D−A

Assuming G(V, E) has N nodes, then adjacency matrix A and Laplacian matrix ℒ are both real symmetric N×N
matrices. The eigenvalues of adjacency and Laplacian matrices are denoted and ordered as

αmin = αN ≤ � � �≤ α2 ≤ α1 = αmax

λmin = λ1 ≤ λ2 ≤ � � �≤ λN = λmax:
ð3Þ

The spectra of A and ℒ have several interesting proprieties. To understand the robustness and connectivity of a
graph, the algebraic connectivity λ2 and the multiplicity of 0 eigenvalues are taken into consideration, which will be
illustrated in Theorem 2 and Remark 1. For more detailed theorems and proofs, we refer the interested reader to a sur-
vey on Laplacian eigenvalues of graphs.8 Furthermore, some interesting properties and examples can be found in the
Supporting Material S1 as well.

Theorem 2.1. Let G(V, E) be a simple graph of order N, then the multiplicity of 0 eigenvalue for Laplacian matrix is the
number of connected components of G(V, E). The vertex degree is the value of the diagonal entry.

Remark 2.1. In this section, the Laplacian spectrum of simple graph G(V, E) is concerned. For

G V ,Eð Þ=G1 V1,E1ð Þ
[

� � �
[

Gm Vm,Emð Þ,m≥1,m�ℤ,

where Gi(Vi, Ei) � G(V, E), i = 1, � � �, m is a connected simple graph. If m ≥ 2, the zero eigenvalue of ℒ(G) has multi-
plicity m, which results in algebraic connectivity λ2 = 0. However, λ2 = 0 cannot give any information about the Gi(Vi,
Ei). Therefore, we study the smallest non-zero eigenvalue of ℒ(G), which is actually the smallest algebraic connectivity
of ℒ(Gi), i = 1, � � �, m. In Section 2.3 and Section 3, we analyze the smallest non-zero eigenvalue of the Laplacian
matrix. To make the expression more concise, we still use ~λ2 as the smallest non-zero eigenvalue. If G(V, E) is a con-
nected simple graph, that is, m = 1, one has λ2 =~λ2.
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2.2 | Simplicial complex

A simplicial complex is a powerful algebraic topology tool that has a wide range of applications in graph theory, topo-
logical data analysis,17 and many physical fields.25 We briefly review simplicial complexes to generate notation and pro-
vide essential preparation for introducing persistent spectral graph.

2.2.1 | Simplex

Let {v0, v1, � � �, vq} be a set of points in ℝn. A point v=
Pq

i=0λivi,λi �ℝ is an affine combination of vi if
Pq

i=0λi =1. An
affine hull is the set of affine combinations. Here, q+1 points v0, v1, � � �, vq are affinely independent if v1− v0, v2− v0, � � �,
vq− v0 are linearly independent. A q-plane is well defined if the q+1 points are affinely independent. In ℝn, one can
have at most n linearly independent vectors. Therefore, there are at most n+1 affinely independent points. An affine
combination v=

Pq
i=0λivi is a convex combination if all λi are non-negative. The convex hull is the set of convex

combinations.
A (geometric) q-simplex denoted as σq is the convex hull of q + 1 affinely independent points in ℝn(n ≥ q) with

dimension dim(σq) = q. A 0-simplex is a vertex, a 1-simplex is an edge, a 2-simplex is a triangle, and a 3-simplex is a tet-
rahedron, as shown in Figure 1. The convex hull of each nonempty subset of q + 1 points forms a subsimplex and is
regarded as a face of σq denoted τ.

2.2.2 | Simplicial complex

A (finite) simplicial complex K is a (finite) collection of simplices in ℝn satisfying the following conditions.
(1) If σq � K and σp is a face of σq, then σp � K.
(2) The non-empty intersection of any two simplices σq, σp � K is a face of both σq and σp.
Each element σq � K is a q-simplex. The dimension of K is defined as dim(K) = max{dim(σq) : σq � K}. To distin-

guish topological spaces based on the connectivity of simplicial complexes, one uses Betti numbers. The kth Betti num-
ber, βk, counts the number of k-dimensional holes on a topological surface. The geometric meaning of Betti numbers in
ℝ3 is the following: β0 represents the number of connected components, β1 counts the number of one-dimensional
loops or circles, and β2 describes the number of two-dimensional voids or holes. In a nutshell, the Betti number
sequence {β0, β1, β2, � � �} reveals the intrinsic topological property of the system.

Recall that in graph theory, the degree of a vertex (0-simplex) v is the number of edges that are adjacent to the ver-
tex, denoted as deg(v). However, once we generalize this notion to q-simplex, problem aroused since q-simplex can have
(q − 1)-simplices and (q + 1)-simplices adjacent to it at the same time. Therefore, the upper adjacency and lower adja-
cency are required to define the degree of a q-simplex for q > 0.

10,12

Definition 2.1. Two q-simplices σiq and σ j
q of a simplicial complex K are lower adjacent if they share a common

(q− 1)-face, denoted σiq �L σ j
q . The lower degree of q-simplex, denoted degL(σq), is the number of nonempty (q− 1)-

simplices in K that are faces of σq, which is always q+1.

FIGURE 1 Illustration of simplices. A, 0-simplex (a vertex); B, 1-simplex (an edge); C, 2-simplex (a triangle); and D, 3-simplex

(a tetrahedron)
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Definition 2.2. Two q-simplices σiq and σ j
q of a simplicial complex K are upper adjacent if they share a common (q+1)-

face, denoted σiq �U σ j
q . The upper degree of q-simplex, denoted degU(σq), is the number of (q+1)-simplices in K of

which σq is a face.

Then, the degree of a q-simplex (q > 0) is defined as:

deg σq
� �

=degL σq
� �

+degU σq
� �

=degU σq
� �

+ q+1: ð4Þ

A supplemental example that illustrates the relation between simplicial complex and its corresponding Betti num-
ber can be found in the Supporting Material S2.

2.2.3 | Chain complex

Chain complex is an important concept in topology, geometry, and algebra. Let K be a simplicial complex of dimension
q. A q-chain is a formal sum of q-simplices in K with ℤ2 field of the coefficients for the sum. Under the addition opera-
tion of ℤ2, a set of all q-chains is called a chain group and denoted as Cq(K). To relate these chain groups, we denote
boundary operator by ∂q : Cq(K) ! Cq − 1(K). The boundary operator maps a q-chain which is a linear combination of
q-simplices to the same linear combination of the boundaries of the q-simplices. Denoting σq = [v0, v1, � � �, vq] for the q-
simplex spanned by its vertices, its boundary operator can be defined as:

∂qσq =
Xq
i=0

−1ð Þiσiq−1, ð5Þ

with σq = [v0, � � �, vq] being the q-simplex. Here, σiq−1 = v0, � � �, v̂i, � � �,vq
� �

is the (q− 1)-simplex with vi being omitted. A q-
chain is called q-cycle if its boundary is zero. A chain complex is the sequence of chain groups connected by boundary
operators

� � � ��!∂q+2
Cq+1 Kð Þ ��!∂q+1

Cq Kð Þ ��!∂q Cq−1 Kð Þ ��!∂q−1 � � � ð6Þ

2.3 | Persistent spectral analysis

In this section, we introduce persistent spectral theory (PST) to extract rich topological and spectral information
of simplicial complexes via a filtration process. We briefly review preliminary concepts about the oriented sim-
plicial complex and q-combinatorial Laplacian, while more detail information can be found elsewhere.11-13,37

Then, we discuss the properties of the q-combinatorial Laplacian matrix together with its spectrum. Moreover,
we employ the q-combinatorial Laplacian to establish the PST. Finally, we discuss some variants of the persistent
q-combinatorial Laplacian matrix and illustrate their formulation on simple geometry, that is, a benzene
molecule.

2.3.1 | Oriented simplicial complex and q-combinatorial Laplacian

An oriented simplicial complex is the one in which all of the simplices in the simplicial complex, except for vertices
and ;, are oriented. A q-combinatorial Laplacian is defined based on oriented simplicial complexes, and its lower- and
higher-dimensional simplexes can be employed to study a specifically oriented simplicial complex.

We first introduce oriented simplex complexes. Let σq be a q-simplex, we can define the ordering of its vertex set. If
two orderings defined on σq differ from each other by an even permutation, we say that they are equivalent, and each
of them is called an orientation of σq. An oriented q-simplex is a simplex σq with the orientation of σq. An oriented
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simplicial complex K is defined if all of its simplices are oriented. Suppose σiq and σ j
q�K with K being an oriented simpli-

cial complex. If σiq and σ j
q are upper adjacent with a common upper (q+1)-simplex τq+1, we say they are similarly ori-

ented if both have the same sign in ∂q+1(τq+1) and dissimilarly oriented if the signs are opposite. Additionally, if σiq
and σ j

q are lower adjacent with a common lower (q− 1)-simplex ηq− 1, we say they are similarly oriented if ηq− 1 has the

same sign in ∂q σiq

� 	
and ∂q σ j

q

� 	
, and dissimilarly oriented if the signs are opposite.

Similarly, we can define q-chains based on an oriented simplicial complex K. The q-chain Cq(K) is also defined as
the linear combinations of the basis, with the basis being the set of oriented q-simplices of K. The q-boundary operator
∂q : Cq(K) ! Cq − 1(K) is

∂qσq =
Xq
i=0

−1ð Þiσiq−1, ð7Þ

with σq = [v0, � � �, vq] to be the oriented q-simplex, and σiq−1 = v0, � � �, v̂i, � � �,vq
� �

the oriented (q− 1)-simplex with its ver-
tex vi being removed. Let ℬq be the matrix representation of a q-boundary operator with respect to the standard basis
for Cq(K) and Cq− 1(K) with some assigned orderings. Then, the number of rows in ℬq corresponds to the number of (q
− 1)-simplices and the number of columns shows the number of q-simplices in K, respectively. Associated with the q-
boundary operator is the adjoint operator denoted q-adjoint boundary operator, defined as

∂�q :Cq−1 Kð Þ!Cq Kð Þ, ð8Þ

and the transpose of ℬq, denoted BT
q , is the matrix representation of ∂�q relative to the same ordered orthonormal basis

as ∂q.
38

Let K be an oriented simplicial complex, for integer q ≥ 0, the q-combinatorial Laplacian is a linear operator Δq :
Cq(K) ! Cq(K)

Δq≔∂q+1∂
�
q+1 + ∂�q∂q, ð9Þ

with ∂q∂q + 1 = 0, which implies Im(∂q + 1) � ker(∂q). The q-combinatorial Laplacian matrix, denoted ℒq, is the matrix
representation,1

Lq =Bq+1BT
q+1 +BT

qBq, ð10Þ

of operator Δq, withℬq andℬq + 1 being the matrices of dimension q and q + 1. Additionally, we denote upper and lower
q-combinatorial Laplacian matrices by LU

q =Bq+1BT
q+1 and LL

q =BT
qBq, respectively. Note that ∂0 is the zero map, which

leads to ℬ0 being a zero matrix. Therefore, L0 Kð Þ=B1BT
1 +BT

0B0 , with K the (oriented) simplicial complex of dimen-
sion 1, which is actually a simple graph. In particular, 0-combinatorial Laplacian matrix ℒ0(K) is actually the Laplacian
matrix defined in the SGT. In fact, Equation (2) is exactly the same as Equation (14) given in the following.

Given an oriented simplicial complex K with 0 ≤ q ≤ dim(K), one can obtain the entries of its corresponding upper
and lower q-combinatorial Laplacian matrices explicitly.13

LU
q

� 	
ij
=

degU σiq

� 	
, if i= j,

1, if i 6¼ j,σiq �U σ j
qwith similar orientation,

−1, if i 6¼ j,σiq �U σ j
qwith dissimilar orientation,

0, otherwise:

8>>>>>><
>>>>>>:

ð11Þ
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LL
q

� 	
ij
=

degL σiq

� 	
= q+1, if i= j,

1, if i 6¼ j,σiq �L σ j
qwith similar orientation,

−1, if i 6¼ j,σiq �L σ j
qwith dissimilar orientation,

0, otherwise:

8>>>>>><
>>>>>>:

ð12Þ

The entries of q-combinatorial Laplacian matrices are

q>0, Lq
� �

ij =

deg σiq

� 	
+ q+1, if i= j:

1, if i 6¼ j,σiq ≁
U
σ j
q and σ

i
q �L σ j

qwith similar orientation:

−1, if i 6¼ j,σiq ≁
U
σ j
q and σ

i
q �L σ j

qwith dissimilar orientation:

0, if i 6¼ j and either,σiq �U σ j
q or σ

i
q ≁

L
σ j
q:

8>>>>>>><
>>>>>>>:

ð13Þ

q=0, Lq
� �

ij =

deg σi0
� �

, if i= j:

−1, if σi0 �U σ j
0:

0, otherwise:

8><
>: ð14Þ

2.3.2 | Spectral analysis of q-combinatorial Laplacian matrices

A q-combinatorial Laplacian matrix for oriented simplicial complexes is a generalization of the Laplacian matrix in
graph theory. The spectra of a Laplacian matrix play an essential role in understanding the connectivity and robustness
of simple graphs (simplicial complexes of dimension 1). They can also distinguish different topological structures.
Inspired by the capability of the Laplacian spectra of analyzing topological structures, we study the spectral properties
of q-combinatorial Laplacian matrices to reveal topological and spectral information of simplicial complexes with
dimension 0 ≤ q ≤ dim(K).

We clarify that for a given finite simplicial complex K, the spectra of its q-combinatorial Laplacian matrix are inde-
pendent of the choice of the orientation for the q-simplices of K. The proof can be found in Reference 13. Figure 2 pro-
vides a simple example to illustrate this property. In Figure 2, we have two oriented simplicial complexes, K1 and K2,
with the same geometric structure but different orientations. For the sake of brevity, we use 1, 2, 3, 4, and 5 to represent
0-simplices (vertices); 12, 23, 34, 24, and 45 to describe 1-simplices (edges); and 234 to stand for the 2-simplex (triangle).
Then the 0-combinatorial Laplacian matrix of K1 and K2 is

FIGURE 2 Illustration of two oriented simplicial complexes with the same geometric structure but having different orientations. Here,

we denote the vertices by 1, 2, 3, 4, and 5; edges by 12, 23, 34, 24, and 45; and the triangle by 234
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L0 K1ð Þ=L0 K2ð Þ=

1 −1 0 0 0

−1 3 −1 −1 0

0 −1 2 −1 0

0 −1 −1 3 −1

0 0 0 −1 1

2
6666664

3
7777775:

Obviously, ℒ0(K1) and ℒ0(K2) have the same spectra. For q = 1, there are five 1-simplices in K1 and K2,
while 1-combinatorial Laplacian matrices have dimension 5 × 5. Using K1 as an example, since 12 and 23 are
lower adjacent with similar orientation, the element of ℒ1(K1) addressed at first row and second column is
1 according to Equation (13). Since 34 and 45 are lower adjacent with dissimilar orientation, (ℒ1(K1))35 = − 1.
Moreover, 23 and 34 are upper adjacent, which results in (ℒ1(K1))23 = 0. For the diagonal parts, 12 and 45 are
not the faces of any 2-simplex, while 23, 34, and 24 are the faces of 2-simplex 234. Therefore,
degU(12) = degU(12) = 0 and degU(23) = degU(34) = degU(34) = 1, so the diagonal terms of ℒ0(K1) are 2, 3, 3,
3, and 2.

L1 K1ð Þ=

2 1 0 1 0

1 3 0 0 0

0 0 3 0 −1

1 0 0 3 −1

0 0 −1 −1 2

2
6666664

3
7777775, L1 K2ð Þ=

2 −1 0 1 0

−1 3 0 0 0

0 0 3 0 1

1 0 0 3 −1

0 0 1 −1 2

2
6666664

3
7777775:

The spectra of ℒ1(K1) and ℒ1(K2) have the same eigenvalues: 3, 5�
ffiffi
5

p
2 , 5�

ffiffiffiffi
13

p
2

n o
. Since K1 and K2 do not have

3-simplices, ℒq is a zero matrix when q≥ 3.
A q-combinatorial Laplacian matrix is symmetric and positive semi-definite. Therefore, its eigenvalues are all real

and non-negative. An analogy to the property that the number of zero eigenvalues of ℒ0 represents the number of con-
nected components ((β0)) in the simple graph (simplicial complex with dimension 1), the number of zero eigenvalues of
ℒq can also reveal the topological information. More specifically, for a given finite-oriented simplicial complex, the
Betti number βq of K satisfies

βq =dim Lq Kð Þ� �
−rank Lq Kð Þ� �

=nullity Lq Kð Þ� �
=#of zero eigenvalues of Lq Kð Þ: ð15Þ

In the Supporting material S3, we illustrate the connection between Betti number and the dimension of the rank of
q-combinatorial Laplacian matrix.

2.3.3 | Persistent spectral theory

Instead of using the aforementioned spectral analysis for q-combinatorial Laplacian matrix to describe a single configu-
ration, we propose a PST to create a sequence of simplicial complexes induced by varying a filtration parameter, which
is inspired by persistent homology and our earlier work in multiscale graphs.34,35 We provide a brief introduction to
persistent homology in the Supporting Material S4.

A filtration of an oriented simplicial complex K is a sequence of sub-complexes Ktð Þmt=0 of K

;=K0 ⊆K1 ⊆K2 ⊆ � � �⊆Km =K: ð16Þ

It induces a sequence of chain complexes
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� � � C1
q+1 Ð∂1q+1

∂1
�
q+1

C1
q Ð∂1q

∂1
�
q

� � � Ð∂13
∂1

�
3

� C1
2 Ð∂12

∂1
�
2

C1
1 Ð∂11

∂1
�
1

C1
0 Ð∂10

∂1
�
0

C1
−1

j \ j \ j \ j \ j \
�� � C2

q+1 Ð∂2
�
q+1

∂2q+1
C2
q Ð∂2q

∂2
�
q

� � � Ð∂23
∂2

�
3

C2
2 Ð∂22

∂2
�
2

C2
1 Ð∂21

∂2
�
1

C2
0 Ð∂20

∂2
�
0

C1
−1

j \ j \ j \ j \ j \
�� � Cm

q+1 Ð∂mq+1

∂m
�

q+1
Cm
q Ð∂mq

∂m
�

q

� � � Ð∂m3
∂m

�
3

Cm
2 Ð∂m2

∂m
�

2
Cm
1 Ð∂m1

∂m
�

1
Cm
0 Ð∂m0

∂m
�

0
C1

−1

ð17Þ

where Ct
q≕Cq Ktð Þ and ∂tq :Cq Ktð Þ!Cq−1 Ktð Þ . Each Kt itself is an oriented simplicial complex, which has dimension

denoted by dim(Kt). If q<0, then Cq(Kt) = {;} and ∂tq is actually a zero map.2 For a general case of 0< q≤ dim(Kt), if σq
is an oriented q-simplex of Kt, then

∂tq σq
� �

=
Xq
i

−1ð Þiσiq−1,σq �Kt,

with σq = [v0, � � �, vq] being the oriented q-simplex, and σiq−1 = v0, � � �, v̂i, � � �,vq
� �

being the oriented (q− 1)-simplex for
which its vertex vi is removed.

Let ℂt+ p
q be the subset of Ct+ p

q whose boundary is in Ct
q−1:

ℂt+ p
q ≕ α�Ct+ p

q j ∂t+ p
q αð Þ�Ct

q−1

n o
: ð18Þ

We define

ðt+ p
q :ℂt+ p

q !Ct
q−1: ð19Þ

Based on the q-combinatorial Laplacian operator, the p-persistent q-combinatorial Laplacian operator Δt+ p
q :

Cq Ktð Þ!Cq Ktð Þ defined along the filtration can be expressed as

Δt+ p
q =ðt+ p

q+1 ðt+ p
q+1

� 	�
+ ∂t

�
q ∂

t
q: ð20Þ

We denote the matrix representations of boundary operator ðt+ p
q+1 and ∂tq by Bt+ p

q+1 and Bt
q, respectively. It is clear that

the number of rows in Bt+ p
q+1 is the number of oriented q-simplices in Kt, and the number of columns is the number of

oriented (q+1)-simplices in Kt+ p\ℂt+ p
q+1. The transpose values of the matrices Bt+ p

q+1 and Bt
q are the matrix representa-

tions of the adjoint boundary operator ∂t+ p
q+1

� 	�
and ∂t

�
q , respectively. Therefore, the p-persistent q-combinatorial

Laplacian matrix, Lt+ p
q , is

Lt+ p
q =Bt+ p

q+1 Bt+ p
q+1

� 	T
+ Bt

q

� 	T
Bt
q: ð21Þ

Intuitively, for a non-empty set Ct
q , the p-persistent q-combinatorial Laplacian matrix Lt+ p

q is a square matrix with
dimension to be the number of q-simplices in Kt. Moreover, Lt+ p

q is symmetric and positively semi-defined and thus, all
the spectra of Lt+ p

q are real and non-negative. If p = 0, then Lt+0
q is exactly the q-combinatorial Laplacian matrix

defined in Equation (10).
We are interested in the difference between Lt+0

q and Lt+ p
q . Suppose we have an oriented simplicial complex Kt,

and also an oriented simplicial complex Kt+ p constructed by adding different dimension simplices (“outer” topological
structures) to Kt with dim(Kt+ p) = q+1. Since Kt�Kt+ p, we have
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Lt+0
q =Bt+0

q+1 Bt+0
q+1

� 	T
+ Bt

q

� 	T
Bt
q

Lt+ p
q =Bt+ p

q+1 Bt+ p
q+1

� 	T
+ Bt

q

� 	T
Bt
q:

Case 1. If Im ðt+ p
q+1

� 	
\ Kt+ p∖Kt
� �� 	

\Ct
q = ; for all possible q, then the “outer” topological structures are discon-

nected with Kt. Therefore, the boundary matrix Bt+ p
q+1 is exactly the same as Bt

q+1. In this situation, the spectra of Lt+0
q

and Lt+ p
q are the same, which reveals the fact that the topological structure Kt does not change under the filtration

process.

Case 2. If Im ðt+ p
q+1

� 	
\ Kt+ p∖Kt
� �� 	

\Ct
q 6¼ ; for at least one q, then the boundary matrix Bt+ p

q+1 will be changed by

adding additional non-zero columns. Therefore, Lt+ p
q is no longer the same as Lt+0

q , but the structure information in Kt

will still be preserved in Lt+ p
q . In this case, the topological structure Kt builds connection with “outer” topological struc-

tures. By calculating the spectra of Lt+ p
q , the disappeared and preserved structure information of Kt under the filtration

process can be revealed.

Based on the fact that the topological and spectral information of Kt can also be analyzed from ℒq(Kt) along with
the filtration parameter by diagonalizing the q-combinatorial Laplacian matrix, we focus on the spectra information cal-
culated from Lt+ p

q . Denote the set of spectra of Lt+ p
q by

Spectra Lt+ p
q

� 	
= λ1ð Þt+ p

q , λ2ð Þt+ p
q , � � �, λNð Þt+ p

q

n o
,

where Lt+ p
q has dimension N×N and spectra are arranged in ascending order. The smallest non-zero eigenvalue of

Lt+ p
q is defined as ~λ2

� �t+ p

q . In the previous section, we have seen that Betti numbers (ie, # of zero eigenvalues) can

reveal q-cycle information. Similarly, we define the number of zero eigenvalues of p-persistent q-combinatorial
Laplacian matrix Lt+ p

q to be the p-persistent qth Betti numbers

βt+ p
q =dim Lt+ p

q

� 	
−rank Lt+ p

q

� 	
=nullity Lt+ p

q

� 	
=#of zero eigenvalues of Lt+ p

q : ð22Þ

In fact, βt+ p
q counts the number of q-cycles in Kt that are still alive in Kt+ p, which exactly provides the same topolog-

ical information as persistent homology does. However, PST offers additional geometric information from the spectra of
persistent combinatorial Laplacian matrix beyond topological persistence. In general, the topological changes can be
read off from persistent Betti numbers (harmonic persistent spectra) and the geometric changes can be derived from
the non-harmonic persistent spectra.

Figure 3 demonstrates an example of a standard filtration process. Here the initial setup K1 consists of five
0-simplices (vertices). We construct Vietoris-Rips complexes by using an ever-growing circle centered at each vertex
with radius r. Once two circles overlapped with each other, a 1-simplex (edge) is formed. A 2-simplex (triangle) will
be created when 3 circles contact with one another, and a 3-simplex will be generated once 4 circles get overlapped
one another. As shown in Figure 3, we can attain a series of simplicial complexes from K1 to K6 with the radius of cir-
cles increasing. Table 1 lists the number of q-cycles of simplicial complex to fully illustrate how to construct p-
persistent q-combinatorial Laplacian matrices by the boundary operator and determine persistent Betti numbers, we
analyze 6 p-persistent q-combinatorial Laplacian matrices and their corresponding harmonic persistent spectra (ie,
persistent Betti numbers) and non-harmonic persistent spectra. A supplementary example to distinguish different
topological structures by implementing PST is provided in the Supporting Material S5. Moreover, additional matrices
are analyzed in the Supporting Material S6.

Case 1 The initial setup is K3 and the end status is K4. The 1-persistent 0, 1, 2-combinatorial Laplacian operators are
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Δ3+ 1
0 = ð3+1

1 ð3+1
1

� ��
+ ∂3

�
0 ∂

3
0,

Δ3+ 1
1 = ð3+1

2 ð3+1
2

� ��
+ ∂3

�
1 ∂1

3,

Δ3+ 1
2 = ð3+1

3 ð3+1
3

� ��
+ ∂3

�
2 ∂

3
2,

Since 2-simplex and 3-simplex do not exist in K4, ∂
3
2,∂

3+ 1
2 , and ∂32 do not exist, then

L3+ 1
0 =B3+ 1

1 B3+ 1
1

� �T
+ B3

0

� �TB3
0,

L3+ 1
1 = B3

1

� �TB3
1:

From Table 2, one can see that β3+ 1
0 = 0 and β3+ 1

1 = 1, which reveals that only one 0-cycle and one 1-cycle in K3 are
still alive in K4.

Case 2 The initial setup is K6 and the end status is K6. The 0-persistent 0, 1, 2-combinatorial Laplacian operators are

L6+ 0
0 =B6+ 0

1 B6+ 0
1

� �T
+ B6

0

� �TB6
0,

L6+ 0
1 =B6+ 0

2 B6+ 0
2

� �T
+ B6

1

� �TB6
1,

L6+ 0
2 =B6+ 0

3 B6+ 0
3

� �T
+ B6

2

� �TB6
2,

From Table 3, β6+ 0
0 = 1,β6+ 0

1 = 0, and β6+ 0
2 = 0 imply that only one 0-cycle (connected component) exists in K6,

with

FIGURE 3 Illustration of filtration. We use 0, 1, 2, 3, and 4 to stand for 0-simplices; 01, 12, 23, 03, 24, 02, and 13 for 1-simplices;

012, 023, 013, and 123 for 2-simplices; and 0123 for the 3-simplex. Here, K1 has five 0-cycles, K2 has four 0-cycles, K3 has two 0-cycles and a

1-cycle, K4 has a 0-cycle and a 1-cycle, K5 has one 0-cycle, and K6 has a 0-cycle

TABLE 1 The number of q-cycles

of simplicial complexes demonstrated in

Figure 3

# of q-cycles K1 K2 K3 K4 K5 K6

q = 0 5 4 2 1 1 1

q = 1 0 0 1 1 0 0

q = 2 0 0 0 0 0 0
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We have constructed a family of persistent spectral graphs induced by a filtration parameter. For the sake of simplic-
ity, we focus on the analysis of high-dimensional spectra with p = 0 in the rest of this section. As clarified before, the
0-persistent q-combinatorial Laplacian matrix is the q-combinatorial Laplacian matrix.

A graph structure encodes inter-dependencies among constituents and provides a convenient representation of the
high-dimensional data. Naturally, the same idea can be applied to higher-dimensional spaces. For a set of points
V � ℝn without additional structures, we consider growing an (n − 1)-sphere centered at each point with an ever-
increasing radius r. Therefore, a family of 0-persistent q-combinatorial Laplacian matrices as well as spectra can be gen-
erated as the radius r increases, which provides topological and spectral features to distinguish individual entries of the
dataset.

2.3.4 | Variants of p-persistent q-combinatorial Laplacian matrices

The traditional approach in defining the q-boundary operator ∂q : Cq(K) ! Cq − 1(K) can be expressed as:

TABLE 2 K3 ! K4q q = 0 q = 1 q = 2

B3+ 1
q+1

/ /

B3
q

0 1 2 3 4

½ 0 0 0 0 0 � :
/

L3+ 1
q 2 −1 0 −1 0

−1 2 −1 0 0

0 −1 3 −1 −1

−1 0 −1 2 0

0 0 −1 0 1

2
6666664

3
7777775

2 −1 0 1

−1 2 −1 0

0 −1 2 1

1 0 1 2

2
6666664

3
7777775

/

β3+ 1
q 1 1 /

dim L3+1
q

� 	
5 4 /

rank L3+ 1
q

� 	
4 3 /

nullity L3+ 1
q

� 	
1 1 /

Spectra L3+ 1
q

� 	
{0,0.8299,2,2.6889,4.4812} {0,2,2,4} /
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∂qσq =
Xq
i=0

−1ð Þiσiq−1,

which leads to the corresponding elements in the boundary matrices being either 1 or −1. However, to encode more
geometric information into the Laplacian operator, we add volume information of q-simplex σq to the expression of q-
boundary operator.

Given a vertex set V = {v0, v1, � � �, vq} with q + 1 isolated points (0-simplices) randomly arranged in the n-
dimensional Euclidean space ℝn, often with n ≥ q. Set dij to be the distances between vi and vj with 0 ≤ i ≤ j ≤ q and
obviously, dij = dji. The Cayley-Menger determinant can be expressed as39

TABLE 3 K6 ! K6

q q = 0 q = 1 q = 2

B6+ 0
q+1

B6+ 0
3

B6
q

0 1 2 3 4

= ½ 0 0 0 0 0 � :
B6
2

L6+ 0
q 3 −1 −1 −1 0

−1 2 −1 0 0

−1 −1 4 −1 −1

−1 0 −1 2 0

0 0 −1 0 1

2
6666664

3
7777775

4 0 0 0 0 0 0

0 4 0 0 −1 0 0

0 0 4 0 1 0 0

0 0 0 4 0 0 0

0 −1 1 0 2 −1 0

0 0 0 0 −1 4 0

0 0 0 0 0 0 4

2
666666666664

3
777777777775

L6+ 0
2

β6+ 0
q 1 0 0

dim L6+0
q

� 	
5 7 4

rank L6+ 0
q

� 	
4 7 4

nullity L6+ 0
q

� 	
1 0 0

Spectra L6+ 0
q

� 	
{0,1,4,4,5} {1,4,4,4,4,4,5} {4,4,4,4}
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DetCM v0,v1, � � �,vq
� �

=

0 d201 d202 � � � d20q 1

d210 0 d212 � � � d21q 1

d220 d221 0 � � � d22q 1

..

. ..
. ..

. ..
. . .

. ..
.

d2q0 d2q1 d2q2 � � � 0 1

1 1 1 1 1 0

����������������

����������������
ð23Þ

The q-dimensional volume of q-simplex σq with vertices {v0, v1, � � �, vq} is defined by

Vol σq
� �

=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1ð Þq+1

q!ð Þ22q DetCM v0,v1, � � �,vq
� �s

: ð24Þ

In trivial cases, Vol(σ0) = 1, meaning the 0-dimensional volume of 0-simplex is 1, that is, there is only 1 vertex in a
0-simplex. Also, the 1-dimensional volume of 1-simplex σ1 = [vi, vj] is the distance between vi and vj, and the
2-dimensional volume of 2-simplex is the area of a triangle [vi, vj, vk].

In applications, it is often useful to replace the characteristic number “1” with some other descriptive quantities.40

Therefore, we define weighted boundary operator equipped with volume, denoted ∂̂q,

∂̂qσq =
Xq
i=0

−1ð ÞiVol σiq

� 	
σiq−1: ð25Þ

Employing the same concept to the PST, we have the volume-weighted p-persistent q-combinatorial Laplacian oper-
ator. We also define

ð̂
t+ p

q :ℂt+ p
q !Ct

q−1 ð26Þ

with

ℂt+ p
q ≕ α�Ct+ p

q j ∂̂t+ p
q αð Þ�Ct

q−1

n o
:

Similarly, an inverse-volume weighted boundary operator, denoted ∂
^

q, is given by

∂
^

qσq =
Xq
i=0

−1ð Þi 1

Vol σiq

� 	σiq−1: ð27Þ

To define an inverse-volume weighted p-persistent q-combinatorial Laplacian operator. We define

ð
^t+ p

q :ℂt+ p
q !Ct

q−1 ð28Þ

with

ℂt+ p
q ≕ α�Ct+ p

q j ∂^t+ p

q αð Þ�Ct
q−1

n o
:
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Then volume-weighted and inverse-volume-weighted p-persistent q-combinatorial Laplacian operators defined
along the filtration can be expressed as

Δ̂
t+ p
q = ð̂

t+ p

q+1 ð̂
t+ p

q+1

� 	�
+ ∂̂

t�

q ∂̂
t

q,

Δ
^ t+ p

q =ð
^t+ p

q+1 ð
^t+ p

q+1

� 	�
+ ∂

^t�

q ∂
^t

q:
ð29Þ

The corresponding weighted matrix representations of boundary operators ð̂
t+ p
q+1, ð̂

t
q , ð

^t+ p

q+1, and ð
^t

q are denoted B̂t+ p
q+1,

B̂t
q , B

^ t+ p

q+1, and B^ t

q , respectively. Therefore, volume-weighted and inverse-volume-weighted p-persistent q-combinatorial
Laplacian matrices can be expressed as

L̂t+ p
q = B̂t+ p

q+1 B̂t+ p
q+1

� 	T
+ B̂t

q

� 	T
B̂t
q

� 	
,

L^ t+ p

q =B^ t+ p

q+1 B^ t+ p

q+1

� 	T
+ B^ t

q

� 	T
B^ t

q

� 	
:

ð30Þ

Although the expressions of the weighted persistent Laplacian matrices are different from the original persistent
Laplacian matrices, some properties of Lt+ p

q are preserved. The weighted persistent Laplacian operators are still sym-
metric and positive semi-defined. Additionally, their ranks are the same as Lt+ p

q . With the embedded volume informa-
tion, weighted PSGs can provide richer topological and geometric information through the associated persistent Betti
numbers and non-harmonic spectra (ie, non-zero eigenvalues).

In real applications, we are more interested in the 0, 1, 2-combinatorial Laplacian matrices because it is more intui-
tive to depict the relation among vertex, edges, and faces. Given a set of vertices V = {v0, v2, � � �, vN} with N + 1 isolated
points (0-simplices) randomly arranged in ℝn. By varying the radius r of the (n − 1)-sphere centered at each vertex, a
variety of simplicial complexes is created. We denote the simplicial complex generated at radius r to be Kr, then the
0-persistent q-combinatorial Laplacian operator and matrix at initial set up Kr is

Lr+0
q =Br+0

q+1 Br+0
q+1

� 	T
+ Br

q

� 	T
Br
q: ð31Þ

The volume of any 1-simplex σ1 = [vi, vj] is Vol(σ1) and is actually the distance between vi and vj, denoted dij. Then
the 0-persistent 0-combinatorial Laplacian matrix based on filtration r can be expressed explicitly as

Lr+0
0

� �
ij =

−
P
j

Lr+0
0

� �
ij, if i= j

−1, if i 6¼ j anddij−2r<0

0, otherwise:

8>><
>>: ð32Þ

Correspondingly, we can denote the 0-persistent 1-combinatorial Laplacian matrix based on filtration r by Lr+0
1 ,

and the 0-persistent 2-combinatorial Laplacian matrix based on filtration r by Lr+0
2 .

Alternatively, variants of persistent 0-combinatorial Laplacian matrices can be defined by adding the Euclidean dis-
tance information. The distance-weight persistent 0-combinatorial Laplacian matrix based on filtration r can be
expressed explicitly as

L̂r+0
0

� 	
ij
=

−
P
j

L̂r+0
0

� 	
ij
, if i= j

−dij, if i 6¼ j anddij−2r<0

0, otherwise:

8>><
>>: ð33Þ

Moreover, the inverse-distance-weight persistent 0-combinatorial Laplacian matrix based on filtration r can also be
implemented:
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L^ r+0

0

� 	
ij
=

−
P
j

L^ r+0

0

� 	
ij
, if i= j

−
1
dij

, if i 6¼ j anddij−2r<0

0, otherwise:

8>>>>><
>>>>>:

ð34Þ

The spectra of the aforementioned 0-persistent 0-combinatorial Laplacian matrices based on filtration are given by

Spectra Lr+0
0

� �
= λ1ð Þr+0

0 , λ2ð Þr+0
0 , � � �, λNð Þr+0

0

� 
,

Spectra L̂r+0
0

� 	
= λ̂1

� �r+0

0 , λ̂2
� �r+0

0 , � � �, λ̂N
� �r+0

0

n o
,

Spectra L^ r+0

0

� 	
= λ

^

1

� 	r+0

0
, λ

^

2

� 	r+0

0
, � � �, λ

^

N

� 	r+0

0

� �
,

where N is the dimension of persistent Laplacian matrices, λ̂ j
� �r+0

0 and λ
^

j

� 	r+0

0
are the jth eigenvalues of L̂r+0

0 and

L^ r+0

0 , respectively. We denote β̂
r+0
q and β

^r+0

q the qth Betti for L̂r+0
q and L^ r+0

q , respectively.

The smallest non-zero eigenvalue of Lr+0
0 , denoted ~λ2

� �r+0

0 , is particularly useful in many applications. Similarly,

the smallest non-zero eigenvalues of L̂r+0
0 and L^ r+0

0 are denoted as ~̂λ2
� 	r+0

0
and

~
λ
^

2

� �r+0

0
, respectively.

Finally, it is mentioned that using the present procedure, more general weights, such as the radial basis function of
the Euclidean distance, can be employed to construct weighted boundary operators and associated persistent combina-
torial Laplacian matrices.

2.3.5 | Multiscale spectral analysis

In the past few years, we have developed a multiscale spectral graph method such as generalized GNM and generalized
ANM,33,34 to create a family of spectral graphs with different characteristic length scales for a given dataset. Similarly,
in our PST, we can construct a family of spectral graphs induced by a filtration parameter. Moreover, we can sum over
all the multiscale spectral graphs as an accumulated spectral graph. Specifically, a family of Lr+0

0 matrices, as well as
the accumulated combinatorial Laplacian matrices, can be generated via the filtration. By analyzing the persistent spec-
tra of these matrices, the topological invariants and geometric shapes can be revealed from the given input point-
cloud data.

The spectra of Lr+0
0 , L̂r+0

0 , and L^ r+0

0 mentioned above carry similar information on how the topological structures
of a graph are changed during the filtration. Benzene molecule ((C6H6)), a typical aromatic hydrocarbon, which is com-
posed of six carbon atoms bonded in a planar regular hexagon ring with one hydrogen joined with each carbon atom. It
provides a good example to demonstrate the proposed PST. Figure 4 illustrates the filtration of the benzene molecule.
Here, we label 6 hydrogen atoms by H1, H2, H3, H4, H5, and H6, and the carbon adjacent to the labeled hydrogen atoms
are labeled by C1, C2, C3, C4, C5, and C6, respectively. Figure 5B depicts that when the radius of the solid sphere reaches
0.54Å, each carbon atom in the benzene ring is overlapped with its joined hydrogen atom, resulting in the reduction of
βr+0
0 to 6. Moreover, once the radius of solid spheres is larger than 0.70Å, all the atoms in the benzene molecule will

connect and constitute a single component, which gives rise to βr+0
0 = 1. Furthermore, we can deduce that the C C

bond length of the benzene ring is about 1.40Å, and the C H bond length is around 1.08Å, which are the real bond
lengths in benzene molecule. Figure 5c shows that a 1-dimensional hole (1-cycle) is born when the filtration parameter
r increase to 0.70Å and dead when r=1:21 Å . In Figure 5B,C, it can be seen that variants of 0-persistent
0-combinatorial Laplacian and 1 -combinatorial Laplacian matrices based on filtration give us the identical βr+0

0 and
βr+0
1 information, respectively.
The C C bond length of benzene is 1.39 Å, and the C H bond length is 1.09 Å. Due to the perfect hexagon struc-

ture of the benzene ring, we can calculate all of the distances between atoms. The shortest and longest distances
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between carbons and the hydrogen atoms are 1.09 Å and 3.87 Å. In Figure 5A, a total of 10 changes of ~λ2
� �r+0

0 values is
observed at various radii. Table 4 lists all the distances between atoms and the values of radii when the changes of
~λ2
� �r+0

0 occur. It can be seen that the distance between atoms approximately equals twice of the radius value when a

FIGURE 4 Benzene molecule and its topological changes during

the filtration process

FIGURE 5 Persistent spectral analysis of the benzene molecule induced by filtration parameter r. Blue line, orange line, and green line

represent Lr+0
0 , L̂r+0

0 , and L^ r+0

0 , respectively. A, Plot of the smallest non-zero eigenvalues with radius filtration under Lr+0
0 (blue line), L̂r+0

0

(red line), and L^ r+0

0 (green line). Total 10 jumps observed in this plot, which represent 10 possible distances between atoms. B, Plot of the

number of zero eigenvalues βr+0
0

� �
with radius filtration under Lr+0

0 , L̂r+0
0 , and L^ r+0

0 (three spectra are superimposed). When r=0:00 Å,

12 atoms are disconnected with each other. After r=0:54 Å, H atoms and their adjacent C atoms are connected with one another resulting

in βr+0
0 = 6. With r keeps growing, all of the atoms are connected with one another and then βr+0

0 = 1. C, Plot of the number of zero

eigenvalues (βr+0
1 ) with radius filtration under Lr+0

1 . When r=0:70 Å, a 1-cycle created since all of the C atoms are connected and form a

hexagon, resulting in βr+0
1 = 1. After the radius reached 1.21Å, the hexagon disappears and βr +0

1 = 0

TABLE 4 Distances between atoms in the benzene molecule and the radii when the changes of ~λ2
� �r+0

0 occur (values increase from

left to right)

Type C1 − H1 C1 − C2 C2 − H1 C1 − C3 H1 − H2 C1 − C4 C3 − H1 C4 − H1 H1 − H3 H1 − H4

Distance (Å) 1.09 1.39 2.15 2.41 2.48 2.78 3.39 3.87 4.30 4.96

r (Å) 0.54 0.70 1.08 1.21 1.24 1.40 1.70 1.94 2.15 2.49
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jump of ~λ2
� �r+0

0 occurs. Therefore, we can detect all the possible distances between atoms with the nonzero spectral
information. Moreover, in Figure 5B, the values of the smallest nonzero eigenvalues of Lr+0

0 , L̂r+0
0 , and L^ r+0

0 change
concurrently.

3 | APPLICATIONS

In this section, we apply the proposed PST to the study of two important systems, fullerenes and proteins. All three dif-
ferent types of persistent combinatorial Laplacian matrices are employed in our investigation. The resulting persistent
spectra contain not only the full set of topological persistence from the harmonic spectra, which is identical to that from
a persistent homology analysis, but also non-harmonic eigenvalues and eigenvectors. Since the power of topological
persistence has been fully explored and exploited in the past decade,20-23 to demonstrate the additional utility of our
persistent spectral analysis, we mainly emphasize the non-harmonic spectra in the present applications. In particular,
we demonstrate that PST is able to accurately predict the B-factors of a set of proteins for which the current biophysical
models break down.

3.1 | Fullerene analysis and prediction

In 1985, Kroto et al discovered the first structure of C60,
41 which was confirmed by Kratschmer et al in 1990.42 Since

then, the quantitative analysis of fullerene molecules has become an interesting research topic. The understanding of
the fullerene structure–function relationship is important for nanoscience and nanotechnology. Fullerene molecules
are only made of carbon atoms that have various topological shapes, such as the hollow spheres, ellipsoids, tubes, or
rings. Due to the monotony of the atom type and the variety of geometric shapes, the minor heterogeneity of fullerene
structures can be ignored. The fullerene system offers a moderately large dataset with relatively simple structures.
Therefore, it is suitable for validating new computational methods because every single change in the spectra is inter-
pretable. The proposed PST, that is, persistent spectral analysis, is applied to characterize fullerene structures and pre-
dict their stability.

All the structural data can be downloaded from CCL.NET Webpage. This dataset gives the coordinates of fullerene
carbon atoms. In this section, we will analyze fullerene structures and predict the heat of formation energy.

3.1.1 | Fullerene structure analysis

The smallest member of the fullerene family is C20 molecule with a dodecahedral cage structure. Note that 12 pentagons
are required to form a closed fullerene structure. Following the Euler's formula, the number of vertices, edges, and faces
on a polygon have the relationship V − E + F = 2. Therefore, the 20 carbon atoms in the dodecahedral cage form 30 bonds
with the same bond length. The C20 is the only fullerene smaller than C60 that has the molecular symmetry of the full ico-
sahedral point group Ih. C60 is a molecule that consists of 60 carbon atoms arranged as 12 pentagon rings and 20 hexagon
rings. Unlike C20, C60 has two types of bonds: 6 : 6 bonds and 6 : 5 bonds. The 6 : 6 bonds are shorter than 6 : 5 bonds,
which can also be considered as “double bond.”43 C60 is the most well-known fullerene with geometric symmetry Ih. Since
C20 and C60 are highly symmetrical, they are ideal systems for illustrating the persistent spectral analysis.

Figure 6A illustrates the radius filtration process built on C20. As the radius increases, the solid balls corresponding
to carbon atoms grow, and a sequence of Lr+0

0 matrices can be defined through the overlap relations among the set of
balls. At the initial state (r=0:00 Å), all of the atoms are isolated from one another. Therefore, Lr+0

0 is a zero matrix
with dimension 20× 20. Since the C20 molecule has the same bond length, which can be denoted as l(C20), once the
radius of solid balls is greater than l(C20), all of the balls are overlapped, which makes the system a singly connected
component. Figure 6B depicts the accumulated Lr+0

0 for C20. For C60, the accumulated Lr+0
0 is described in Figure 7A.

Figure 7B-F shows the plots of Lr+0
0 under different filtration r values. The blue cell located at the ith row and jth col-

umns means the balls centered at atom i and atom j were connected to each other, that is, a 1-simplex formed with its
vertex was i and j. When the radius filtration increases, more and more bluer cells are created. In Figure 7F, the color
of cells, except the cells located in the diagonal, turns to blue, which means all of the carbon atoms are connected with
one another at r=3:6 Å. For clarity, we set the diagonal terms to 0.
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In Figure 8, the blue solid line represents C20 properties and the dash orange line represents C60 properties. For
Figure 8A, the blue line drops at r=0:72 Å, which means that the bond length of C20 is around 1.44Å. The orange line
drops at r=0:68 Å and 0.72Å, which means that the “double bond” length of C60 is around 1.36Å and the 6 : 5 bond
length is around 1.44Å. Moreover, the total number of “double bond” is 30, yielding βr+0

0 = 30 when the radius of solid
balls is over 0.68Å. In conclusion, one can deduce the number of different types of bonds as well as the bond length
information from the number of zero eigenvalues (ie, βr+0

0 ) under the radius filtration. Furthermore, the geometric

FIGURE 7 Illustration of persistent multiscale analysis of C60 in terms of 0-combinatorial Laplacian matrices, B-F, and their

accumulated matrix, A, induced by filtration. As the value of filtration parameter r increases, high-dimensional simplicial complex forms

and grows accordingly. B-F demonstrate the 0-combinatorial Laplacian matrices (ie, the connectivity among C60 atoms) at filtration, r = 1.0,

1.5, 2.5, 3.0, and 3.6 Å, respectively. The blue cell located at the ith row and jth column represents the balls centered at atom i and atom j

connected with each other. For clarity, the diagonal terms are set to 0 in all plots

FIGURE 6 A, Illustration of filtration built on fullerene C20. Each carbon atom of C20 is plotted by its given coordinates, which are

associated with an ever-increasing radius r. The solid balls centered at given coordinates keep growing along with the radius filtration

parameter. B, The accumulated Lr+0
0 matrix for C20. For clarity, the diagonal terms are set to 0
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information can also be derived from the plot of ~λ2
� �r+0

0 . Each jump in Figure 8D at a specific radius represents the
change of geometric and topological structures. The smallest non-zero eigenvalue ~λ2

� �r+0

0 of Lr+0
0 matrices for C20

changes 5 times in Figure 8D, which means C20 has five different distances between carbon atoms. Furthermore, by
Remark 2.1, as ~λ2

� �r+0

0 of C20 keeps increasing, the smallest vertex connectivity of the connected subgraph continues
growing and the topological structure becomes steady. As can be seen in the right-corner chart of Figure 6, the carbon
atoms will finally grow to a solid object with a steady topological structure.

Figure 8B depicts the changes of Betti 1 value βr+0
1 (ie, the number of zero eigenvalues for Lr+0

1 ) under the filtration
r. Since C20 has 12 pentagonal rings, βr+0

1 jumps to 11 when radius r equals to the half of the bond length of l(C20).
These eleven 1-cycles disappear at r=1:17 Å . There are 12 pentagons and 20 hexagons in C60, which results in
βr+0
1 = 12 at r=0:72 Å and βr+0

1 = 31 at r=1:17 Å. All of the pentagons and hexagons disappear at r=1:22 Å.

FIGURE 8 Illustration of persistent spectral analysis of C20 and C60 using the spectra of Lr+0
q (q = 1, 2, and 3). A, The number of zero

eigenvalues of Lr+0
0 , that is, βr+0

0 , under radius filtration. B, The number of zero eigenvalues of Lr +0
1 , that is, βr+0

1 under radius filtration. C,

The number of zero eigenvalues of Lr+0
2 , that is, βr +0

2 under radius filtration. D, The smallest non-zero eigenvalue ~λ2
� �r+0

0 under radius

filtration. The radius grid spacing is 0.01Å
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As the filtration process, even more structure information can be derived from the number of zero eigenvalues of
Lr+0
2 (ie, βr+0

2 ) in Figure 8C. For C20, β
r+0
2 = 1 when r=1:17 Å, which corresponds to the void structure in the center of

the dodecahedral cage. The void disappears at r=1:65 Å since a solid structure is generated at this point. For fullerene
C60, 20 hexagonal cavities and a center void exist from 1.12Å to 1.40Å yielding βr+0

2 = 21. As the filtration goes, hexago-
nal cavities disappear which results βr+0

2 decrease to 1. The central void keeps alive until a solid block is formed at
r=3:03 Å. In a nutshell, we can deduce the number of different types of bonds, the bond length, and the topological
invariants from the present persistent spectral analysis.

3.1.2 | Persistent spectral predictions of fullerene stability using both harmonic and
non-harmonic spectra

Having shown that the detailed fullerene structural information can be extracted into the spectra of Lr+0
q , we further

illustrate that fullerene functions can be predicted from their structures by using our PST in this section. Similar
structure-function analysis has been carried out by using other methods.24,33,44 For small fullerene molecule series C20

to C60, with the increase in the number of atoms, the ground-state heat of formation energies decrease.45,46 The left
chart in Figure 9 describes this phenomenon. Similar patterns can also be found in the total energy (STO-3G/SCF at
MM3) per atom and the average binding energy of C2n. To analyze these patterns, many theories have been proposed.
Isolated pentagon rule assumes that the most stable fullerene molecules are those in which all the pentagons are iso-
lated. Zhang et al46 stated that fullerene stability is related to the ratio between the number of pentagons and the num-
ber of carbon atoms. Xia and Wei44 proposed that the stability of fullerene depends on the average number of hexagons
per atom. However, these theories all focused on the pentagon and hexagon information. More specifically, they use
purely topological information to reveal the stability of fullerene. In contrast, we believe that both harmonic persistent
spectra and non-harmonic persistent spectra can be used to model the structure-function relationship of fullerenes. We
hypothesize that the non-harmonic persistent spectra of Lr+0

0 matrices are powerful enough to model the stability of
fullerene molecules. To verify our hypothesis, we compute the summation, mean, maximal, SD, variance of its eigen-
values, and ~λ2

� �r+0

0 of the persistent spectra of Lr+0
0 over various filtration radii r. We depict a plot with the horizontal

axis representing radius r and the vertical axis representing the particular spectrum value, which is actually the same as
Figure 8. Then we define the area under the plot of spectra with a negative sign as

Aα = −
X
i=1

Λα
i δr, ð35Þ

where δr is the radius grid spacing, in Figure 8, δr=0:01 Å. Here, α= Sum, Avg, Max, SD, Var, and Sec being the type
index, and thus, Λα

i represent the summation, mean, maximal, SD, variance, and the smallest non-zero eigenvalue

FIGURE 9 Persistent spectral analysis and prediction of fullerene heat formation energies. Left chart: the heat of formation energies of

fullerenes obtained from quantum calculations.46 Middle chart: PST model using the area under the plot of ~λ2
� �r+0

0 . Right chart: correlation

between the quantum calculation and the PST prediction using non-topological spectral analysis (α = Max)
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~λ2
� �r+0

0 of Lr+0
0 at ith radius step, respectively. The right chart in Figure 9 describes the area under the plot of spectra

and closely resembles that of the heat of formation energy. We can see that generally the left chart and the middle chart
show the same pattern. The integration of ~λ2

� �r+0

0 decreases as the number of carbon atoms increases. However, the
structural data we used might not be the same ground-state data as in Reference 46, which results in C36 being not
matching the corresponding energy perfectly. Limited by the availability of the ground-state structural data, we are not
able to analyze the full set of the fullerene family.

As the present persistent spectral method provides both topological (ie, harmonic) and non-topological spectral
analyses, we are interested in a further comparison of their performances. For the topological spectral analysis, we
adopted the model of Xia and Wei,44 which was based on the atom number averaged Betti-2 length for the cavity.
The Betti-2 length for the cavity is the longest persistence of βr+0

2 (ie, the number of zero eigenvalues for Lr+0
2 under

the filtration r). Table 5 presents the predictions obtained from both topological spectral analysis and non-topological
spectral analysis. The right chart of Figure 9 plots the correlations between predicted energies and the heat of formation
energy of the fullerene molecules computed from quantum mechanics.46 Clearly, both methods provide very accurate
predictions.

To quantitatively validate our model, we apply one of the simplest machine learning algorithms, linear least-squares
method, to predict the heat of formation energy. The Pearson correlation coefficient for the αth method is defined as

Cα
c =

PN
k=1

Ak
α− �Aα

� �
Ek− �Eð Þ

PN
k=1

Ak
α− �Aα

� �2 PN
k=1

Ek− �Eð Þ2
� �1

2
ð36Þ

where Ak
α represents the theoretically predicted energy of the kth fullerene molecule, Ek represents the heat of forma-

tion energy of the kth fullerene molecule, and �Aα and �E are the corresponding mean values.
Table 6 lists the correlation coefficient under different type index α and harmonic spectral information of Lr+0

2 . The
highest correlation coefficient is close to unity (0.986) obtained with α = Max. The lowest correlation coefficient is 0.942
with α = Sum. We can see that all the correlation coefficients are close to unity, which verifies our hypothesis that the
non-harmonic spectra of Lr+0

0 have the capacity of modeling the stability of fullerene molecules. The performance of
the topological spectra is on a bar with that of the best of the non-harmonic spectra. Obviously, our persistent harmonic
spectral information and persistent non-harmonic spectral information could be trivially combined in the present
machine learning setting to achieve an even higher accuracy. Therefore, our PST works extremely well only with both
harmonic and non-harmonic spectra, which means our PST is a powerful tool for quantitative data analysis and
prediction.

TABLE 6 The correlation coefficients for predictions using different type of statistics of non-harmonic spectra and topological

spectra (top)

Type index Sum Avg Max SD Var Sec Top

Correlation coefficient 0.942 0.985 0.986 0.969 0.977 0.981 0.979

TABLE 5 The heat of formation energy of fullerenes46 and its corresponding energies predicted non-harmonic spectral model

(α = Max) and harmonic spectral model

Fullerene type C20 C24 C26 C30 C32 C36 C50 C60

Heat of formation energy 1.180 1.050 0.989 0.850 0.781 0.706 0.509 0.401

Non-harmonic spectral energy 1.138 1.050 0.964 0.821 0.857 0.766 0.474 0.391

Harmonic spectral energy 1.224 0.962 0.929 0.861 0.825 0.737 0.564 0.364

Note: The unit is EV/atom.
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3.2 | Protein flexibility analysis

As clarified earlier, the number of zero eigenvalues of p-persistent q-Laplacian matrix (p-persistent qth Betti number)
can also be derived from persistent homology. Persistent homology has been used to model fullerene stability.44 In this
section, we further illustrate the applicability of present PST by a case that non-harmonic persistent spectra offer a
unique theoretical model, whereas it may be difficult to come up with a suitable persistent homology model for this
problem. To this end, we consider a challenging biophysical problem for which current methods do not work well.

The protein flexibility is known to correlate with a wide variety of protein functions. It can be modeled by the beta
factors or B-factors, which are also called Debye-Waller factors. B-factors are a measure of the atomic mean-square dis-
placement or uncertainty in the X-ray scattering structure determination. Therefore, understanding the protein struc-
ture, flexibility, and function via the accurate protein B-factor prediction is a vital task in computational biophysics.47

Over the past few years, quite many methods are developed to predict protein B-factors, such as GNM,30 ANM,31

FRI,48,49 and MWCG.34,47 However, all of the aforementioned methods are based on a particular matrix derived from
the graph network, which is constructed using alpha carbon as nodes and connections between nodes as edges. In this
section, we apply our PST to create richer geometric information in B-factor prediction. In particular, we are interested
in the prediction of B-factors for which the standard GNM fails to work.

To illustrate our method, we consider a protein whose total number of residues is N. In this work, we employ the
coarse-grained Cα representation. Similarly, like in the previous application of fullerene structure analysis, we treat
each Cα atom as a 0-simplex at the initial setup and assign it a solid ball with a radius of r. By varying the filtration
parameter r, we can obtain a family of Lr+0

0 . For each matrix Lr+0
0 , its corresponding ordered spectrum is given by

λ1ð Þr+0
0 , λ2ð Þr+0

0 , � � �, λNð Þr+0
0 :

Suppose the number of zero eigenvalues is m, then we have βr+0
0 =m. Since Lr+0

0 is symmetric, then eigenvectors
of Lr+0

0 corresponding to different eigenvalues must be orthogonal to each other. The Moore-Penrose inverse of Lr+0
0

can be calculated by the non-harmonic spectra of Lr+0
0 :

Lr+0
0

� �−1
=

XN
k=m+1

1

λkð Þr+0
0

ukð Þr+0
0 ukð Þr+0

0

� �Th i
,

where T is the transpose and ukð Þr+0
0 is the kth eigenvector of Lr+0

0 . The modeling of ith B-factor at filtration parameter
r can be expressed as

Br
i = Lr+0

0

� �−1
ii ,8i=1,2, � � �,N ,

FIGURE 10 Comparison of protein B-factors obtained by experiment (left chart), PST (middle chart), and GNM (right chart) for

protein PDB ID: 1V70, visualized in Visual Molecular Dynamics (VMD).51 Red color represents for the most flexible regions
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and the final model of ith B-factor is given by

BPST
i =

X
r
wrB

r
i +w0,8i=1,2, � � �,N ,

FIGURE 11 Comparison of experimental B-factors (Exp) and those predicted by PST and GNM for proteins 1V70, 1R7J, 1OPD,

and 2FQ3

TABLE 7 Pearson correlation

coefficients in B-factor predictions using

GNM, NMA, and PST for a group of

proteins that are very challenging

to GNM

PDB ID GNM NMA PST

1OPD 0.398 0.372 0.886

2PKT −0.286 −0.245 0.745

2FQ3 0.384 0.609 0.808

1R7J 0.368 0.400 0.908

1W2L 0.397 0.130 0.808

5CYT 0.331 0.248 0.624

1 V70 0.162 0.265 0.826

1CCR 0.351 0.379 0.708

2VIM 0.212 0.243 0.535

2CG7 0.379 0.355 0.780

1QTO 0.334 0.672 0.853

1WHI 0.270 0.492 0.612

1NKO 0.368 0.583 0.770

1O08 0.309 0.281 0.811

2HQK 0.348 0.715 0.808

Note: Pearson correlation coefficients for GNM and NMA are extracted from Reference 50.
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where wr and w0 are fitting parameters which can be determined from a simple machine learning algorithm, the linear
regression, using B-factors from experimental data BExp.3 In this application, we consider the filtration radius from 2 to
6 with the grid spacing of 0.5 and grid spacing of 2 from 6 to 26, then totally 20 different Lr+0

0 are created at r = 1.5, 2,
2.5, 3,3.5,4,4.5,5, 5.5, 6,8,10,12,14,16,18,20,22,24, and 26. By calculating all the non-harmonic spectra together with their
eigenvectors, 20 Moore-Penrose inverse matrices Lr+0

0

� �−1
are constructed.

Park et al have carried out the B-factor prediction of small-, medium-, and large-sized proteins using GNM and
NMA.50 We collected a total of 15 medium-sized or large-sized proteins for which the Pearson correlation coefficient of
GNM prediction is less than 0.4 reported in an earlier study.50 Figure 10 plots the flexibility of 1V70 with red color rep-
resenting for the most flexible regions (the highest B-factor). Obviously, B-factors predicted by PST are very similar to
experimental values, whereas GNM predictions differ dramatically from experimental B-factors. This situation can also
be seen from Figure 11 where B-factors predicted by PST and GNM are compared with those of experimental results.
GNM fails to work for 1V70, 1R7J, and 2FQ3. The Pearson correlation coefficients of GNM, NMA, and PST are com-
pared in Table 7. This study shows that the proposed PST has a great potential in multiscale biophysical modeling and
prediction.

4 | CONCLUSION

SGT is a powerful tool for data analysis due to its ability to extract geometric and topological information. However, its
performance can be quite limited for various reasons. One of them is that the current SGT does not provide a multiscale
analysis. Motivated by persistent homology and multiscale graphs, we introduce PST as a unified paradigm to unveil
both topological persistence and geometric shape from high-dimensional datasets.

For a point set V � ℝn without additional structures, we construct a filtration using an (n − 1) sphere of a varying
radius r centered at each point. A series of persistent combinatorial Laplacian matrices are induced by the filtration.
It is noted that our harmonic persistent spectra (ie, zero eigenvalues) fully recover the persistent barcode or persistent
diagram of persistent homology. Specifically, the numbers of zero eigenvalues of persistent q-combinatorial Laplacian
matrices are the q-dimensional persistent Betti numbers for the same given filtration. However, additional valuable
spectral information is generated from the non-harmonic persistent spectra. In this work, in addition to persistent
Betti numbers and the smallest non-zero eigenvalues, five statistic values, namely, sum, mean, maximum, SD, and
variance, are also constructed for data analysis. We use a few simple two-dimensional (2D) and three-dimensional
(3D) structures to carry out the proof-of-principle analysis of the PST. The detailed structural information could be
incorporated into the persistent spectra. For instance, for the benzene molecule, the approximate C C bond and
C H bond length can be intuitively read from the plot of the 0-dimensional persistent Betti numbers. Moreover, PST
also has the capacity to accurately predict the heat of formation energy of small fullerene molecules. We use the area
under the plot of the persistent spectra to model fullerene stability and apply the linear least-squares method to fit
our prediction with the heat of formation energy. The resulting correlation coefficient is close to 1, which shows that
our PST has an excellent performance on molecular data. Furthermore, we have applied our PST to the protein B-
factor prediction. In this case, persistent homology does not offer a straightforward model. We consider a set of
15 challenging proteins for which the most popular biophysical method, Gaussian network model (GNM), fails to
work.50 We show that the additional non-harmonic persistent spectral information provides extremely successful B-
factor predictions to this set of challenging proteins.

It is pointed out that the proposed persistent spectral analysis can be paired with advanced machine learning algo-
rithms, including various deep learning methods, for a wide variety of applications in data science. In particular, the
further construction of element-specific PST and its application to protein-ligand binding affinity prediction and
computer-aided drug design will be reported elsewhere.
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ENDNOTES
1If q = 0, ∂0 is a zero map, and we denote ℬ0 a zero matrix with dimension 1 × N, where N is the number of 0-simplices. Note that this term
is needed to attain the correct dimension of the null space. If q > dim(K), we will not discuss ∂q since there is no σq in K.
2We define the boundary matrix Bt

0 for boundary map ∂t0 as a zero matrix. The number of columns of Bt
0 is the number of 0-simplices in Kt,

the number of rows will be 1.
3We carry out feature scaling to make sure all Br

i are on a similar scale.
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