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Abstract—The construction of a smooth surface interpolating a mesh of arbitrary topological type is an important problem in many

graphics applications. This paper presents a two-phase process, based on a topological modification of the control mesh and a

subsequent Catmull-Clark subdivision, to construct a smooth surface that interpolates some or all of the vertices of a mesh with

arbitrary topology. It is also possible to constrain the surface to have specified tangent planes at an arbitrary subset of the vertices to be

interpolated. The method has the following features: 1) it is guaranteed to always work and the computation is numerically stable,

2) there is no need to solve a system of linear equations and the whole computation complexity is OðKÞ where K is the number of the

vertices, and 3) each vertex can be associated with a scalar shape handle for local shape control. These features make interpolation

using Catmull-Clark surfaces simple and, thus, make the new method itself suitable for interactive free-form shape design.

Index Terms—Computer graphics; computational geometry and object modeling; curve, surface, solid, and object representations;

computer-aided engineering; computer-aided design.

�

1 INTRODUCTION

MODELING complex smooth surfaces is an important task
in industrial design, geometric modeling, computer

graphics, animation, and visualization. The surfaces might
have complex topological structure; for example, arbitrary
genus. Though nonuniform rational B-splines (NURBS)
have been an industrial standard and are readily available
in existing commercial modeling systems, it is usually
difficult to construct such surfaces using NURBS because
NURBS suffer from the topological restrictions of the
control meshes. A patchwork of trimmed NURBS may
be used instead. However, considerable effort is required
to maintain the continuity at the connections of the
patchwork [3].

Recursive subdivision was introduced as an efficient
technique to model arbitrary topological surfaces. Starting
from an initial polyhedral mesh, subdivision recursively
refines the mesh by adding new vertices, edges, and faces.
As the number of this process goes to infinity, the refined
meshes finally converge to a smooth limit surface. A typical
and favoring scheme is the Catmull-Clark [2], which is the
generalization of bicubic B-splines. Since the 1990s, research
on subdivision surfaces has been gaining rapid develop-
ment in both algorithmic and mathematical aspects [24],
[25]. These developments also move applications of sub-
division surfaces forward.

Subdivision algorithms allow users to arrange control
points in a way that naturally matches the geometric

characteristics of the model without concern for maintain-
ing a regular mesh structure. This makes subdivision
surfaces attractive for interactive free-form surface design.
It is, therefore, of particular interest to investigate theore-
tically safe and practically fast interpolation algorithms
using subdivision surfaces. The goal of this paper is to
develop a simple, fast, and reliable algorithm based on the
Catmull-Clark subdivision scheme for constructing smooth
interpolating surfaces of arbitrary topology. We choose to
use Catmull-Clark subdivision surfaces because they are the
generalization of bicubic B-splines, making them easier to
use in conjunctions with existing modeling systems. The
Catmull-Clark subdivision algorithm can handle arbitrarily
topological meshes, including regular rectangular meshes,
triangular meshes, and other nontriangular meshes.

1.1 Prior Work

Interpolation using subdivision surfaces can be achieved in
two ways. The first approach is to use interpolating
subdivision schemes. Dyn et al. [5] pioneered a so-called
Butterfly scheme that interpolates the vertices of the input
mesh. Zorin et al. [26] modified the subdivision rules of the
Butterfly scheme to yield a smoother surface. These schemes
are based on triangular meshes. Kobbelt [10] proposed an
interpolatory subdivision scheme for quadrilateral nets.
Levin [11] developed a combined subdivision scheme that
interpolates a net of curves rather than a set of vertices.

There is a large class of subdivision algorithms that
typically are generalizations of spline-based schemes. For
example, the Doo-Sabin scheme [4] generalizes the knot
insertion for biquadratic B-splines, the Catmull-Clark [2]
generalizes bicubic B-splines, and the Loop [13] is the
generalization of quartic box splines. Just like their spline
counterparts, these schemes usually do not interpolate the
vertices of the meshes. The second approach of achieving
interpolation, therefore, is to do some modifications to force
the limit surface to go through the vertices. Hoppe et al. [9]
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presented a modification of the Loop’s algorithm. Nasri [14]
presented a modification for the Doo-Sabin algorithm.
Brunet [1] introduced a set of shape handles associated to
the vertices for shape control in Nasri’s approach.
Halstead et al. [8] proposed an interpolation scheme using
Catmull-Clark surfaces, which minimized a certain fairness
measure. Both Nasri’s and Halstead et al.’s methods had to
construct a linear constraint on the control points of the
initial mesh for each interpolating vertex and thus
established a system of linear equations. The initial control
mesh for the subdivision surface was obtained by solving
the equations. However, it is unclear under what conditions
the linear system is solvable [26]. As pointed out in [8], it is
possible for the linear system to be singular or ill-
conditioned. Besides, solving a large system of linear
equations takes a considerable computational cost.

1.2 Contributions

In this paper, we present an interpolation algorithm
using a modification of the Catmull-Clark subdivision
scheme, which provably always works and does not
require solving global linear systems. The basic idea is to
generate an initial mesh using a fixed number of
iterations for the linear equations, then to refine the
mesh using a new subdivision rule to topologically
separate vertices so that the supports of interpolated
vertices are mutually disjunct, and finally to displace the
vertices in the support to force interpolation and to
provide additional local shape control. Our work
combines some ideas of Nasri [14], [15], Brunet [1],
and Halstead et al. [8] with new insights. There are also
similarities between our method and Peters’ patch-based
schemes [17], [18], [19]. While our method focuses on
subdivision surfaces for local interpolation over irregular

meshes, Peters’ work gives alternative techniques that
directly construct geometrically continuous biquadratic/
bicubic patches satisfying interpolation constraints. His
methods do not need to solve a global system of
equations either.

The whole procedure of our approach is illustrated in
Fig. 1. In this paper, we call the input mesh (Fig. 1a) the
interpolating polyhedron. It specifies the vertices
(P1; � � � ; P7) and tangent planes (two short green lines
indicate the normal vectors of the tangent planes at P3 and
P4) that need to be interpolated. We construct an initial
control mesh bMM0 (Fig. 1b) by a method developed in
Section 3.1. Refining this control mesh using a set of new
rules introduced in Section 2 gives an intermediate mesh
(Fig. 1c), which is then perturbed to yield a refined meshbMM1 (Fig. 1d) where the superscript denotes the number of
the refinement. The perturbation is used to assure the
interpolation property. Note that the local structures
corresponding to P3 and P4 have obvious changes due to
the tangent-plane constraints. We may also use shape
handles introduced in Section 4 to adjust bMM1 for local shape
control, resulting in an updated mesh (Fig. 1e). Here, the
shape handles for P1 and P2 equal 1.5 and the shape handle
for P7 is 0.5. The limit surface (Fig. 1f) is then generated by
applying the Catmull-Clark algorithm to (the possibly
updated) bMM1. It interpolates the required vertices and
tangent planes.

Our main contributions include:

. We present a modification of the Catmull-Clark
scheme. It is a two-phase subdivision process that
uses a set of new rules for the first subdivision
iteration, followed by the Catmull-Clark rules that
are applied to the limit. The geometric intuition of
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introducing this two-phase subdivision process is to
separate the influence region of each vertex of the
input mesh so that we can adjust the newly created
vertices locally to make the interpolation problem
always work. Also, this modification provides the
capability of increasing the appearance similarity
between the initial control mesh and the limit
surface by adjusting some scale numbers (known
as the “blend ratio”). The two-phase process can be
used to easily model fillets and blends.

. We develop an interpolation algorithm under the
framework of our two-phase subdivision process.
The algorithm is proven to always work.

. The algorithm complexity is OðKÞ where K is the
number of vertices of the mesh. No solution of a
global linear system is required.

. A set of shape handles are introduced with this two-
phase subdivision scheme. They can be used to
locally adjust the shape of the limit surface.

1.3 Overview

In the next section, we review Catmull-Clark subdivision

surfaces and present a modification of the Catmull-Clark

scheme. Section 3 describes an algorithm for the construction

of a subdivision surface that interpolates part or whole

vertices of the input mesh. Section 4 shows how to introduce

a set of shape handles with this interpolating scheme for the

shape adjustment of the limit surface. Section 5 draws a

conclusion. We restrict our discussion to closed meshes.

Extension to open meshes is straightforward.

2 A TWO-PHASE SUBDIVISION SCHEME

A closed mesh we consider is a polyhedronlike configura-

tion of faces, edges, and vertices such that each vertex

corresponds to a point in 3D space, each edge is a line

segment bounded by two vertices, and each face is bounded

by a loop of edges. We also require that each edge is shared

by exactly two faces and, in each loop, adjacent edges share a

vertex. Note that in this definition, a face is defined

topologically and its exact geometry is actually not specified.

One may consider a face as lying in the convex hull of its

edges [20]. The Catmull-Clark subdivision algorithm takes

such a mesh and generates a smooth surface as the limit of

the process of recursive refinement. The process for each

refinement iteration includes:

1. For each face, compute a new face point as the
average of all of the old points of the face.

2. For each edge, compute a new edge point as the
average of the two old endpoints of the edges and
the two new face points of the faces originally
sharing the edge.

3. For each vertex, compute a new vertex point as a
linear combination of the points within the neigh-
borhood of the vertex. Specifically,

n� 2

n
V þ 1

n2

Xn
j¼1

Ej þ
1

n2

Xn
j¼1

Fj;

where n is the valence of the old vertex; V is the old
vertex point; Ej are the endpoints, other than V , of
all edges incident on the old vertex; and Fj are the
face points of all faces sharing the old vertex.

4. Create new edges by connecting each new face point
to the new edge points of the edges surrounding the
face, and connecting each new vertex point to the new
edge points of the edges incident on the old vertex.

5. Create new faces that have a loop of new edges.

The above Steps 1–3 define the new geometry and
Steps 4 and 5 define the connectivity. When this process
step continues, it yields a sequence of refined meshes which
eventually converges to a limit surface, known as the
Catmull-Clark surface. An example of a Catmull-Clark
surface with its initial control mesh is shown in Fig. 2.

The Catmull-Clark subdivision algorithm works on
a mesh of arbitrary topological type. After the first
refinement step, all faces in the refined mesh become
quadrilateral, and the number of extraordinary vertices
(i.e., vertices of valence other than 4) will remain constant
in the subsequent subdivision steps. The limit surface
gives rise to bicubic B-spline patches for all faces except
those in the neighborhood of extraordinary points. There-
fore, the limit surface is curvature-continuous except at
the extraordinary vertices, where theoretical analysis has
shown that the limit surface is tangent-plane-continuous.
If there happens to be no extraordinary vertex (i.e., the
initial mesh is regular), the limit surface is just a bicubic
B-spline surface.

It is known that the control mesh of a B-spline surface
roughly captures the shape of the surface. At times,
however, designers expressed some dissatisfaction about
the loose resemblance between the control mesh and the
resulting surface. New schemes were proposed to improve
the resemblance for cubic curves and surfaces [16], [23]. As
the generalization of bicubic B-splines, Catmull-Clark
surfaces behave similarly. Meanwhile, for subdivision
surfaces, the top-level subdivision iterations play a key role
on the overall shape of the limit surface. Based on these
observations, we propose to use a simple two-phase
subdivision process to increase the resemblance of
Catmull-Clark surfaces to their control meshes. The basic
idea is to use one set of new rules for the first subdivision
iteration as the first phase, followed by the Catmull-Clark
rules to the end as the second phase. The new rules are also
based on the original Catmull-Clark subdivision rules. They
keep the first three steps of the Catmull-Clark refinement.
To avoid confusion, we call those new face, edge, and
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vertex points generated by the Catmull-Clark rules the
intermediate face, edge, and vertex points. Then, the steps
after Step 3 are as follows:

4. For each face with m surrounding vertices Vi,
i ¼ 1; � � � ;m, and an intermediate face point F ,
generate m new face points Fi:

Fi ¼ �Vi þ ð1� �ÞF;

where � 2 ½0; 1� is a certain constant. Fi can be
considered as the image of Vi on the face.

5. For each edge with two endpoints V1 and V2, and an
intermediate edge point E, compute two new edge
points Ei ¼ �Vi þ ð1� �ÞE for i ¼ 1; 2. Ei can be
considered as the image of Vi on the edge.

6. For each vertex V with an intermediate vertex point
V 0, generate a new vertex point �VV ¼ �V þ ð1� �ÞV 0:

7. A new face of type F is created for each old face by
connecting new face points F1; F2; � � � ; Fm.

8. Two four-sided new faces of type-E are created for
each old edge by connecting the two new edge
points E1 and E2 and connecting each new edge
point Ei to the two new face points—the images of
the corresponding old vertex Vi on the two adjacent
faces sharing the edge.

9. n four-sided new faces of type-V are created for each
old vertex of valence n by connecting the new vertex
point to the images of the vertex on the surrounding
edges (i.e., the corresponding new edge points).

An example of the mesh after the first subdivision is shown
in Fig. 3.

Note that in the above process, the constant � for each
vertex could be different. But for simplicity, in this paper
we assume there is only one � for all vertices. A similar
parameter, called blend ratio, was also introduced in Peters’
method [18].

The modified algorithm retains many properties of the
original Catmull-Clark algorithm. For example, the limit
surface lies on the convex hull of the initial control mesh.
This is because the new points are a convex combination of
the old points. For � 2 ð0; 1Þ, the modified rule will not alter
the number of the non-four-valent vertices and the number
of non-four-sided faces. Therefore, the number of the final

extraordinary points will be the same. This means the
continuity behavior will not be changed and depends only
on the Catmull-Clark rules.

On the other hand, as �! 1, the similarity of the limit
surface and the initial control mesh increases. Fig. 4
demonstrates the effects of different values of �. In
particular, when � ¼ 1, all type-V faces around a vertex
degenerate to that vertex, all type-F faces are exactly the
same as the corresponding old faces, and all type-E faces
degenerate to the edges. The subsequent Catmull-Clark
subdivision steps will not change the appearance of the
mesh. Thus, the limit surface looks the same as the initial
mesh. This effect cannot be achieved by the original Catmull-
Clark algorithm. Another application of the modified
algorithm is for fillet or blend operation on a polyhedral
object [6], which is used quite often in CAD/CAM. We let
the polyhedron be the initial mesh, and choose � such that
1� � is a small positive number. Then, the limit surface will
remain close to the original mesh but smooth out the sharp
edges and vertices. [3] proposed another hybrid subdivision
scheme to achieve so-called semishape creases.

3 THE SURFACE INTERPOLATION METHOD

We begin with considering Interpolation Problem I: Given an

interpolating polyhedron bPP with a set of vertices P ¼ fPi :
i ¼ 1; � � � ; Kg and a subset SP of P , construct a smooth
surface interpolating the vertices in SP .

The basic idea of our approach is to construct another
mesh bMM0 with a set of vertices M ¼ fMi : i ¼ 1; � � � ; Kg,
having the same topology as bPP , where the vertices Mi are to
be determined. The sets P and M have a one-to-one
correspondence. We perform the first-phase subdivision onbMM0, yielding a refined mesh bMM1. The second phase, using
the Catmull-Clark algorithm, is then applied to bMM1. For
vertices Mi corresponding to the vertices in the compliment
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Fig. 3. The mesh after the first subdivision.

Fig. 4. Surfaces generated by the two-phase subdivision algorithm
corresponding to different values of �: (a) � ¼ 0:1, (b) � ¼ 0:3, (c)
� ¼ 0:6, (d) � ¼ 0:9.



set of SP , we simply let them be the corresponding Pi.
However, for those vertices Mi that correspond to the
vertices Pi in SP , we require the limit points corresponding
to Mi coincide with Pi. To assure this interpolation
property, the spatial positions of the vertices in bMM1 may
need some rectification. In the following, we describe the
details of our approach.

3.1 Interpolation Constraints

We consider one interpolating vertex in bPP and its
corresponding vertex in bMM0 and the neighborhood. With-
out ambiguity, we denote the interpolating vertex by
Q and the corresponding vertex bMM0 by V . Refer to Fig. 5
for labels. Assume there are n faces meeting at V . We also
denote the vertices of the neighborhood of V in mesh bMM0

by V 1
1 ; � � � ; V 1

m1�2; V
1
m1�1 ¼ V 2

1

� �
, V 2

2 ; � � � ; V 2
m2�2; V

2
m2�1 ¼ V 3

1

� �
,

V 3
2 ; � � � ; V n

mn�1 ¼ V 1
1

� �
, where mi is the number of vertices

of the ith face which has vertices V ; V i
1 ; � � � ; V i

mi�1. Note
that for each V i

1 (or V i
mi�1), there is an edge between V

and V i
1 (or V i

mi�1). For other V i
j , there is no edge directly

connecting to V . For convenience, we call vertex V and its
neighborhood an umbrella, denoted by V�V 1

1 V
1

2 � � �V n
mn�1.

After the first phase subdivision, a smaller umbrella �VV�
E1F1E2F2 � � �EnFn is generated, where �VV is the new vertex
point, Ei are the new edge points, and Fi are the new face
points. It is easy to check that these new points can be
computed by

Fi ¼ �þ 1� �
mi

� �
V þ ð1� �Þ 1

mi

Xmi�1

j¼1

V i
j ; ð1Þ

Ei ¼
1þ 3�

4
þ 1� �

4

1

mi�1
þ 1

mi

� �� �
V þ 1� �

4
V i

1

þ 1� �
4

Pmi�1�1

j¼1

V i�1
j

mi�1
þ

Pmi�1

j¼1

V i
j

mi

0BBB@
1CCCA;

ð2Þ

�VV ¼ n� 2þ 2�

n
þ 1� �

n2

Xn
i¼1

1

mi

 !
V þ 1� �

n2

Xn
i¼1

V i
1

þ 1� �
n2

Xn
i¼1

1

mi

Xmi�1

j¼1

V i
j

 !
:

ð3Þ

Note that the new umbrella has 2nþ 1 vertices, forming

n four-sided faces, and this topological structure will not

change during the subsequent Catmull-Clark refinement.

Using a discrete Fourier analysis, Halstead et al. showed

that this umbrella converges to a limit point:

n2 �VV þ 4
Pn

i¼1 Ei þ
Pn

i¼1 Fi
nðnþ 5Þ ð4Þ

The interpolation condition can be satisfied by setting the

above limit point to Q. Substituting (1), (2), and (3) into this

condition leads to

nðnþ 5ÞQ ¼ n2 � nþ 6n�þ 4ð1� �Þ
Xn
i¼1

1

mi

 !
V

þ2ð1� �Þ
Xn
i¼1

V i
1 þ 4ð1� �Þ

Xn
i¼1

1

mi

Xmi�1

j¼1

V i
j

 !
:

ð5Þ

Grouping the equations for all interpolating vertices and the

simple setting for noninterpolating vertices mentioned in

the beginning of Section 3, we arrive at a system of linear

equations with K equations and K unknowns. These are

the constraints on the initial control mesh bMM0.
Now, we give a sufficient condition under which the

system of linear equations has a unique solution.

Theorem 1: If � is chosen to satisfy

� > 7n� n2 � 8
Xn
i¼1

1

mi

 !
= 12n� 8

Xn
i¼1

1

mi

 !
for all interpolating vertices, then the system of linear

equations is diagonally dominant.

This can be easily proven by checking the coeffi-

cients of each equation. The coefficient of V is

n2 � nþ 6n�þ 4ð1� �Þ
Pn

i¼1
1
mi

, and the absolute values of

the coefficients of all other unknowns sum to

6ð1� �Þn� 4ð1� �Þ
Pn

i¼1
1
mi

. Therefore, when the condition

in Theorem 1 holds, the coefficient of V is greater than

the sum of the absolute values of all others and the

linear system, thus, is diagonally dominant. Furthermore,

note that n and all mi are always greater than 2. The

right side of the inequality in Theorem 1 is less than

ð7n� n2Þ=ð12n� 8 � n=3Þ ¼ ð21� 3nÞ=28 � 3=7. This gives a

very conservative estimation for �. If � � 3=7, then for any

configuration, the linear interpolation system has a unique

solution. In practice, the valid lower bound for � could be

very small. However, our experience shows that the values

from ½0:2; 0:5� for � give a visually pleasing shape of the

limit surface.

3.2 Computing the Initial Control Mesh

The initial control mesh bMM0 can now be computed by

directly solving the linear equations derived in Section 3.1.

As an alternative, the Gauss-Seidel or the Jacobi iterative

method is also often used, especially when the coefficient

matrix is sparse, large, and diagonally dominant [7]. The

convergence is guaranteed by the diagonal dominance.
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Therefore, the iterative method is preferable in our case. We

rewrite the iteration as

V ¼ Cnðnþ 5ÞS � 2Cð1� �Þ
Xn
i¼1

V i
1

� 4Cð1� �Þ
Xn
i¼1

1

mi

Xmi�1

j¼1

V i
j ;

ð6Þ

where C ¼ 1 n2 � nþ 6n�þ 4ð1� �Þ
Pn

i¼1
1
mi

� 	.
. The ini-

tial setting for the iteration is naturally chosen to be the

interpolating polyhedron. Once all updates for vertices are

within a prescribed bound or the iterative number exceeds a

predetermined one, the iteration stops and the current

vertices define the initial control mesh.
Since we have perturbation steps in our algorithm, which

are described in Section 3.3 and Section 3.4, we can choose a

moderate number as the maximum iteration number. It

does not matter if the updates are not within a prescribed

tolerance after the maximum number of iterations. We

experimented quite a few examples. Five iterations could

give very small updates for all our examples. So, in our

current implementation, we choose the maximum iteration

number to be 5. This makes the algorithm’s complexity be

linear in number of the interpolating vertices. In addition,

the iterative approach makes the programming task simple.

The user can ignore the underlying mathematics. The right

side of (6) is just a linear combination of vertices in the local

neighborhood of V . This process is similar to the one in [12],

retaining the flavor of digital geometric processing.

3.3 Perturbation for Position interpolation

In general, the initial control mesh bMM0 obtained by the

iterative approach is just an approximate solution. If the

Catmull-Clark rules are applied immediately to mesh bMM1

obtained from bMM0 by the first-phase subdivision, the limit

surface may not interpolate the specified vertices. It is,

therefore, necessary to make some rectification to mesh bMM1.
Note that after the first-phase subdivision, all type-V

faces in bMM1 corresponding to different interpolating

vertices are separated. That is, the respective umbrellas

in bMM1 of the interpolating vertices are mutually disjunct.

Therefore, we only need to study one interpolating

vertex and its neighborhood. Consider an interpolating

v e r t e x Q a n d i t s c o r r e s p o n d i n g u m b r e l l a

V�E1F1E2F2 � � �EnFn. Let W ¼ ½V ;E1; � � � ; En; F1; � � � ; Fn�T
be the column vector of vertices of this umbrella and we

also let Wi denote the ith element in this column vector.

We further denote m ¼ 2nþ 1 and L0 ¼ ½�1; � � � ; �m�,
w h e r e �1 ¼ n2=nðnþ 5Þ, �2 ¼ � � � ¼ �nþ1 ¼ 4=nðnþ 5Þ,
and �nþ2 ¼ � � � ¼ �2nþ1 ¼ 1=nðnþ 5Þ. Then, the limit point

corresponding to vertex V is V1 ¼ L0W ¼
Pm

i¼1 �iWi.

When V1 6¼ Q, we give each vertex Wi a perturbation

vector "i such that the perturbed umbrella will converge to

Q: Q ¼
Pm

i¼1 �iðWi þ "iÞ. The perturbations are determined

by minimizing
Pm

i¼1 "i � "i. It is easy to obtain:

"i ¼ �
�iPm
j¼1 �

2
j

V1 �Qð Þ: ð7Þ

3.4 Perturbation for Tangent-Plane Interpolation

In free-form shape desgin and modeling, the ability to
specify tangent plane at the interpolated points is an
attractive property for local shape control. Now, we state
Interpolation Problem II: In addition to Interpolation Problem I,
a set of unit normal vector Nj is given to be associated with
a subset SSP of SP , and a surface is required not only to
pass through the required vertices in SP but also to have
tangent planes with given normal vectors at vertices in SSP .

According to the formulae provided by [8], the normal

vector to the surface at the limit point is given by

N1 ¼ ðL1W Þ � ðL2W Þ, where L1 ¼ ½�1; � � � ; �m� and L2 ¼
½�1; � � � ; �m� are two row vectors. The elements of these two

vectors are

�1 ¼ �1 ¼ 0;

for j ¼ 2; � � � ; nþ 1,

�j ¼ An cos
2�ðj� 1Þ

n
; �j ¼ An cos

2�ðj� 2Þ
n

with

An ¼ 1þ cos
2�

n
þ cos

�

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 9þ cos

2�

n

� �s
;

and for j ¼ nþ 2; � � � ; 2nþ 1,

�j ¼ cos
2�ðj� 1Þ

n
þ cos

2�j

n
;

�j ¼ cos
2�ðj� 2Þ

n
þ cos

2�ðj� 1Þ
n

:

Our approach is to find an initial control mesh bMM0

by the iterative approach of Section 3.2, then to refine it

to yield bMM1 by the first-phase subdivision, and finally

to perturb the vertices in bMM1 so as to force the limit

surface to interpolate both the positions and the tangent

planes. Therefore, our task is to find the perturbation

" ¼ ½"1; � � � ; "m�T w i t h t h e p o s i t i o n c o n s t r a i n t

L0ðW þ "Þ ¼ Q and the tangent-plane constraint

½L1ðW þ "Þ� � ½L2ðW þ "Þ� k N . If we also want to mini-

mize
Pm

i¼1 "i � "i, we come up with a constrained

minimization problem:

minimize
Xm
i¼1

"i � "i ð8Þ

s:t: V1 þ
Xm
i¼1

�i"i ¼ Q ð9Þ

ðL1WÞ �N þ
Xm
i¼1

�ið�i �NÞ ¼ 0 ð10Þ

ðL2WÞ �N þ
Xm
i¼1

�ið�i �NÞ ¼ 0: ð11Þ

To solve the above problem, we introduce Lagrange’s

multipliers �, �1, and �2, where � is a vector, and �1

and �2 are two scalar numbers. Letting
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l1 ¼ ðL1WÞ �N ¼
Xm
i¼1

�iðWi �NÞ; l2 ¼ ðL2WÞ �N

¼
Xm
i¼1

�iðWi �NÞ;

and including the constraints into the objective function, we
obtain a single unconstrained objective function

F ¼
Xm
i¼1

"i � "i þ V1 �Qð Þ � �þ
Xm
i¼1

�ið"i � �Þ þ �1l1

þ�1

Xm
i¼1

�ið"i �NÞ þ �2l2 þ �2

Xm
i¼1

�ið"i �NÞ:

Taking the partial derivatives of F with respect to "k and
setting the derivatives to zero lead to

@F

@"k
¼ 2"k þ �k�þ �1�kN þ �2�kN ¼ 0;

k ¼ 1; � � � ;m;
ð12Þ

which gives

"k ¼ �
1

2
�k�þ �1�kN þ �2�kNð Þ: ð13Þ

After some calculations, it can be verified that

Xm
i¼1

�i�i ¼
Xm
i¼1

�i�i ¼ 0;
Xm
i¼1

�i�i ¼ Cn cos
2�

n
;

Xm
i¼1

�2
i ¼

Xm
i¼1

�2
i ¼ Cn

where

Cn ¼
n

2
A2
n þ 2þ 2 cos

2�

n

� �
:

Substituting (13) into (9) gives

� ¼ � 2Pm
i¼1 �

2
i

Q� V1ð Þ: ð14Þ

Substituting (13) into (10) and (11) yields

2l1 � �1

Xm
i¼1

�2
i � �2

Xm
i¼1

�i�i ¼ 0;

2l2 � �1

Xm
i¼1

�i�i � �2

Xm
i¼1

�2
i ¼ 0;

from which we can obtain

�1 ¼
2l1 � 2 cos 2�

n l2

Cn sin2 2�
n

;

�2 ¼
2l2 � 2 cos 2�

n l1

Cn sin2 2�
n

:

We finally obtain the perturbation vectors

"k ¼
�kPm
i¼1 �

2
i

ðQ� V1Þ

�
ðl1 � cos 2�

n l2Þ�k þ ðl2 � cos 2�
n l1Þ�k

Cn sin2 2�
n

N:
ð15Þ

On the right side of the above equation, the first term is
used to correct the position and the second term is for the
normal vector.

3.5 Results

So far, we have described how to compute the initial control
mesh bMM0, how to perform the first phase subdivision, and
how to adjust mesh bMM1 so that the limit surface will

interpolate the input mesh. We have implemented the

whole algorithm using C++ under MS Windows. Fig. 1

demonstrates the process of the algorithm where � is chosen

to be 1=3. Below, we present more results of applying the

algorithm to a few models that were taken from the

repository of “The Princeton Shape Benchmark” [21]. The

test of the application was performed on a 1.6 GHz Intel

Pentium 4 with 512 MB of RAM.
Figs. 6, 7, 8, and 9 show both the input meshes and the

interpolation surfaces. The two models in Fig. 8 were
obtained by applying Catmull-Clark subdivision to the
original triangular meshes once and then moving each
vertex to its limit position on the Catmull-Clark surfaces. In
Fig. 9, the normal vector at each vertex of the mesh is also
known. The surface shown on the right interpolates both
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Fig. 6. (a) A triangular mesh and (b) the interpolation surface.

Fig. 7. (a) A triangular mesh and (b) the interpolation surface.



the vertices and the normal vectors. The statistics of the
testing results are given in Table 1, which includes the
valences the models have, the number of iterations required
for solving the linear equations, the CPU time the algorithm
took to compute the initial control mesh, and the maximum
update for the vertices at the last iteration.

From the above examples, we have seen that our
algorithm can quickly generate the initial control mesh.
Once the initial control mesh is obtained, the interpolation
surface is completely determined. To compute the inter-
polation surface, we may perform the following three
processes: the first phase of subdivision, perturbation and
the second phase of subdivision that is just the Catmull-
Clark subdivision. An alternative approach is to apply only
the first phase of subdivision and perturbation to the initial
control mesh, yielding the updated bMM1. This updated bMM1 is
actually the Catmull-Clark mesh. This means we can use
Stam’s method [22] to exactly evaluate any point on the
final interpolation surface.

4 FURTHER SHAPE HANDLES

To increase the capability of adjusting the shape of a Doo-
Sabin subdivision surface, Brunet [1] defined a set of scalar
shape handles associated to the initial vertices. These shape
handles can be interactively modified to locally control the
shape of the limit surface but do not affect the interpolatory
properties. In this section, we show that Brunet’s idea can
be easily extended to our two-phase subdivision scheme.

For each vertex in the initial control mesh (or equiva-
lently, in the interpolating polyhedron), we define a scalar
number called the shape handle. These scalar shape handles
are used to modify the spatial position of the vertices
obtained after the first step of the subdivision plus possible
perturbations described in Section 3. Assume the umbrella
in bMM1 corresponding to an initial vertex in bMM0 is
V�E1F1 � � �EnFn. We have known that its respective limit
point V1 is L0½V ;E1; � � � ; En; F1; � � � ; Fn�T . The shape handle
S defines a geometric transformation for all vertices in this
umbrella:

V 0 ¼ V1 þ S ðV � V1Þ
E0j ¼ V1 þ S ðEj � V1Þ; j ¼ 1; � � � ; n
F 0j ¼ V1 þ S ðFj � V1Þ; j ¼ 1; � � � ; n:

The updated vertices will then be used in further steps of

the Catmull-Clark subdivision. The shape handles have the

following properties:

. The geometric transformation generally does not
change the topological connectivity of the mesh.
What are actually changed are only the spatial
positions of the vertices.

. The geometric transformation will not affect the
interpolatory properties. This follows from the
identities

L0½V 0; E01; � � � ; E0n; F 01; � � � ; F 0n�
T

¼ L0½V1; � � � ; V1�T

þ S ðL0½V ;E1; � � � ; En; F1; � � � ; Fn�T

� L0½V1; � � � ; V1�T Þ ¼ V1

and

Lj½V 0; E01; � � � ; E0n; F 01; � � � ; F 0n�
T

¼ S Lj½V ;E1; � � � ; En; F1; � � � ; Fn�T ; j ¼ 1; 2:

. S has a scaling effect on the size of the type-V faces.
When S > 1, the size of the type-V faces is increased.
When 0 < S < 1, the size is decreased.

. An analysis similar to that in [1] may be carried out
to show that great values of S produce a flat spot at
V1. The shape handles can be considered as
tensionlike parameters that modify the distance
from the surface to the tangent plane in the
neighborhood of the initial vertices.

8 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 3, MAY/JUNE 2006

Fig. 8. (a) Two nontriangular meshes and (b) the interpolation surfaces.

Fig. 9. (a) A mesh and (b) the surface that interpolates both positions

and normals.



In summary, the shape handles can be used either as
design parameters, or to increase the smoothness of the
surface. An example is given in Fig. 10, where the five limit
surfaces (with different values of the shape handles) all
interpolate the vertices of an input mesh shown in Fig. 10a.
Here, we denote by S1 the shape handles associated to the
convex vertices and by S2 the shape handles associated to the
nonconvex vertices. Note that the shape handles just change
the local shape and will not change the interpolation property.

5 CONCLUSIONS

We have described an algorithm for constructing inter-
polation surface of arbitrary topology. The algorithm is
based on a two-phase subdivision process which is a
modification of the Catmull-Clark scheme. Given an
interpolating polyhedron, an iterative approach with a
fixed number of iterations is adopted to compute an initial
control mesh bMM0. Then, the first-phase subdivision is
applied to bMM0 to create a refined mesh bMM1. Perturbation

schemes are developed to modify the spatial positions ofbMM1. We are also allowed to adjust some scalar shape handles
to locally control the shape of the limit surface. Finally, the
Catmull-Clark algorithm is used to generate the limit
surface, which interpolates specified vertices and tangent
planes. This approach is proven to always have solutions.
There is no need to solve a system of linear equations.
Therefore, it is simple and fast. These features make the
method feasible to be used in interactive shape design.

Compared with other interpolatory subdivision schemes
such as the Butterfly algorithm, our method needs an extra
step that computes the initial control mesh. The experiments
have shown that our method can quickly find the initial
control mesh. Once the initial control mesh has been
obtained, our method then works in a similar fashion as
the Butterfly scheme. That is, some subdivision rules are
used to refine the mesh. The Butterfly algorithm is for
arbitrary topological triangular meshes. If an input mesh is
not a triangular mesh, some preprocess is needed to convert
it into a triangular mesh. Our method is for arbitrary
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TABLE 1
The Statistics of the Experimental Results

Fig. 10. Shape adjustment by shape handles (S1 and S2 stand for the shape handles for convex and novconvex vertices, respectively). (a) An input

mesh. (b) S1 ¼ S2 ¼ 1. (c) S1 ¼ S2 ¼ 1:3. (d) S1 ¼ S2 ¼ 0:6. (e) S1 ¼ 1:3 and S2 ¼ 0:6. (f) S1 ¼ 0:6 and S2 ¼ 1:3.



topological meshes that could be triangular or nontriangu-
lar. In particular, since our method is based on the Catmull-
Clark scheme, in general it works even better for quad-
rilaterals. Therefore, our method is more suitable for
applications that require surfaces that locally have two
preferred directions and modeling systems that support
tensor-product NURBS surfaces.

It is worth pointing out that the interpolating schemes
are easy to produce excessive undulations. Therefore,
interpolation is often combined with a scheme that
minimizes a fairness norm to remove the undulation
behavior. For example, Halstead et al. [8] constructed the
interpolation surface that minimized a combination of thin
plate and membrane energies. This resulted in solving a
global linear system. This paper does not address the
problem of global optimal fairness. We focus on developing
a simple and safe algorithm. Our algorithm can be used to
quickly produce an interpolating shape. It is possible that
the resulting shape exhibits some undulations. If the quality
of the shape is not satisfactory, further processing with
more computational cost is needed. For instance, we have a
lot of degrees of freedom and shape parameters in our two-
phase scheme, so it could be possible to create a fair shape
by properly setting them to minimize the fairness norm.
This is a topic we are investigating.

Finally, in our two-phase scheme, we have actually two
sets of shape parameters. One is the � in the first phase
subdivision, and the other is the shape handle. How to
efficiently adjust them to achieve various desired effects in
practical applications (such as in CAD/CAM) is an
interesting topic for future work.
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[26] D. Zorin, P. Schröder, and W. Sweldens, “Interpolating Subdivi-
sion for Meshes with Arbitrary Topology,” Computer Graphics,
Ann. Conf. Series, vol. 30, pp. 189-192, 1996.

Jianmin Zheng received the BS and PhD
degrees from Zhejiang University, China. He is
an assistant professor in the School of Computer
Engineering at Nanyang Technological Univer-
sity, Singapore. Previously, he was a faculty
member at Zhejiang University and a research
faculty at Brigham Young University in Provo,
Utah. His research interests include computer-
aided geometric design, CAD/CAM, computer
graphics, animation, digital imaging, and visua-
lization.

Yiyu Cai received the BSc degree from Nanjing
University, China, in 1983, the MSc degree from
Zhejian University, China, in 1990, and the
PhD degree from the Department of Mechanical
and Production Engineering at the National
University of Singapore in 1996. He is an
associateprofessorwith theSchoolofMechanical
and Aerospace Engineering at Nanyang Techno-
logical University, Singapore. His research inter-
ests include CAD/CAM, geometric modeling,
virtual simulation, and medical imaging.

10 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 3, MAY/JUNE 2006


