
T-splines and T-NURCCs

Thomas W. Sederberg and Jianmin Zheng

tom@cs.byu.edu zheng@cs.byu.edu

Computer Science Department

Brigham Young University

Almaz Bakenov

bakenov@kyrgyzstan.org

Embassy of Kyrgyz Republic

Washington, D.C.

Ahmad Nasri

anasri@aub.edu.lb

Computer Science Department

American University of Beirut

Abstract

This paper presents a generalization of non-uniform B-spline
surfaces called T-splines. T-spline control grids permit T-
junctions, so lines of control points need not traverse the
entire control grid. T-splines support many valuable oper-
ations within a consistent framework, such as local refine-
ment, and the merging of several B-spline surfaces that have
different knot vectors into a single gap-free model. The pa-
per focuses on T-splines of degree three, which are C2 (in
the absence of multiple knots). T-NURCCs (Non-Uniform
Rational Catmull-Clark Surfaces with T-junctions) are a su-
perset of both T-splines and Catmull-Clark surfaces. Thus,
a modeling program for T-NURCCs can handle any NURBS
or Catmull-Clark model as special cases. T-NURCCs enable
true local refinement of a Catmull-Clark-type control grid:
individual control points can be inserted only where they are
needed to provide additional control, or to create a smoother
tessellation, and such insertions do not alter the limit sur-
face. T-NURCCs use stationary refinement rules and are C2

except at extraordinary points and features.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—curve, surface, solid
and object representations;

Keywords: B-spline surfaces, subdivision surfaces, local
refinement

1 Introduction

This paper introduces T-splines: non-uniform B-spline sur-
faces with T-junctions. T-junctions allow T-splines to be
locally refineable: control points can be inserted into the
control grid without propagating an entire row or column of
control points.

The paper also presents a locally refineable subdivision
surface called T-NURCCs (Non-Uniform Rational Catmull-
Clark surfaces with T-junctions). In T-NURCCs, faces adja-
cent to an extraordinary point can be refined without prop-
agating the refinement, and faces in highly curved regions
can also be refined locally. As in T-splines, individual con-
trol points can also be inserted into a T-NURCC to provide
finer control over details. T-NURCCs are a generalization

of Catmull-Clark surfaces. Figure 1 shows how T-NURCC
local refinement enables a T-NURCC tessellation to be far
more economical than a globally-refined Catmull-Clark sur-
face. T-splines can be used to merge non-uniform B-spline

Figure 1: A Catmull-Clark mesh refined using T-NURCC
local refinement. T-junctions are highlighted in the blow-
up on the left. The T-NURCC has 2496 faces. A globally
refined Catmull-Clark surface needs 393,216 faces to achieve
the same precision.

surfaces that have different knot-vectors. Figure 2 shows a
hand model comprised of seven B-spline surfaces. The small
rectangular area is blown up in Figure 3.a to magnify a hole
where neighboring B-spline surfaces do not match exactly.
The presence of such gaps places a burden on animators, who
potentially must repair a widened gap whenever the model
is deformed. Figure 3.b shows the model after being con-
verted into a gap-free T-spline, thereby eliminating the need
for repair. T-splines and T-NURCCs can thus imbue mod-
els comprised of several non-uniform B-spline surfaces with
the same air-tightness that Catmull-Clark surfaces extend
to uniform cubic B-spline-based models.

Figure 2: Model of a hand comprised of B-spline surfaces.

1.1 Related Work

Previous papers have addressed local triangular tessellation
refinement of subdivision surfaces [Velho and Zorin 2001;
Kobbelt 2000]. In order to have the neighborhood of a new

vertex at some uniform level, the 4-8 and
√

3 schemes im-
pose the restriction of at most one refinement level differ-

Permission to make digital/hard copy of part of all of this work for personal or
classroom use is granted without fee provided that the copies are not made or
distributed for profit or commercial advantage, the copyright notice, the title of the
publication, and its date appear, and notice is given that copying is by permission
of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute
to lists, requires prior specific permission and/or a fee.
© 2003 ACM 0730-0301/03/0700-0477 $5.00

477

a. B-spline surfaces b. T-splines

Figure 3: A gap between two B-spline surfaces, fixed with a
T-spline.

ence between adjacent triangles. For quadrilateral subdivi-
sion meshes, it is considered difficult to generate a locally
refinable crack-free tessellation [Zorin and Schröder 2000].
With T-NURCCs, local refinement away from extraordinary
points has no notion of “level.” Hence, it is possible for local
refinement to produce an edge that has one face on one side,
and any number of faces on the other side.

T-NURCCs are a modification of cubic NURSSes [Seder-
berg et al. 1998]), augmented by the local refinement capa-
bility of T-splines. T-NURCCs and cubic NURSSes are the
only subdivision surfaces that generalize non-uniform cubic
B-spline surfaces to control grids of arbitrary topology and
(equivalently) that generalize Catmull-Clark surfaces [Cat-
mull and Clark 1978] to non-uniform knot vectors. How-
ever, cubic NURSSes have complicated, non-stationary re-
finement rules whereas NURCCs have stationary refinement
rules. Furthermore, cubic NURSSes do not provide local
refinement whereas T-NURCCs do.

The literature on local control refinement of B-spline sur-
faces (a single control point can be inserted without pro-
pogating an entire row or column of control points) was
initiated by Forsey and Bartels. Their invention of Hier-
chical B-splines [Forsey and Bartels 1988] introduced two
concepts: local refinement using an efficient representation,
and multi-resolution editing. These notions extend to any re-
fineable surface such as subdivision surfaces. T-splines and
T-NURCCs involve no notion of hierarchy: all local refin-
ment is done on one control grid on a single hierarchical
“level” and all control points have similar influence on the
shape of the surface.

Hierarchical B-splines were also studied by Kraft [Kraft
1998]. He constructed a multilevel spline space which is a
linear span of tensor product B-splines on different, hierar-
chically ordered grid levels. His basic idea is to provide a
selection mechanism for B-splines which guarantees linear
independence to form a basis. CHARMS [Grinspun et al.
2002] focuses on the space of basis functions in a similar
way, but in a more general setting and hence with more ap-
plications. Weller and Hagen [Weller and Hagen 1995] stud-
ied spaces of piecewise polynomials with an irregular, locally
refinable knot structure. They considered the domain parti-
tion with knot segments and knot rays in the tensor-product
B-spline domain. Their approach is restricted to so-called
“semi-regular bases.”

Our derivations make use of polar form [Ramshaw 1989],
and we assume the reader to be conversant with polar labels
for tensor-product B-spline surfaces.

1.2 Overview

T-splines and T-NURCCs use knot intervals to convey knot
information. This is reviewed in §2.

T-splines are an enhancement of NURBS surfaces that al-
low the presence of T-junction control points. We describe

T-splines by introducing in §3 a less structured form of the
idea, that we call point-based B-splines, or PB-splines. T-
splines are then discussed in §4, and local refinement is ex-
plained in §5. The application of using T-splines for merging
two or more B-splines into a gap-free model is presented in
§6.

NURCCs are obtained by placing a restriction on the def-
inition of cubic NURSSes (introduced in [Sederberg et al.
1998]) which gives NURCCs stationary refinement rules.T-
NURCCs add to NURCCs the local refinement capability of
T-splines. This is discussed in §7.

While the notion of T-splines extends to any degree, we
restrict our discussion to cubic T-splines. Cubic T-splines
are C2 in the absence of multiple knots.

2 Knot Intervals

A knot interval is a non-negative number assigned to each
edge of a T-spline control grid for the purpose of conveying
knot information. This notion was introduced in [Sederberg
et al. 1998]. In the cubic B-spline curve shown in Figure 4,

P0

P1

P2

P3P4

P5

d-1=1
d0=1

d1=1

d2=2

d3=3

d4=1

d5=1

t=3 t=4

t=6

t=9

Knot Vector = [1,2,3,4,6,9,10,11]

Figure 4: Sample cubic B-spline curve

the di values that label each edge of the control polygon are
knot intervals. Note how each knot interval is the difference
between two consecutive knots in the knot vector. For a non-
periodic curve, end-condition knot intervals are assigned to
“phantom” edges adjacent to each end of the control polygon
(in this case d−1 and d5). For all but the first and last edges
of the control polygon, the knot interval of each edge is the
parameter length of the curve segment to which the edge
maps. Any constant could be added to the knots in a knot
vector without changing the knot intervals for the curve.
Thus, if we are given the knot intervals and we wish to infer
a knot vector, we are free to choose a knot origin.

Edges of T-spline and T-NURCC control grids are like-
wise labeled with knot intervals. Since T-NURCC control
meshes are not rectangular grids, knot intervals allow us to
impose local knot coordinate systems on the surface. Fig-
ure 5.a shows a regular subgrid of a NURCC control grid.
We can impose a local knot coordinate system on this re-
gion, and therewith determine local polar labels for the con-
trol points, as follows. First, (arbitrarily) assign P00 the
local knot coordinates of (d0, e0). The local knot vectors
for this regular subgrid are then {d} = {0, d̄0, d̄1, . . .} and
{e} = {0, ē0, ē1, . . .} where

d̄i =

i
∑

j=0

dj ; ēi =

i
∑

j=0

ej

478

e0 e0 e0 e0

e1 e1 e1 e1

e2 e2 e2 e2

e3 e3 e3 e3

e4 e4 e4 e4

d0

d0

d0

d0

d1

d1

d1

d1

d2

d2

d2

d2

d3

d3

d3

d3

d4

d4

d4

d4

P00

P01

P02

P03

P10

P11

P12

P13

P20

P21

P22

P23

P30

P31

P32

P33

a. Bicubic patch

d2d1

e2

e1

P (s,t) (s+d2,t)(s-d1,t)

(s,t+e2)

(s,t-e1)

P has polar label

f(s-d1,s,s+d2;t-e1,t,t+e2)

b. Knot coordinates

Figure 5: Region of a NURBS control mesh labeled with
knot intervals.

and d̄−1 = ē−1 = 0. The polar label for control point Pij ,
with respect to this local knot coordinate system, is thus
f(d̄i−1, d̄i, d̄i+1; ēi−1, ēi, ēi+1) and the surface defined by this
regular subgrid is

P(s, t) =
∑

i

∑

j

PijN
3
i (s)N3

j (t)

where N3
i (s) are the cubic B-spline basis functions over {d}

and the N3
j (t) are over {e}. The superscript 3 denotes de-

gree, not order.

3 PB-splines

(si0,ti2) (si1,ti2) (si2,ti2) (si3,ti2) (si4,ti2)

(si2,ti0)

(si2,ti1)

(si2,ti3)

(si2,ti4)

Figure 6: Knot lines for basis function Bi(s, t).

Tensor-product B-spline surfaces use a rectangular grid of
control points. Our goal is to generalize B-spline surface to
allow partial rows or columns of control points. We begin by
describing a surface whose control points have no topological
relationship with each other whatsoever. We will refer to this
surface as a PB-spline, because it is point based instead of
grid based. The equation for a PB-spline is

P(s, t) =

∑n

i=1
PiBi(s, t)

∑n

i=1
Bi(s, t)

, (s, t) ∈ D (1)

where the Pi are control points. The Bi(s, t) are basis func-
tions given by

Bi(s, t) = N3
i0(s)N

3
i0(t) (2)

where N3
i0(s) is the cubic B-spline basis function associated

with the knot vector

si = [si0, si1, si2, si3, si4] (3)

and N3
i0(t) is associated with the knot vector

ti = [ti0, ti1, ti2, ti3, ti4] (4)

as illustrated in Figure 6. Thus, to specify a PB-spline, one
must provide a set of control points and a pair of knot vectors
for each control point.

The green box outlines the influence domain Di =
(si0, si4) × (ti0, ti4) for an individual control point Pi.
Bi(s, t) and its first and second derivatives all vanish at (and
outside of) the green box. It is permissible for influence do-
mains to not be axis-aligned, although our discussion will
assume that they are axis-aligned.

PB-splines satisfy the convex-hull property. Denote
C(s, t) = {Pi|(s, t) ∈ Di}. Then clearly P(s, t) lies in the
convex hull of C(s, t).

D in (1) is the domain over which the entire PB-spline is
defined. The only restrictions on D is that

∑n

i=1
Bi(s, t) > 0

for all (s, t) ∈ D and D is a single connected component.
This implies that D ⊂ {D1 ∪ D2 ∪ . . . ∪ Dn}, but D does
not need to be rectangular. Due to the convex hull prop-
erty, if (s, t) ∈ D lies only in one influence domain Di, then
P(s, t) = Pi; if (s, t) ∈ D lies only in two influence domain
Di and Dj , then P(s, t) lies on the line segment connecting
Pi and Pj ., etc. Thus, it is advisable to have each point
in D lie in at least three influence domains Di. In general,
there is not an obvious “best” choice for D for a given set
of Di.

D1

D2

D3

D4

a. PB−spline domain.

Figure 7: A cubic PB-spline with four control points.

Figure 7.a shows a parameter space in which is drawn
the Di for a PB-spline comprised of four blending functions.
The resulting surface is shown to the right. The labels Di

are printed at the center of the respective domains, and a
possible choice for D is outlined in red. Notice that a PB-
spline has no notion of a control mesh; the knot vectors for
each basis function are completely independent of the knot
vectors for any other basis function.

4 T-Splines

A T-spline is a PB-spline for which some order has been im-
posed on the control points by means of a control grid called
a T-mesh. A T-mesh serves two purposes. First, it provides
a more friendly user interface than does the completely arbi-
trary PB-spline control points. Second, the knot vectors si

and ti for each basis function are deduced from the T-mesh.
If a T-mesh is simply a rectangular grid with no T-junctions,
the T-spline reduces to a B-spline.

Figure 8 shows the pre-image of a T-mesh in (s, t) pa-
rameter space. The si denote s coordinates, the ti denote t

479

coordinates, and the di and ei denote knot intervals, with red
edges containing boundary-condition knot intervals. Thus,
for example, s4 = s3 + d3 and t5 = t4 + e4. Each vertex
has knot coordinates. For example, P1 has knot coordinates
(s3, t2) and P2 has knot coordinates (s5 − d8, t3).

P1

P2

P3

s1 s2 s3 s4 s5

d0

d1
d2 d3 d4

d5

d2 d6

d7

d8

t1

t2

t3

t4

t5

e0

e1

e2

e3

e4

e5

e6

e7

e8

e9

F

Figure 8: Pre-image of a T-mesh.

A T-mesh is basically a rectangular grid that allows
T-junctions. The pre-image of each edge in a T-mesh is a
line segment of constant s (which we will call an s-edge) or
of constant t (which we will call a t-edge). A T-junction is
a vertex shared by one s-edge and two t-edges, or by one
t-edge and two s-edges. Each edge in a T-mesh is labeled
with a knot interval, constrained by the following rules:

Rule 1. The sum of knot intervals on opposing edges
of any face must be equal. Thus, for face F in Figure 8,
d2 + d6 = d7 and e6 + e7 = e8 + e9.

Rule 2. If a T-junction on one edge of a face can be
connected to a T-junction on an opposing edge of the face
(thereby splitting the face into two faces) without violating
Rule 1, that edge must be included in the T-mesh.

To each Pi corresponds a basis function Bi(s, t) (2) de-
fined in terms of knot vectors si = [si0, si1, si2, si3, si4] (3)
and ti = [ti0, ti1, ti2, ti3, ti4] (4). We now explain how to in-
fer these knot vectors from the T-grid. The knot coordinates
of Pi are (si2, ti2). The knots si3 and si4 are found by con-
sidering a ray in parameter space R(α) = (si2+α, ti2). Then
si3 and si4 are the s coordinates of the first two s-edges in-
tersected by the ray (not including the initial (si2, ti2)). The
other knots in s and t are found in like manner.

Thus, for P1, si = [s1, s2, s3, s4, s5 − d8] and ti = [t1 −
e0, t1, t2, t3, t4 + e9]. Likewise, for P2, si = [s3, s3 + d6, s5 −
d8, s5, s5 + d5] and ti = [t1, t2, t3, t4, t5]. P3 is a boundary
control point. In this case, s3,0 and t3,4 do not matter, so
we can take si = [s1 − d0, s1 − d0, s1, s2, s2 + d7] and ti =
[t1, t5 − e4 + e9 − e7, t5, t5 + e5, t5 + e5]. Once these knot
vectors are determined for each basis function, the T-spline
is defined using the PB-spline equation (1).

The motivation for Rule 2 is illustrated in Figure 9. In
this case, the zero knot interval means that it is legal to have
an edge connecting P with A, and is also legal to have an
edge connecting P and B. However, these two choices will
result in different t knot vectors for P. Rule 2 resolves such
ambiguity.

P

BA

d1 d2

d1 d20

0d1 d2

a.

P

BA

d1 d2

d1 d20

0d1 d2

b.

d1 d2

d1 d20

0d1 d2

P

BA

c.

Figure 9: Possible ambiguity.

Plainly, if the T-mesh is a regular grid, the T-spline re-
duces to a tensor product B-spline surface.

5 Control Point Insertion

We now consider the problem of inserting a new control point
into an existing T-mesh. If the sole objective of control
point insertion is to provide additional control, it is possible
to simply add additional control points to a T-mesh, and
leave the Cartesian coordinates of the initial control points
unchanged. Of course, this operation will alter the shape of
the T-spline (at least, that portion of it within the influence
of the new control points).

It is usually more desirable to insert control points into
a T-mesh in such a way that the shape of the T-spline is
not changed. We now describe how to add a single control
point in this way. We will refer to this procedure of adding
a single control point into a T-mesh without changing the
shape of the T-spline as local knot insertion.

Consider the example in Figure 10 where control point
P′

3 is inserted on edge P2P4 using the knot intervals shown.
We enforce the following

Rule 3. P′

3 can only be inserted if t1 = t2 = t4 = t5 (see
Figure 10). Recall that ti is the t-knot vector for basis
function Bi. If the control point were being inserted on a
vertical edge, the four neighboring si knot vectors would
need to be equal.

Local knot insertion is accomplished by performing knot
insertion into all of the basis functions whose knot vectors
will be altered by the presence of the new control point. In
Figure 10, the only such basis functions are B1, B2, B4,
and B5 (the basis functions corresponding to control points
P1, P2, P4, and P5). Using the algebra of polar forms,

P1 P2 P4 P5 P’1 P’2 P’3 P’4 P’5

d0 d1 d2 d3+d4 d5 d6 d7 d0 d1 d2

d3 d4

d5 d6 d7

e0

e1

e2

e3

a. Before insertion. b. After insertion.

Figure 10: T-mesh knot insertion.

and because of Rule 3, it is straightforward to show that

480

P′

1 = P1, P′

5 = P5,

P
′

2 =
d4P1 + (d1 + d2 + d3)P2

d1 + d2 + d3 + d4

, (5)

P
′

4 =
(d4 + d4 + d4)P4 + d3P5

d3 + d4 + d5 + d6

, and (6)

P
′

3 =
(d4 + d5)P2 + (d2 + d3)P3

d2 + d3 + d4 + d5

. (7)

Rule 3 means that it is not always possible to immediately
add a control point to any edge. For example, in Figure 11.a,
Rule 3 does not allow A to be inserted because t2 is different
from t1, t4, and t5. However, if control points are first added
beneath P1, P4, and P5 as shown in Figure 11.b, it then
becomes legal to insert A.

A

P1 P2 P4 P5

a. A cannot be inserted.

A

P1 P2 P4 P5

b. A can be inserted.

Figure 11: T-mesh Knot Insertion.

Local knot insertion can only be performed on an existing
edge. To insert a control point in the middle of a face, an
edge through that face must first be created.

Local knot insertion is useful for creating features. For
example, darts can be introduced into a T-spline by inserting
a few adjacent rows of control points with zero knot intervals,
as shown in Figure 12. Having two adjacent knot intervals
of value zero introduces a local triple knot, and the surface
becomes locally C0 at that knot. The sharpness of the crease
is controlled by the placement of the inserted control points.

d2

d2

d2

d2

d2

d2

0

0

0

0

d3

d3

d3

d3

d3

d3

Figure 12: Inserting a dart into a T-mesh.

5.1 Standard T-splines

We define a standard T-spline to be one whose basis func-
tions Bi(s, t) in equation (1) sum to one for every (s, t) ∈ D.
Clearly, a tensor product B-spline surface is a standard T-
spline. Likewise, a standard T-spline that undergoes knot

insertion remains a standard T-spline. Furthermore, a T-
spline formed by merging two B-spline surfaces (as discussed
in §6) is a standard T-spline.

A standard T-spline can be decomposed into polynomial
bi-cubic patches. A non-standard T-spline can also be de-
composed into bi-cubic patches, but they will be rational
patches.

5.2 Extracting Bézier Patches

It is advantageous to represent in Bézier form the patches
that comprise a T-spline, because a tessellation algorithm
such as [Rockwood et al. 1989] can then be applied—with
the minor modification that each T-junction must map to a
triangle vertex in the tessellation to assure that cracks will
not appear in the tessellation.

The domains of the Bézier patches that comprise a
standard T-spline can be determined by extending all T-
junctions by two bays, as illustrated in Figure 13. The rect-
angles in Figure 13.b are Bézier domains. The reason for
this can be understood by considering the knot vectors for
the basis functions of each control point.

b. Bezier domains.a. T-mesh.

Figure 13: Bézier domains in the pre-image of a T-mesh.

Bézier control points can be obtained by performing re-
peated local knot insertion. Recall that a B-spline surface
can be expressed in Bézier form using multiple knots, and
that a zero-knot interval implies a double knot. For the
knot interval configuration in Figure 14.b, the 4 × 4 grid of
control points surrounding F are the Bézier control points
of that patch. Thus, the Bézier control points for face F

d1 d2 d3

e1

e2

e3

F

0 0 d2 0 0

e2

0

0

0

0

F

a. Face F. b. Bézier control points.

Figure 14: Finding Bézier control points using local knot
insertion.

in Figure 14.a can be determined by performing local knot
insertion.

6 Merging B-splines into a T-spline

This section discusses how to merge two B-spline surfaces
with different knot vectors into a single T-spline. Often in

481

geometric modeling, portions of an object are modeled inde-
pendently with different B-spline surfaces that have different
knot vectors, such as the hand in Figure 2. Figure 15 illus-
trates the problem: the red and blue control grids are defined
over different knot vectors. Merging them into a single B-
spline requires that they have the same common knot vector,
so knot insertion must first be performed before merging can
proceed. As Figure 15.c illustrates, however, those required
knot insertions can significantly increase the number of rows
of control points. If additional surfaces are subsequently
merged onto these two surfaces, the number of knot lines
can multiply further.

a. Patch 1 b. Patch 2 c. Merge of both patches

Figure 15: Merging two B-splines.

One possible solution to the problem of merging two
NURBS surfaces into a single surface without a prolifera-
tion of control points is to use cubic NURSSes [Sederberg
et al. 1998]. Since cubic NURSSes allow different knot inter-
vals on opposing edges of a face, two NURBS control grids
can be merged into a single control grid without propagat-
ing knot lines. This approach was studied in [Bakenov 2001].
Figure 16 shows the result of merging two identical B-spline
cylinders with different knot vectors. Unfortunately, any
NURSS representation introduces an unsightly bump at the
junction of the two cylinders. This failed attempt at solving
the merge problem using NURSSes motivated the creation
of T-splines.

1

3

2

2

2

1

4

1

Figure 16: Merging two B-splines using cubic NURSSes.

The procedure using T-splines is illustrated in Figure 17.
For a Cn merge (n ∈ {−1, 0, 1, 2}), n + 1 columns of con-
trol points on one patch will correspond to n + 1 columns
of control points on the other patch. We consider first the
C0 merge in Figure 17.a. To begin with, each B-spline must
have triple knots (double knot intervals) along the shared
boundary, as shown. For a C0 merge, one column of con-
trol points will be shared after the merge. If the knot in-
tervals for the two T-splines differ along that common col-
umn, control points must be along the boundary edge so
that the knot intervals agree. In this example, the knot
intervals on the red B-spline are 1, 3, 2, 2 and on the blue
B-spline are 2, 1, 4, 1. After inserting offset control points
on each control grid along the soon-to-be-joined columns as
shown, the common column of control points has knot inter-
vals 1, 1, 1, 1, 2, 1, 1.

Typically in this process, the control points that are to
be merged will have slightly different Cartesian coordinates.
For example, A on the red patch might differ slightly from
A on the blue patch. Simply take the average of those two
positions to determine the position of the merged control
point.

A C2 merge is illustrated in Figure 17.b. The basic idea
is the same as for a C0 merge. The differences are that
four knot intervals a, b, c, d must correspond between the two
surfaces, as shown. Also, three columns of control points
must be merged, as shown. Figure 18 shows the results of a
C0 and a C1 merge. Figure 3 shows an application of this
merge capability in a NURBS model of a human hand. This
is a C0 merge.

1

3

2

2

00 0 0

2

1

4

1

1

3

2

2
a b dc a b c d

2

1

4

1

Initial control grids Initial control grids

1

3

2

2
00 0 0

2

1

4

1

A A

1

3

2

2
a b dc a b c d

2

1

4

1

B B

Insert control points Insert control points

1

3

2

2

00

2

1

4

1

1
1

1
1

2
1

1

1

3

2

2
dcba

2

1

4

1

Merge as T-spline Merge as T-spline
a. C0 merge b. C2 merge

Figure 17: Merging two B-splines using T-splines.

a. Two B-splines grid b. C0 T-spline c. C1 T-spline

Figure 18: Merging of two B-splines.

7 T-NURCCs

We now present a modification of cubic NURSSes [Sederberg
et al. 1998] that we call NURCCs (Non-Uniform Rational
Catmull-Clark Surfaces). T-NURCCs are NURCCs with T-
junctions in their control grids, in the spirit of T-splines.

Both NURRCs and NURSSes are generalizations of tensor
product non-uniform B-spline surfaces: if there are no ex-
traordinary points, if all faces are four-sided, and if the knot
intervals on opposing edges of each face are equal, NUR-
CCs and cubic NURSSes both degenerate to non-uniform
B-spline surfaces. NURRCs and NURSSes are also general-
izations of Catmull-Clark surfaces: if all knot intervals are
equal, NURCCs and cubic NURSSes both degenerates to a
Catmull-Clark surface.

482

NURCCs are identical to cubic NURSSes, with one differ-
ence: NURCCs enforce the constraint that opposing edges
of each four-sided face have the same knot interval while
NURSSes have no such restriction. It is for that reason that
NURSSes have non-stationary subdivision rules and NUR-
CCs have stationary refinement rules. It is also for that rea-
son that NURCCs are capable of local refinement, whereas
NURSSes are not.

The refinement rules for NURCCs are thus identical to the
refinement rules for NURSSes if we require opposing edges
of each four-sided face to have the same knot interval. Those
refinement rules are discussed in [Sederberg et al. 1998].

We now discuss how T-junctions can be used to perform
local refinement in the neighborhood of an extraordinary
point. To simplify our discussion, we first require that all
extraordinary points are separated by at least four faces,
and that all faces are four-sided. These requirement can be
met by performing a few global refinement steps, if needed.
Thereafter, all refinement can be performed locally. For ex-
ample, any suitably large regular subgrid of a NURCC con-
trol grid can undergo local knot insertion, as discussed in §5.
Also, refinement near an extraordinary point can be confined
to the neighborhood of the extraordinary point.

To explain how to do this, we first devise a way to perform
local knot insertion in the neighborhood of a single (valence-
four) vertex in a T-spline. Referring to Figure 19, we begin

e2

e3

(1−ρ)e2

ρe2

ρe3

(1−ρ)e3

1

2

3 4

Figure 19: Local refinement about a valence-four control
point.

with the black control grid. Then, it is legal using the pro-
cedure in §5 to insert all of the red control points in row 1,
followed by row 2, followed by column 3, followed by column
4. Then the green control points can legally be inserted in
like order, then the blue control points, etc. What is pro-
duced is a local refinement in the immediate neighborhood
of one black control point. Note that this refinement scheme
can split faces at any ratio ρ. For a valence-4 point, changing
ρ does not change the limit surface since we are merely do-
ing B-spline knot insertion, but when we adapt this scheme
to extraordinary points, ρ will serve as a shape parameter.
Figure 21 shows the effects of changing ρ.

We now present the local refinement rules for T-NURCCs
at an isolated extraordinary point. Referring to Figure 20,
knot interval d1 is split into knot intervals ρd1 and (1 −
ρ)d1; likewise for the other knot intervals adjacent to the
extraordinary point. If ρ = 1

2
and if all the initial knot

intervals are equal, the limit surface obtained using this local
refinement is equivalent to a Catmull-Clark surface.

Lower-case letters refer to knot intervals and upper-case
letters to points. Vertices A, B, C, D, Q, R, S, T are the
initial control points, prior to refinement. After refinement,
these vertex points are replaced by new vertex points de-
noted with primes: A′, B′, C′, D′, Q′, R′. The following
equations for A′, E1, and F1 are obtained from [Sederberg
et al. 1998]. All other equations are obtained by repeated

application of (5)–(7).

AB

D

C

T

R

Q

S

d
0

d
1

d
2

h
i-2

h
i+2

G2
H2

E2

h
i-1

F i+1

h
i+1

F i

G1

d
1

ρ

e
1ρ

e
2ρ

F2

Q’

D’

B ’ A ’

e
-1

d
-1

F1
H1

R ’

e2

e1

e0

h
i

h
4

Mi+1

Mi

M2

Figure 20: Local refinement about an n-valence control
point.

F1 =
[e0 + (1 − ρ)e1][(d0 + (1 − ρ)d1)A + (ρd1 + d2)B]

(d0 + d1 + d2)(e0 + e1 + e2)

+
[ρe1 + e2][(d0 + (1 − ρ)d1)C + (ρd1 + d2)D]

(d0 + d1 + d2)(e0 + e1 + e2)

There are three types of edge points: E, H, and G.

E2 = ρM2 + (1 − ρ)
e2F1 + e1F2

e1 + e2

where

M2 =
2ρd1 + d2 + h4

2(d0 + d1) + d2 + h4

B +
2d0 + 2(1 − ρ)d1

2(d0 + d1) + d2 + h4

A.

Edge point H1 =
ρd1[(ρe1 + e2)R + (e0 + (1 − ρ)e1)Q]

(d−1 + d0 + d1)(e0 + e1 + e2)

+
[d−1 + d0 + (1 − ρ)d1][(ρe1 + e2)D + (e0 + (1 − ρ)e1)B]

(d−1 + d0 + d1)(e0 + e1 + e2)

Edge point G1 =
ρe1 + e2

e0 + e1 + e2

R +
e0 + (1 − ρ)e1

e0 + e1 + e2

Q.

There are five different types of vertex points: those that
replace A, B, Q, D, and R. We will denote the new vertex
point at A by A′, etc.

A′ = ρ2A + 2ρ(1 − ρ)

∑n−1

i=0
miMi

∑n−1

i=0
mi

+ (1 − ρ)2
∑n−1

i=0
fiFi

∑n−1

i=0
fi

where n is the valence, mi = (hi−1 + hi+1)(hi−2 + hi+2)/2,
and fi = hi−1hi+2.

B′ = (1 − ρ)
e1H2 + e2H1

e1 + e2

+ρ

[

ρd1

d−1 + d0 + d1

Q +
d−1 + d0 + (1 − ρ)d1

d−1 + d0 + d1

B

]

483

Q′ = ρQ + (1 − ρ)
e1G2 + e2G1

e1 + e2

D′ =
ρd1ρe1S + [d−1 + d0 + (1 − ρ)d1]ρe1T

(d−1 + d0 + d1)(e−1 + e0 + e1)

+
[ρd1R + (d−1 + d0 + (1 − ρ)d1)D][e−1 + e0 + (1 − ρ)e1]

(d−1 + d0 + d1)(e−1 + e0 + e1)

R′ =
ρe1

e−1 + e0 + e1

S +
e−1 + e0 + (1 − ρ)e1

e−1 + e0 + e1

R.

Local refinement at an extraordinary point is illustrated
in Figure 1, which shows a T-NURCC that has undergone
four steps of local refinement. The yellow dots highlight four
T-junctions. Note that this locally-refined mesh has two
orders of magnitude fewer faces than it would have using
global Catmull-Clark refinement.

Figure 21: A T-NURCC showing the influence of the param-
eter ρ. The initial control grid is on the top left, the limit
surface with ρ = 0.1 is on the top right, ρ = 0.5 is on the
bottom left, and ρ = 0.9 is on the bottom right.

This discussion has assumed that extraordinary vertices
are separated by at least four faces; this can always be ac-
complished by performing a few preliminary global refine-
ment steps. It is possible to derive local refinement rules
that would not require such initial global refinement steps,
but there are additional special cases to consider.

Away from extraordinary points, NURCCs are C2, ex-
cept that zero knot intervals will lower the continuity. At
extraordinary points where all edges have the same knot in-
terval value, an eigenanalysis for the valence 3 case shows
λ1 = 1 > λ2 = λ3 > λ4 > · · · where, for example,

λ2 = λ3 =
1 + 2ρ + ρ2 +

√

(ρ2 + 6ρ + 1)(ρ − 1)2

4
ρ.

This gives analytic proof that for the valence three case, the
surface is G1 for any legal value of ρ (0 < ρ < 1). A similar
result can be obtained for valence five. For higher valence,
the symbolic algebra expressions get unwieldy, but a sam-
pling of specific values of ρ has not revealed any case where
the G1 condition is not satisfied. If the knot intervals for
edges neighboring on extraordinary point are not equal, the
situation is related to that analyzed and discussed in [Seder-
berg et al. 1998], which observes that empirical evidence
suggests G1.

8 Conclusion

This paper presents the theoretical foundation for T-splines
and T-NURCCs. The formulation is simple and straightfor-
ward to implement. T-splines and T-NURCCs permit true
local refinement: control points can be added without al-
tering the shape of the surface, and (unless there are knot
intervals with a value of zero) the new control points can be
moved and the surface will remain C2.

Since T-NURCCs generalize NURBS and Catmull-Clark
surfaces, a modeling program based on T-NURCCs can han-
dle any NURBS or Catmull-Clark model as a special case.

Several questions remain to be investigated. For example,
we have presented sufficient conditions for a T-spline to be
standard. What are the necessary conditions? Also, a lo-
cal knot insertion sometimes requires that other local knot
insertions must first be performed. Those local knot inser-
tions might require others to be performed before they can
be, etc. Are there cases in which these prerequisites cannot
all be satisfied? PB-splines are interesting in their own right.
What are the fairness properties of PB-splines?

9 Acknowledgements

This work was funded in part by NSF grant CCR-9912411.
Jianmin Zheng was also supported by NSF of China
(69973042).

References

Bakenov, A. 2001. T-Splines: Tensor Product B-spline Surfaces

with T-Junctions. Master’s thesis, Brigham Young University.

Catmull, E., and Clark, J. 1978. Recursively Generated B-
spline Surfaces On Arbitrary Topological Meshes. Computer-

Aided Design 10 , 350–355.

Forsey, D., and Bartels, R. H. 1988. Hierarchical B-spline
refinement. Computer Graphics 22, 4(August 1988), 205–212.

Grinspun, E., Krysl, P., and Schröder, P. 2002. Charms: A
simple framework for adaptive simulation. ACM Transactions

on Graphics 21, 3 (July), 281–290.

Kobbelt, L. 2000.
√

3-subdivision. Computer Graphics, 103–112.
SIGGRAPH 2000.

Kraft, R. 1998. Adaptive and linearly independent multilevel B-
splines. In Surface Fitting and Multiresolution Methods, A. L.
Mehaute, C. Rabut, and L. L. Schumaker, Eds. Vanderbilt Uni-
versity Press, Nashville, 209–218.

Ramshaw, L. 1989. Blossoms are polar forms. Computer Aided

Geometric Design 6 , 323–358.

Rockwood, A. P., Heaton, K., and Davis, T. 1989. Real-time
rendering of trimmed surfaces. Proceedings of SIGGRAPH 89 ,
107–116.

Sederberg, T. W., Zheng, J., Sewell, D., and Sabin, M.

1998. Non-uniform recursive subdivision surfaces. Proceedings

of SIGGRAPH 98 (July), 387–394. ISBN 0-89791-999-8.

Velho, L., and Zorin, D. 2001. 4-8 subdivision. Computer

Aided Geometric Design 18, 5, 397–428.

Weller, F., and Hagen, H. 1995. Tensor product spline spaces
with knot segments. In Mathematical Methods for Curves and

Surfaces, M. Daehlen, T. Lyche, and L. L. Schumaker, Eds.
Vanderbilt University Press, Nashville, 563–572.

Zorin, D., and Schröder, P., 2000. Subdivision for modeling
and animation, SIGGRAPH’00 course notes.

484

