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Representing Images Using Curvilinear
Feature Driven Subdivision Surfaces

Hailing Zhou, Jianmin Zheng, and Lei Wei

Abstract— This paper presents a subdivision-based vector
graphics for image representation and creation. The graphics
representation is a subdivision surface defined by a triangular
mesh augmented with color attribute at vertices and feature
attribute at edges. Special cubic B-splines are proposed to
describe curvilinear features of an image. New subdivision rules
are then designed accordingly, which are applied to the mesh and
the color attribute to define the spatial distribution and piecewise-
smoothly varying colors of the image. A sharpness factor is
introduced to control the color transition across the curvilinear
edges. In addition, an automatic algorithm is developed to convert
a raster image into such a vector graphics representation. The
algorithm first detects the curvilinear features of the image, then
constructs a triangulation based on the curvilinear edges and
feature attributes, and finally iteratively optimizes the vertex
color attributes and updates the triangulation. Compared with
existing vector-based image representations, the proposed repre-
sentation and algorithm have the following advantages in addition
to the common merits (such as editability and scalability): 1) they
allow flexible mesh topology and handle images or objects with
complicated boundaries or features effectively; 2) they are able to
faithfully reconstruct curvilinear features, especially in modeling
subtle shading effects around feature curves; and 3) they offer a
simple way for the user to create images in a freehand style. The
effectiveness of the proposed method has been demonstrated in
experiments.

Index Terms— Image representation, subdivision surface,
curvilinear feature, image reconstruction, image creation.

I. INTRODUCTION

TWO typical representations for images are raster graphics
and vector graphics. Raster graphics is a grid of pixels,

with each pixel storing either a color/grey value or an index
into a color palette. Pixel based image representation has
revealed its drawbacks in many applications such as image
magnification and printing. Vector graphics defines images
using graphics objects like curves and surfaces, rather than
discrete points of pixels. The vector representation is scalable,
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compact and resolution independent. It facilitates many image
editing processes, for example, object-based image editing [1].
In recent years the research of exploring graphics based image
representations and converting images from raster graphics
into vector graphics has attracted increasing interest [2]–[12].

Various vector graphics primitives have been proposed
to represent images, which include lines, curves and
polygons supporting linear or radial color gradients of
images [6], [13], [14], and surface patches such as quad-
mesh based bicubic parametric surfaces describing smoothly
varying colors [8]–[10]. Commercial software such as Adobe
Illustrator and CorelDraw has succeeded in adopting vector
graphics to represent and create image contents. However,
existing graphics-based image representations still face tech-
nical challenges due to the complexity of color or intensity
changes in many images. First, while graphics primitives are
good for representing smooth geometry, an image usually
contains both smoothly shaded regions and curvilinear features
such as the boundaries of an object in the image, across
which the color or intensity gradients are not continuous
(see Figs. 12 and 13). Second, the curvilinear features may
be in arbitrary shapes and orientations. The distribution of
the features in an image could have complicated topology
(see Figs. 12(right) and 13(c)). The topological constraints
imposed by the structure of the existing graphics represen-
tations make them difficult to have a highly flexible spatial
layout. Third, there may exist subtle shading effects around
curvilinear features (see Fig. 13(b, c)). Many vector-based
image representations are too rigid to simulate the subtle color
changes properly due to the geometric continuity constraint.
Fourth, it is also observed that most existing image representa-
tions do not facilitate the process that artists create images. To
create an image (for example, Fig. 11(e)), the artists usually
work by sketching some curves such as Fig. 11(a) with colors
as the important visual cues.

Motivated by the above observations, we aim to design
powerful vector representation that is able to effectively
approximate raster images and their curvilinear features as
well. The dedicated graphics primitives are special cubic
B-splines for curvilinear features and a triangular mesh based
subdivision surface for image representation. Both the B-spline
curves and the subdivision surface are defined in R5 with
the first two channels for the location of the image and the
last three channels for the color surface. Cubic B-splines
are a popular representation for freeform smooth curves.
We propose a specifically-designed cubic B-spline for an
open curvilinear edge and use a periodical cubic B-spline for
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a closed curvilinear edge. These B-splines’ refinement rules
can be easily incorporated into the mesh subdivision scheme.
A triangular mesh has flexible structure and is able to represent
image contents of arbitrary topology. The subdivision scheme
is an extension of conventional Loop subdivision. It is worth
pointing out that directly using Loop subdivision for images
may not be feasible for two main reasons: (1) Loop subdivi-
sion generates surfaces that are smooth everywhere while for
images, there often exists discontinuity across the curvilinear
edges; and (2) there is no apparent connection between Loop
subdivision surfaces and curvilinear features. We design new
mesh subdivision rules to allow the incorporation of sharp or
semi-sharp features represented by the special cubic B-splines.
As a result, we present a curvilinear feature driven subdivision
surface representation that can effectively define images with
piecewsie-smoothly varying intensity or color. Furthermore,
we also develop an automatic algorithm to convert an image or
an object in an image into the proposed vector representation.

Compared to previous work, our proposed representation
and algorithm have several advantages in addition to the
common merits (such as editability and scalability) of vector
representations: (1) they support flexible mesh topology and
thus are able to handle images or objects with complicated
boundaries or features effectively; (2) they are able to faithfully
reconstruct curvilinear features, especially in modeling subtle
shading effects around feature curves; and (3) they offer a
simple way for the user to create images in a freehand style.
The experiments have confirmed these advantages.

The rest of the paper is organized as follows. Section II
reviews some related work. Section III proposes a subdivision
surface-based representation for images. Section IV presents
an algorithm for image reconstruction using the proposed
subdivision representation. Section V describes a way for
curvilinear feature driven image creation. Section VI pro-
vides the experiments to demonstrate the effectiveness of the
proposed representation. Section VII concludes the paper.

II. RELATED WORK

Extensive research has been conducted to explore vari-
ous methods for representing images. A class of methods
is based on region decomposition. RaveGrid [13] extracts
feature edges from an image, performs a constrained Delaunay
triangulation on the vertices of the feature edges to yield
triangles that tile the image, and merges the triangles into
polygons according to some perceptual grouping criteria.
Froumentin et al. [6] propose to decompose an image into
regions that have relatively homogeneous colors. For each
region, the boundary is fitted by a NURBS curve and the
interior colors is specified using a constrained Delaunay
triangulation. The curves associated with simple colors and
the corresponding triangulations thus form a scale independent
representation of the image. ARDECO [14] detects smooth
regions and fits their boundaries by cubic spline curves. The
interior colors are approximated using flat colors, or linear
or circular gradients. In these approaches, the color variation
in each region is generally assumed to be relatively plain.
Recently, Xia et al. [12] propose to decompose an image

into a set of non-overlapping regions, each of which is
parameterized as a triangular Bézier patch with curved bound-
aries aligning with image features. The colors in the interior
of the regions are approximated by a smooth function which
is obtained by solving a non-linear optimization problem. This
approach can efficiently represent an image with complicated
region layout and piecewise smoothly varying color distribu-
tion, but the continuity between patches is difficult to control.
In contrary, our approach can automatically handle the conti-
nuity among patches due to the merit of subdivision surfaces.

Due to flexible arrangement of triangles, a triangular mesh is
a popular form for geometric representation and it is also found
useful in image processing and computer vision, for example,
in feature detection [15], image/video compression [16], [17],
medical image analysis [18], [19], image registration [20],
and motion track and compensation [20], [21]. Su et al. [22]
propose a pixel-level triangulation method, which connects all
the pixels by order, forming a quadrilateral mesh, and then
splits each quad into two triangles by inserting one of two
diagonals. The determination of inserted diagonal is based
on the local image features. Yu et al. [7] propose a data
dependent triangulation, which iteratively swaps an input grid
of triangles to locally minimize the costs of involved triangle
edges. The methods can reduce the visibility of artifacts
and preserve edge features well. These two methods usually
require a large number of triangles, which makes the process
of further editing images inconvenient. Therefore methods
have been developed to adaptively sample image at significant
pixels that serve as mesh vertices. Yang et al. [3] propose a
fast content-adaptive mesh generation method, which places
mesh vertices according to the classical Floyd-Steinberg error
diffusion. As a result, dense sampling is obtained in regions
with high-frequency features and sparse sampling is in plain
regions. In [4], a coarse to fine mesh generation method
is proposed, which uses binary space partitions to refine
triangles until the approximate error is smaller than a pre-
defined threshold. Adams [5] proposes a flexible strategy for
tradeoff between mesh quality and computational complexity
in content-adaptive mesh generation. In these methods, colors
at vertices are obtained from the original image directly or by
fitting the original image. Within each triangle, color varies
linearly. The linear interpolation of these methods actually
lowers the capability of their representation.

To better represent smoothly varying colors, some for-
mulations of bicubic patches commonly used in computer
graphics are adapted for images. Price and Barrett [8] employ
a collection of rectangular bicubic Bézier patches to represent
an image. A local greedy strategy is used to refine patches
to improve the representation accuracy, which however may
result in many tiny patches. A gradient mesh defined by
Ferguson patches is introduced by Sun et al. [9] and a semi-
automatic algorithm is developed for creating an optimal
gradient mesh. For images with complicated color variations,
the user assistance is needed for initial mesh placement, which
takes certain time and effort. Lai et al. [10] improve the
gradient mesh method by developing an automatic algorithm
that is able to generate mesh lines for objects of arbitrary
topology. The underlying technical components are formulated
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as linear problems. Thus the algorithm is fast and simple.
In these methods, the surface patches have intrinsically the
layout of rectangular structure, which makes them difficult in
handling distinct image features and complicated topological
distribution of regions in images. In comparison, our approach
uses subdivision surfaces to represent images, which support
arbitrary mesh structure and are able to conveniently model
curvilinear features.

Besides regions, meshes or patches, other visually signif-
icant properties of the image can also be used represent
images. For example, in [23], those high-curvature points
on the image surface are used to represent the image in a
compact way. This representation can preserve the essence
of the original image. Edge-directed interpolation estimates
significant edges in the image and the edges are used to
guide the interpolation of image data to match arbitrarily
oriented edges [24], [25]. The method can be extended to
reconstruct all level-set contours in the image [26]. A powerful
vector graphics called diffusion curves is proposed in [11] to
emphasize meaningful features and the style of process that
the artists create images. The diffusion curve is a geometric
curve augmented with color and blur attributes. An image is
represented by a set of these curves conforming to edges and
reconstructed by diffusing colors from them. Diffusion curves
are suitable and convenient for a user to create smooth-shaded
images. However, diffusion curves have a few limitations.
First, the image defined by diffusion curves is actually a
solution to a Laplacian equation with Dirichlet boundary
conditions. The process of solving the equation is not trivial.
Some work has been developed to improve the robustness and
speed of diffusion curves [27], [28]. Second, when diffusion
curves detect edges in vectorizing raster images, they often
fill smooth regions with overly dense edges and texture rich
regions with insufficient number of edges. Jeschke et al [29]
propose an automatic method to specify the position and
color for diffusion curves. Third, compared to region, mesh or
patch-based representations, a set of individual curves seem
to lack strong structural connection. For example, they do
not guarantee closed regions and thus may not be convenient
for region-based editing. While our approach is similar to
diffusion curves in supporting freehand drawing due to a
curvilinear feature driven approach, it is based on subdivision
surfaces, making it more structured and less dependent on edge
detection.

III. SUBDIVISION-BASED IMAGE REPRESENTATION

We first introduce some notations that will be used in the
paper for our descriptions. A point v ∈ R5 is denoted by
v = (x, y, R, G, B) where the first two components (x, y)
stand for the Cartesian coordinates in the xy−plane and the
last three components (R, G, B) stand for RGB channels
of color. Two projection operators L OC and C O L O R are
defined. L OC : (x, y, R, G, B) → (x, y) projects each point
in R5 to its projection on the plane by extracting its first
two components. C O L O R : (x, y, R, G, B) → (R, G, B)
takes the color value from a point in R5 by extracting the
last three components. We also use L OC and C O L O R for

curves, surfaces and point sets in R5 to extract their respect
dimensional components unambiguously.

Now we present our subdivision based image representation.
An image may contain curvilinear features. We propose to
use a special B-spline curve in R5 to represent the curvilinear
features (see Section III-A) and a subdivision surface in R5

to represent the image (see Section III-B). The first two
dimensions of the B-spline curves and the subdivision surface
describe the shape or location of features and the image
on the 2D plane and the last three dimensions specify the
color of features and the image. We devise new subdivision
rules to model piecewise-smoothly varying images and their
curvilinear features.

A. Curvilinear Feature Representation

Curvilinear feature is represented by a collection of curvilin-
ear edges. Each curvilinear edge is a smooth curve. A closed
curvilinear edge is defined by a uniform cubic periodic
B-spline curve and thus it can be specified just by a polygon
geometrically. Since the B-spline curve can be generated using
subdivision of its control polygon, the use of B-spline repre-
sentation makes it easy to be included in a subdivision surface.
Particularly, if we refine such a B-spline curve representation
by inserting new knots evenly into the uniform knot sequence,
a new polygon consisting of new edge points and new vertex
points is created [30]. Each edge point is the midpoint of the
corresponding edge and each vertex point is the linear com-
bination of the corresponding vertex and its two neighboring
vertices with coefficients 6/8, 1/8 and 1/8, respectively. This
combination is also expressed by a mask: 1-6-1. By continu-
ing this subdivision process, the initial polygon is gradually
refined and the refined polygon converges to the B-spline
curve.

If the curvilinear edge is a curve bounded by two end-
points, it is geometrically defined by a polyline denoted by
P0 P1 · · · Pn , where Pi are the vertices of the polyline. The
underlying representation of the curve is a special cubic
B-spline curve with deBoor points P0, P0, P1, . . . , Pn, Pn and
knot sequence {0, 0, 0, 0, 1, 2, . . . , n, n, n, n}. This B-spline
curve is special because of the duplication of two
endpoints P0 and Pn . It is easy to check that the
curve interpolates the two end points of the polyline.
If we refine the knot sequence by inserting a knot at
the midpoint of each nonzero knot interval, then the
new knot sequence becomes {0, 0, 0, 0, 0.5, 1, 1.5, 2, . . . ,
n − 1, n − 0.5, n, n, n, n} and the deBoor points become
P0, P0, E1, P ′

1, E2, P ′
2, . . . , P ′

n−1, En, Pn, Pn where

E1 = 3P0 + P1

4
, En = Pn−1 + 3Pn

4
,

Ei = Pi−1 + Pi

2
for i = 2, . . . , n − 1,

P ′
1 = 3P0+ 11P1 + 2P2

16
, P ′

n−1 = 2Pn−2 + 11Pn−1 + 3Pn

16
,

P ′
i = Pi−1 + 6Pi + Pi+1

8
for i = 2, . . . , n − 2.

The above formulae are derived using B-spline knot inser-
tion algorithms [30]. They can also be explained using
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Fig. 1. A special cubic B-spline curve corresponds to an initial polyline
(in green) and a refined polyline (in blue).

masks. That is, the masks for E1, Ei , and En are
3-1, 1-1, and 1-3, respectively, and the masks for P ′

1,
P ′

i , and P ′
n−1 are 3-11-2, 1-6-1, and 2-11-3, respectively.

There are two exceptional cases that have special masks:

• n = 1: The curve is a straight line segment. The mask
for E1 is 1-1.

• n = 2: The masks for E1 and E2 are 3-1 and 1-3, and
the mask for P ′

1 is 3-10-3.
Thus the refinement of the special B-spline is equivalent
to simply subdividing the initial polyline into the refined
polyline P0 E1 P ′

1 E2 · · · En Pn (see Fig. 1 for an illustration).
This subdivision has a pattern similar to the refinement of
a uniform cubic B-spline curve. That is, each edge Pi−1 Pi

corresponds to a new edge point Ei and each old vertex Pi

corresponds to a new vertex point P ′
i . However, the curve we

define here is a non-uniform B-spline curve and it interpolates
the two endpoints. Moreover, such specially designed curve
formulation makes itself be easily integrated into the surface
subdivision scheme introduced in the next subsection.

B. Subdivision Surfaces

Consider a triangular mesh M in R5, denoted by (V , K )
where V = (v1, v2, . . . , vm), vi ∈ R5 is a set of vertices and
K is a simplicial complex specifying the connectivity of the
vertices. Triangular meshes have flexible topology and thus
are convenient for our purposes.

A subdivision surface is defined by repeatedly refining
an initial control mesh. Loop subdivision is one subdivision
scheme applied to triangular meshes, which generalizes C2

quartic triangular B-splines to arbitrary topology [31]. The
refinement step of Loop subdivision proceeds by splitting each
triangle into four subtriangles. The vertices of the refined mesh
are weighted averages of the vertices in the unrefined mesh.
They are classified into two classes: edge points and vertex
points corresponding to edges and vertices of the unrefined
mesh, respectively. As the refinement goes to infinity, Loop
subdivision results in a tangent plane continuous surface.

We aim to use a subdivision surface to define an image
or an object in an image. The object could have an arbitrary
boundary, holes, or many features which occur as sharp or
semi-sharp curvilinear edges geometrically. An image can also
be viewed as an object with a regular boundary and possibly
many features. Since the image surface across the sharp or
semi-sharp features is not smooth, we need to modify the Loop

Fig. 2. Edge subdivision rules. Red lines denote crease edges and the disk
denotes a corner vertex. (a) Smooth edge. (b) Crease edge with one corner
endpoint. (c) Other crease edge.

Fig. 3. Vertex subdivision rules. Red lines denote crease edges and disks
denote corner vertices. (a) Smooth vertex. (b) Corner vertex. (c) Ccrease
vertex with one corner neighbor. (d) Crease vertex with two corner neighbors.
(e) Other crease vertex.

subdivision scheme in order to properly represent the image
that contains curvilinear features.

Given a triangular mesh, some consecutive edges of the
mesh form a polyline defining a B-spline curve for curvilinear
feature. Such a polyline is called a feature polyline and the
related edges and vertices are tagged as crease. In particular,
the boundary of the mesh is viewed as feature polylines.
Feature polylines may contain endpoints. The endpoints are
tagged as corner. In addition, a vertex lying on two feature
polylines is also tagged as corner. All the other vertices
and edges are considered to be smooth vertices and edges.
In this way, the pair (V , K ) becomes a tagged simplicial
complex. The Loop subdivision masks are modified so that
the feature polylines define the demanded curvilinear features
and the tangent plane continuity across crease edges is relaxed.
In the subdivision process, new edges corresponding to an old
crease edge are tagged as crease, a vertex corresponding to an
old crease vertex is tagged as crease, and similarly a vertex
corresponding to an old corner vertex is tagged as corner.

While subdivision at smooth edges and vertices can be
performed using Loop subdivision algorithm, subdivision rules
at crease edges and crease/corner vertices must be chosen
carefully in order to match the rules for creating the curvi-
linear features given in Section III-A. Fig. 2 shows our edge
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Fig. 4. Limit position masks for vertices. Red lines denote crease edges and
disks denote corner vertices. (a) Smooth vertex. (b) Corner vertex. (c) Crease
vertex with one corner neighbor. (d) Crease vertex with two corner neighbors.
(e) Other crease vertex.

subdivision rules and Fig. 3 shows our vertex subdivision rules
where

α(n) = n(1 − a(n))

a(n)

with

a(n) = 5

8
− (3 + 2 cos(2π/n))2

64

and n is the valence of the vertex. The zeros in the crease
subdivision masks completely decouple the behavior of the
surface on one side of the crease from the behavior on the
other side. Note that different subdivision rules have been
presented in [32] and [33] in order to create piecewise smooth
subdivision surfaces. Our subdivision rules are driven by the
curvilinear features. Feature polylines without corner vertices
generate uniform cubic B-spline curves and feature polylines
with some corner vertices generate cubic B-spline curves with
interpolating endpoints.
Computing limit points: We look at a vertex vk of the
mesh after k rounds of refinement and its 1-ring neighbors
vk

1 , . . . , vk
n where n is the valence of vk . Let vk+1 be the vertex

of the mesh after k + 1 rounds of refinement, associated with
vk , and vk+1

1 , . . . , vk+1
n be the 1-ring neighbors of vk+1. Then

we have

(vk+1, vk+1
1 , . . . , vk+1

n )T = Sn+1(v
k , vk

1 , . . . , vk
n)T (1)

where Sn+1 is a (n + 1) × (n + 1) matrix called the local
refinement matrix. The local refinement matrix is important in
analyzing point positions and smoothness of the limit surface.
We perform eigenanalysis of matrix Sn+1 as in [33] and [34]
and derive the masks for computing the limit points. The
masks depend on whether the vertex is a corner, crease,
or smooth vertex and its neighboring vertices, and they are
given in Fig. 4 where ω(n) = 3n

8a(n) . Note that for a crease
vertex with one or two corner neighbors, after one round of

Fig. 5. Color discontinuity modeling. Top: a sharp feature is created with
sharpness = 0.9; Bottom: a semi-sharp feature is created with sharpness = 0.1.

refinement it will become a normal crease vertex, which is
not connected to a corner vertex. Therefore the eigenanalysis
should be performed after one round of refinement.

C. Color Discontinuity Modeling

Note that the proposed subdivision surface is piecewise
smooth, divided by curvilinear features across which the sur-
face is only C0 continuous. C0 continuity is necessary for the
geometry part (i.e., the first two dimensions). It ensures that no
gap occurs geometrically in the representation. Nevertheless,
the property of C0 continuity may be too strong for the color
part (i.e., the last three dimensions) since it is quite often for
an image to have color discontinuity across feature edges.

The introduction of crease edges into subdivision well
solves the non-smoothness issue in geometric modeling,
but it does not effectively solve the discontinuity problem
for images. This motivates us to introduce feature polyline
pair to model color discontinuity. That is, we design our
triangular mesh such that feature polylines occur in pairs and
the feature polylines in each pair are close geometrically but
have different color attributes. Moreover, we further introduce
a parameter “sharpness”, which takes values from 0 to 1, to
describe how much the color is discontinuous across an edge.
The sharpness value of 1 means that the edge is sharp. The
value falling in (0, 1) implies a semi-sharp edge. The value of
sharpness is used to determine the geometric distance between
two feature polylines in a pair: distance = ρ(1 − sharpness)
where ρ > 0 is a constant. We set ρ = 5 in our experiment.
When sharpness is close to 1, the distance is nearly zero. Then
the color will have a sudden change across the curvilinear
edge, which gives color discontinuity effect. Fig. 5 illustrates
this idea.

Fig. 6 shows two images created using the proposed rep-
resentation from triangular meshes. Tagged edges are marked
by red and green colors for sharp and semi-sharp features.

IV. IMAGE RECONSTRUCTION

This section presents our algorithm for automatically con-
structing subdivision-based representation for a given image.
The algorithm consists of four phases: curvilinear curve
construction, initial mesh construction, color optimization
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Fig. 6. Images with curvilinear edges and their meshes. (a) With semi-sharp
edges. (b) With sharp edges.

Fig. 7. Feature extraction. (a) Input objects; (b) Cleaned sharp (red) and
semi-sharp (green) edges; (c) Some corners.

and mesh refinement. First, image analysis is performed to
extract distinct curvilinear features and the feature curves
are then approximated by cubic B-spline curves. Second, an
initial triangular mesh with tagged information is constructed.
Third, the color value for each vertex of the mesh is computed
through an optimization procedure. Fourth, approximation
error is checked. If the error is greater than a prescribed
threshold, the mesh is refined and the algorithm goes back to
phase 3. Phase 3 and phase 4 are repeated until a satisfactory
approximation is reached. In this process, the mesh size and
reconstruction quality should be traded off. The technical
details of these phases are explained below.

A. Curvilinear Curve Construction

Curvilinear curve construction involves feature extraction
and B-spline curve fitting. We identify the curvilinear features
using the advanced contour detection technique proposed
in [35]. For each extracted edge, we estimate the degree of
blur for each pixel on the edge using the method of [36].
The blur scale is normalized to [0, 1]. After this, Otsu’s
thresholding method is adapted to minimize the within-group
variances on the blur scales and the blue scales are quantized.
Then each extracted curvilinear edge is associated with a value
of sharpness that is (1 - blur-scale). Next, corners are to be
identified. The algorithm in [37] is used to locate corners in

Fig. 8. The 2nd feature polyline (in pink) is created from the 1st one (in red).

Fig. 9. Effects of image reconstruction using only single polylines marked
in red in (d) and using feature polyline pairs marked in green in (e). (a) Input
image. (b) Using single polylines. (c) Using polyline pairs. (d) Mesh for (b).
(e) Mesh for (c).

each curvilinear edge. Also the endpoints of a curvilinear edge
or the point where two curvilinear edges intersect are treated
as corners. Fig. 7 gives an example of feature extraction.

For each curvilinear edge, we perform B-spline fitting.
A cubic periodic B-spline is used for a closed curve and
a special cubic B-spline is used for an open curve. If the
length of the curvilinear curve is len, we heuristically set the
number of deBoor points to be max{4, len/8}. Once the type
of the B-spline curve and the number of deBoor points are
specified, what remain to be determined are only the deBoor
points, which can be found by the conventional least squares
fitting. If the approximation error is larger than a user-specified
threshold, the number of deBoor points is increased and the
least squares procedure is repeated.

As explained in Section III-C, we need to use feature poly-
line pairs to model (semi-)sharp edges. The above B-spline
fitting has already produced one polyline for each feature
curve. Therefore we can create another one by offsetting the
first one along the “normal” direction by a certain distance
(see Fig. 8). Specifically, for each deBoor point, we define the
normal at this point to be the average of the normals of its
two incident edges. Then each deBoor point is moved along its
normal by a distance. The distance depends on the sharpness
and is computed by the formula given in Section III-C. It is
worth pointing out that using a pair of feature polylines is
important for generating high quality reconstruction. Fig. 9
shows an example, where (a) is the input image, (b) is
the reconstruction result using single curvilinear features as
marked in red in (d) and (c) is the result using polyline pairs
as marked in green in (e).
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B. Initial Mesh Construction

Once the polylines are generated, a constrained Delaunay
triangulation [38] is performed on them to create a triangular
mesh in the image domain. The triangulation quality can be
controlled by the minimal angles of triangles. The larger the
minimal angles are set to be, the more regular the resulting
triangles are, which results in more triangles. To balance the
number and quality of the resulting triangles, we set the
minimal angles to be 20 degrees in this paper, which works
well in our experiments. In order to obtain a satisfied mesh,
additional points are allowed to be inserted, but not on the
polylines. The polylines have a tag showing the sharpness.
As a result, an initial control mesh M is constructed augmented
with tag information.

C. Color Optimization

Suppose the input image is I and the subdivision surface
in R5 is S. Now (L OC(V ), K ), the projection of M onto the
image plane, has been specified. What remains is to determine
C O L O R(V ), the color values for vertices. One may let
C O L O R(V ) be I (L OC(V )), but this simple color scheme
does not necessarily offer a good solution. In the following
we determine the vertex colors by solving the following
minimization problem:

min
C O L O R(V )

∑

(x,y)

‖I (x, y) − C O L O R(H (x, y))‖2 (2)

where H (x, y) ∈ R5 is a point on S with L OC(H ) = (x, y).
In practice, however, computing H (x, y) for given (x, y) is

very complicated. Here we take an approach similar to the one
used in [32]. We subdivide r times (typically r = 2) the
original mesh M to generate a refined mesh Mr using the
rules proposed in Section III-B and then push all the vertices
of Mr to their limit positions using the position masks. In this
way, we obtain a piecewise linear approximation S̃ to S. Since
each vertex of Mr is a linear combination of the vertices
of M and the limit position is also a linear combination of
the vertices of Mr , each of the vertices of S̃ can be written
as a linear combination of the vertices in V . Furthermore,
since S̃ is piecewise linear, any point on S̃ can be linearly
represented by at most three vertices of S̃. In particular, if a
2D point q = (x, y) is within L OC(S̃), it must be contained
in a triangle formed by vertices in L OC(S̃). Assume the three
vertices are L OC(ṽi ), L OC(ṽ j ), and L OC(ṽk ). Then

q = ui L OC(ṽi ) + u j L OC(ṽ j ) + uk L OC(ṽk)

where (ui , u j , uk) the barycentric coordinates of q with
respect to triangle L OC(ṽi )L OC(ṽ j )L OC(ṽk ). If H is a
point on S̃ satisfying L OC(H ) = q , the linear relationship
also holds for H in R5, meaning H = ui ṽi + u j ṽ j + uk ṽk .
Thus each point on S̃—not just the vertices—can be written as
a linear combination of the vertices in V . That is, H = Cq V
where Cq is a row vector whose entries is a combination of
the effects of r−fold subdivision followed by applications of
position masks and barycentric coordinates.

Fig. 10. An example of mesh refinement for the flower image in Fig. 7(a).
Left column shows an initial mesh, the image defined by the initial mesh
with the simple color scheme, the reconstruction result by the initial mesh with
color optimization and the color map of the reconstruction error. Right column
shows the counterparts when the initial mesh is refined. (a) Meshes before and
after refinement. (b) The results by the simple color scheme. (c) The results
by color optimization. (d) Reconstruction errors.

The minimization problem (2) now becomes

min
C O L O R(V )

∑

(x,y)∈L OC(S̃)

‖I (x, y) − C(x,y)C O L O R(V )‖2 (3)

It is a typical least squares problem, which can be efficiently
solved by linear solvers. This also explains why we choose
to only optimize the color values of the vertices. Though
optimizing both RGB values and the positions of the vertices
simultaneously may give better reconstruction results, the
coupling makes the optimization procedure highly nonlinear
and difficult to solve.

To sample (x, y) within L OC(S̃), we use scan conversion
to each triangle of L OC(S̃). The coherence of location enables
us to compute the barycentric coordinates of a point from the
barycentric coordinates of the previous point or the point on
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Fig. 11. Image creation from sketches: (a). The user sketches curvilinear edges (sharp and semi-sharp features are marked in red and green); (b) A pair of
polylines is generated for each curvilinear curve (the pairs of sharp features are shown by yellow and blue colors, and the pairs of semi-sharp features are
shown by pink and cyan colors); (c) The user paints color to the vertices of the curvilinear curves; (d) A tagged control mesh with color attributes is created;
(e) An image is created using the subdivision surface.

the previous scan line by simple additions or subtractions. This
speeds up the computation.

D. Mesh Refinement

After color optimization, we obtain a subdivision surface.
The color fitting error is then evaluated and those pixels
corresponding to a fitting error greater than a user-specified
threshold are marked. To reduce the fitting error, we proceed
to refine the mesh. We scan the marked pixels and iteratively
select the pixels whose distances to the existing mesh vertices
and already selected pixels are greater than a given threshold.
Instead of refining the existing mesh by directly adding the
new vertices corresponding to the selected pixels, we apply
the constrained Delaunay triangulation again to the vertices of
the existing mesh, the new vertices, and the feature polylines.
Fig. 10 shows one example of such refinement. It can be seen
that the refinement improves the results. The reconstruction
errors are plotted using color in Fig. 10(d) (see the inset on
the right for the color map). This color map is also used for
plotting the errors in the rest of the paper.

V. CURVILINEAR FEATURE DRIVEN IMAGE CREATION

The proposed subdivision-based image representation offers
a simple way to create an image in a freehand style as in
diffusion curves [11]. The user just sketches some curves as
the curvilinear curves and specifies their color and sharpness
attributes. Our algorithm can automatically create a tagged
triangular mesh which defines the target image. The creation
process basically involves the following steps:

• The user sketches curvilinear curves and assigns sharp-
ness to them.

• The sketched curves are represented by cubic B-spline
curves. As explained in Section IV, our algorithm auto-
matically generates an adjacent curve for each sketched
curvilinear curve. The user can adjust the distance
between the curves of each pair to control the blur effect.

• The user specifies colors for each curvilinear curve.
• A tagged triangular mesh is automatically generated by

applying constrained Delaunay triangulation to the con-
trol polygons of the generated cubic B-spline curves as
explained in Section IV-B. The colors for the vertices of

Fig. 12. Vectorization of 3 different images using our method. Left: image
with smoothly varying color; Middle: image with curvilinear features; Right:
image with complicated topology. (a) Input images. (b) Reconstructed meshes.
(c) Reconstructed images. (d) Plotting of the reconstruction errors.

the mesh are then estimated using the method introduced
in [28].

• The target image is created by the subdivision surface
defined by the constructed mesh and color.

Fig. 11 illustrates this process. Our input sketches in
Fig. 11(a) are very similar to those given in [11]. The generated
polyline pairs allow us to conveniently specify different colors
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Fig. 13. More vectorization results: original images (left), reconstructed
results (middle), and plotting of the reconstruction errors (right). (a) Face;
(b) flowers; (c) green jade.

at two sides of the feature curves (see Fig. 11(c)), just as
the method of diffusion curves. Moreover, our method further
allows adjusting the distance between two feature curves in
each pair. A tagged mesh associated with color attributes is
automatically generated to define a subdivision surface and
thus an image, which appears similar to the one produced
in [11].

VI. EXPERIMENTS

This section provides experimental results to validate our
proposed method. The method is implemented using C++.
The experiments are run on a PC with Intel Xeon 2.0 GHz
CPU and 2GB RAM. The reconstruction quality is not only
evaluated visually but also quantified by quality measurements.

A. Reconstruction Results

Our reconstruction algorithm handles a whole image and
objects on an image in the same way, except for a preprocess
step for objects, which is to cut out objects from images using
some segmentation tool. For example, Fig. 12, Fig. 13(c),
Fig. 17, and Fig. 18 are all objects.

Figs. 12–18 show images with various characteristics.
Fig. 12(right) and Fig. 13(c) have complicated topology,

Fig. 14. Vectorization with/without use of sharpness. (a) Input image.
(b) Curvilinear edges. (c) With sharpness. (d) Without sharpness. (e) Close-
ups of (a), (c) and (d).

Fig. 15. Left: input images; Middle: reconstructed meshes; Right: recon-
structed images. (a) Lena. (b) Pepper.

where the objects contain many holes. Fig. 12(middle) and
Fig. 14 have complicated curvilinear features. Fig. 12(left)
has smooth color transitions. Refer to Table I for the statis-
tics of our experiment examples. In particular, columns 2–8
show the running time, the number of iterations, the number
of resulting triangles, the size in Kbytes of our proposed
representation without compression, the number of pixels of
the input images, the size in Kbytes of the input image
in PNG format, and the mean errors of the reconstruction,
respectively. It can be seen that for all these examples,
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Fig. 16. Compression ratios at various PSNRs. (a) Lena. (b) Pepper.

Fig. 17. Comparison with [10]. Left: result of [10]; Right: ours. (a) Durian;
(b) reconstruction errors for durian; (c) jade; (d) reconstruction errors for jade.

our vectorization results are very close to the original images,
the reconstructed mesh is compact and the algorithm is effi-
cient. It takes less than 2 minutes to reconstruct each of these
examples except for the durian model that costs 5 minutes.

Our method associates curvilinear features with sharpness.
Sharpness enables our method to effectively handle subtle
color changes, which is important for sincere reconstruction.
Fig. 14 shows how the puppet’s shadow is reconstructed

faithfully. The curvilinear edges of the image is detected as
marked in Fig. 14(b) where red indicates a large sharpness
value and green indicates a small sharpness value. Fig. 14(c)
and (d) are the results of vectorization with and without using
sharpness, respectively. The close-ups in Fig. 14(e) show the
difference.

B. Quality Assessment

We evaluate our reconstruction quality using two popular
measurements: the Peak Signal-to-Noise Ratio (PSNR) and
the mean Structural SIMilarity index (MSSIM). Particularly,
MSSIM is an excellent measurement relative to human subjec-
tive assessment [39]. Based on a curve reflecting the relation-
ship between MSSIM/PSNR and Mean Opinion Scores (MOS)
in [40], a test image with PNSR greater than 35 or MSSIM
greater than 0.960 obtains an MOS higher than 60. The MOS
is divided into five equal regions within [0, 100] and these
five regions are marked with adjectives “Bad”, “Poor”, “Fair”,
“Good” and “Excellent”. From Table I, we can see that all our
testing results have “good” or “excellent” reconstructions.

In [4], a compression ratio is introduced as the ratio of the
number of the original image pixels to the number of vertices
of the reconstructed mesh. Table I also reports the compression
ratios of our experiment examples.

We use the Lena and pepper images (see Fig. 15) to evaluate
the performance of our method and other mesh generation
methods [3], [4], [41]. The performance curves for the com-
pression ratios at various PSNRs are shown in Fig. 16, from
which we can see that our method has a better compression
ratio than Yang et al.’s [3] and BSP’s [4] methods. Our method
also outperforms the adaptive thinning scheme [41] for high
image reconstruction quality.

C. Comparison With Previous Work

We compare our vectorization with two representative
methods in literature. First let us examine how to estimate
the bytes required to store the reconstructed vector graphics
representations. In our representation, each vertex contains
x, y and RGB values (in floating points) and thus requires
5 × 4bytes = 20 bytes, each face needs to store three indices
of vertices, requiring 3 × 2bytes = 6 bytes. In addition, we
need four integers (each 2bytes) to record the number of
vertices, the number of triangles containing 3 tagged edges,
the number of triangles containing 2 tagged edges and the
number of triangles containing 1 tagged edge. In total we need
(#ver tices × 20 + #tr iangles × 6 + 8)bytes. The gradient
mesh representation proposed in [10] needs to store corners
of patches besides some boundary information. Each corner
contains the position, RGB values and their partial derivatives,
summing up to 15 scalar coefficients. Thus the gradient mesh
representation requires at least (#corners × 60)bytes. In the
patch-based representation proposed in [12], each patch has
66 scalar coefficients. Thus the representation of [12] requires
(# patches × 264)bytes plus additional information for the
connectivity of patches.

The objects in Fig. 17 have fine details. As reported in [10],
the method of [10] has difficulty in recovering the durian
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Fig. 18. Comparison with [12]. (a) Original image. (b) Result of [12]. (c) Plotting of errors of [12]. (d) Our result. (e) Plotting of errors of our method.

TABLE I

STATISTICS FOR THE EXAMPLES OF IMAGE VECTORIZATION USING OUR METHOD

while our method can reconstruct the durian in quality with
a reasonable mesh size. For the jade, our method produces a
representation with 1474 vertices, 2496 triangles, and mean
error of 2.41, while the method of [10] produces a gradient
mesh with about 63 vertical lines and 56 horizontal lines
and mean error of 2.76. The images in the figure show that
our reconstruction result contains more details. The above
estimation also indicates that the storage and mean error of
our reconstruction results are 43.4KB and 2.41 while [10]’s
are 206.7K and 2.76.

Fig. 18 is the comparison of our method with the method
of [12]. Our method results in 3417 vertices, 6257 faces,
and mean error of 0.85 while the method of [12] produces
380 patches with each patch containing 66 parameters and
mean error of 0.98. The storage of our representation is thus
at most 103.4KB and [12]’s is 98KB which does not include
the connectivity information of patches.

D. Applications

With our vector graphics representation, standard graph-
ics operations such as magnification, rotation and freeform
deformation can be performed faithfully. Fig. 19 shows an
example of image magnification based on the reconstruction
image (middle) or the bicubic interpolation (right). It can be
seen that with the proposed subdivision surface representation,
the image features can be preserved very well for the process
of magnification.
Vector-based editing. The image can be modified by changing
deBoor points: 2D positions on the image plane or RGB color
values. A tool has been implemented to allow the user to
select individual points or edges, to sketch a closed curve
to select a region, and to change them. Fig. 20(left) is a
reconstructed image. The user selects some control points

Fig. 19. Image magnification (×8). Left: input image; Middle: using the
reconstruction image; Right: using bicubic interpolation.

Fig. 20. Editing of image features.

that define the curvilinear features in the middle of the cup
and move them to the new locations to warp the shape
as shown in Fig. 20(middle), where the cup color is also
retouched by changing the color values of the deBoor points.
In addition, our vector graphics representation provides a
convenient way to adjust sharpness of curvilinear features.
It is achieved by changing the sharpness values of edges.
Fig. 20(right) shows the result of changing part of a curvi-
linear edge from blur to sharp, which is highlighted by an
ellipse.

VII. CONCLUSIONS

We have introduced subdivision surfaces in R5 as a new
vector graphics representation for raster images. The new
subdivision surface scheme is an extension of Loop subdi-
vision by incorporating new subdivision rules for modeling
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curvilinear curves. The curvilinear curves are modeled by
specially designed cubic B-spline curves. A curvilinear curve
is also associated with a parameter controlling the sharpness.
The proposed representation has flexibility in defining com-
plicated contents of images, is capable of modeling various
sharp or semi-sharp edges in a compact way, and provides a
natural way for the user to create images in a freehand style.
An automatic image reconstruction algorithm is presented
to find a subdivision surface that best fits the input image.
Experimental results have demonstrated the effectiveness of
the proposed new image representation and its reconstruction
algorithm.

REFERENCES

[1] W. A. Barrett and A. S. Cheney, “Object-based image editing,” ACM
Trans. Graph., vol. 21, no. 3, pp. 777–784, Jul. 2002.

[2] M. Kashimura, Y. Sato, and S. Ozawa, “Image description for coding
using triangular patch structure,” in Proc. Int. Conf. Commun. Syst.,
Nov. 1992, pp. 330–334.

[3] Y. Yang, M. N. Wernick, and J. G. Brankov, “A fast approach for
accurate content-adaptive mesh generation,” IEEE Trans. Image
Process., vol. 12, no. 8, pp. 886–881, Aug. 2003.

[4] M. Sarkis and K. Diepold, “Content adaptive mesh representation of
images using binary space partionts,” IEEE Trans. Image Process.,
vol. 18, no. 5, pp. 1069–1079, May 2009.

[5] M. D. Adams, “A flexible content-adaptive mesh generation strategy
for image representation,” IEEE Trans. Image Process., vol. 20, no. 9,
pp. 2414–2427, Sep. 2011.

[6] M. Froumentin, F. Labrosse, and P. Willis, “A vector-based
representation for image warping,” Comput. Graph. Forum, vol. 19,
no. 3, pp. 419–425, Sep. 2000.

[7] X. Yu, B. S. Morse, and T. W. Sederberg, “Image reconstruction using
data-dependent triangulation,” IEEE Comput. Graph. Appl., vol. 21,
no. 3, pp. 62–68, May/Jun. 2001.

[8] B. Price and W. Barrett, “Object-based vectorization for
interactive image editing,” in Proc. Pacific Graph., Sep. 2006,
pp. 661–670.

[9] J. Sun, L. Liang, F. Wen, and H. Shum, “Image vectorization using
optimized gradient meshes,” in Proc. SIGGRAPH, 2007.

[10] Y.-K. Lai, S.-M. Hu, and R. R. Martin, “Automatic and topology-
preserving gradient mesh generation for image vectorization,” ACM
Trans. Graph., vol. 28, no. 3, p. 85, Aug. 2009.

[11] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and
D. Salesin, “Diffusion curves: A vector representation for smooth-shaded
images,” ACM Trans. Graph., vol. 27, no. 3, p. 92, Aug. 2008.

[12] T. Xia, B. Liao, and Y. Yu, “Patch-based image vectorization with
automatic curvilinear feature alignment,” ACM Trans. Graph., vol. 28,
no. 5, p. 115, Dec. 2009.

[13] S. Swaminarayan and L. Prasad, “Rapid automated polygonal image
decomposition,” in Proc. 35th Appl. Imag. Pattern Recognit. Workshop,
Oct. 2006, p. 28.

[14] G. Lecot and B. Lévy, “ARDECO: Automatic region detection and
conversion,” in Proc. Eurograph. Symp. Rendering, 2006.

[15] S. A. Coleman, B. W. Scotney, and M. G. Herron, “Image feature
detection on content-based meshes,” in Proc. Int. Conf. Image Process.,
2002, vol. 1, pp. I-844–I-847.

[16] F. Davoine, M. Antonini, J.-M. Chassery, and M. Barlaud, “Fractal image
compression based on Delaunay triangulation and vector quantization,”
IEEE Trans. Image Process., vol. 5, no. 2, pp. 338–346, Feb. 1996.

[17] Y. Wang, O. Lee, and A. Vetro, “Use of two-dimensional deformable
mesh structures for video coding. II. The analysis problem and a
region-based coder employing an active mesh representation,” IEEE
Trans. Circuits Syst. Video Technol., vol. 6, no. 6, pp. 647–659,
Dec. 1996.

[18] D. Hale, “Atomic images-a method for meshing digital images,” in Proc.
10th Int. Meshing Roundtable, 2001, pp. 185–196.

[19] J. G. Brankov, Y. Yang, and M. N. Wernick, “Tomography image
reconstruction using content-adaptive mesh modeling,” in Proc. Int.
Conf. Image Process., 2001, vol. 1, pp. 690–693.

[20] Y. Wang and O. Lee, “Active mesh-a feature seeking and tracking image
sequence representation scheme,” IEEE Trans. Image Process., vol. 3,
no. 5, pp. 610–624, Sep. 1994.

[21] Y. Altunbasak and A. M. Tekalp, “Closed-form connectivity-preserving
solutions for motion compensation using 2-D meshes,” IEEE Trans.
Image Process., vol. 6, no. 9, pp. 1255–1269, Sep. 1997.

[22] D. Su and P. Willis, “Image interpolation by pixel-level data-dependent
triangulation,” Comput. Graph. Forum, vol. 23, no. 2, pp. 189–201,
Jul. 2004.

[23] S.-J. Wang, L.-C. Kuo, H.-W. Jong, and Z.-H. Wu, “Representing images
using points on image surfaces,” IEEE Trans. Image Process., vol. 14,
no. 8, pp. 1043–1056, Aug. 2005.

[24] J. Allebach and P. W. Wong, “Edge-directed interpolation,” in Proc.
ICIP, Sep. 1996, pp. 707–710.

[25] X. Li and M. T. Orchard, “New edge-directed interpolation,” IEEE
Trans. Image Process., vol. 10, no. 10, pp. 1521–1527, Oct. 2001.

[26] B. S. Morse and D. Schwartzwald, “Isophote-based interpolation,” in
Proc. ICIP, Oct. 1998, pp. 227–231.

[27] S. Jeschke, D. Cline, and P. Wonka, “Rendering surface details with
diffusion curves,” ACM Trans. Graph., vol. 28, no. 5, p. 117, Dec. 2009.

[28] W.-M. Pang, J. Qin, M. Cohen, P.-A. Heng, and K.-S. Choi, “Fast
rendering of diffusion curves with triangles,” IEEE Comput. Graph.
Appl., vol. 32, no. 4, pp. 68–78, Jul./Aug. 2012.

[29] S. Jeschke, D. Cline, and P. Wonka, “Estimating color and texture
parameters for vector graphics,” Comput. Graph. Forum, vol. 30, no. 2,
pp. 523–532, Apr. 2011.

[30] E. Cohen, T. Tyche, and R. Riesenfeld, “Discrete B-splines and
subdivision techniques in computer-aided geometric design and
computer graphics,” Comput. Graph. Image Process., vol. 14, no. 2,
pp. 87–111, Oct. 1980.

[31] C. Loop, “Smooth subdivision surfaces based on triangles,” M.S. thesis,
Dept. Math., Univ. Utah, Salt Lake City, UT, USA, 1987.

[32] H. Hoppe et al., “Piecewise smooth surface reconstruction,” in Proc.
ACM SIGGRAPH, 1994, pp. 295–302.

[33] H. Hoppe, “Surface reconstruction from unorganized point,” Ph.D.
dissertation, Dept. Comput. Sci. Eng., Univ. Washington, Seattle, WA,
USA, 1994.

[34] J. E. Schweitzer, “Analysis and application of subdivision surfaces,”
Ph.D. dissertation, Dept. Comput. Sci. Eng., Univ. Washington, Seattle,
WA, USA, 1996.

[35] P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 898–916, May 2011.

[36] J. H. Elder and S. W. Zucker, “Local scale control for edge detection
and blur estimation,” IEEE Trans. Pattern Anal. Mech. Intell., vol. 20,
no. 7, pp. 699–716, Jul. 1998.

[37] M. Maire, P. Arbelaez, C. Fowlkes, and J. Malik, “Using contours to
detect and localize junctions in natural images,” in Proc. IEEE Conf.
CVPR, Jun. 2008, pp. 1–8.

[38] J. R. Shewchuk, “Triangle: Engineering a 2D quality mesh generator
and Delaunay triangulator,” in Proc. Appl. Comput. Geometry, Towards
Geometric Eng., May 1996, vol. 1148, pp. 203–222.

[39] K. Okarma, “Colour image quality assessment using structural similarity
index and singular value decomposition,” in Proc. Int. Conf. Comput.
Vis. Graph., Nov. 2008, pp. 55–65.

[40] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image
quality assessment: From error visibility to structural similarity,” IEEE
Trans. Image Process., vol. 13, no. 4, pp. 600–612, Apr. 2004.

[41] L. Demaret, N. Dyn, and A. Iske, “Image compression by linear
splines over adaptive triangulations,” Signal Process., vol. 86, no. 7,
pp. 1604–1616, Jul. 2006.

Hailing Zhou (M’13) received the B.Eng. (Hons.)
degree in computer science from Xidian University,
Xi’an, China, in 2006, and the Ph.D. degree from
Nanyang Technological University, Singapore, in
2012, where she was a Project Officer in 2012.
She is currently a Research Fellow with the Centre
for Intelligent Systems Research, Deakin University,
Burwood, VIC, Australia. Her main areas of research
are computer vision, image processing, human–
computer interaction, and computer graphics.



3280 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 8, AUGUST 2014

Jianmin Zheng received the B.S. and Ph.D. degrees
from Zhejiang University, Hangzhou, China. He is
currently an Associate Professor with the School
of Computer Engineering, Nanyang Technological
University, Singapore. His current research interests
include computer-aided geometric design, computer
graphics, animation, visualization, and interactive
digital media. He has authored more than 100 techni-
cal papers in international conferences and journals.
He is an Associate Editor of The Visual Computer.

Lei Wei (M’13) received the B.Eng. degree in
computer science from Tianjin University, Tianjin,
China, and the Ph.D. degree from Nanyang Tech-
nological University (NTU), Singapore, in 2006 and
2011, respectively. He was a Research Associate at
NTU before he was a Post-Doctoral Research Fel-
low at the Centre for Intelligent Systems Research,
Deakin University, Burwood, VIC, Australia. His
research interests include haptic rendering, hap-
tic collision detection, networked haptics, medical
haptics, human–computer interaction, and image

processing.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


