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Foldover-Free Mesh Warping for Constrained
Texture Mapping

Yuewen Ma, Jianmin Zheng, and Jian Xie

Abstract—Mapping texture onto 3D meshes with positional constraints is a popular technique that can effectively enhance the visual
realism of geometric models. Such a process usually requires constructing a valid mesh embedding satisfying a set of positional
constraints, which is known to be a challenging problem. This paper presents a novel algorithm for computing a foldover-free piecewise
linear mapping with exact positional constraints. The algorithm begins with an unconstrained planar embedding, followed by iterative
constrained mesh transformations. At the heart of the algorithm are radial basis function (RBF)-based warping and the longest edge
bisection (LEB)-based refinement. A delicate integration of the RBF-based warping and the LEB-based refinement provides a provably
foldover-free, smooth constrained mesh warping, which can handle a large number of constraints and output a visually pleasing
mapping result without extra smoothing optimization. The experiments demonstrate the effectiveness of the proposed algorithm.

Index Terms—Triangular meshes, texture, RBF-based interpolation, foldover-free mapping, adaptive refinement.

F

1 INTRODUCTION

T EXTURE mapping is a popular technique in com-
puter graphics to add visual detail contained in

a texture to the rendering of 3D geometric models. A
common approach to painting a texture onto a 3D mesh
model is to map the 3D mesh to a plane through a planar
parameterization, enabling a correspondence between
the mesh and the texture. However, simply using an
unconstrained parameterization may produce undesired
results (see Figure 1(c)). In practice, constrained texture
mapping, which constrains some of the mesh vertices
to correspond to specific points in the texture, is more
preferred [1]–[6]. It ensures alignment of features in the
3D mesh and the texture for producing a better mapping
result (see Figure 1(d)). The precise alignment of the
vertices in the 3D mesh with the points in the texture
domain is known as hard constraints. As pointed out in
[3], [4], hard constraints are important for producing
visually pleasing results. In particular, they are critical
in hiding texture discontinuities along the seams in
the parameterization. Hard constraints are also used in
photogrammetric texture mapping [7].

Constrained texture mapping is however challenging
technically due to basic requirements for a visually pleas-
ing mapping. First, the mapping between the surface
and the texture domain must prevent occurrence of
foldover. Exact positional constraints for a given mesh
connectivity may result in non-existence of a foldover-
free mapping. Fortunately it is found that a foldover-
free mapping always exists if a number of extra ver-
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tices called Steiner vertices are allowed to add. However,
determining necessary Steiner vertices is very difficult.
Second, for an arbitrary surface, isometric mapping in
general does not exist. Efforts have to be taken to make
the distortion as small as possible. Various metrics have
been proposed to measure the distortion. Moreover, the
mapping is often required to be smooth.

The problem of our constrained texture mapping can
be stated: given a 3D triangular mesh U and a set
of constrained point pairs {(Ui, Pi) | i = 1, 2, · · · , h},
where Ui are the vertices of mesh U and Pi ∈ R2

are points in the image domain, we want to find a
foldover-free piecewise linear mapping F : U → R2

satisfying F (Ui) = Pi. In this paper we restrict our
discussion to the case of a mesh topologically equivalent
to a rectangular area. For a mesh model of arbitrary
topology, extra processes such as cutting and main-
taining of continuity may be needed. Considering that
many robust, efficient and mature parameterization al-
gorithms have been developed, we propose a two-phase
approach similar to the one of [4], which begins with
an unconstrained planar parameterization f of the mesh
and then performs a constrained mesh transformation
G∗ that moves the constrained vertices to the required
positions. The constrained texture mapping is achieved
by the composition: F = G∗◦f , as illustrated in Figure 2.
Particularly, in the first phase we use ABF++ [8], a
boundary-free conformal parameterization, to embed the
3D mesh into a 2D domain. This paper thus mainly
focuses on the second phase: finding a foldover-free
transformation G∗ that maps f(Ui) to Pi.

Inspired by the work of [1], [9], we propose to con-
struct the constrained 2D mesh transformation by an iter-
ative warping process. To realize each warping step, we
first construct locally bijective smooth mapping using ra-
dial basis function (RBF)-based interpolation to achieve
alignment of constrained vertices, and then induce the
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(a) 3D mesh with feature ver-
tices marked in red

(b) Texture with correspond-
ing points marked in green

(c) Mapping result with un-
constrained parameterization

(d) Mapping result with con-
strained parameterization

Fig. 1. Texture mapping and constrained texture mapping.

Texture 

mapping

Fig. 2. The proposed method

piecewise affine transformation using the RBF function
with barycentric coordinates within each triangle. While
some previous work [6], [9] implicitly assumes that the
foldover-free property of the induced transformation can
be inherited from the local bijectivity of the smooth
mapping, this is unfortunately not true. We improve
the work of [9] by revealing the relation between the
smooth mapping and its induced transformation and
propose a refinement strategy based on the longest edge
bisection to guarantee that the induced transformation is
foldover free if the smooth mapping is locally bijective.
To ensure the local bijectivity of the RBF-based warping,
we propose to find non-intersecting trajectories to guide
the warping and derive a bound for the warping step-
size. Furthermore, to make the warping process more
effective, we derive a new stepsize from the necessary
and sufficient condition for the induced transformation
to be foldover free. Based on the new stepsize and the
bound for the locally bijective smooth mapping, we
determine whether we perform local mesh refinement
or warping. Integrating all these technical components
provides a constrained mesh warping algorithm that is

effective, provably foldover free, able to handle a large
number of constraints, and able to output a visually
pleasing result without extra smoothing optimization.
These merits are not simultaneously achieved by existing
algorithms.

The main contributions of the paper include:

• We comprehensively analyze the relation between a
C2 continuous 2D mapping and its induced piece-
wise linear transformation, and propose a strategy
to refine the mesh such that if the C2 mapping is
locally bijective, its induced transformation on the
refined mesh keeps the orientation of each triangle
of the refined mesh.

• An iterative RBF-based warping scheme is pro-
posed and an explicit stepsize of the warping is
derived, which can assure the corresponding RBF-
based mapping to be locally bijective.

• An effective, provably foldover-free algorithm for
smooth mesh warping with hard constraints is pre-
sented, which consists of preprocess, construction of
non-intersecting warping trajectories, iterative RBF-
based mapping and foldover-free induced transfor-
mation.

It is worth pointing out that though this paper focuses
on texture mapping, foldover-free and constrained mesh
warping itself is a difficult and interesting problem. It
has many other applications such as in finite element
simulation and shape interpolation [10]. Thus the solu-
tion proposed in this paper can find applications in other
areas as well.

The rest of the paper is organized as follows. Section 2
reviews some prior work. Section 3 elaborates on the
connection between a 2D mapping and its induced trans-
formation and then proposes a refinement algorithm
based on the longest edge bisection. Section 4 presents in
detail the algorithm for 2D mesh transformation with po-
sitional constraints. Section 5 provides experimental re-
sults to demonstrate the proposed algorithms. Section 6
discusses some limitations of the proposed algorithm
and Section 7 concludes the paper.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. X, NO. X, XXX 201X 3

2 PRIOR WORK

Texture mapping is often implemented using mesh pa-
rameterization. Extensive research has been done for
embedding a 3D surface onto a 2D parametric domain
during last two decades [8], [11]–[15]. Most existing
work aims to construct a bijective mapping between
3D geometry and 2D domain, which minimizes the
distortion occurring during the mapping in terms of
some metrics such as angle and stretch. A good review
can be found in [16], [17]. While some methods pa-
rameterize the surface with a specifed boundary [11]–
[13], [18], the others free this requirement and treat
the boundary as part of the minimization problem [8],
[14], [15]. In general, boundary-free approaches such
as ABF++ produce lower levels of distortion. Recently
Lipman [19] introduced a method for constructing tri-
angular mesh mappings into the plane with a bounded
amount of conformal distortion and bijectivity. However,
in extreme cases the method may fail to find a bijective
solution even if one exists. Schneider et al. [20] proposed
composite mean value mappings for designing bijective
mappings between polygons and the bijectivity can be
assured in the convex setting. Weber and Zorin [21]
presented an algorithm for parameterizing a triangular
with arbitrary fixed boundaries. The method guarantees
a locally injective mapping as long as the boundary is a
self-overlapping polygon.

To enforce positional matching on the vertices of
the planar embedding, constraints are introduced into
the minimization process for parameterization. Lévy [2]
introduced a quadratic term into the formulation of
parameterization. Desbrun et al. [22] and Gingold et
al. [23] applied the classical Lagrange multiplier method
to add the constraints to the objective function. Hence
the solutions of these approaches satisfy the constraints
approximately or “softly”. These approaches may fail in
the presence of large sets of constraints [4].

However, hard constraints are required in many ap-
plications. There are not many works published so far
to provide a solution to the problem of texture mapping
with hard constraints. Eckstein et al. [3] presented such
a solution that starts with an unconstrained embed-
ding and achieves hard constraints through constrained
simplification and multi-resolution reconstruction. The
method may add a number of Steiner vertices and is
foldover free. As pointed out in [4], nevertheless, the
method is very complicated and how it handles com-
plicated constraints is not obvious. Kraevoy et al. [4]
proposed an effective Matchmaker algorithm for adding
positional constraints to texture maps. As observed in
[1], [24], the Matchmaker algorithm does not consider
consistent neighbor ordering and may fail to generate
a foldover-free mapping in handling challenging con-
straints. Lee et al. [1] presented a foldover-free mesh
warping scheme for hard constrained texture mapping.
The feature alignment is achieved in a coarse mesh. Due
to the large distortion after the alignment, a postem-

bedding smoothing procedure is performed, which is
generally complicated and time-consuming.

Yu et al. [9] proposed to avoid the expensive postpro-
cessing by using RBF-based warping due to the smooth-
ness of radial basis functions. The RBF-based warping
iteratively reparameterizes the 2D embedding. However,
as mentioned by the authors [9], the method may fail
if too many constrained points crowd together and
whether the algorithm converges is not clear. The RBF-
based interpolation was also used to solve constrained
problems in [5] and [25], but both of them cannot avoid
foldover. Another smooth foldover-free warping scheme
for constrained texture mapping was proposed in [6],
which allows to constrain both position and orientation.
The smooth warping is computed by constructing C1

continuous vector fields. Tiddeman et al. [26] proposed
to construct one-to-one image warping functions by
interpolation and scaling. While the methods in [6], [9],
[26] are devoted to constructing locally bijective smooth
2D mappings, unfortunately these smooth mappings
cannot assure that the transformed 2D embedding is
foldover free. Fujimura and Makarov [27] proposed a
method based on a time-varying triangulation that pro-
vides a foldover-free mapping, but the method needs
the process of edge swap, which changes the connec-
tivity of the triangular mesh. It is thus not suitable for
our application. In contrast, our proposed method uses
the RBF-based warping to achieve the smoothness and
guarantee the foldover-free property of 2D embedding.

3 FUNDAMENTAL THEORY

Let M = {V ,K } be a 2D triangular mesh, where V =
{Vi | Vi ∈ R2, i = 1, 2, · · · } is the list of vertices Vi, K =
{4ViVjVk | Vi, Vj , Vk ∈ V , i 6= j, j 6= k, k 6= i} is the
list of triangles encoding how the vertices are connected,
and Ω ⊂ R2 is a bounded domain containing all the
vertices. We assume that mesh M is conforming. That is,
for any two intersecting triangles in K , their intersection
is either a vertex or a shared edge. A conforming mesh
M̃ = {Ṽ , K̃ } is called a refinement of M if V ⊂ Ṽ and
for any 4̃ ∈ K̃ there exists a unique 4 ∈ K such that
4̃ is within 4.

Given a C2 continuous mapping G : Ω → R2, it
maps M to a triangular mesh with curved edges (see
Figure 3(a)). When the Jacobian of G does not vanish, G
is locally one-to-one or bijective.

From G, we can induce a piecewise linear mapping
G∗M : M → R2 by which the vertices Vi of M are
mapped to G(Vi) and any other point V lying in triangle
4ViVjVk is mapped to G∗M (V ), a linear combination of
G(Vi), G(Vj) and G(Vk):

G∗M (V ) = λiG(Vi) + λjG(Vj) + λkG(Vk) (1)

with barycentric coordinates (λi, λj , λk) of V with re-
spect to 4ViVjVk. G∗M is a triangular mesh transforma-
tion induced by G since it maps the edges of M to line
segments (see Figure 3(b)). G∗M is called foldover free if
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Fig. 3. (a) A 2D mapping G and (b) its induced transfor-
mation G∗M

each triangle 4G(Vi)G(Vj)G(Vk) keeps the orientation
of triangle 4ViVjVk.

3.1 Basic observations

While G and G∗M are closely related, G∗M relies only
on triangle set K and the set {G(Vi) | Vi ∈ V }.
Some previous work implicitly assumes that the local
bijectivity of G guarantees G∗M to be foldover free. For
example, [9] used the positive Jacobian of G as the
condition for G∗M to be foldover free to estimate the
step bound. [6] used the local bijectivity of the vector
field based warping for triangular mesh transformation.
However, this is unfortunately not true. In fact, we have
the following observations, which show the complexity
of the relation between G and G∗M .
Observation 1: G is locally bijective, but G∗M may fold over.

In Figure 4, G maps vertex Ai to vertex Bi and the
red curves represent the image of edges of the original
triangle. It can be seen that G is locally bijective, but
when the transformed vertices are connected to form
the induced transformation, foldover occurs.

1A

2A

3A

1B
2B

3B

G
*
MG

Fig. 4. G is locally bijective but G∗M folds over.

Observation 2: G is not locally bijective, but G∗M could be
foldover-free. This is because the transformed vertices
are connected using straight line segments rather than
curves, as illustrated in Figure 5

G

1A

2A

3A

1B

2B

3B

*
MG

Fig. 5. G is not locally bijective, but G∗M is foldover free.

Observation 3: When G is bijective but G∗M is folding over,
if we refine M to M̃ , G∗

M̃
might be foldover free. For

triangle 4A1A2A3 in Figure 4, we refine it by inserting
a point C to edge A1A3 (see Figure 6). While G is
the same over 4A1A2A3 and its refinement ˜4A1A2A3,
in general G∗ ˜4A1A2A3

6= G∗4A1A2A3
. It can be easily

checked that G∗ ˜4A1A2A3

in Figure 6 is foldover free.

1A

2A

3A

C

1B

3B

2B

*C

G
*
MG

Fig. 6. The insertion of a Steiner point makes the mesh
transformation foldover free.

Observation 4: Foldover may propagate through subdivi-
sion. When we split one triangle, an adjacent triangle
should be subdivided simultaneously to conform the
mesh. The new generated triangles may fold over even
if their original parent triangle is foldover free. Figure 7
shows such a situation. Although triangle 4B1B3B4

has the same orientation as triangle 4A1A3A4, after
splitting the orientation of 4B1C

∗B4 is different from
that of 4A1CA4 where C∗ = G(C).

1A

2A

3A

G

1B

3B

2B

*C

C
4A

4B
*
MG

Fig. 7. The Propagation of foldover through one splitting.

3.2 Longest edge bisection
Observation 3 in Section 3.1 motivates us to raise a
question: Given a C2 mapping G : Ω ⊂ R2 → R2 that
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is locally bijective and a triangular mesh M contained in Ω,
does there always exist a conforming refinement M̃ of M such
that G∗

M̃
is foldover free? The answer is not trivial due to

the propagation of foldover, as shown in Observation 4.
In the following we present a constructive procedure to
give a positive answer.

Our refinement is based on the longest edge bisection
(LEB). See Figure 8 for an illustration. Suppose t0 is a
triangle that folds over. The refinement proceeds in the
following steps:
Step 1 Initialization: Let i = 0.
Step 2 Propagation: Repeat the following processes.

• For triangle ti, find the longest edge ei and flag
it.

• Find the neighboring triangle ti+1 that shares ei
with ti.

• If the neighboring triangle ti+1 is ti−1 or empty,
break.

• Else let i← i+ 1.
In this way, we obtain an ordered sequence of
triangles {t0, t1, · · · , tm} such that triangle tj+1 and
triangle tj share the longest edge of tj and tm’s
adjacent triangle containing the longest edge of tm
is either tm−1 or empty. We call such a sequence the
longest edge propagation sequence (LEPS) and denote
it by LEPS(t0).

Step 3 Bisection and conforming: for each triangle ti in
LEPS(t0), connect the middle point of the longest
edge ei to its opposite vertex (see Figure 8(b) for
bisection) and meanwhile for each pair of adjacent
triangles ti−1 and ti in LEPS(t0), connect the middle
point of the longest edge of ti−1 with that of ti (see
Figure 8(c) for conforming). The midpoints are the
Steiner points and are added into the vertex list. The
triangles are split by the new added edges and thus
the triangular mesh is refined.

(a) Propagation from
t0

(b) Bisection (c) Conforming

Fig. 8. The LEB process that starts from triangle t0.

The algorithm for constructing a refinement M̃ of M
such that the induced transformation on M̃ is foldover-
free is now straightforward. Referring to Algorithm 1, we
start with M0 = M and n = 0, and apply the LEB-based
refinement to each folding-over triangle in the folding-
over triangle list τn, which generates a refined triangular
mesh Mn+1. We repeat this process until there is no
folding-over triangle.

It is worth pointing out that there exist other strate-
gies for refining triangles. We choose the LEB-based
refinement because it has several nice properties and

Algorithm 1 LEB-based Refinement
Initialization:
1: n← 0, Mn ←M .
2: Find the folding-over triangle list τn in Mn.

Iterative Process:
3: while τn.size() 6= 0 do
4: while τn.size() 6= 0 do
5: t0 = τn.front();
6: Apply LEB to t0
7: Update τn ← τn − τn

⋂
LEPS(t0).

8: end while
9: Mn+1 ←Mn, n← n+ 1.

10: Find folding-over triangle list τn in Mn.
11: end while
Output: Mn.

the algorithm is proven to stop after a finite number of
iterations of refinement.
Property 1. The propagation in the LEB process is guar-

anteed to stop in a finite number of bisections.

In fact, for any triangle t that folds over, its LEPS will
not form a loop and thus consists of a finite number
of triangles. That is, its elements ti and tj are different
for any i 6= j. This is because the length of the longest
edge of ti is increasing with i.

Property 2. The angles of the refined triangles are
greater than a positive constant.

Let Mk be the refined mesh of M obtained in Algo-
rithm 1. Denote the smallest angles of triangles in M
and of triangles in Mk by θ0 and θk0 , respectively. It
can be proven that θk0 ≥ θ0

2 (see [28]).
Property 3. The area of a sub-triangle is not greater than

half of the area of its parent triangle.

This is obvious since the parent triangle is at least bi-
sectioned.
What remains now is to prove that Algorithm 1 will

terminate after a finite number of iterations. With Prop-
erties 1 and 2, we can easily obtain

Lemma 3.1: If Algorithm 1 proceeds in an infinite loop,
there exists a triangle sequence {4AnBnCn ∈ τn}∞n=0

such that

lim
n→∞

max{‖AnBn‖, ‖BnCn‖, ‖AnCn‖} = 0. (2)

Lemma 3.2: Let G = (G1, G2)T : Ω ⊂ R2 → R2 be a
C2 continuous mapping where Gi are scalar functions.
If the Jacobian of G satisfies |∇G| > 0 in Ω where ∇G =(

∂G1

∂x
∂G1

∂y
∂G2

∂x
∂G2

∂y

)
, then for any ε > 0, there exists an η > 0

such that for any triangle 4ABC ⊂ Ω satisfying{
max (sin∠A, sin∠B, sin∠C) > ε
max (‖AB‖, ‖BC‖, ‖AC‖) < η

(3)

the transformed triangle 4G(A)G(B)G(C) keeps the
orientation of triangle 4ABC.
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Proof: For any ε > 0, we consider triangle 4ABC
that satisfies max (sin∠A, sin∠B, sin∠C) > ε. With-
out loss of generality, we assume that vertices A, B
and C are ordered counter-clockwise and sin∠A =
max (sin∠A, sin∠B, sin∠C). We introduce operator ⊗
for 2D vectors V = (a, b) and W = (c, d) such that
V ⊗W = ad− bc. Then

(B−A)⊗(C−A) = ‖AB‖‖AC‖ sin∠A > ‖AB‖‖AC‖ε > 0.
(4)

For any V ∈ 4ABC, we have

Gi(V ) = Gi(A) +

(
∂Gi(A)

∂x
,
∂Gi(A)

∂y

)
(V −A) +Oi,A,V

(5)
where

Oi,A,V = (V −A)T

[
∂2Gi(V

∗
i )

∂x2

∂2Gi(V
∗
i )

∂x∂y
∂2Gi(V

∗
i )

∂x∂y
∂2Gi(V

∗
i )

∂y2

]
(V −A)

with a point V ∗i on the line connecting V and A. Let
OA,V = (O1,A,V , O2,A,V )T . Since Ω is bounded, G is C2

continuous and |∇G| > 0, there exist positive numbers
µ, ν and L such that ‖OA,V ‖ ≤ µ‖V − A‖2 and L <
‖∇G‖F < ν for V ∈ Ω where ‖∇G‖F represents the
Frobenius norm of the matrix G.

Substituting V = B and V = C into Eq.(4) gives

G(B) = G(A) +∇G(B −A) + OA,B ,
G(C) = G(A) +∇G(C −A) + OA,C .

After calculation, we have

(G(B)−G(A))⊗(G(C)−G(A)) = |∇G|(B−A)⊗(C−A)+ψ

with ψ = ∇G(B − A) ⊗ OA,C − ∇G(C − A) ⊗ OA,B +

OA,B ⊗ OA,C . We choose η = min

(
1,

Lε

2µν + µ2

)
. If

max (‖AB‖, ‖BC‖, ‖AC‖) < η, then

‖ψ‖ ≤ νµ‖B −A‖‖C −A‖2 + νµ‖C −A‖‖B −A‖2
+µ2‖A−B‖2‖A− C‖2 < ‖AB‖‖AC‖(2µν + µ2)η
≤ ‖AB‖‖AC‖Lε ≤ |∇G|(B −A)⊗ (C −A).

Therefore (G(B) − G(A)) ⊗ (G(C) − G(A)) > 0. That
is, the transformed triangle 4G(A)G(B)G(C) keeps the
orientation of triangle 4ABC.

The geometric meaning of Lemma 3.2 is that a C2

continuous mapping G with positive Jacobian can ensure
a triangle transformed by the induced mapping of G
to maintain its orientation as long as the triangle is
sufficiently small.

Theorem 3.3: If G : Ω→ R2 is a C2 continuous mapping
with |∇G| > 0 in Ω, Algorithm 1 will terminate after a
finite number of iterations.

Proof: If Algorithm 1 cannot terminate in a finite number
of iterations, according to Lemma 3.1, we can find a
folding-over triangle sequence {∆AiBiCi}∞i=1 that satis-
fies

lim
i→∞

max (‖AiBi‖, ‖BiCi‖, ‖AiCi‖) = 0.

Property 2 ensures that

max (sin∠An, sin∠Bn, sin∠Cn) ≥ sin

(
θ0

2

)
where θ0 is the smallest angle of the triangles in M .
We let ε = sin

(
θ0
2

)
. By Lemma 3.2, there exists an

η such that when the diameter of the triangle is less
than η, its transformed counterpart keeps the orientation,
which contradicts the fact that 4AnBnCn are folding-
over triangles.

4 ALGORITHM FOR 2D MESH TRANSFORMA-
TION WITH POSITIONAL CONSTRAINTS

The observations and theory in preceding section sug-
gest an approach to constructing a foldover-free 2D
mesh transformation, via some C2 continuous mapping
together with the LEB-based refinement if necessary. This
section presents such an algorithm.

Similar to some previous work such as [4], the input
to our algorithm is composed of a 2D triangular mesh
M , a set of constrained mesh vertices Vc = {Vc,i | i =
1, 2, · · · , h}, and a set of matching points Pc = {Pc,i | i =
1, 2, · · · , h} corresponding to Vc. The output is a valid
transformed mesh of M or its refinement, in which all
Vc,i are replaced by Pc,i. The algorithm contains four
components listed below. More details of the compo-
nents are described in the following subsections.
(1) Preprocess: We perform a similarity transformation

to roughly align the constrained point pairs in order
to reduce unnecessary warping in subsequent steps.

(2) Warping trajectories: For constrained vertex set Vc
and their matching point set Pc, a set of immediate
points Cj = {Cji }, j = 0, 1, · · · ,m with C0 = Vc
and Cm = Pc is generated. Each Cji is connected
to Cj+1

i by a straight line. All these line segments
form piecewise linear trajectories, along which the
constrained vertices Vc,i move to Pc,i during the
warping (or iterative mapping). These trajectories do
not intersect each other.

(3) RBF-based mapping: The mapping from Cj to Cj+1

is achieved by iteratively applying the RBF-based
interpolation technique. Rather than interpolating ab-
solute positions, we interpolate the displacements of
the constrained vertices. A safe stepsize assuring the
mapping derived from the RBF-based interpolation
to be locally bijective on the mesh is presented.

(4) Foldover-free transformation: Mesh transformation
is induced from the RBF-based mapping. A stepsize
for the mesh transformation to be foldover free is
derived. If the stepsize is sufficient to make the
transformation reach the target or the stepsize is
greater than or equal to the safe stepsize of the RBF-
based mapping, the transformation is constructed.
Otherwise, to avoid using too small stepsize, we use
the LEB-based refinement (i.e., Algorithm 1) to refine
the mesh. Then we repeat steps (3) and (4).
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4.1 Preprocess
A similarity transformation is composed of translation,
rotation and uniform scaling, thus preserving angles,
and can be represented by

u = ax− by + c, v = bx+ ay + d

where (x, y) and (u, v) represent the coordinates of
points before and after the transformation, respectively,
and a, b, c and d are the coefficients to be determined.
Suppose that Vc,i and Pc,i have coordinates (xi, yi) and
(ui, vi) for i = 1, 2, · · · , h. We find the similarity transfor-
mation by minimizing the following objective function:

h∑
i=1

(
(axi − byi + c− ui)2 + (bxi + ayi + d− vi)2

)
,

which gives

a =
h(

h∑
i=1

uixi+
h∑

i=1
viyi)−

h∑
i=1

xi

h∑
i=1

ui−
h∑

i=1
yi

h∑
i=1

vi

h
h∑

i=1
(x2

i +y2i )−(
h∑

i=1
xi)2−(

h∑
i=1

yi)2

b =
h(

h∑
i=1

vixi−
h∑

i=1
uiyi)+

h∑
i=1

yi
h∑

i=1
ui−

h∑
i=1

xi

h∑
i=1

vi

h
h∑

i=1
(x2

i +y2i )−(
h∑

i=1
xi)2−(

h∑
i=1

yi)2

c =

h∑
i=1

ui−(
h∑

i=1
xi)a+(

h∑
i=1

yi)b

h

d =

h∑
i=1

vi−(
h∑

i=1
yi)a−(

h∑
i=1

xi)b

h .

The transformation is applied to mesh M . Without loss
of generality, in the rest of the paper we assume that the
mesh M has been transformed.

4.2 Construction of non-intersecting warping trajec-
tories
Given constrained vertex set Vc = {Vc,i} and their
matching point set Pc = {Pc,i}, directly connecting each
corresponding point pair often causes intersection. We
aim to find non-intersecting trajectories for Vc,i to move
to Pc,i. Specifically, for each vertex Vc,i, a trajectory is
a polyline Ci(s) with m + 1 nodes Cji , j = 0, 1, · · · ,m
where C0

i = Vc,i and Cmi = Pc,i. Ci(s) is parameterized
by

Ci(s) = (1−ms+ j)Cji + (ms− j)Cj+1
i , s ∈ [

j

m
,
j + 1

m
].

Non-intersection of Ci(s) means that for any i 6= k and
any s ∈ [0, 1], Ci(s) 6= Ck(s).

Computing non-intersecting trajectories of points from
the source to the target has been well studied in morph-
ing [29], which requires the input to be two compatible
triangulations. Two triangulations are called compatible
if their face lattices are isomorphic. In general, determin-
ing whether two sets of points are compatible is NP-
hard [30], [31].

Here we propose to compute compatible triangula-
tions of two point sets using the warping scheme of
[1]. First, we perform Delaunay triangulation on the

(a) (b) (c)

(d)

1
8C

1
7C

1
5C

1
6C

(e) (f)

Fig. 9. Generation of non-intersecting warping trajecto-
ries. (a) The input mesh and constrained points. (b) The
Delaunay triangulation on the constrained points. (c) and
(d) The compatible triangulations of the source and target.
(e) The warping trajectories. (f) Foldover-free mapping.

constrained vertex set Vc, yielding a triangular mesh
S. Then we let T = S. T serves as the input mesh
for the warping scheme of [1]. Iteratively, the warping
scheme aligns T with the matching positions Pc,i. If we
need to refine T during the iteration, we apply the same
refinement to S, too. In this way, the warping scheme
preserves the compatibility and the final T interpolates
Pc,i and has the same connectivity as S. Since the input
in this approach consists of only the constrained vertices,
the process of computing compatible triangulations is
usually very fast. Figure 9 shows a simple example of
generating compatible triangulations.

After compatible triangulations S and T are obtained,
the morphing algorithm in [29] is used to generate the
non-intersecting trajectories of the constrained vertices.
Then Ci(s) can be obtained by appropriately sampling
the trajectories.

4.3 Iterative RBF-based mapping
Once the construction of warping trajectories is com-
plete, we obtain {C0

i } → {C1
i } → · · · → {Cmi }. Now we

consider the mapping over the span {Cji } → {C
j+1
i }. The

mapping over the other spans is similarly constructed.
The mapping is an interpolation function that maps Cji

to Cj+1
i for all i. We use radial basis functions for this

purpose. Radial basis functions are popular for scattered
data interpolation. They do not require the data points
to lie on regular grids. Notice that there may not exist
a single locally bijective RBF-based interpolation over
the span {Cji } → {C

j+1
i }. Our idea is to accomplish the

interpolation of displacements Cj+1
i −Cji by several steps

and each step interpolates a portion of displacements,
δj,l(Cj+1

i − Cji ), for some stepsizes δj,l and is assured
to be locally bijective. As a result, the mapping over
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the span {Cji } → {Cj+1
i } is a composition of all the

mappings defined in each step. The core techniques here
include two aspects: (1) how to compute the interpola-
tion mapping and (2) how to compute the stepsize to
ensure local bijectivity, which are explained in the rest
of this subsection.

Let Cj,li be the point obtained from Cji after l steps,
with Cj,0i = Cji . Also denote by M j,l the 2D triangular
mesh at the step where the constrained vertices have
become {Cj,li }. Let f ji = Cj+1

i − Cji , i = 1, 2, · · · , h, be
the displacements of the span {Cji } → {C

j+1
i }. We want

to find a smooth interpolating function

Dj,l(V ) =

h∑
i=1

γiφ(|V − Cj,li |) + a1x+ a2y + a3 (6)

satisfying
Dj,l(Cj,li ) = δj,lf ji (7)

where V = (x, y)T , δj,l is a stepsize controlling the
displacement, a1x+a2y+a3 accounts for linear transfor-
mation, and the radial basis function φ(r) is chosen to be
the thin plate spline r2log(r). The thin plate spline has
been widely used in 2D scattered data interpolation, it
has closed-form solutions for interpolation and usually
presents a very smooth interpolation. All these proper-
ties make the thin plate spline suitable for our problem.

The constraints (7) give h equations. To determine the
coefficients γi, the following orthogonality conditions are
introduced:

h∑
i=1

γi =

h∑
i=1

γixi =

h∑
i=1

γiyi = 0. (8)

Hence we have a linear system of size (h+ 3)× (h+ 3):

Kj,l

(
Γ
A

)
=

(
δj,lf j

0

)
(9)

where

Kj,l =



Φ11 Φ12 · · · Φ1h x1 y1 1
Φ21 Φ22 · · · Φ2h x2 y2 1

...
...

...
...

...
...

Φh1 Φh2 · · · Φhh xh yh 1
x1 x2 · · · xh 0 0 0
y1 y2 · · · yh 0 0 0
1 1 · · · 1 0 0 0


(10)

with Φi,k = φ(‖Cj,li − Cj,lk ‖), Cj,li = (xi, yi)
T, Γ =

(γ1, · · · , γh)T, A = (a1, a2, a3)T , and f j = (f j1 , · · · , f
j
h)T. It

has been known that the linear system (10) is guaranteed
to be invertible if the locations of the data points to be
interpolated do not lie on a line and do not intersect.
This can be easily satisfied if we move the constrained
vertices along the warping trajectories generated in Sec-
tion 4.2. Then the solution to the linear system is:(

Γ
A

)
=
(
Kj,l

)−1
(

f j

0

)
δj,l. (11)

After obtaining the RBF’s coefficients, we define a
mapping gj,l : R2 → R2 for this step:

gj,l(V ) = V +Dj,l(V ) = V + Mj,l(V )
(
Kj,l

)−1
(

f j

0

)
δj,l

(12)
where

Mj,l(V ) =
(
φ(‖V − Cj,l1 ‖2), · · · , φ(‖V − Cj,lh ‖

2), x, y, 1
)
.

(13)
Next we consider how to find an appropriate stepsize

δj,l to make sure that the mapping gj,l is locally bijec-
tive. Let Kx and Ky represent two (h + 3)-dimensional
column vectors consisting of the x and y components of(
Kj,l

)−1
(

f j

0

)
, respectively. The Jacobian of gj,l can be

written:

|∇gj,l| =

∣∣∣∣∣ 1 + ∂Mj,l(V )
∂x Kxδj,l ∂Mj,l(V )

∂y Kxδj,l

∂Mj,l(V )
∂x Kyδj,l 1 + ∂Mj,l(V )

∂y Kyδj,l

∣∣∣∣∣
= α(δj,l)2 + βδj,l + 1

where

α =
(
∂Mj,l(V )

∂x Kx
)(

∂Mj,l(V )
∂y Ky

)
−
(
∂Mj,l(V )

∂y Kx
)(

∂Mj,l(V )
∂x Ky

)
,

β =
(
∂Mj,l(V )

∂x Kx
)

+
(
∂Mj,l(V )

∂y Ky
)
.

|∇gj,l| is a quadratic function in δj,l. When δj,l = 0,
|∇gj,l| = 1 is positive, which implies that if δj,l is
sufficiently small, the Jacobian of gj,l is positive and the
mapping gj,l is thus locally bijective. Now we show how
to find an appropriate stepsize δj,l according to three
situations:
• α = 0: If β ≥ 0, then for any δj,l, |∇gj,l| is always

positive. If β < 0, |∇gj,l| has one positive root δ =
−1/β. When δj,l < δ, |∇gj,l| > 0.

• α < 0: |∇gj,l| has one positive root δ =
−β−
√
β2−4α

2α .
When 0 < δj,l < δ, |∇gj,l| is positive.

• α > 0: If β ≥ 0 or β2−4α < 0, then for any δj,l, |∇gj,l|
is positive. Otherwise, |∇gj,l| has two positive roots.

The smaller one is δ =
−β−
√
β2−4α

2α and for any δj,l ∈
(0, δ), |∇gj,l| > 0.

If we set
δ =

2

| − β +
√
|β2 − 4α||

, (14)

it can be easily verified that any δj,l ∈ (0, δ) assures
|∇gj,l| > 0 in all above three situations. That is, the
δ of Eq.(14) is a bound sufficient for δj,l to guarantee
positivity of |∇gj,l|. Note that | − β +

√
|β2 − 4α|| is a

continuous function in V ∈ Ω. Hence it can achieve its
maximum value max

V ∈Ω
|−β+

√
|β2 − 4α||. Therefore if we

define

δRBF = min

ρ 2

max
V ∈Ω
| − β +

√
|β2 − 4α||

, 1

 (15)
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with a positive ρ < 1 (in this paper we set ρ = 0.9), δRBF
is a positive number such that for any δj,l ∈ (0, δRBF ],
|∇gj,l| > 0 holds. Thus we call δRBF a safe stepsize.

In the warping process, if we let δj,l = δRBF , when
κ∑
l

δj,l ≥ 1 for a positive integer κ, the interpolation

process successfully reaches Cj+1 and a locally bijective
RBF-based mapping from Cj to Cj+1 can be obtained by
composing all gj,l: gj = gj,1 ◦ gj,2 ◦ · · · ◦ gj,κ.

4.4 Foldover-free induced transformation
While we can construct a locally bijective RBF-mapping
gj as in Section 4.3 and then construct the induced trans-
formation from it together with an LEB-based refinement
described in Section 3.2, the stepsize δRBF may be too
conservative, which makes the process require a large
number of iterations. On the other hand, Observation 2
in Section 3.1 suggests that we determine the stepsize δj,l

directly using the condition for the induced transforma-
tion (gj,l)∗Mj,l to be foldover free, with which the RBF-
based mapping gj,l may even not be locally bijective.

Consider a triangle 4A1A2A3 ⊂ M j,l. It is mapped
by the RBF-based mapping gj,l to 4B1B2B3 with Bi =

gj,l(Ai) = Ai+Mj,l(Ai)
(
Kj,l

)−1
(

f j

0

)
δj,l. The necessary

and sufficient condition for 4B1B2B3 and 4A1A2A3 to
have the same orientation is

((A2 −A1)⊗ (A3 −A1)) · ((B2 −B1)⊗ (B3 −B1)) > 0

which gives

F (δj,l) , a(δj,l)2 + bδj,l + 1 > 0

where
n1= 1

(A2−A1)⊗(A3−A1)

a = n1

(
(Mj,l(A2)−Mj,l(A1))

(
Kj,l

)−1
(

f j

0

))
⊗
(

(Mj,l(A3)−Mj,l(A1))
(
Kj,l

)−1
(

f j

0

))
b = n1(A2 −A1)⊗ (Mj,l(A3)−Mj,l(A1))

(
Kj,l

)−1
(

f j

0

)
−n1(A3 −A1)⊗ (Mj,l(A2)−Mj,l(A1))

(
Kj,l

)−1
(

f j

0

)
Now we look for a δ ∈ (0, 1] such that for any δj,l ≤ δ,

F (δj,l) > 0. Following the approach in Section 4.3, we
can find the following δ that satisfies the requirement:

δ =

{
min

{
ρ 2
−b+
√
b2−4a

, 1
}
, if a < 0 or (b < 0, b2 ≥ 4a)

1, otherwise
(16)

with a positive a positive ρ < 1. We find such a δ for
each triangle in mesh M j,l to assure no foldover and
then choose the smallest one.

Once we obtain the stepsize δ, the algorithm proceeds
in three different ways:

• If δ is greater than or equal to 1−
l−1∑
k=1

δj,k which is

sufficient for the process to reach the target Cj+1,

we simply let δj,l = 1 −
l−1∑
k=1

δj,k, construct the

RBF-based mapping gj,l accordingly and then the
induced transformation (gj,l)∗Mj,l .

• Else if δ ≥ δRBF , we let δj,l = δ, and construct
the RBF-based mapping gj,l and then the induced
transformation (gj,l)∗Mj,l .

• Otherwise, δ < δRBF . If we use this δ for comput-
ing the RBF-based mapping without adding Steiner
points, in the subsequent warping δ may become
smaller and smaller and the process cannot reach
the target. Figure 10 shows such an example, where
A cannot cross the line BC without refinement. To
overcome this problem, we let δj,l = δRBF and
construct a locally bijective RBF-based mapping gj,l.
Then Algorithm 1 (LEB-based refinement) is applied
to refine M j,l to construct a foldover free induced
transformation.

Algorithm 2 Constrained 2D Mesh Transformation
Initialization:
1: Preprocess.
2: Compute compatible triangulation of the user speci-

fied constrained vertices Vc and the matching points
Pc.

3: Construct non-intersecting warping trajectories
{Ci(s)}.

4: j ← 0
Iterative Process:

5: while j 6= m do
6: Set remaining ratio = 1
7: while remaining ratio > 0 do
8: Compute δRBF at M j,l using (15).
9: Compute the stepsize δ using (16).

10: if δ ≥ remaining ratio then
11: Set δ = remaining ratio.
12: Set remaining ratio = 0.
13: Compute induced mesh transformation.
14: Break.
15: end if
16: if δ ≥ δRBF then
17: Compute induced mesh transformation.
18: else
19: Set δ = δRBF
20: Apply Algorithm 1 to the mesh.
21: end if
22: remaining ratio← remaining ratio− δ.
23: end while
24: j ← j + 1.
25: end while
Output: M .

Summarizing all the above steps, we arrive at a
complete algorithm which is outlined in Algorithm 2.
Moreover, Algorithm 2 can be proven to always work.

Theorem 4.1: Algorithm 2 terminates in a finite number
of steps and outputs a foldover-free 2D mesh transfor-
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(a) Foldover happens for a constrained
mapping.

A

*
MG

B

C

*A
A

B

C

*A

(b) The foldover-free condition prevents
vertex A from moving across edge BC in
the warping without refinement.

A

C

B

D
*
MG *D*A

C

B

(c) Foldover is resolved after adding a Steiner
vertex.

Fig. 10. An example of constrained mapping that maps A,B and C to A∗, B and C, respectively.

(a) (b) (c)

Fig. 11. (a) An input mesh with 8 constraints. The 4 corner vertices are constrained to remain unchanged and each
of the 4 inner vertices moves to its next as indicated by the red arrows. (b) A foldover free mesh is obtained by our
algorithm, which adds 13 Steiner points. (c) Using the algorithm of [9], we can obtain a locally bijective mapping
G, which is depicted by the red curves in the zoomed window, bur foldover occurs when the mapped edges are
straightened.

mation that satisfies given positional constraints.

Proof: We only need to prove that the proposed warp-
ing process can reach the target in a finite number of
iterations. In fact, it can be seen that each stepsize δj,l

in the warping process except for the last step reaching
the target is always greater than or equal to δRBF . If we
further define

δ∗RBF = min

ρ 2

max
V ∈Ω,s∈[0,1]

| − β +
√
|β2 − 4α||

, 1

 ,

then δRBF ≥ δ∗RBF for all δRBF , and δ∗RBF is a positive
constant since |−β+

√
|β2 − 4α|| is a continuous function

in V ∈ Ω and s ∈ [0, 1]. Thus the warping from Cj to
Cj+1 needs at most d 1

δ∗RBF
e steps. This completes the

proof.
Figure 11 is an example of constrained 2D transforma-

tions. The input is given in Figure 11(a), which includes a
2D triangular mesh and eight constraints highlighted in
green. The four corner vertices are mapped to themselves
and the four inner vertices are mapped to their respective
next counterparts, as indicated by red arrows. Using our
algorithm, a foldover-free transformation is automati-
cally constructed with 13 Steiner points being added
and the transformed mesh is shown in Figure 11(b).
As a comparison, we run the algorithm of [9] on this
input. The constructed constrained mapping G is locally
bijective, but the induced transformation is not foldover
free, which is depicted in Figure 11(c).

5 EXPERIMENTAL RESULTS

This section provides several examples to demonstrate
the proposed algorithm. These examples have varying
complexity. The number of faces in these triangular
mesh models ranges from 2K to 21K and the number
of constrained vertices ranges from 21 to 83. Note that
among only a few algorithms that can guarantee hard
constraints, [1] is a relatively recent one, which is able
to handle complicated constraints while adding only
a small number of Steiner points, and output visually
pleasing results. Hence we also provide the experimental
results obtained by [1] for comparison.

Figures 12-14 show the visual results. In the figures,
the first column gives the index of the models. The
second column shows the input texture on the top and
the 3D mesh model at the bottom. The constrained points
are highlighted in green. The third column and fourth
column display the models textured by a checker image
by [1] and our algorithm, respectively. The use of the
checker image well depicts the difference of the results
created by our method and [1]. It can be seen that
our algorithm usually produces a smoother mapping
than [1] though a non-linear post-optimization has been
performed in [1]. For example, the zoomed view of the
cow model (i.e., model (g)) clearly shows the difference.
In fact, [1] produces visually apparent distortions in the
areas around the constrained points. The last column
shows the alignment of the textures with the constrained
embedding of the meshes at the top and the constrained
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textured 3D meshes at the bottom.

Fig. 12. Texturing models (a)-(c).

Fig. 13. Texturing models (d)-(f).

Table 1 shows some statistics of these texture mapping
examples. The fifth column reports the running time
of constructing the constrained mapping on an Intel
Pentium 4, 3.6GHz PC with 1G RAM. The algorithm is
implemented using C++. The sixth and eighth columns
show the numbers of the added Steiner vertices using
our LEB-based algorithm and [1], respectively. It can be
found that except for model (f), the number of Steiner

Fig. 14. Texturing models (g)-(i).

vertices added in our method is comparable to that of [1].
Model (f) is special because it contains two cusps in its
two horns and has a low resolution. When the resolution
increases, the number of Steiner vertices decreases as
demonstrated in model (g). It is also worth pointing
out that in [4] and [1] a postprocess that removes those
unnecessary Steiner vertices is performed and the cur-
rent implementation of our algorithm does not perform
such a postprocess. In future we will incorporate the
postprocess into our algorithm, by which the number of
Steiner vertices is expected to be reduced significantly
as in [4] and [1]. In addition, while we propose to
use LEB-based refinement in this paper, there are other
possibilities to refine the mesh. For example, we can
split a triangle by bisecting its largest angle, which we
call the largest angle bisection (LAB). We have tested
our algorithm by replacing the LEB-based refinement
by the LAB-based refinement, which usually results in
fewer Steiner points. However, whether the LAB-based
refinement always works is not clear yet, which warrants
further investigation.

TABLE 1
Statistics of the texture mapping examples in

Figures 12-14

Models #Vertices #Triangles #Constrained Time #Steiner #Steiner #Steiner
vertices (Sec) (LEB) (LAB) ( [1] )

model (a) 1770 3526 24 0.656 16 7 7
model (b) 1808 3602 25 0.063 0 0 10
model (c) 10017 20008 54 0.766 0 0 34
model (d) 1772 3450 21 0.469 16 4 21
model (e) 1657 3300 27 0.078 0 0 2
model (f) 1697 3384 32 11.593 1382 167 64
model (g) 10736 21404 32 3.922 54 4 8
model (h) 5184 10354 83 6.501 35 17 38
model (i) 4149 8284 71 1.719 6 2 25

The experimental results are also evaluated quantita-
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tively using the stretches defined in [14]. Therein, the
L2 norm measures the root-mean-square stretch of the
parameterization over all directions in the domain and
the L∞ norm represents the greatest stretch. A good
parameterization is supposed to have small stretches.
Table 2 presents the quantitative results of all these tex-
ture mapping examples. It can be seen that the stretches
of our method are smaller than or comparable to the
stretches of [1].

TABLE 2
Stretches of the texture mapping examples in

Figures 12-14

Models Proposed method Method of [1]
L2 L∞ L2 L∞

model (a) 4.06561 78.958 2.79953 162.037
model (b) 1.20559 2.1982 1.20486 3.41913
model (c) 1.58255 22.452 373.289 83748.3
model (d) 3.10319 38.664 470.781 31045.9
model (e) 1.13447 4.11239 1.10433 4.2356
model (f) 564.94 23146.9 1160.47 66151.9
model (g) 1713.13 207825 1884.34 372774
model (h) 2.06733 104.374 85.2849 14365
model (i) 2.95445 79.2665 1285.42 262252

6 LIMITATIONS

Our work has a few limitations. First, it is restricted
to models that are topologically equivalent to a disk.
For a model with arbitrary topology, there is a need to
partition it into segments, each with disk-topology, so
that our algorithm can be used on them.

Second, the current construction of non-intersecting
warping trajectories appears to be an engineering ap-
proach. It depends on the constraint points only and
does not take the shape of the mesh into consideration,
which may result in a large distortion and more Steiner
points. Such an example is given in Figure 15. The input
3D mesh model and image are displayed in Figure 15(a)
where the constraint points are highlighted in green
squares. Figure 15(b) shows the trajectories generated
by the proposed method, the warped 2D mesh and
the texture mapping result. Each trajectory consists of
two line segments, starting from a position labeled by a
disk, passing through a position labeled by a circle and
reaching a position labeled by a filled square. It can be
seen that the two trajectories starting from points 3 and
4 cause the region bounded by points 1, 2, 3 and 4 in the
3D model to correspond to a very twisted region in the
input image. As a result, the warping process causes the
insertion of 706 Steiner points and the stretch amount of
1675 in L2-norm and 166819 in L∞-norm. Considering
the shape of the input 3D model and the input image,
we manually modify the two trajectories starting from
points 3 and 4, as shown in Figure 15(c). Then the
warped mapping and texture mapping are improved. In
particular, the number of Steiner points decreases to 192
and the stretch amount decreases to 965 in L2-norm and
44349 in L∞-norm.

Third, it is worth pointing out that our current im-
plementation uses ABF++ in the first phase, which may
fail to produce a solution if the boundary of the model
is very complicated. If this happens, ABF++ can be
replaced by other methods such as [21] which guarantees
a locally injective parameterization for an arbitrary fixed
boundary. While our RBF-based interpolation usually
gives low distortion in the second phase, the overall
performance of the 3D to 2D mapping also depends
on the performance of the parameterization in the first
phase. Hence it is important to ensure the first step to
produce a good unconstrained parameterization and to
choose an appropriate boundary to reduce the distortion.

7 CONCLUSIONS
We have carefully analyzed the relation between a C2

continuous 2D mapping and its induced piecewise lin-
ear transformation and proposed a refinement strategy
based on the longest edge bisection, which guarantees
a transformation induced from a locally bijective C2

mapping, by adding a few Steiner vertices if necessary,
to keep the orientation of each triangle of a 2D triangular
mesh. Based on this, we present an efficient and theoret-
ically robust texture mapping algorithm for triangular
mesh models in the presence of hard constraints. The
mapping is a composition of an unconstrained planar
embedding and a series of constrained mesh trans-
formations. The constrained mesh transformations are
realized by a non-intersecting warping for constrained
vertices, RBF-based interpolation and LEB-based refine-
ment, which are proven to be foldover free. The condi-
tion for a mesh transformation to be foldover free and
the condition for the RBF-based warp to be locally bijec-
tive are derived to determine the displacement step and
the threshold for performing mesh refinement, which
ensures the efficiency and validity of the algorithm.
The use of RBF-based interpolation makes the mesh be
smoothly deformed to align the user specified positional
constraints exactly, without the need of performing a
smoothing postprocess. The experiments with several
examples of varying complexity demonstrate that the
proposed algorithm can effectively handle hard con-
straints and produce visually pleasing texture mapping
results.
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(b) Left: Trajectories generated automatically by the proposed method; 

Middle: The warped mapping; Right: Texture mapping result

(a) Input mesh & image

(c) Left: The two red trajectories are manually modified; Middle: The 

warped mapping; Right: Texture mapping result
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Fig. 15. Warping trajectories: while the automatically generated trajectories shown in (b) may not fit well with the input
3D model shown in (a), modifying the two red trajectories can improve the mapping result as shown in (c).
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