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Abstract— This paper considers the problem of automatically
segmenting an image into a small number of regions that
correspond to objects conveying semantics or high-level struc-
ture. Although such object-level segmentation usually requires
additional high-level knowledge or learning process, we explore
what low level cues can produce for this purpose. Our idea is
to construct a feature vector for each pixel, which elaborately
integrates spectral attributes, color Gaussian mixture models,
and geodesic distance, such that it encodes global color and
spatial cues as well as global structure information. Then, we
formulate the Potts variational model in terms of the feature
vectors to provide a variational image segmentation algorithm
that is performed in the feature space. We also propose a heuristic
approach to automatically select the number of segments. The
use of feature attributes enables the Potts model to produce
regions that are coherent in color and position, comply with
global structures corresponding to objects or parts of objects
and meanwhile maintain a smooth and accurate boundary. We
demonstrate the effectiveness of our algorithm against the state-
of-the-art with the data set from the famous Berkeley benchmark.

Index Terms—Image segmentation, low level cues, object
segmentation, variational model.

I. INTRODUCTION

HIS paper deals with the process of automatically seg-

menting an image into a small number of regions. Dif-
ferent from conventional multi-label segmentation that often
results in over-segmentation, our target is a small set of regions
that have a relatively large size and correspond to objects
or parts of objects conveying some semantics or high-level
structure/features, in addition to certain homogeneity. The
underlying reason for this target is that most images can be
viewed as combinations of objects by nature and for an image
what attract most of the attention usually are only a few salient
objects. Such segmentation is useful in many computer vision
tasks such as object recognition and scene understanding,
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as demonstrated in [3] where images are transformed into
the Blobworld representation composed of a small set of
image regions and these regions are then used for image
retrieval and querying. We hence call our process object-level
segmentation. It is similar to semantic segmentation, but we do
not consider category-specific labeling that is often involved
in the conventional semantic segmentation.

The challenge with such object-level segmentation lies in
the fact that though human brain is good at abstracting
semantically meaningful regions from visual cues, developing
an automatic algorithm that well mimics this brain function is
still very difficult. To perceive an image, elements must be per-
ceived as a whole, but most images are currently represented
based on local low-level features. In addition, the concepts
of “semantics” and human perception are quite subjective and
content dependent. In general, automatically generating object-
level segmentation is an ill-posed problem. It often requires
global image information or high level knowledge, which
may come from user input in interactive or semi-supervised
methods [4] or labeled database in learning/training based
methods [5]. However, we observe that high level knowledge
and low level cues are not totally independent and actually
some semantics are conveyed in various low level cues. For
example, cognition study [6] shows that human vision views
part boundaries at those with negative minima of curvature and
the part salience depends on three factors: the relative size,
the boundary strength and the degree of protrusion. Gestalt
theory and other psychological studies have also developed
various principles reflecting human perception, which include:
(1) human tends to group elements which have similarities
in color, shape or other properties; (2) human favors linking
contours whenever the elements of the pattern establish an
implied direction. Therefore it is interesting to explore what
low level cues can produce for high level object segmentation.

Extensive research has been conducted for image seg-
mentation. A broad family of methods makes use of local
features such as color and texture for clustering. Examples
are MeanShift [7] and Graph-Based Region Merging [2].
While these methods are usually very fast, they tend to pro-
duce over-segmentation. Alternatively, methods like spectral
clustering [8] and Normalized Cut [1] use eigenvectors for
the clustering process. It has been shown that eigenvectors
resulting from spectral clustering carry global contour infor-
mation and thus these methods are able to capture semantic
regions with considerable sizes. The gPb-owt-ucm method [9]
combines multiple local cues into a globalization process using
spectral clustering and then constructs a hierarchical region

1057-7149 © 2013 IEEE
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(a) Original image

(b) Ncut

Fig. 1.

(c) Felz-Hutt

(d) Potts with RGB (e) Our Method

(b) & (c): The existing low-level cues based segmentation methods such as Ncut [1] and Felz-Hutt [2] often over-segment the image or cannot align

well with true object boundary. (d): The original Potts model relying on local color feature mistakenly treats part of the mountain and chair, the ground and
the sky as the same segments. (e): Our method without help of high level knowledge can achieve object-level segmentation to some extent and meanwhile
obtain smooth and accurate boundaries. The color in each image just distinguishes regions.

tree from a set of contours to achieve hierarchical image
segmentation, which has demonstrated the state-of-the-art seg-
mentation performance. The segmentation results with these
methods are generally good. However, some visual artifacts
can still be observed. For example, the region contours do not
follow object boundaries very well and the large uniform or
smooth regions may be split. On the other hand, the multi-
label segmentation can also be formulated as a variational
problem [10]-[14]. Variational methods have become popular
since they can produce smooth and accurate region boundaries
and many fast numerical solvers have been developed. In
addition, many of these solvers can be parallelized, which is
very suitable for GPU implementation. However, variational
methods are in general sensitive to the initializations and bad
initialization can result in local minimum [13].

Inspired by the recent progress in image segmentation (espe-
cially variational segmentation), we propose to select effective
low level cues of images that reflect global color feature,
spatial information, and structure information as well and
integrate them to form feature vectors. We then substantiate the
Potts model with the feature vectors to provide a variational
segmentation algorithm. In this way, we can achieve object-
level segmentation to some extent without the help of high
level knowledge and meanwhile obtain smooth and accurate
segmentation boundaries (see Fig. 1). To the best of our
knowledge, there was no such work for image segmentation
before. The novelties of this paper include:

o Spectral attributes, color Gaussian Mixture Models and
geodesic distance from the state-of-the-art techniques are
selected as low level cues and elaborately integrated to
construct feature vectors for image pixels. These feature
vectors encode global color and spatial features as well
as global structure information.

« An automatic multi-label segmentation algorithm based
on the Potts variational model using the feature vectors is
developed, which can produce a small number of regions
reflecting local color and spatial coherence and global
semantic structure in one framework.

« A heuristic approach is proposed to determine the number
of regions based on the stability of Ncut values.

II. RELATED THEORY
A. Normalized Cut

Normalized cut [1] finds a segmentation that minimizes
the so-called Ncut value which is defined by the weights of
boundary edges between clusters and the weights of all edges
within each cluster. The basic idea in normalized cut is that
big clusters have large weights within them and minimizing
Ncut encourages all such weights to be about the same, thus
achieving a “balanced” clustering.

Finding the normalized cut is an NP-hard problem. Usually,
an approximate solution is sought by finding the eigenvectors
of the generalized eigenvalue system (D — W)o = ADv, where
W = [w;;] is an affinity matrix of an image graph with w;;
describing the pairwise affinity of two pixels and D = [d};] is
a diagonal matrix with dj; = > j Wij- Then the segmentation
is achieved by recursively bi-partitioning the graph using the
first nonzero eigenvalue eigenvector [1] or spectral clustering
of a set of eigenvectors [8].

As eigenvectors convey global structure information, nor-
malized cut is less likely to produce small or trivial regions
than those methods that just use local statistics. However,
a simple clustering of eigenvectors often splits uniform or
smooth regions [9]. Our work also uses eigenvectors as
spectral attributes for segmentation. We choose an appropriate
number of eigenvectors and apply the continuous Potts model
to produce segmentation that aligns with global salient edges.

B. The Potts Model

The Potts model originates from statistical mechanics [15]
and has been widely used in various computer vision tasks
such as image de-noising and segmentation [12]-[14], [16].
Given an image / : Q — R, the Potts model attempts to
partition the image into n disjoint sub-regions {Q;}?_, with
UL Q = QN = #,Vk # [ by minimizing the
functional:

min
{Qi};';l

n n

/ pli, x)dx +a Dy Ci(x)|oQil, (1)
i=17%% i=I
The first term of (1) is the region term that measures the cost
to assign label /; to the data. A simple region term is given
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by
p(li’x)zll(x)_ci|ai=19""n (2)

where ¢; corresponds to the mean intensity of region with label
l;. The second term of (1) is the boundary term where [0€);|
is the perimeter of region Q;, and C;(x) is an edge detector
function which is defined by

1
1+ |VI(x)]2

The region term and the boundary term are balanced by a
tradeoff factor a. Minimizing the region term ensures the
segmentation complying with some region coherence and
minimizing the boundary term favors the segmentation with
tight and smooth boundaries along the salient edges in the
image.

By introducing an indicator function u;(x) for each region
Qi, i=1.. .n,

Ci(x) = 3)

1 Q
i (x) = [O’ o “)

the Potts model (1) can be rewritten as

n
i i li, Ci Vui|tdx, (5
ui<,€§‘§{6,1};/9{”'(“”(’ %) +aCi(0) Vil |dx. (5)

n
st ui(x)=1 Vx €Q. (6)
i=1
Whereas this model is nonconvex due to the binary configura-
tion of u; (x) € {0, 1}, currently popular approaches [17]- [19]
relax the binary constraint to the interval [0, 1] and approxi-
mate (5) with the convex model:

u,-é?ifb,ui:zl/gz{”"(x)”(l"”‘)+“C"(")'V”"'}d"’ ™
s.t.zu,-(x)zl Vx € Q. (8)

i=1

1) Multi-Label Continuous Max-Flow Method: To solve the
convex Potts model (7), Yuan er al. present a multi-label
continuous max-flow formulation [14]. The method maps the
functional to n parallel copies Q;,i = 1...n, of Q which
are linked to a common source node s and sink node ¢,
where n is the number of labels. Then the minimization
problem is transformed to the problem of finding ps, p =

[plapz"'apl’l]’q = [QIaQ2,~aQn],u = [ul’uza"’un] fOr

max min L.(ps, p, q, u) where
PssPsq U

n
Le(ps, p,q,u) = /Q [Ps + D (i, divgi — ps + pi)]dx
i=1

n
c .
) > Idivgi — ps + pill?
i=1
s.t]gix)| < aCix),i=1,...,n ¥Vx €Q
pix) < pUi,x),i=1,...,n,x € Q

with constant ¢ > 0. In this new formulation, for each position
x € Q, ps(x) is the flow stream from the source s to x
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at each copy Q;, p(l;, x) serves as the capacity of the sink
flow p;(x) directed from x at Q; to the sink ¢, aC;(x) is
the capacity of spatial flows g; (x) defined within each Q; and
u; (x) is the indicator function for each label i and works as the
Lagrangian multiplier. An algorithm based on the augmented
Lagrangian method is introduced in [14] to find the solution.
Final segmentation is formed by assigning each pixel x to
the label i whose corresponding indicator function u;(x) has
the largest magnitude. It has been shown that compared with
previous methods [19], [20], the continuous max-flow method
has a fast convergence rate and moreover it can be highly
parallelized to achieve even faster processing speed. This
algorithm is adopted in our approach to solve the Potts model.

III. PROPOSED METHOD

Given an input image, our goal is to automatically partition
the image into a small number of regions that are coherent
in color and structure. We divide this problem into two
subproblems. The first one is how to segment the image into
k regions for a given number k. The second one is how to
automatically choose k, the number of regions, which will
be described in Section III-D. Combining the solutions to
both subproblems leads to an automatical variational image
segmentation algorithm.

For the first subproblem, our basic idea is to construct some
feature vectors from various low level cues for images and then
formulate the Potts model in terms of the feature vectors for
segmentation. Basically, this involves the following processes:

« Global Structure/Boundary Feature Extraction: Con-

struct eigenvectors and globalized probability of boundary
for each pixel which is later used to construct the Potts
functional.
« EM Initialization: Model the distribution of color and
eigenvectors with a k mixture of Gaussians and use the
EM method to generate initial means for the Potts model.

« Functional Formulation and Segmentation: The global
features that consist of global structure, color and spa-
tial information are used to formulate the region and
boundary terms of the Potts model to make the seg-
mentation produce homogeneous regions and snap to
accurate boundaries. The final segmentation is completed
by solving the variational model using the continuous
max-flow method [14].

These processes are elaborated in the next three sub-sections.

A. Global Structure and Boundary Feature Extraction

The Potts model works well under the assumption that the
image is roughly piecewise constant. However low-level local
features such as intensity, color, texture and curvature may
not necessarily possess such characteristics, which makes the
model sometimes produce trivial regions and false boundaries.
Thus it is necessary to consider features that can better
describe the underlying data. The eigenvectors resulting from
an affinity matrix are such features because they carry global
contour information, reflect significant structures and tend to
be roughly piecewise constant, which can be observed in
Figure 2.
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Fig. 2.
image boundaries

To construct the eigenvectors, we basically adapt the work
of [9] that describes a very nice globalization method for
contour detection and spectral clustering. The main steps are
as follows.

First, a multiscale extension m Pb of the posterior probabil-
ity of boundary at each image pixel x is computed, which con-
siders gradients at different scales for image brightness, color,
and texture channels in order to detect both fine and coarse
structures. Second, a sparse symmetric affinity matrix W =
[w;;] is constructed using the intervening contour cue [9], [21]
and the maximal value of m Pb along a line connecting two
pixels x; and x; with w;; = exp(— max {mPb(p)}/p), where

€EXiXj

X;x; is the line segment connecting xji and x; and p is a
constant (which is set to p = 0.1 in literature). Third, let
D = [d;;] be a diagonal matrix with d;; = Zj w;; and solve
for the generalized eigenvectors of (D — W)v = ADv. We
choose [ eigenvectors corresponding to the / smallest nonzero
eigenvalues. / is determined via an eigen-gap heuristic [22].
Finally, a spectral boundary detector s Pb is defined at each
pixel by the convolutions of each eigenvector with Gaussian
directional derivative filters. As pointed out in [9], signal m Pb
fires at all the edges and spectral signal s Pb extracts only the
most salient edges in the image. Thus a linear combination of
mPb and sPb is suggested to yield a globalized probability
of boundary, g Pb. In our application, from this process we
extract / eigenvectors and the g Pb map, which will be used
in the subsequent steps.

B. EM Initialization

One drawback of the Potts model is that it is sensitive
to the choice of mean ¢;,i = 1,..,n, in (2). Inappropriate
initialization of ¢; can make the model get stuck in local
minimum [13]. Therefore here we propose a simple and
efficient method to generate reasonable initial means.

As eigenvectors are nearly piecewise constant, thus for
k—partition, we can assume they are drawn from k Gaussians
in the mixture model and use the EM algorithm to determine
the maximum likelihood parameters of the mixture of k

(a), (c): An image and its top four non-zero eigenvalue eigenvectors. (b): The gPb contour map generated from eigenvector captures clean and salient

Gaussians in the feature space. For each pixel, we construct a
feature vector of length (/4 3) that consists of RGB colors and
eigenvectors v(x) = (R, G, B, ey, ..., e;). Then we perform
the EM algorithm to estimate the parameters.

To apply the EM algorithm, we need to initialize parameters.
The initial mixing weights z; are simply set to % The
covariance matrices X; are set to the identity matrix. For the
means (1, 42, ..., 1k, we run K-means to generate k clusters
and then use the means of these clusters as the initial means.
After the EM iteration stops, each pixel is assigned to the
label corresponding to the largest probability, thus delivering
k initial regions.

Note that Carson et al. [3] use a similar method to generate
blobworld for image retrieval. However the low-level feature
(color, Gabor filter and pixel location) can prevent EM from
approaching semantic objects. In addition, parameter initial-
ization in their work is done in an ad-hoc manner which can
lead to failure detection of the object of interest.

C. Variational Segmentation

The Potts model contains two terms: a region term (2) and a
boundary term (3). Below we show how to formulate these two
terms to incorporate global information such as the spectral
attributes.

1) Region Term Formulation: In [14], the variational model
is defined in the RGB space. When natural images contain
much variation of colors, local features such as color and
texture are often insufficient to reflect the structure of the
images. To generate a good partition, it is desirable to include
some global information in the region term.

In our case, the EM clustering has provided a good approx-
imation of k regions, which could be utilized to extract some
useful region information for later variational segmentation.
We first introduce the GMM to describe the color distribution
of each label, which has demonstrated its success in interactive
segmentations [4], [23]. Specifically, for each pixel x in the
image, we can obtain a set of probabilities [g1(x), ..., gk(x)],
where g;(x) denotes the probability that the pixel belongs to
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(b) RGB color

(a) Original image

Fig. 3.

label /; and is computed by

—log Pr(x|I;)
—log Pr(x|l;) — log Pr(x|l;)

gi(x) = ©)
where Pr(x|l;) indicates the probability that pixel x fits the
GMM of label I; and Pr(x|l;) is the probability that x fits the
GMM of any label other than /;.

To strengthen the region information when foreground and
background colors are not well separable, we further introduce
the geodesic probability to describe the spatial information
of the seed regions. The geodesic probability indicates the
likelihood of pixel x belonging to label /; and is defined
by [24]

D(x,1;)
D(x,1;) + D(x, 1)

where D(x,!;) is the geodesic distance from pixel x to the
seed region of label /; and D(x,[;) is the geodesic distance
from x to other seed regions.

Now we are ready to construct a feature vector for each
pixel x. The feature vector is a (2k 4 1) vector:

,8k(x), e1(x), ..., & (x),e1(x),...,e(x)] (11)

where k is the number of labels, [ is the number of the selected
eigenvectors generated in Section III-A, g;(x) is the GMM
probability of label i defined by (9), €;(x) is the geodesic
probability of label i defined by (10), and ¢; (x) is the element
corresponding to x in the i —th eigenvector. The feature vector
can be viewed as a point in a (2k + /)—dimensional space
called the feature space. The Potts model will be applied to
this space. Thus we define the region function for each label
l; to be

pli,x) = ad - [ah - (1 — gi(x) + (1 —ab) -
(1 - E,'()C))] + (1 - all) : deigen(liax)

where a’i and aé are the tradeoff factors for label /;,

€(x) = (10)

[g1(x), ...

12)

deigen(li, x) = \/(61(x) — elli)z +-+(eg(x) — e;z‘)z

and eif' is the mean of spectral attribute e; for label /;. The
region function (12) has three terms: the first two describe
the color and spatial information of regions and the third one

(c) GMM

(d) GMM+ GeoDesic  (e) GMM+
Eigen

GeoDesic+

The segmentation results by using different features. Combining global spectral, color and spatial features (e) achieves the best result.

describes the global structure information. The combination of
them enhances the capability of differentiating regions.

It is important to properly set the tradeoff factors a’i and
a;. When GMMs provide enough information to distinguish
one label from the others, the first term should dominate;
Otherwise, eigenvectors and the geodesic probability should
play a major role. Thus, as suggested in [4], we set a’l' and
ab to be the Kullback-Leibler divergence between the current
label’s GMM and the rest labels’ GMMs:

n
i i 12
n

j=1

log Pr(x;|l;) — log Pr(x;li;)
log Pr(x;l|l;) + log Pr(ij_i)

13)

where /; indicates the rest labels and n is the number of pixels.

An example which compares different combinations of
global features is shown in Figure 3. We can see that by
using GMM, geodesic probability and eigenvectors, the result
is more meaningful and accurate than using the local RGB
information.

2) Boundary Term Formulation: The boundary term in (1)
is a weighted total variation of function u. The weight C;(x)
plays an important role. The definition of C;(x) in (3) favors
the segmentation along the curves where the edge detection
function takes small values. In our algorithm, we use the gPb
proposed in [9], [25] as the base map where the edge detector
of (3) is applied. gPb is computed in the process of generating
spectral attributes and it has proved to be powerful signal
for edge information. Unlike other classical detectors, gPb
makes use of the global information encoded in eigenvectors
and thus it can capture the salient edges. However, gPb has
limitations in that some weak edges may be missed due to the
fact that eigenvectors may not capture small structures. Thus
we propose to further incorporate the GMM probability map
to enhance the edge detection:

Cix)=p"g-(x)+ (1 =) gex)

where g’ and g, are the results of applying the edge detector
of (3) to the GMM probability map g; of (9) and the gPb map
respectively, and ' is a tradeoff factor which is defined in a
similar way as a} or o) given in (13).

Figure 4 compares the results of our method with and with-
out g'. We can find that by incorporating the GMM probability

(14)
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(a) Original image (b) GMM map
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(f) canny edge detector (2) ge

Fig. 4.
using (3) are circled in (c).

maps, the weak edges are enhanced and the segmentation
snaps to the salient image boundaries better. In addition, the
result with the canny edge detector is the worst, as it captures
too much trivial edges which make the algorithm snap to
unsalient ones.

D. Selecting the Number of Regions

We now discuss how to choose k, the number of regions. An
ideal value of k should best fit the number of groups present
in the image. However, the notion of best fitting is quite
subjective. Here we present a heuristic approach to compute
k based on the stability of the Ncut values.

Our observation is that if a good k-partition has been
formed, increasing the number of segments to k + 1 will
cause the existing segments to be split and merged to form
a new segmentation, which usually results in a big change
of the Ncut values. This suggests a brute-force approach:
perform clustering and compare the Ncut values to select
among different values of k. Considering that our goal here is
to find the number of regions, we just use the EM clustering,
based on which we perform Ncut value stability analysis.
Particularly, we choose the best k to be

arg_ngzafcs] {INcut(@ +1) — 2Ncut (@) + Ncut (i — 1)|} (15)
iel2,

which maximizes the second order difference.

Experimental results shown in Figure 5 demonstrate that the
number of regions determined by this heuristic approach leads
to meaningful segmentations.

IV. EXPERIMENTS
A. Test on Berkeley Benchmark

We have conducted experiment on the Berkeley segmenta-
tion dataset (BSDS) [9]. Particularly, we use the BSDS500
dataset that contains 500 images (300 images for training
and 200 images for testing) and their corresponding human
segmentations. The only parameter we calibrate over the
training data is the tradeoff factor e in (1). In other words,
we do not perform any training and o is empirically adjusted
to a fix value (& = 0.1) that achieves the best performance

(c) with canny edge detector

(d) with ge only (e) with ge and g%

,;\ .
e PP

(i) Ci(z) of (14)

(h) g%

Comparison of the results of our method using the two different C;(x) definitions in (3) and (14), respectively. Some boundary problems due to

TABLE I
BOUNDARY BENCHMARKS ON BSDS500

Method Precision|Recall
EM method (RGB+eigenvectors)(0.46 0.49
Potts with RGB 0.53 0.43
Potts with GMM 0.6 0.49
Potts with GMM+Geodesic 0.72 0.54
Our Method 0.86 0.58
gPb-owt-ucm [9] 0.72 0.73
Mean Shift [7] 0.59 0.71
NCuts [1] 0.56 0.74
Felz-Hutt [2] 0.5 0.77

over the training images only. We evaluate the results using the
precision and recall framework of [21], where the Precision
measures the proportion of how many machine generated
boundaries can be found in human labelled boundaries and
is sensitive to over-segmentation, while the Recall measures
the proportion of how many human labelled boundaries can
be found in machine generated boundaries and is sensitive to
under-segmentation.

Table I lists the the precision and recall values of our method
and some state-of-the-art algorithms including the gPb-owt-
ucm method [9], Normalized Cut [1], Mean-Shift [7] and
Graph Based Region Merging [2]. We also report the precision
and recall values of the the EM method where the feature is a
concatenation of RGB with eigenvectors and the original Potts
model where only local color feature is used for comparison.
The scores of the Potts model using different combinations of
global features are also demonstrated. The performance gain
is obvious with effective integration of the global information
with the Potts model and the EM method in our algorithm. It
can be seen that our algorithm obtains the highest precision
with a value of 0.86 across the test dataset, which means
most of the boundaries generated by our method match human
segmentation. On the other hand, as our algorithm aims at
producing sizable segments, it exhibits a certain degree of
“under-segmentation” compared to other methods, and thus the
recall value of our method is relatively lower. We would like to
point out that the human segmentations offered in BSDS500
are of fine granularity, which goes against the goal of our
algorithm, and thus the recall values do not fully reflect the
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(a) input im- (b) EM initial- (c) Our (d) Potts with (e) gPb-owt- (f) Blobworld  (g) NCUT (h) Felz-Hutt (i) Meanshift
ages ization method RGB ucm

Fig. 5. Examples of some images randomly selected from the BSDS500 test dataset and their corresponding segmentation results using different methods
with optimal parameters tuned over the training set. Note that red and yellow contours depict the region boundaries. For Blobworld, it uses white contours
for boundaries and the gray regions indicate unlabelled pixels.

performance of our method. We did experiment of removing increase in the recall score. Thus we believe that new metric
some human segmentations with much finer granularity and and benchmark are needed to better evaluate methods for our
recalculating the statistics of our results and obtained an task.
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Our algorithm is implemented in C++- and runs on a Laptop
with an Intel Core i7 1.73 GHz Quad Core mobile processor,
Nvidia Geforce GTX460M mobile graphics card and 8GB
RAM. The average time to handle an image in the BSDS
is about 1~3 s with GPU acceleration.

B. Visual Results

Figure 5 shows some randomly selected images from the
BSDS500 test dataset and their corresponding segmentation
results using different algorithms. It can be seen that NCut
often breaks smooth image regions since it requires a large
input label number in order to obtain the correct bound-
aries. Felz-Hutt method usually produces many super-pixels,
which causes severe visual artifacts. Blobworld and Mean-
shift produce unpleasing segmentation results for complex
images as they rely on local image features. As for the gPb-
owt-ucm method, it can still produce trivial regions since it
is constructed from region contours which can be of fine
granularity. Compared with these existing methods, our pro-
posed algorithm generates pleasing segmentation results with
boundaries snapping to the geometry features of objects and
a reasonable number of segments matching global human
perception. Moreover, we also show the results of the original
Potts model which only relies on local color feature. It can be
observed that our proposed method that incorporates global
color, spatial and structure information into the Potts model
achieves much better visual results.

C. Limitations

Although the proposed method achieves very good visual
results for most of the tested images, it still has some lim-
itations. One limitation is that our method may ignore some
small distinct regions due to the assumption of the method that
the size of each segment is considerable. Another limitation
is that for cluttered or camouflaged images that do not exhibit
much structure information in eigenvectors, our algorithm
does not perform well. We believe for such cases high-level
knowledge should be involved in order to successfully segment
the images.

V. CONCLUSION

This paper has described how to elaborately construct
feature vectors for an image from low level cues resulted from
the state-of-the-art techniques. The feature vectors consist of
spectral attributes, global color and spatial information. The
Potts model is formulated in terms of the feature vectors for
segmentation. A heuristic approach is proposed to select the
number of segments. As a result, a new algorithm is developed,
which can automatically segment natural images into a small
number of regions that are locally coherent, respect global
structures, have smooth contours snapping to salient object
boundaries, and correspond to meaningful objects. Experi-
ments demonstrate that the proposed algorithm can achieve
object-level segmentation to some extent.
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