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Abstract—With the powerfulness of convolution neural networks (CNN), CNN based face reconstruction has recently shown

promising performance in reconstructing detailed face shape from 2D face images. The success of CNN-based methods relies on a

large number of labeled data. The state-of-the-art synthesizes such data using a coarse morphable face model, which however has

difficulty to generate detailed photo-realistic images of faces (with wrinkles). This paper presents a novel face data generation method.

Specifically, we render a large number of photo-realistic face images with different attributes based on inverse rendering. Furthermore,

we construct a fine-detailed face image dataset by transferring different scales of details from one image to another. We also construct

a large number of video-type adjacent frame pairs by simulating the distribution of real video data.1 With these nicely constructed

datasets, we propose a coarse-to-fine learning framework consisting of three convolutional networks. The networks are trained for

real-time detailed 3D face reconstruction from monocular video as well as from a single image. Extensive experimental results

demonstrate that our framework can produce high-quality reconstruction but with much less computation time compared to the

state-of-the-art. Moreover, our method is robust to pose, expression and lighting due to the diversity of data.

Index Terms—3D face reconstruction, face tracking, face performance capturing, 3D face dataset, image synthesis, deep learning

Ç

1 INTRODUCTION

THIS paper considers the problem of dense 3D face recon-
struction from monocular video as well as from a single

face image. Single-image based 3D face reconstruction can be
considered as a special case of video based reconstruction. It
also plays an essential role. Actually image-based 3D face
reconstruction itself is a fundamental problem in computer
vision and graphics, and has many applications such as face
recognition [5], [54] and face animation [23], [53]. Video-based
dense face reconstruction and tracking or facial performance
capturing has a long history [57] also with many applications
such as facial expression transfer [52], [53] and face replace-
ment [12], [16], [30]. Traditional facial performance capture
methods usually require complex hardware and significant
user intervention [21], [57] to achieve a sufficient reality and
therefore are not suitable for consumer-level applications.
Commodity RGB-D camera based methods [6], [33], [52], [56]
have demonstrated real-time reconstruction and animation

results. However, RGB-D devices, such as Microsoft’s
Kinect, are still not that common and not of high resolution,
compared to RGB devices.

Recently, several approaches have been proposed for RGB
video based facial performance captureing [7], [8], [18], [22],
[45], [53]. Compared to image-based 3D face reconstruction
that is considered as an ill-pose and challenging task due to
the ambiguities caused by insufficient information conveyed
in 2D images, video-based 3D reconstruction and tracking is
even more challenging especially when the reconstruction is
required to be real-time, fine-detailed and robust to pose,
facial expression, lighting, etc. These proposed approaches
only partially complywith the requirements. For example, [8]
and [7] learn facial geometry while not recovering facial
appearance property, such as albedo. [18] can reconstruct
personalized face rig of high-quality, but their optimization-
based method is time-consuming and needs about 3 minutes
per frame. [53] achieves real-time face reconstruction and
facial reenactment through data-parallel optimization strat-
egy, but their method cannot recover fine-scale details such as
wrinkles and also requires facial landmark inputs.

In this paper, we present a solution to tackle all these prob-
lems by utilizing the powerfulness of convolutional neural
networks (CNN). CNN based approaches have been pro-
posed for face reconstruction from a single image [24], [41],
[42], [51], [54], but CNN is rarely explored for video-based
dense face reconstruction and tracking, especially for real-
time reconstruction. Inspired by the state-of-the-art single-
image based face reconstructionmethod [42], which employs
two cascaded CNNs (coarse-layer CNN and fine-layer CNN)
to reconstruct a detailed 3D facial surface from a single
image, we develop a dense face reconstruction and tracking

1. All these coarse-scale and fine-scale photo-realistic face image data-
sets can be downloaded fromhttps://github.com/Juyong/3DFace.
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framework. The framework includes a new network architec-
ture called 3DFaceNet for online real-time dense face recon-
struction from monocular video (supporting a single-image
input as well), and optimization-based inverse rendering for
offline generating large-scale training datasets.

In particular, our proposed 3DFaceNet consists of three
convolutional networks: a coarse-scale single-image network
(named Single-image CoarseNet for the first frame or the sin-
gle image case), a coarse-scale tracking network (Tracking
CoarseNet) and a fine-scale network (FineNet). For single-
image based reconstruction, compared with [42], the key
uniqueness of our framework lies in the photo-realistic data-
sets we generate for training CoarseNet and FineNet.

It is known that one major challenge for CNN-basedmeth-
ods lies in the difficulty to obtain a large number of labelled
training data. For our case, there is no publicly available
dataset that can provide large-scale face images with their
corresponding high-quality 3D face models. For training
CoarseNet, [41] and [42] resolve the training data problem by
directly synthesizing face images with randomized paramet-
ric face model parameters. Nevertheless, due to the low
dimensionality of the parametric face model, albedo and ran-
dom background synthesized, the rendered images in [41],
[42] are not photo-realistic. In contrast, we propose to create
realistic face images by starting from real photographs and
manipulating them after an inverse rendering procedure. For
training FineNet, because of no dataset with detailed face
geometry, [42] uses an unsupervised training by adopting the
shading energy as the loss function. However, to make back-
propagation trackable, [42] employs the first-order spherical
harmonics to model the lighting, which makes the final
detailed reconstruction not so accurate. On the contrary, we
propose a novel approach to transfer different scales of details
from one image to another. With the constructed fine-detailed
face image dataset, we can train FineNet in a fully supervised
manner, instead of the unsupervisedway in [42], and thus can
produce more accurate reconstruction results. Moreover, for
training our coarse-scale tracking network for the video input
case, we consider the coherence between adjacent frames and
simulate adjacent frames according to the statistics learned
from real facial videos for training data generation.

Contributions. In summary, the main contributions of this
paper lie in the following five aspects:

� the optimization-based face inverse rendering that
recovers accurate geometry, albedo, lighting from a
single image, with which we can generate a large
number of photo-realistic face images with different
attributes to train our networks.

� a large photo-realistic face image dataset with the
labels of the parametric face model parameters and
the pose parameters, which are generated based on
our proposed inverse rendering. This dataset facili-
tates the training of our Single-image CoarseNet and
makes our method robust to expressions and poses.

� a large photo-realistic fine-scale face image dataset
with detailed geometry labels, which are generated by
our proposed face detail transfer approach. This fine-
scale dataset facilitates the training of our FineNet.

� a large dataset for training TrackingCoarseNet,where
we extend the Single-image CoarseNet training data

by simulating their previous frames according to the
statistics learned from real facial videos.

� the proposed 3DFaceNet that is trainedwith our built
large-scale diverse synthetic data and is thus able to
reconstruct the fine-scale geometry, albedo and light-
ing well in real time from monocular RGB video as
well a single image. Our system is robust to large
poses, extreme expressions and fast moving faces.

To the best of our knowledge, the proposed framework is
the first work that achieves real-time dense 3D face recon-
struction and tracking from monocular video. It might open
up a new venue of research in the field of 3D assisted face
video analysis.Moreover, the optimization-based face inverse
rendering approach provides a novel, efficient way to gener-
ate various large-scale synthetic dataset by appropriate adap-
tation. Our elaborately-generated datasets will also benefit
the face analysis related research that usually requires large
amounts of training data.

2 RELATED WORK

3D face reconstruction and facial performance capturing
have been studied extensively in computer vision and com-
puter graphics communities. For conciseness, we only
review the most relevant works here.

Low-Dimensional Face Models. Model-based approaches for
face shape reconstruction have grown in popularity over the
last decade. Blanz and Vetter [4] proposed to represent a tex-
tured 3D face with principal components analysis (PCA),
which provides an effective low-dimensional representation
in terms of latent variables and corresponding basis vec-
tors [50]. The model has been widely used in various com-
puter vision tasks, such as face recognition [5], [54], face
alignment [27], [34], [60], and face reenactment [53]. Although
such a model is able to capture the global structure of a
3D face from a single image [4] or multiple images [2], the
facial details likewrinkles and folds are not possible to be cap-
tured. In addition, the reconstructed face models rely heavily
on training samples. For example, a face shape is difficult
to be reconstructed if it is far away from the span of the
training samples. Thus, similar to [42], we only use the low-
dimensional model in our coarse layer to reconstruct a rough
geometry andwe refine the geometry in our fine layer.

Shape-From-Shading (SFS). SFS [39] makes use of the ren-
dering principle to recover the underlying shape from shad-
ing observations. The performance of SFS largely depends
on constraints or priors. For 3D face reconstruction, in order
to achieve plausible results, the prior knowledge about the
geometry must be applied. For instance, in order to reduce
the ambiguity and the complexity of SFS, the symmetry of
the human face has often been employed [49], [58], [59].
Kemelmacher et al. [29] used a reference model prior to
align with the face image and then applied SFS to refine the
reference model to better match the image. Despite the
improved performance of this technique, its capability to
capture global face structure is limited.

Inverse Rendering. The generation of a face image depends
on several factors: face geometry, albedo, lighting, pose and
camera parameters. Face inverse rendering refers to the pro-
cess of estimating all these factors from a real face image,
which can then be manipulated to render new images.
Inverse rendering is similar to SFS with the difference that
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inverse rendering aims to estimate all the rendering parame-
ters while SFS mainly cares about reconstructing the geome-
try. Aldrian et al. [1] did face inverse rendering with a
parametric face model using a multilinear approach, where
the face geometry and the albedo are encoded on parametric
facemodel. In [1], the geometry is first estimated based on the
detected landmarks, and then the albedo and the lighting are
iteratively estimated by solving the rendering equation. How-
ever, since the landmark constraint is a sparse constraint, the
reconstructed geometry may not fit the face image well. [18]
fits a 3D face in a multi-layer approach and extracts a high-
fidelity parameterized 3D rig that contains a generative wrin-
kle formationmodel capturing the person-specific idiosyncra-
sies. [3] presents an algorithm for fully automatically fitting a
3D Morphable Model to a single image using landmarks and
edge features. [46] introduces a framework to fit a parametric
face model with Bayesian inference. [13] and [14] estimate an
occlusion map and fit a statistical model to a face image with
an EM-like probabilistic estimation process. [26] adopts the
similar approach to recover the 3D face model with geometry
details. While these methods provide impressive results, they
are usually time-consuming due to complex optimization.

Face Capture from RGB Videos. Recently, a variety of meth-
ods have been proposed to do 3D face reconstruction with
monocular RGB video. Most of them use a 3D Morphable
Model [18], [22], [53] or a multi-linear face model [7], [8], [9],
[45], [48] as a prior. [15] reconstructs the dense 3D face from a
monocular video sequence by a variational approach, which is
formulated as estimating dense low-rank smooth 3D shapes
for each frame of the video sequence. [17] adapts a generic
template to a static 3D scan of an actor’s face, then fits the
blendshape model to monocular video off-line, and finally
extracts surface detail by shading-based shape refinement
under general lighting. [48] uses a similar tracking approach
and achieves impressive results based on global energy opti-
mization of a set of selected keyframes. [18] fits a 3D face in a
multi-layer approach and extracts a high-fidelity parameter-
ized 3D rig that contains a generative wrinkle formation
model capturing the person-specific idiosyncrasies. Although
all these methods provide impressive results, they are time-
consuming and are not suitable for real-time face video recon-
struction and editing. [8], [9] adopt a learning-based regres-
sion model to fit a generic identity and expression model to a
RGB face video in real-time and [7] extends this approach by
also regressing fine-scale facewrinkles. [45] presents amethod
for unconstrained real-time 3D facial performance capture
through explicit semantic segmentation in the RGB input. [22]
tracks face by fitting 3D Morphable Model to the detected
landmarks. Although they are able to reconstruct and track 3D
face in real-time, they do not estimate facial appearance.
Recently, [53] presented an approach for real-time face track-
ing and facial reenactment, but the method is not able to
recover fine-scale details and requires external landmark
inputs. In contrast, our method is the first work that can do
real-time reconstruction of face geometry at fine details as well
as real-time recovery of albedo, lighting and pose parameters.

Learning-Based Single-Image 3D Face Reconstruction. With
the powerfulness of convolution neural networks, deep
learning based methods have been proposed to do 3D face
reconstruction from one single image. [27], [31], [60] use 3D
Morphable Model (3DMM) [4] to represent 3D faces and use

CNN to learn the 3DMM and pose parameters. [41] follows
the method and uses synthetic face images generated by ren-
dering textured 3D faces encoded on 3DMM with random
lighting and pose for training data. However, the reconstruc-
tion results of these methods do not contain geometry
details. Besides learning the 3DMM and pose parame-
ters, [42] extends these methods by also learning detailed
geometry in an unsupervised manner. [54] proposes to
regress robust and discriminative 3DMM with a very deep
neural network and uses it for face recognition. [51] proposes
to use an analysis-by-synthesis energy function as the loss
function during network training [4], [53]. [24] proposes to
directly regress volumes with CNN for a single face image.
Although these methods utilize the powerfulness of CNNs,
they all concentrate on images and do not account for videos.
In comparison, we focus on monocular face video input and
reconstruct face video in real-time by using CNNs.

3 FACE RENDERING PROCESS

This section describes some background information, par-
ticularly on the face representations and the face rendering
process considered in our work. The rendering process of a
face image depends on several factors: face geometry,
albedo, lighting, pose and camera parameters. We encode
3D face geometry into two layers: a coarse-scale shape and
fine-scale details. While the coarse-scale shape and albedo
are represented by a parametric textured 3D face model, the
fine-scale details are represented by a pixel depth displace-
ment map. The face shape is represented via a mesh of n
vertices with fixed connectivity as a vector p ¼ ½pT

1 ;p
T
2 ; . . . ;

pT
n �

T 2 R3n, where pi denotes the position of vertex vi
(i ¼ 1; 2; . . . ; n).

Parametric Face Model. We use 3D Morphable Model [4]
as the parametric face model to encode 3D face geometry
and albedo on a lower-dimensional subspace, and extend
the shape model to also cover facial expressions by adding
delta blendshapes. Specifically, the parametric face model
describes 3D face geometry p and albedo b with PCA (prin-
ciple component analysis)

p ¼ �pþAidaaid þAexpaaexp; (1)

b ¼ �bþAalbaaalb; (2)

where �p and �b denote respectively the shape and the albedo
of the average 3D face, Aid and Aalb are the principle axes
extracted from a set of textured 3D meshes with a neutral
expression, Aexp represents the principle axes trained on the
offsets between the expression meshes and the neutral
meshes of individual persons, and aaid, aaexp and aaalb are the
corresponding coefficient vectors that characterize a specific
3D face model. For diversity and mutual complement, we
use the Basel Face Model (BFM) [37] for Aid and Aalb and
FaceWarehouse [10] for Aexp.

Fine-Scale Details. As 3DMM is a low-dimensional model,
some face details such as wrinkles and dimples cannot be
expressed by 3DMM. Thus, we encode the geometry details
in a displacement along the depth direction for each pixel.

Rendering Process. For camera parametrization, follow-
ing [42], we use the weak perspective model to project the
3D face onto the image plane
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qi ¼ s
1 0 0
0 1 0

� �
Rpi þ t; (3)

where pi and qi are the locations of vertex vi in the world
coordinate system and in the image plane, respectively, s is
the scale factor, R is the rotation matrix constructed from
Euler angles pitch; yaw; roll and t ¼ ðtx; tyÞT is the transla-
tion vector.

To model the scene lighting, we assume the face to be a
Lambertian surface. The global illumination is approxi-
mated using the spherical harmonics (SH) basis func-
tions [35]. Then, the irradiance of a vertex vi with surface
normal ni and scalar albedo bi is expressed as [40]

Lðni; bi j gÞ ¼ bi �
XB2

k¼1

gkfkðniÞ; (4)

where fðniÞ ¼ ½f1ðniÞ; . . . ;fB2ðniÞ�T is the SH basis func-
tions computed with normal ni, and gg ¼ ½g1; . . . ; gB2 �T is the
SH coefficients. We use the first B ¼ 3 bands of SHs for the
illumination model. Thus, the rendering process depends
on the parameter set x ¼ faaid;aaexp;aaalb; s; pitch; yaw; roll;
t; rg, where r ¼ ðggT

r ; gg
T
g ; gg

T
b Þ

T denotes RGB channels’ SH illu-
mination coefficients.

Given the parametric face model and the parameter set x,
a face image can be rendered as follows. First, a textured 3D
mesh is constructed using Eqs. (1) and (2). Then we do a ras-
terization via Eq. (3). Particularly, in the rasterization, for
every pixel in the face region of the 2D image, we obtain the
underlying triangle index on the 3D mesh and its barycen-
tric coordinates. In this way, for every pixel in the face
region, we obtain its normal by using the underlying tri-
angle’s normal, and its albedo value by barycentrically
interpolating the albedos of the vertices of the underlying
triangle. Finally, with the normal, the albedo and the light-
ing, the color of a pixel can be rendered using Eq. (4).

4 OVERVIEW OF PROPOSED LEARNING-BASED

DENSE FACE RECONSTRUCTION

To achieve real-time face video reconstruction and tracking,
we need real-time face inverse rendering. However, recon-
structing detailed 3D face using traditional optimization-

based methods [18] is far from real-time. To address this
problem, we develop a novel CNN based framework to
achieve real-time detailed face inverse rendering. Specifi-
cally, we use two CNNs for each frame, namely CoarseNet
and FineNet. The first one estimates coarse-scale geometry,
albedo, lighting and pose parameters altogether, and the
second one reconstructs the fine-scale geometry encoded on
pixel level.

Fig. 1 shows the entire system pipeline. It can be seen that
there are two types of CoarseNet: Single-image CoarseNet
and Tracking CoarseNet. Tracking CoarseNet makes use of
the predicted parameters of the previous frame, while
Single-image CoarseNet is for the first frame case where
there is no previous frame available. Such Single-image
CoarseNet could be applied to other key frames as well to
avoid any potential drifting problem if needed. The combi-
nation of all the networks including Single-image Coarse-
Net, Tracking CoarseNet and FineNet, makes up a complete
framework for real-time dense 3D face reconstruction from
monocular video. Note that the entire framework can be
easily degenerated to the solution for dense 3D face recon-
struction from a single image by combining only Single-
image CoarseNet with FineNet.

We would like to point out that although we advocate
the CNN based solution, it still needs to work together with
optimization based inverse rendering methods. This is
because CNN requires large amount of data with labels,
which is usually not available, and optimization based
inverse rendering methods are a natural solution for gener-
ating labels (optimal parameters) and synthesizing new
images offline. Thus, our proposed dense face reconstruc-
tion and tracking framework includes both optimization
based inverse rendering and the two-stage CNN based solu-
tion, where the former is for offline training data generation
and the latter is for real-time online operations. In the subse-
quent sections, we first introduce our optimization based
inverse face rendering, which will be used to construct
training data for CoarseNet and FineNet; and then we pres-
ent our three convolutional networks.

5 OPTIMIZATION BASED FACE INVERSE
RENDERING

Inverse rendering is an inverse process of image generation.
That is, given a face image, we want to estimate a 3D face
with albedo, lighting condition, pose and projection par-
ameters simultaneously. Since directly estimating these
unknowns with only one input image is an ill-posed prob-
lem, we use the parametric face model as a prior. Fig. 2 illus-
trates our developed inverse rendering, which consists of
three stages: parametric face model fitting, geometry refine-
ment and albedo blending. The first stage is to recover
the lighting, a coarse geometry and the albedo based on the
parametric face model. The second stage is to further
recover the geometry details. The third stage is to blend the
albedo so as to make the rendered image closer to the input
image. Via the developed inverse rendering, we are able to
extract different rendering components of real face images,
and then by varying these different components we can cre-
ate large-scale photo-realistic face images to facilitate the
subsequent CNN based training.

Fig. 1. The pipeline of our proposed learning based dense 3D face
reconstruction and tracking framework. The first frame of the input video
is initially reconstructed by a single-image CoarseNet for coarse face
geometry reconstruction, followed by using FineNet for detailed face
geometry recovery. Each of the subsequent frames is processed by a
tracking CoarseNet followed by FineNet.
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5.1 Stage 1-Model Fitting

The purpose of model fitting is to estimate the coarse face
geometry, albedo, lighting, pose and projection parameters
from a face image Iin. That is to estimate x ¼ faaid;aaexp; aaalb;
s; pitch; yaw; roll; t; rg. For convenience, we group these
parameters into the following sets xg ¼ faaid;aaexpg, xp ¼
fpitch; yaw; rollg, xt ¼ fs; tg and xl ¼ faaalb; rg. The fitting
process is based on the analysis-by-synthesis strategy [4],
[53], and we seek a solution that by minimizes the difference
between the input face image and the rendered image with
x. Specifically, we minimize the following objective function

EðxÞ ¼ Econ þ wlElan þ wrEreg; (5)

where Econ is a photo-consistency term, Elan is a landmark
term and Ereg is a regularization term, and wl and wr are
tradeoff parameters. The photo-consistency term, aiming to
minimize the difference between the input face image and
the rendered image, is defined as

EconðxÞ ¼
1

jF j kIren � Iink2; (6)

where Iren is the rendered image, Iin is the input image, and
F is the set of all pixels in the face region. The landmark
term aims to make the projected vertices close to the corre-
sponding landmarks in the image plane

ElanðxÞ ¼
1

jLj
X
i2L

kqi � ðPRpi þ tÞk2; (7)

where L is the set of landmarks, qi is a landmark position in
the image plane, pi is the corresponding vertex location in

the fitted 3D face and P ¼ s
1 0 0
0 1 0

� �
. The regularization

term aims to ensure that the fitted parametric face model
parameters are plausible

EregðxÞ ¼
X100
i¼1

aaid;i

ssid;i

� �2

þ aaalb;i

ssalb;i

� �2
" #

þ
X79
i¼1

aaexp;i

ssexp;i

� �2

; (8)

where ss is the standard deviation of the corresponding
principal direction. Here we use 100 principle components
for identity & albedo, and 79 for expression. In our experi-
ments, we set wl to be 10 and wr to be 5 � 10�5. Eq. (5) is min-
imized via Gauss-Newton iteration.

5.2 Stage 2-Geometry Refinement

As the parametric face model is a low-dimensional model,
some face details such as wrinkles and dimples are not
encoded in parametric face model. Thus, the purpose of the
second stage is to refine the geometry by adding the geome-
try details in a displacement along the depth direction for
every pixel. In particular, by projecting the fitted 3D face
with parameter x, we can obtain a depth value for every
pixel in the face region. Let z be all stacked depth values of
pixels, d be all stacked displacements and ez ¼ zþ d be all
new depth values. Given new depth values ez, the normal at
pixel ði; jÞ can be computed using the normal of triangle
ðpði;jÞ;pðiþ1;jÞ;pði;jþ1ÞÞ, where pði;jÞ ¼ ½i; j;ezði; jÞ�T is the coor-

dinates of pixel ði; jÞ at the camera system. Inspired by [23],
we estimate d using the following objective function:

EðdÞ ¼ Econ þ m1kdk22 þ m2k4dk1; (9)

where Econ is the same as that in Eq. (5), kdk22 is to encourage
small displacements, the Laplacian of displacements 4d is
to make the displacement smooth, and m1 and m2 are trade-
off parameters. We use ‘1 norm for the smooth term as it
allows preserving sharp discontinuities while removing
noise. We set m1 to be 1 � 10�3 and m2 to be 0.3 in our experi-
ments. Eq. (9) is minimized by using an iterative reweighing
approach [11].

5.3 Stage 3-Albedo Blending

Similar to the geometry, the albedo encoded in the paramet-
ric face model (denoted as bc) in stage 1 is also smooth
because of the low dimension. For photo-realistic rendering,
we extract a fine-scale albedo as

bf ¼ Iin:=ðrTffðnÞÞ; (10)

where := represents the elementwise division operation, Iin
is the color of the input image and n is the normal computed
from the refined geometry. However, the fine-scale albedo
bf might contain some geometry details due to imperfect
geometry refinement. To avoid this, we linearly blend bc

and bf , i.e., bbc þ ð1� bÞbf , with different weights b at dif-
ferent regions. Particularly, in the regions where geometry
details are likely to appear such as forehead and eye cor-
ners, we make the blended albedo close to bc by setting b to

Fig. 2. The pipeline of our proposed inverse rendering method. Given an input face image (left), our inverse rendering consists of three stages: Model fit-
ting (second column), geometry refinement (third column) and albedo blending (last column). At each stage, the top to bottom rows are the correspond-
ing recovered lighting, geometry and albedo, and the rendered face image is shown on the right. The arrows indicate which component is updated.
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be 0.65, while in the other regions we encourage the blended
albedo close to bf by setting b to be 0.35. Around the border
of the regions b is set continuously from 0.35 to 0.65. Finally,
we use this blended albedo as b in Eq. (4) for our subse-
quent data generation process.

6 SINGLE-IMAGE COARSENET FOR COARSE

RECONSTRUCTION FROM A SINGLE IMAGE

In this section, we describe how to train a coarse-layer CNN
(called Single-image CoarseNet) that can output the paramet-
ric face model parameters (corresponding to a coarse shape)
and the pose parameters from the input of a single face image
or an independent video frame. Although the network struc-
ture of Single-image CoarseNet is similar to that of [42], [60],
we use our uniquely constructed training data and loss func-
tion, which are elaborated below.

6.1 Constructing Single-Image CoarseNet
Training Data

To train Single-image CoarseNet, we need a large-scale data-
set of face images with ground-truth 3DMM parameters and
pose parameters. Recently, [60] proposed to synthesize a
large number of face images by varying the 3DMM parame-
ters fitted from a small number of real face images. [60]
focuses on the face alignment problem. The color of the syn-
thesized face images are directly copied from the source
images without considering the underlying rendering pro-
cess, which makes the synthesized images not photo-realistic
and thus unsuitable for high-quality 3D face reconstruction.
Later, [42] follows the idea of using synthetic data for learn-
ing detailed 3D face reconstruction and directly renders a
large number of face images by varying the existing 3DMM
parameters with random texture, lighting, and reflectance.
However, since 3DMM is a low-dimensional model and the
albedo is also of low frequency, the synthetic images in [42]
are not photo-realistic as well, not to mention the random
background used in the rendered images. In addition, the
synthetic images in [42] are not available to the public.

Therefore, in this paper, we propose to use our devel-
oped inverse rendering described in Section 5 to synthesize
photo-realistic images at large scale, which well addresses
the shortcoming of the synthetic face images generated

in [42], [60]. In particular, we choose 4,000 face images
(dataset A), in which faces are not occluded, from 300 W
[44] and Multi-pie [19]. For each of the 4,000 images, we use
our optimization based inverse rendering method to obtain
the parameter set x. Then, to make our coarse-layer network
robust to expression and pose, we render new face images
by randomly changing the pose parameters xp and the
expression parameter aaexp, each of which leads to a new
parameter set ex. By doing the rasterization with ex, we can
obtain the normals of all pixels in the new face region as
described in Section 3. With these normals and the albedos
obtained according to Section 5.3, a new face is then ren-
dered using Eq. (4). We also warp the background region of
the source image to fit the new face region by using the
image meshing [60]. Fig. 3 shows an example of generating
three synthetic images from an input real images by simul-
taneously changing the expression and pose parameters. In
this way, we generate a synthetic dataset of totally 80,000
face images for the Single-image CoarseNet training by ran-
domly varying the expression and the pose parameters
20 times for each of the 4,000 real face images.

6.2 Single-Image CoarseNet

The input to our Single-image CoarseNet is a face image,
and the output is the parameters related to the shape of 3D
face and the projection, i.e., T ¼ faid;aexp; s; pitch; yaw; roll;
tx; tyg. The network is based on the Resnet-18 [20] with the
modification of changing the output number of the fully-
connected layer to 185 (100 for identity, 79 for expression, 3
for rotation, 2 for translation and 1 for scale). The input
image size is 224� 224.

As pointed out in [60], different parameters in T have dif-
ferent influence to the estimated geometry. Direct mean
square error (MSE) loss on T might not lead to good geome-
try reconstruction. [60] uses a weighted MSE loss, where the
weights are based on the projected vertex distances. [42] uses
3D vertex distances to measure the loss from the geometry
parameters and MSE for the pose parameters. Considering
these vertex based distance measures are calculated on the
vertex grid, which might not well measure how the parame-
ters fit the input face image, in this work we use a loss func-
tion that computes the distance between the ground-truth
parameters T g and the network output parameters T n at the
per-pixel level.

In particular, we first do the rasterization with the
ground-truth parameters T g to get the underlying triangle
index and the barycentric coordinates for each pixel in
the face region. With this information, we then construct the
pixels’ 3D average �pq, base Aq;id and base Aq;exp by barycen-
trically interpolating the corresponding rows in �p, Aid, Aexp,
respectively. In this way, given parameters T , we can proj-
ect all the corresponding 3D locations of the pixels onto the
image plane using

ProjðT Þ ¼ PRð�pq þAq;idaaid þAq;expaaexpÞ þ t: (11)

Then the loss between the ground-truth parameters T g and
the network output parameters T n is defined as

DðT g; T nÞ ¼ kProjðT gÞ � ProjðT nÞk22: (12)

Fig. 3. Training data synthesis for Single-image CoarseNet. Given a real
face image, we first do the inverse rendering to estimate lighting, albedo
and geometry. Then, by changing the expression parameter aexp and
the pose parameters pitch; yaw; roll, the face geometry is augmented. In
the final, a set of new face images is obtained by rendering the newly
changed face geometry.
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Note that there is no need to compute ProjðT gÞ since it cor-
responds to the original pixel locations in the image plane.

For better convergence, we further separate the loss in
Eq. (12) into the pose-dependent loss as

Lpose ¼ kProjðT gÞ � ProjðT n;pose; T g;geoÞk22; (13)

where T pose ¼ xp [ xt represents the pose parameters, and
the geometry-dependent loss as

Lgeo ¼ kProjðT gÞ � ProjðT n;geo; T g;poseÞk22; (14)

where T geo ¼ xg represents the geometry parameters. In
Eqs. (13) and (14), ProjðT n;pose; T g;geoÞ (resp., ProjðT n;geo;
T g;poseÞ) refers to the projection with the ground-truth geom-
etry (resp., pose) parameters and the network estimated
pose (resp., geometry) parameters.

The final loss is a weighted sum of the two losses

L ¼ w � Lpose þ ð1� wÞ � Lgeo; (15)

where w is the tradeoff parameter. We set w ¼ Lgeo

LposeþLgeo
for

balancing the two losses and we assume w is a constant
when computing the derivatives for back propagation.

7 TRACKING COARSENET FOR COARSE

RECONSTRUCTION FROM MONOCULAR VIDEO

The purpose of Tracking CoarseNet is to predict the current
frame’s parameters, given not only the current video frame
but also the previous frame’s parameters. As there does not
exist large-scale dataset that captures the correlations
among adjacent video frames, our Tracking CoarseNet also
faces the problem of no sufficient well-labelled training
data. Similarly, we synthesize training data for Tracking
CoarseNet. However, it is non-trivial to reuse the (k� 1)th
frame’s parameters to predict kth frame’s parameters.
Directly using all the previous frame’s parameters as the
input to Tracking CoarseNet will introduce too many uncer-
tainties during training, which results in huge complexity in
synthesizing adjacent video frames for training, and make
the training hard to converge and the testing unstable.
Through vast experiments, we find that only utilizing the
previous frame’s pose parameters is a good way to inherit
the coherence while keeping the network trainable and
stable.

Specifically, the input to the tracking network is the kth
face frame cropped by the k� 1 frame’s landmarks and a
Projected Normalized Coordinate Code (PNCC) [60] ren-
dered using the k� 1 frame’s pose parameters xk�1

p , xk�1
t

and the mean 3D face �p in Eq. (1). The output of the tracking
network is parameters T k ¼ faak

id;aa
k
exp;aa

k
alb; d

kðsÞ; dkðpitchÞ;
dkðyawÞ; dkðrollÞ; dkðtÞ; rkg, where dð�Þ denotes the difference
between the current frame and the previous frame. Note
that here the output also includes albedo and lighting
parameters, which could be used for different video editing
applications.

The network structure is the same as Single-image Coar-
seNet except that the output number of the fully-connected
layer is 312 (100 for identity, 79 for expression, 3 for rotation,
2 for translation, 1 for scale, 100 for albedo and 27 for light-
ing coefficients). In addition to the loss terms Lpose and Lgeo

defined in Eqs. (13) and (14) respectively, Tracking Coarse-

Net also uses another term for aak
alb and rk that measures the

distance between the rendered image and the input frame

Lcol ¼ kIkrenðaak
alb; r

kÞ � Ikink
2
2; (16)

where Ikrenðaak
alb; r

kÞ is the rendered face image with the
groundtruth geometry and pose, and the estimated albedo
and lighting, and Ikin is the input face frame. In this way, the
final total loss becomes a weighted sum of the three losses

L ¼ w1 � Lpose þ w2 � Lgeo þ ð1� w1 � w2Þ � Lcol; (17)

where w1 ¼ LgeoþLcol
2ðLposeþLgeoþLcolÞ

and w2 ¼ LposþLcol
2ðLposeþLgeoþLcolÞ

are the

tradeoff parameters to balance the three losses, and we

assume w1 and w2 are constant when computing the deriva-

tives for back propagation.
Training Data Generation for Tracking CoarseNet. To train

Tracking CoarseNet, large-scale adjacent video frame pairs
with ground-truth parameters x are needed as training data.
Again, there is no such public dataset. To address this prob-
lem, we propose to simulate adjacent video frames, i.e., to
generate the previous frame for each of the 80,000 synthesized
images used in the Single-image CoarseNet training. Ran-
domly varying the parameter set ex for a training image does
not capture the tight correlations among adjacent frames.
Thus, we propose to do simulation by analysing the distribu-
tion of the previous frame’s parameters xk�1 given the current
kth frame from real videos. Considering our tracking network
only makes use of the previous frame’s pose parameters,
we just need to obtain the distribution of xk�1

p and xk�1
t given

xk
p and xk

t . Particularly, we assume each parameter in

dkðxpÞ ¼ xk�1
p � xk

p and dkðxtÞ ¼ xk�1
t � xk

t follows normal dis-

tribution. We extract about 160,000 adjacent frame pairs from
the 300-VWvideo dataset [47] and use our Single-imageCoar-
seNet to get the parameters for fitting the normal distribution.
Finally, for each of the 80,000 synthesized images, we can sim-
ulate its previous frame by generating exk�1

p and exk�1
t accord-

ing to the obtained normal distribution. Examples of several
simulated pairs with the previous frame’s PNCC and the cur-
rent image are shown in Fig. 4.

8 FINENET FOR FINE-SCALE GEOMETRY

RECONSTRUCTION

In this section, we present our solution on how to train a fine-
layer CNN (called FineNet). The input to FineNet is a coarse

Fig. 4. Examples of adjacent frame simulations. For each pair, the left is
the PNCC image generated by simulating the previous frame, and the
right is the current face frame.
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depthmap stackedwith the face image. The coarse depthmap
is generated by using themethoddescribed in Section 5.2with
the parameters T estimated by either Single-image CoarseNet
or Tracking CoarseNet. The output of our FineNet is a per-
pixel displacement map. Again, the key challenge here is that
there is no fine-scale face dataset available that can provide a
large number of detailed face geometries with their corre-
sponding 2D images, as pointed out in [42]. In addition, the
existing morphable face models such as 3DMM cannot cap-
ture the fine-scale face details. [42] bypasses this challenge by
converting the problem into an unsupervised setting, i.e.,
relating the output depth map to the 2D image by using the
shading energy as the loss function. However, to make the
back-propagation trackable under the shading energy, they
have to use first-order spherical harmonics tomodel the light-
ing,which is not accurate.

In our work, instead of doing unsupervised training [42],
we go for fully supervised training of FineNet, i.e., directly
constructing a large-scale detailed face dataset based on our
developed inverse rendering and a novel face detail transfer
approach, which will be elaborated below. Note that our
FineNet architecture is based on the U-Net [43] and we use
Euclidean distance as the loss function.

8.1 Constructing FineNet Training Data

Our synthesized training data for FineNet is generated by
transferring the displacement map from a source face image
with fine-scale details such as wrinkles and folds to other
target face images without the details. Fig. 5 gives such an
example. In particular, we first apply our developed inverse
rendering in Section 5 on both images. Then we find corre-
spondences between the source image pixels and the target
image pixels using the rasterization information described
in Section 3. That is, for a pixel ði; jÞ in the target face region,
if its underlying triangle is visible in the source image, we
find its corresponding 3D location on the target 3D mesh by
barycentric interpolation, and then we project the 3D loca-
tion onto the source image plane using Eq. (3) to get the cor-
responding pixel ði0; j0Þ. With these correspondences, the
original source displacement dds and the original target dis-
placement ddt, a new displacement eddt for the target image is
generated by matching its gradients with the scaled source

displacement gradient in the intersected region V by solv-
ing the following poisson problem

minedt
X

ði;jÞ2V
kredtði; jÞ �wði; jÞk2;

s:t: edtði; jÞ ¼ dtði; jÞ ði; jÞ 2 @V;

(18)

where wði; jÞ ¼ sd½dsði0 þ 1; j0Þ � dsði0; j0Þ;dsði0; j0 þ 1Þ � dsði0; j0Þ�T

and sd is a scale factor within the range ½0:7; 1:3� so as to cre-
ate different displacement fields. After that, we add edt into
the coarse target depth z to get the final depth map. Then
the normals of the target face pixels are updated as in
Section 5.2. With the updated normals, a new face image is
rendered using Eq. (4).

We would like to point out that besides generating a
large number of detailed face images to train the network,
there are also other benefits to do such detail transfer. First,
by rendering the same type of detail information under dif-
ferent lighting conditions, we can train our FineNet to be
robust to lighting. Second, by changing the scale of the dis-
placement randomly, our method can be trained to be
robust to different scales of details.

For the details of the dataset construction, we first down-
load 1,000 real face images (dataset B) that contain rich geom-
etry details from internet. Then, we transfer the details from
dataset B to the 4,000 real face images in dataset A, the one
used in constructing synthetic data for Single-image Coarse-
Net. For every image in A, we randomly choose 30 images in
B for transferring. In this way, we construct a synthesized
fine-detailed face image dataset of totally 120,000 images.

9 EXPERIMENTS

In this section, we conduct qualitative and quantitative eval-
uation on the proposed detailed 3D face reconstruction and
tracking framework and compare it with the state-of-the-art
methods.

Experimental Setup and Runtime. We train the CNNs via
the CAFFE [25] framework. Single-image CoarseNet takes
the input of a color face image with size 224� 224� 3,
and Tracking CoarseNet and FineNet respectively take the
inputs of 256� 256� 6 (a color image and a PNCC) and
256� 256� 2 (a gray image and its coarse depth). We train
all the networks using Adam solver with the mini-batch
size of 100 and 30k iterations. The base learning rate is set to
be 0.00005.

The CNN based 3D face reconstruction and tracking are
implemented in C++ and tested on various face images and
videos. All experiments were conducted on a desktop PC
with a quad-core Intel CPU i7, 4 GB RAM and NVIDIA
GTX 1,070 GPU. As for the running time for each frame, it
takes 5 ms for CoarseNet and 15 ms for FineNet.

9.1 Results of Dense 3D Face Reconstruction from
Monocular Video

CoarseNet versus FineNet. Our approach is to progressively
and continuously estimate the detailed facial geometry,
albedo and lighting parameters from a monocular face
video. Fig. 6 shows the tracking output results of the two
stages. The results of CoarseNet include the smooth geome-
try and the corresponding rendered face image shown in

Fig. 5. Synthetic data generation for training FineNet. Given a target face
image without many geometry details (top left) and a source face image
(bottom left) that is rich of wrinkles, we first apply our developed inverse
rendering on both images to obtain the projected geometry for target
face (top second) and a displacement map for the source face (bottom
right). Then we transfer the displacement map of the source face to the
geometry of the target face. Finally we render the updated geometry to
get a new face image (top right) which contains the same type of wrin-
kles as the source face.
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the middle column. The FineNet further predicts the pixel
level displacement given in the last column. We can see that
CoarseNet produces smooth geometry and well matched
rendered face images, which show the good recovery of
pose, albedo, lighting and projection parameters, and Fine-
Net nicely recovers the geometry details such as wrinkles.
A complete reconstruction results of all the video frames
are given in the accompanying video or via the link:
https://youtu.be/dghlMXxD-rk.

Single-Image CoarseNet versus Tracking CoarseNet. Given a
RGB video, a straightforward way for dense face tracking is
to treat all frames as independent face images, and apply
our Single-image CoarseNet on each frame, followed by
applying FineNet. Thus, we give a comparison of our pro-
posed Tracking CoarseNet, which estimates the differences
of the pose parameters w.r.t. the previous frame, with the
baseline that simply uses our Single-image CoarseNet on
each frame. As demonstrated in Fig. 7, Tracking CoarseNet

achieves more robust tracking than the baseline, since it
well utilizes the guidance from the previous frame’s pose.

Comparisons with Dense Face Tracking Methods. We com-
pare our method with the state-of-the-art monocular video
based dense face tracking methods [18], [22], [48]. [48] per-
forms 3D face reconstruction in an iterative manner. In each
iteration, they first reconstruct coarse-scale facial geometry
from sparse facial features and then refine the geometry via
shape from shading. [18] employs a multi-layer approach to
reconstruct fine-scale details. They encode different scales of
3D face geometry on three different layers and do optimiza-
tion for each layer. [22] reconstructs the 3D face shape by
only fitting the 2D landmarks via 3DMM, and we can
observe that [22] can only produce smooth face reconstruc-
tion. As shown in Fig. 8, ourmethod produces visually better
results compared to [22], and comparable results compared
to [18] and [48].

Different from optimization based methods, our learning
based approach is much faster while obtaining comparable or
better results.Ourmethod is several orders ofmagnitude faster
than the state-of-the-art optimization-based approach [18], i.e.,
5 ms for CoarseNet and 15 ms for FineNet with our hardware
setting, while 175.5s reported in their paper [18]. It needs to be
pointed out that the existing optimization baseddense tracking
methods need facial landmark constraints. Therefore, they
might not reconstruct well for faces with large poses and
extreme expressions. On the other hand, we do large-scale
photo-realistic image synthesis that includesmany challenging
data with well labelled parameters, and thus we can handle
those challenging cases as demonstrated in Fig. 9.

Quantitative Results of Face Reconstruction from Monocular
Video. For quantitative evaluation, we test on the FaceCap
dataset [55]. The dataset consists of 200 frames along with
3D meshes constructed using the binocular approach. We
compare our proposed inverse rendering approach and our
learning based solutions including Tracking CoarseNet and

Fig. 6. Results of our two-stage CNN based face tracking. Left: four
frames of a video. Middle: results of Tracking CoarseNet (projected
mesh and rendered face). Right: results of FineNet.

Fig. 7. Comparisons with image-based dense face tracking. Top row:
four continuous frames from a video. Middle row: results of using our
Single-image CoarseNet on each frame. Bottom row: results of our
Tracking CoarseNet. It can be observed that Tracking CoarseNet
achieves more robust tracking.

Fig. 8. Comparisons with the state-of-art dense face tracking meth-
ods [18], [22], [48]. The average computation time for each frame is given
in the bracket. [48] does not report the running time of their method, while
it should takemuch longer time than ours since it iteratively solves several
complex optimization problems.
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Tracking CoarseNet+FineNet. For each method, we register
the depth cloud to the groundtruth 3D mesh and compare
point to point distance. Table 1 shows the average point-to-
point distance results. It can be seen that our proposed
inverse rendering achieves an average distance of 1.81 mm,
which is quite accurate. It demonstrates the suitability of
using the inverse rendering results for constructing the
training data. On the other hand, our CoarseNet+FineNet
achieves an average distance of 2.08 mm, which is compara-
ble to that of the inverse rendering but with much faster
processing speed (25 ms versus 8 s per frame). Some sam-
ples are shown in Fig. 10. In addition, the reconstruction
accuracy by CoarseNet+FineNet outperforms the one by
CoarseNet alone. Since the face region containing wrinkles
is only a small part of the whole face region, the difference
is not significant since the accuracy statistics is computed
over a large face region. By comparing the reconstruction
accuracy on a small region that contains wrinkles, the
improvement is more obvious, as shown in Fig. 11.

For the quantitative comparison with the state-of-the-art
monocular video based face tracking method [18], we evalu-
ate the geometric accuracy of the reconstruction of a video
frame with rich face details (note that [18] did not provide
the results for the entire video). Fig. 12 shows the results,
where our method achieves a mean error of 1.96 mm com-
pared to the groundtruth 3D face shape generated by the bin-
ocular facial performance capture proposed in [55]. We can
see that the result of our learning based face trackingmethod
is quite close to the groundtruth, and is comparable
(1.96 mm versus 1.8 mm) to that of the complex optimization
based approach [18] but withmuch faster processing speed.

9.2 Results of Dense 3D Face Reconstruction from
A Single Image

Visual Results of our Single-Image Based Reconstruction. To eval-
uate the single-image based reconstruction performance, we
show the reconstruction results of our method (Single-image
CoarseNet+FineNet) on some images from AFLW [32] data-
set, VGG-Face dataset [36] and some face images downloaded
from internet. The three rows in Fig. 13 from top to bottom
respectively show the projected 3D meshes reconstructed by
our method under large poses, extreme expressions and face
images with detailed wrinkles, which demonstrate that our
method is robust to all of them.

Comparisons with Inverse Rendering. Similar to the video
input scenario, directly using our developed inverse render-
ing approach can also reconstruct detailed geometries from a
single image, but our learning-based method does provide
some advantages. First, unlike the inverse rendering appr-
oach, our learning-based method does not need face align-
ment information. Therefore, the learning-based method is
more robust to input face image with large pose, as shown in
Fig. 14. Second, once the two CNNs are trained, our learning
method is much faster to reconstruct a face geometry from a
single input image. Third, as we render the same type of
wrinkles under different lightings and directly learn the
geometry in a supervised manner, our method is more

TABLE 1
Quantitative Results of Dense Face Reconstruction

from Monocular Video

Average point-to-point distance (mm)

Inverse rendering CoarseNet CoarseNet+FineNet

1.81 2.11 2.08

Fig. 10. Comparisons of our inverse rendering and our learning based
dense face tracking solution. From top to bottom: input face video frame
and groundtruth mesh in dataset [55], results of the inverse rendering
approach, results of our learning based dense face tracking solution.

Fig. 11. Comparison of our CoarseNet and FineNet on a small region that
is rich of wrinkles. On the left is the input frame, on the top are results of
CoarseNet, on the bottom are results of FineNet. On the subregion, the
mean error is 2.20mm for CoarseNet and 2.03mm for FineNet.

Fig. 9. Reconstruction results for faces with large poses and extreme
expressions. Top row: several frames from one input video. Bottom row:
the reconstructed face shapes with geometry details. See the complete
sequence in the accompanying video or via the link: https://youtu.be/
dghlMXxD-rk.

Fig. 12. The reconstruction accuracy comparison. The reconstruction
quality of our dense face tracking method is comparable to the optimiza-
tion based method [18] but with much faster processing speed. The
groundtruth mesh is constructed using the binocular approach [55].
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robust to lighting, as illustrated in Fig. 15. The reason why
the learning based method can do better in these scenarios
lies in the large numbers of diverse training data we con-
struct, which facilitate the learning of the two networks,
while the inverse rendering approach only explores the
information from each single image.

Comparisons with State-of-the-Art Single-Image Based Face
Reconstruction. We compare our method with [3], [14], [24],
[42], [46] on single-image based face reconstruction. We
thank the authors of [42] for providing us the same 11 images
listed in [42], as well as their results of another 8 images sup-
plied by us. We show the reconstruction results of 4 images
in Fig. 16 and the full comparisons on all the 19 images are

given in the accompanying material. It can be observed that
ourmethod producesmore convincing reconstruction results
in both the global geometry (see the mouth regions) and the
fine-scale details (see the forehead regions). The reconstruc-
tion results of the methods [3], [14], [24], [46] are generated
using the source codes provided by the authors.2,3,4,5

The reasons why our method produces better results
than [42] are threefold: 1) For CoarseNet training, [42] only
renders face region and uses random background, while our
rendering is based on real images and the synthesized
images are more photo-realistic. For FineNet training, we
render images with fine-scale details, and train FineNet in a

Fig. 14. From left to right: input face image with detected landmarks,
geometry reconstructed by inverse rendering, geometry reconstructed
by our learning based method. It can be seen that our inverse rendering
approach fails to recover the face shape as the landmarks are not accu-
rate. On the other hand, our proposed learning-based approach recov-
ers the face shape well.

Fig. 15. From left to right: input face image, geometry reconstructed by
inverse rendering, geometry reconstructed by our learning based
method. It can be seen that our method can better reconstruct unclear
wrinkles under strong lighting.

Fig. 13. For each pair, on the left is the input face image; on the right is
the projected 3D mesh reconstructed by our single-image based solu-
tion. The first, second and third rows respectively demonstrate that our
method is robust to large poses, extreme expressions and different
types and scales of wrinkles.

Fig. 16. Comparisons with the state-of-art methods. From the first row to
the last row, it respectively shows the input images, and the results
of [42], [3], [24], [46], [14] and ours. It can be seen that our results are
more convincing in both the global geometry and the fine-scale details.
Note that the method of [3] uses a 3DMM with identity variation only, and
thus is not able to handle facial expressions well.

2. https://github.com/waps101/3DMM_edges
3. https://github.com/AaronJackson/vrn
4. https://github.com/unibas-gravis/basel-face-pipeline
5. https://github.com/unibas-gravis/scalismo-faces
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supervised manner, while [42] trains FineNet in an unsuper-
vised manner. 2) For easy back propagation, [42] adopts the
first-order spherical harmonics to model lighting, while we
use the second-order SH, which can reconstruct more accu-
rate geometry details. 3) Our proposed loss function in Coar-
seNet better fits the goal and calculating the parameters in
pixel level can achieve more stable and faster convergence.
We did an experiment to compare our loss function L in
Eq. (17) with the one used in [42]. Specifically, we used the
two loss functions separately to train CoarseNet with 15,000
iterations and batch size 100. Table 2 shows the results of the
test errors under different metrics on the test set (about 700
AFLW images). We can see that no matter which metric is
used, either our defined metrics (Lpose and Lgeo), or the met-
rics employed in [42] (MSE for pose parameters and vertex
distance for geometry parameters), our method always
achieves lower testing errors than [42], which demonstrates
the effectiveness of the defined loss function for training.

Quantitative Results of Single-Image Based Dense Face Recon-
struction. For quantitative evaluation, we compare our
method with the landmark-based method [61] and the
learning-based method [60] on the Spring2004range subset
of Face Recognition Grand Challenge dataset V2 [38]. The
Spring2004range has 2,114 face images and their correspond-
ing depth images. We use the face alignment method [28] to
detect facial landmarks as the input of [61]. For comparison,
we project the reconstructed 3D face on the depth image, and
use both Root Mean Square Error (RMSE) and Mean Abso-
lute Error (MAE) metrics to measure the difference between
the reconstructed depth and the ground truth depth on the
valid pixels. We discard some images in which the projected
face regions are very far away from the the real face regions
for any of the three methods, which leads to a final 2,100
images being chosen for the comparisons. The results are
shown in Table 3. It can be seen that ourmethod outperforms
the other two recent methods in both RMSE and MAE. The
results of [61] and [60] are generated by directly running
their released codes in public.

Note that we are not able to perform a quantitative com-
parison with the state-of-the-art method [42], since their
code is not released. Their reported MAE value for the
Spring2004range dataset is lower than what we obtain in
Table 3. We believe it is due to the masks they used in their
MAE computation, which are unfortunately not available to
us. Although we cannot give a quantitative comparison, the
visual comparison shown in Fig. 16 clearly demonstrates the
superior face reconstruction performance of ourmethod.

10 CONCLUSIONS

We have presented a coarse-to-fine CNN framework for
real-time textured dense 3D face reconstruction and track-
ing from monocular RGB video as well as from a single

RGB image. The training data to our convolutional net-
works are constructed by the optimization based inverse
rendering approach. Particularly, we construct the train-
ing data by varying the pose and expression parameters,
detail transfer as well as simulating the video-type adja-
cent frame pairs. With the well constructed large-scale
training data, our framework recovers the detailed geom-
etry, albedo, lighting, pose and projection parameters in
real-time. We believe that our well constructed datasets
including 2D face images, 3D coarse face models, 3D
fine-scale face models, and multi-view face images of the
same person could be applied to many other face analy-
sis problems like face pose estimation, face recognition
and face normalization.

Our work has limitations. Particularly, like many recent
3D face reconstruction works [18], [23], [48], we assume
Lambertian surface reflectance and smoothly varying illu-
mination in our inverse rendering procedure, which may
lead to inaccurate fitting for face images with specular
reflections or self-shadowing. It is worth to investigate
more powerful formulation to handle general reflectance
and illumination.
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