Chapter 15

Algebraic Methods for Computer
Aided Geometric Design

Thomas W. Sederberg and Jianmin Zheng

The concepts and methods of algebra and algebraic geometry have found significant appli-
cations in many disciplines. This chapter presents a collection of gleanings from algebra
or algebraic geometry that hold practical value for the field of computer aided geometric
design. We focus on the insights, algorithm enhancements and practical capabilities that
algebraic methods have contributed to CAGD. Specifically, we examine resultants and
Grobner basis, and discuss their applications in implicitization, inversion, parametriza-
tion and intersection algorithms. Other topics of CAGD research work using algebraic
methods are also outlined.

15.1. INTRODUCTION

CAGD draws from several branches of mathematics and computer science, such as ap-
proximation theory, differential geometry, and numerical analysis. This chapter reviews
some of the tools of algebra and algebraic geometry that have been brought to bear on
problems in CAGD [11,17,27,28,33,37.45].

Most of the free-form curves and surfaces used in CAGD are given by parametric
equations. Planar rational curves in CAGD are typically defined as

PO (V) (15.1)

where a(t), b(t), and ¢(t) are polynomials in the Bernstein basis for rational Bézier curves
or in the B-spline basis for NURBS. Algebraic methods most commonly use polynomials
in the power basis: a(t) = ag + ait + - - - + a,t", etc. Polynomials can be converted from
Bernstein basis to power basis, although some algebraic methods such as resultants can
be formulated using the Bernstein basis directly [26].
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Parametric surfaces in CAGD are defined

. a(s,t)} ) = b(S,t)7 L c(s,t) (15.2)
d(s,t) d(s,t) d(s,t)
where a(s,t), b(s,t), c(s,t) and d(s,t) are polynomials.

Surfaces and plane curves can also be defined using implicit equations. One contribution
that algebraic methods make to CAGD is in solving the problem of implicitization and
inversion of parametric curves and surfaces. For any parametric curve given by (15.1),
an implicit equation f(z,y) = 0 (where f(x,y) is a polynomial) exists that describes
exactly the same curve. Likewise, for any parametric surface given by (15.2), there exists
an implicit equation f(x,y,z) = 0 that describes exactly the same surface. The process
of finding the implicit equation of a parametric curve or surface is called implicitization.
Implicitization is of value in CAGD because the problem of determining whether a given
point lies on a curve or surface is addressed much more easily using the implicit form than
the parametric form. Curve implicitization is discussed in Section 15.4.

An inversion formula for a parametric curve (15.1) is of the form ¢ = fbgzzg where g and
h are polynomials. If the parametrization of a curve is a generally one-to-one map between
parameter values and points on the curve, the inversion formula returns the parameter
value ¢ corresponding to a point (z,y) that lies on the curve. Inversion is discussed also
in Section 15.4.

The process of finding the rational parametric equations of implicitly defined algebraic
curves and surfaces is called parametrization. Some methods for parametrizing plane
algebraic curves are shown in Section 15.5.

Algebraic methods also can facilitate the design of algorithms for computing inter-
sections between curves and surfaces. The curve intersection problem is surveyed in
Section 15.6.

The problems of implicitization, parametrization and intersection for surfaces are dis-
cussed in Section 15.7. Some other important applications of algebraic methods to CAGD
are listed in Section 15.8.

Many of the algebraic methods reviewed in this chapter come from classical analytic
geometry [31,32,46,48]. The twentieth century witnessed a marked shift from the construc-
tive approach to non-constructive [5]. Section 15.2 gives a brief overview of polynomial
ideals, varieties and Grobner bases, and Section 15.3 introduces three popular resultant
formulations.

15.2. POLYNOMIALS, IDEALS, AND VARIETIES

This section first introduces the notation and terminology which will be used later, and
then presents the fundamental concepts of ideals and varieties and suggests some ways
how these topics fit into CAGD. An excellent treatment of ideals and varieties and their
application to CAGD can be found in [17].

15.2.1. Notation and terminology
In general, a polynomial in n variables z1, ..., z, is defined

i
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€1, €24 (2 €1, €24 €n.i - .
Each summand ¢;x," 2, - - - 2" is called a term, x" x> - - 2" is a monomial, and ¢;

is the coefficient of the monomial. By convention, any given monomial occurs in at most
one term in a polynomial.

klxi,...,x,] signifies the set of all polynomials in the variables 1, ..., z, whose coeffi-
cients belong to a field k. For example, R[x,y] is the set of all polynomials

Z iy (15.4)

where ¢; € R and e;,es; € {0,1,2,...}. Thus, “f € R[z,y,z]” means that f is a
polynomial whose variables are x, y and z and whose coefficients are real numbers. All
polynomials in this chapter have coefficients that are real numbers.

It is often useful to list the terms of a polynomial in decreasing order, beginning with
the leading term. This is done using a term order — a way to compare any two distinct
terms of a polynomial and declare which is “greater”.

For linear polynomials, term order amounts to merely declaring an order on the vari-
ables. For example, the terms of the polynomial

20 + 3y — 4z

are in proper order if we declare x > y > 2. If we declare y > z > =z, the proper

order would be 3y — 4z + 2x. For non-linear polynomials, we begin by declaring an

order on the variables, and then we must also choose one of several schemes that decide

how the exponents in a polynomial influence term order. One such scheme is called

lezicographical order (nicknamed lex), defined as follows. If the variables of a polynomial
€1, €n,i

. . . €9 4
are ordered z; > x9 > ... > x,, then given two distinct terms T; = ¢;z|" 25> « - -z, and
— L0 €n,j :
T; =cjoy "ay? oorxy™, T > Ty if

1. e;; > ey, orif
2. e1; = ey and ey; > ey, or, in general, if
3. epi=epjfork=1,...,m—1and e,; > en;.
For example, the polynomial
322y + w2 + 5adz + 6y% + Tw2d + 8

using lex with x > y > 2z would be written 52°2 + 32%y%2 + 42y32% + 7223 + 6y? + 8 and
its leading term is ba®z. Using lex with z > o > y it would be written 723z + 42%zy> +
5za 4+ 3zx%y? + 6y + 8 and the leading term would be 7z3z. Or using lex with y > z > «
it would be written 4y3z%x + 3y?z2? + 6y* + 7231 + 522® + 8 and the leading term would
be 4y32%x.

Another choice for term order is the degree lexicographical order (abbreviated deglez).
If the variables are ordered xy > x5 > ... > x,, then using deglex, T; > Tj if

1. er;tey;+...+tep; >e5+ex;+... .+ ey, Or

2. e itei+...F+eyi =€ j+e;+ ... +e,; and T; > T; with respect to lex.
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Using deglex with z > y > z, the terms of 32%y?z + 4xy®2% + 5232 + 6y% + 7223 + 8 would
be ordered 4zy32? + 3x%y?z + 5a3z + Tx2® + 6y° + 8.

As observed in the lex and deglex examples, term orders ignore the coefficient of a term,
so a term order might more properly be called a monomial order.

Other term orders can also be defined, such as degree reverse lexicographical order.
The precise requirements for any term order are discussed in reference [6], page 18.

The n-dimensional real affine space is denoted R"™ and is the set of n-tuples:

R"={(a1,...,a,) : a1,...,a, € R} (15.5)

15.2.2. Ideals and varieties
The polynomial ideal generated by fi, ..., fs € k[x1, ..., z,], denoted (f1, ..., fs), is defined

<f1, ---;fs> = {p1f1 + ... +psfs LD c k[l‘l, ,l‘n]}

The polynomials fi, ..., fs are called the generators of this ideal.

Consider a set of polynomials fi, fo,- -, fs € k[x1, ..., 2,]. Let (ay,...,a,) be a point in
k™ satistying fi(ay,...,a,) = 0,7 =1,...,s. The set of all such points (ay,...,a,) is called
the variety defined by fi, ..., f,, and is denoted by V (fi, ..., f,):

V(fiy oo f5) = {(a1, ..oy an) € K" fi(ay, ...;a,) = 0,i=0,...,s}. (15.6)

A variety defined by a single polynomial—called a hypersurface—is the most familiar
instance of a variety. A hypersurface in R? is a planar curve defined using an implicit
equation, and a hypersurface in R? is what is normally called an implicit surface in CAGD.
For example, V (22+1?—1) is a circle defined in terms of the implicit equation z2+y?—1 = 0
and V(22 + 4y — z + 1) is the plane whose implicit equation is 2z + 4y — z+ 1 = 0.

A variety V' (f1,..., fs) defined by more than one polynomial (s > 1) is the intersection
of the varieties V' (f1) ...V (fs)-

15.2.3. Grobner bases
It can be very useful to devise alternative generators for an ideal. Necessary and sufficient

conditions for (fi,...,fu) = (g1, 9m) are f1,..., fn € {g1,--.,9m} and g1,...,9m €

{f17' . 7fn}
A Grébner basis of an ideal I is a set of polynomials {g¢i, ..., ¢} such that the leading

term of any polynomial in I is divisible by the leading term of at least one of the polyno-
mials gy, ..., g This, of course, requires that a term order be fixed for determining the
leading terms: different term orders produce different Grébner bases. Several excellent
books have been written on Grobner bases that do not presuppose that the reader has
advanced training in mathematics [6,10,17]

A Grobner basis is a particularly attractive set of generators for an ideal, as illustrated
by two familiar examples. If {fi,..., f;} are polynomials in one variable, the Grobner
basis of (fi,..., f,) consists of a single polynomial: the greatest common divisor (GCD)
of fi,..., fs. H{f1,..., fs} are linear polynomials in several variables, the Grobner basis
is an uppertriangular form of a set of linear equations. The Grobner basis of these special
cases provides significant computational advantage and greater insight, and the same is
true of the Grobner basis of a more general ideal.
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Grobner bases are the fruit of Bruno Buchberger’s Ph.D. thesis [12], and are named
in honor of his thesis advisor. Buchberger devised an algorithm for computing Grobner
bases [13,17,18]. Also, commercial software packages such as Maple and Mathematica
include capabilities for computing Grobner bases.

15.3. RESULTANTS

Given a set of polynomials {fi,..., fs}, a resultant is a polynomial expression in the
coefficients of f1, ..., f, such that the vanishing of the resultant is a necessary and sufficient
condition for V(fi,..., fs) to be non-empty [16]. Thus, a resultant determines whether
or not V(fi,...,fs) is empty without explicitly computing the variety. Grobner basis
methods can also be used for this task. However, resultants are usually more efficient
than Grobner bases in practical applications.

Resultants play an important role in elimination theory—a systematic approach for
finding polynomials in an ideal that do not contain as many variables as generic elements
of the ideal. Various formulations for resultants were extensively studied in the late 19th
century and the early 20th century [31,48]. The main idea is to identify a (possibly large)
set of n linearly independent polynomials that generate the ideal and that contain n terms.
Then each term can be used as an unknown and the theory of linear system of equations
can be applied. In practice, the resultants for two univariate polynomials and for three
bivariate polynomials are of most interest.

15.3.1. Sylvester’s resultant
Consider the two polynomials

f(t) = apt" + a1t + -+ a1t + ap, a, # 0
g(t) = bypt™ + by t™ o £ byt + by, by £ 0

Using Sylvester’s dialytic method, we multiply f(¢) by ™1, ¢™=2 ... ¢,1 and g(t) by

tn=1 ...t 1, arriving at m + n polynomials, which can be arranged in matrix form:
O] T any o 17 et
: a, Qp_1 -+ a1 g pmtn—2
tf(t) e e
f('[;) _ an - e )
tnilg(t) bm bm,1 e b1 bo
bm bmfl et bl bO
oo e t
tg(t)
O I by oo oo o bo || 1]

The determinant of the coefficient matrix is known as Sylvester’s resultant for f(¢) and
g(t). The ideal generated by these m + n polynomials is just the ideal (f(¢), g(¢)). Thus
they have the same variety. When there exists one value of ¢ in the variety, Sylvester’s
resultant must vanish.

Sylvester’s resultant can also be derived using a method invented by Euler. Euler
introduced two polynomials h(t) of degree m — 1 and k(t) of degree n — 1 with coefficients
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undetermined. Letting h(t)f(t) — k(t)g(t) = 0 leads to m + n linear equations with m +n
unknowns which are the coefficients of h(t) and k(¢). The determinant of the coefficient
matrix of these m 4 n linear equations is exactly Sylvester’s resultant. Obviously the
determinant vanishes if and only if there exist nonzero polynomials h(t) of degree not
greater than m — 1 and k(t) of degree not greater than n — 1 such that h(t) f(¢t) = k(t)g(t)
holds. This is equivalent to the existence of the common roots of polynomials f(¢) and
g(t). Therefore Euler’s method shows that R(f, g) = 0 is not only the necessary but also
sufficient condition for f(¢) and ¢(¢) to have common roots.

15.3.2. Bezout’s resultant

Another popular resultant formulation for two univariate polynomials is Bezout’s resul-
tant. A nice derivation of Bezout’s resultant is due to Cayley. Without loss of generality,
we assume the degree of the polynomial ¢(¢) is less than the degree of f(t), i.e., m < n.
Construct a symmetric function

| @) f) |y - F(Bg(s) = f(s)g(?)
6(t,s)—‘g(t) o ‘/(s t) = .

S) s—1

Some algebraic manipulation shows that §(¢, s) is a degree n — 1 polynomial in s whose
coefficients are polynomials of ¢:

o(t,s) = f(jl)(g(t) —g(s))/(t =) = g(O)(f(1) — f(s))/(t - 8)71
= ¥ (f(t) S bt —g(t) 3 aitz‘k1> S (g(t) 3 aitik1> ok

k=0 i=k+1 i=k+1 k=m i=k+1

The variety of the ideal generated by these n polynomials is the same as V ({f(t), g(¢))).
Write these polynomials in matrix form:

A R
f Z bitz—l —9q Z aitz—l
i=1 i=1
tE = : : (15.7)
—q Z aiti_m_l Ch—10 " Cpn—1n—1 tn;l
i=m+1
i —Yn i
with the entry ¢;; = > (axby — anby) and the convention that b, =--- =b, = 0.
32,

This coefficient matrix is called Bezout’s matrix. If V({f, g)) is non-empty, the determi-
nant of Bezout’s matrix must vanish. The converse is also true when n = m, the proof
of which can be found in [22,26]. The determinant is therefore a resultant for f and g,
known as Bezout’s resultant. In general, Bezout’s resultant has dimension n x n while
Sylvester’s resultant has dimension (n +m) x (n +m).

When n > m, Bezout’s determinant has an extraneous factor of a;.~™. This extrane-
ous factor can be removed by modifying Bezout’s resultant as follows [19]: The first m
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polynomials are the same as in (15.7); and the remaining n —m polynomials are obtained
from t"""g(t), i = m,...,n. Thus ¢;; = by j_, for i > m,0 < j < n — 1. Look at the
example of f(t) = ast? + ait + ag and g(t) = byt + by. The original Bezout’s determinant
is

apby — arby  —asby

—bg —b

apby — arby  —asby

=
—agbo —agbl 2

agby — arby  —asbyg

and the variant of Bezout’s resultant is b b
0 1

15.3.3. Dixon’s resultant
Cayley’s formulation can be extended to the case of three bivariate polynomials. Consider
three polynomials:

f(s,t) = z”: iaijsitj, g(s,t) = iiszsitj, h(s,t) = iicijsitj

=0 j=0 =0 j=0 1=0 j=0

Dixon observed that the expression

f(s,t) g(s,t)  h(s,?)
5(57t7a75): f(Saﬁ) g(&ﬁ) h(S,ﬂ) /(S_a)(t_ﬁ)
fle, ) g(a, B) h(e, B)

is actually a polynomial of degree 2n —1,m —1,n—1 and 2m — 1 in s, ¢, o, [ respectively.
Thus it can be written as d(s, t, o, ) = Yy, dijus't! o* B' where dyjy are expressions in
Q5 bij and Cij-

For any (s,t) € V({f,g,h)), d(s,t, o, §) vanishes no matter what o and § are. Thus the
coefficients of each o*3! must vanish at these (s,t) pairs. This gives 2mn polynomials,
each of which has 2mn terms in s and ¢ since s has degree 2n — 1 and ¢ is degree m — 1.
The determinant of the coefficient matrix from these polynomials serves as a resultant for
f,g and h, called Dixon’s resultant [23].

Consider the example:

f(t) = a21s2t + anst + CLOlt + CZQ()S2 + aips + aoo
g(t) = b21$2t + bllst + bmt + b20$2 + b10$ + boo

h(t) = 62182t + Cnst + C()lt + 62052 “+ 108 + Coo
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Dixon’s method gives

[ (00,01,10) (00,01,20)  (00,21,10) (00,21,20) ] r . -

+(00,11,10)  +(00,11, 20) 1
(00,01,11)  (00,01,21)  (01,21,10) (01,21,20) )

+(01,11,10)  +(01,11, 20)

6(S7t7a7/8): [1,@,6,@6]

(00,01,20) (10,01,20)  (00,21,20) (10,21,20) )
S

+(00,11,20) +(10,11, 20)
(00,01,21)  (00,11,21)  (01,21,20) (11,21,20) | | 4

I +(10,01,21) +(10,11,21) | L7 -

Qij Akl Qpq
where (ij, kj, pg) stands for the 3 x 3 determinant (ij, kj,pq) = | bij bu bpg
Cij  Crl Cpq

15.4. CURVE IMPLICITIZATION AND INVERSION

The algebraic tools of Grobner bases and resultants empower us to solve several prob-
lems of interest to CAGD. This section looks at several examples of implicitization and
inversion.

It is known from classical algebraic geometry that any degree n polynomial or rational
parametric curve can be represented exactly using a degree n algebraic equation. For
example, a circle can be expressed using the parametric equation

r=01-2)/#+1), y=2/(t*+1) (15.8)

or using the implicit equation 22 +13%—1 = 0. In the following we discuss three approaches
for the conversion from the parametric equation to the implicit equation.

15.4.1. Resultant-based method
We have presented the resultant tool for determining whether two polynomials have a
common root. We now apply that tool to converting the parametric equation of a curve
given by (15.1) into an implicit equation of the form f(z,y) = 0.

We proceed by forming two auxiliary polynomials:

gla,t) = c(t)a — alt), hly.t) = c(t)y - b(t)

View g(z,t) as a polynomial in ¢ whose coefficients are linear in z, and view h(y,t) as a
polynomial in ¢ whose coefficients are linear in y. If we compute the resultant of g(z,t)
and h(y,t), we do not arrive at a numerical value, but rather a polynomial in x and y
which we call f(z,y). Note that g(x,t) = h(y,t) = 0 only for values of x,y and ¢ which
satisfy the relationships = a(t)/c(t),y = b(t)/c(t). Clearly, for these values of z,y and
t, the resultant f(x,y) must vanish. Conversely, any (z,y) pair for which f(z,y) = 0,
causes the resultant of ¢ and h to be zero. But, if the resultant is zero, then we know
that there exists a value of ¢ for which g(z,t) = h(y,t) = 0. In other words, all (x,y) for
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which f(z,y) = 0 lie on the parametric curve and therefore f(z,y) = 0 is the implicit
equation of that curve.

As discussed, the resultant is the determinant of a matrix of coefficients for a set of
polynomials. Inversion—computing the parameter ¢ for a point (x,y) known to lie on
the curve—can be performed by solving such a set of polynomial equations using Gauss
elimination or Cramer’s rule.

We illustrate with the circle parametrized by (15.8). We have

g=@@+ 1)+ (@ —1), h=yt*—2t+y

Using Sylvester’s resultant, we obtain a 4 X 4 determinant

r+1 0 r—1 0
- 0 r+1 0 xr—11] 9 2
few=| , 5, Tyl |t eyton.
0 Y —2 y
Bezout’s resultant provides a 2 x 2 determinant
| —22+2 2y | (a2 2

We could obtain an inversion equation by solving the equations:

—2x+2 =2y 1 —0
-2y 2x+2 t| 7

from which t = y/(x + 1) or t = (1 — z)/y.

Two remarks should be made. First, if a(t),b(¢) and c¢(¢) in (15.1) are not relatively
prime, the common factor should be removed before the resultant method is applied.
Otherwise, the resultant will be identically zero, containing no information about the
curve, since p and ¢ have always common solutions for arbitrary (z,y) pair. Second, if
the degrees of p(x,t),q(y,t) with respect to ¢t are not the same, the variant of Bezout’s
resultant is used.

15.4.2. Grobner basis technique

In order to use Grobner basis method for implicitizing a rational parametric curve defined
by (15.1) with GC'D(a(t), b(t), c(t)) = 1 (otherwise, the common factor can be removed),
we define the ideal

I={c(t)x —a(t),c(t)y — b(t)) C Rlx,y,t]. (15.9)
If f(z,y) = 0 is the implicit equation of (15.1), then f € I N R[z,y]. To guarantee
f appears in the Grobner basis, we order the variables ¢t > x > y, and then construct
the Grobner basis with the lexicographic ordering for the ideal I. The lexicographic
ordering results in a Grobner basis that has a triangular structure. Thus the Grobner
basis obtained will contain the curve’s implicit form—an element which does not involve
t, and an inversion—an element which is linear in .

In the example of the circle (15.8), I = ((1 +t*)x — (1 — ¢*), (1 + t*)y — 2t). Using the
computer algebra system MAPLE, we obtain the Grobner basis I = (—y + ¢ + tx,x —
1 + yt,y* + 2* — 1). Therefore the polynomial y? + z? — 1 gives the implicit equation
2?2 +y? —1 = 0. The two other polynomials —y + = + tz and  — 1 + yt are linear in ¢
and thus provide the inversion t = y/(14+z) or t = (1 — ) /y.
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t=0.5

Figure 15.1. Parametric Curve and Moving Lines

15.4.3. Moving curve technique
A recent development in impliciting a planar rational parametric curve is the “moving
curve” method [19,42,44]. A moving curve is defined as

C(x,y, w;t) : Zfza:y,

where f;(z,y,w) is a homogeneous polynomial of degree d. Thus C(x,y,w;t) = 0 is a
family of algebraic curves, with one curve corresponding to each ¢. In particular, when
d =1, C(x,y,w;t) = 0 is a family of implicitly defined lines. Therefore we call it a
moving line of degree m. Likewise, C(x,y,w;t) = 0 is called a moving conic of degree m
when d = 2. A moving curve C(z,y,w;t) = 0 is said to follow a planar rational curve
(15.1) if C(a(t),b(t),c(t);t) is identically zero, that is, if for all values of ¢, the point
(a(t)/c(t),b(t)/c(t)) lies on the moving curve C(x,y,w;t) = 0. For example, each row of
Bezout’s matrix or Sylvester’s matrix corresponds to a moving line following the curve.
Figure 15.1 illustrates a parametric curve and a few moving lines.

The moving curve technique identifies m + 1 independent moving curves that follow a
given rational curve. A square matrix can then be formed from the coefficients of these
moving curves with respect to ¢ and the determinant of the matrix gives the desired
implicit equation. In general, such a collection of moving curves can be found by solving
a set of linear equations [43]. For example, a degree n — 1 moving line

—_

C(x,y,w;t) = > (A + By + Ciw)t’ = 0 (15.10)

%

Il
=)

follows a rational curve (15.1) if

n—1

Z ) + Bib(t) + Cic(t))t' = 0

2=0
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which can be expressed as 2n linear equations with 3n unknowns

-CLO b() Co 0 0 0 0 7 - A -

aq bl C1 Qo 0 0 0 BO

b 000 g

Gn by Cpn Gpy -+ 0 0 0 | =0 (15.11)
0 0 0 oa, 0 0 0 :

: : : : : : : : Anfl

0 0 0 0 - apq by Cuy g"—l
0 0 0 0 - a, by ¢ |-

where a;, b;, ¢; are the coefficients of the polynomials a(t),b(t), c(t). Thus solving the
equations for A;, B;, C; yields n linearly independent moving lines of degree n — 1 that
follows the curve.

Recently the problem of finding an appropriate set of moving lines was illuminated by
the description of the p-basis [19]. A p-basis for a degree-n planar rational curve consists
of two moving lines p(z, y;t) and ¢(x, y;t), of degree p and n — u respectively, which form
an ideal basis for all moving lines that follow the curve. An efficient method of computing
the p-basis is given in [52]. Once the p-basis of a curve is known, the problem of finding
m + 1 linearly independent moving curves is greatly simplified. For example, consider the
degree four curve:

4P+t 41 P42t

’ oz 0 YT T op oy

This curve has a pu-basis of
p=@+y+ D +t+y, q=@+1)*+2t+20+y+1.

Thus four moving lines of degree 3 are p,t p, q,t q. Moreover, two moving conics of degree
1 can be obtained by taking Bezout’s resultant of p and ¢. Each row in Bezout’s matrix
corresponds to a moving conic. Therefore the implicit equation can be expressed as a
2 X 2 determinant whose elements are quadratic in z and y. In general, for a degree
n rational curve, using a variant of Bezout’s resultant on the p-basis, we can write the
implicit equation of the rational curve as the determinant of an (n — u) x (n — u) matrix
with pu rows whose elements are quadratic in x and y, and the remaining n — 2y rows
with elements linear in x and y, while conventional implicitization methods generate the
determinant of an n x n matrix [22,34].

15.5. CURVE PARAMETRIZATION

15.5.1. Planar algebraic curves

Implicitization shows that a degree n parametric curve can be represented using a degree
n implicit equation. Any implicit equation that can be obtained by implicitizing a para-
metric curve is said to be rational (in other words, a rational curve is any curve which can
be parametrized using rational functions). All algebraic quadratic curves have rational
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quadratic parametrizations, whereas algebraic curves of degree greater than two are not
generally rational.

A degree n algebraic curve is defined by a degree n polynomial f(z,y), which has
(n+1)(n+2)/2 terms. For example, a degree two algebraic curve has six terms: a;2? +
asxy+asy’+asx+asy+ag = 0. However, any one coefficient can be specified by scaling all
of the other coefficients. (For example, the coefficient of 22 in the quadratic example can
be set to 1 by dividing all the coefficients by a1). Thus, there is an (n+1)(n+2)/2—1=
n(n 4+ 3)/2 dimensional family of degree n algebraic curves. Geometrically, this means a
degree n algebraic curve can be forced to interpolate n(n+3)/2 points in general position.

The parametric equation of a rational degree n curve has 3(n+1) coefficients. However,
any one of these can be specified by scaling all of the other coefficients. Also, three
other coefficients can be specified by changing the parametrization by a rational linear
transformation s = (‘f:ig, and consequently there is a 3n — 1 dimensional family of degree
n rational curves.

15.5.2. Genus and rationality

The condition under which an implicit algebraic curve can be parametrized using rational
polynomials is that its genus must be zero [49]. Basically, the genus of a curve is given by
the formula g = W — d where g is the genus, n is the degree, and d is the number
of double points. There are some subtleties involved in this equation if the singularities
are not simple double points, but we will not concern ourselves with them.

A double point on a curve is a point for which f(z,y) = f.(z,y) = f,(z,y) = 0 where
the subscripts x and y denote partial differentiations, and for a point of multiplicity &, all
partials up to order £ — 1 vanish. Geometrically, a double point means that any straight
line through it intersects the curve at least twice at this point.

We see immediately that all curves of degree one and two have genus zero and thus can
be parametrized using rational polynomials. A degree three algebraic curve is rational
only if it has a double point.

An irreducible curve is one whose implicit equation f(z,y) = 0 cannot be factored.
Rational curves (that can be parametrized using a single parametric equation) are irre-
ducible, and an irreducible curve of degree n can have at most (n — 1)(n — 2)/2 double
points. Thus, a rational curve has the most double points possible for a curve of its degree.

15.5.3. Parametrizing curves

One way to parametrize a degree two algebraic curve is to transform the conic into the
standard form which has already a parametrization, and then to transform the standard
parametrization back. The standard equations of conics are: 2—; + ‘Z—j = 1 for an ellipse,

ﬁ—; — ?;—j =1 for a hyperbola, and y? = 2px for a parabola. They can be parametrized as
(a%jﬂi b, (a%fg ,b7%5), and (%, t), respectively. Therefore the main step is to find a

nonsingular affine coordinate transformation. This can be carried out as follows.
Suppose the conic equation is Ax? + 2Bxy + Cy? + 2Dz + 2Ey + F = 0. First we
convert the equation into the form

AZ? + Cy* + 2Dz +2Ey + F = 0. (15.12)
If B=20,itisdone. f A=C =0and B # 0, thenset xt =+ yand y =27 — .
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Otherwise, if A # 0, B # 0, then

B B?
Az + Zy)2 +(C - 7)y2 +2Dx 4+ 2By + F = 0.
Thus we only need to set £ = x + %y and y = y. A similar transformation can be derived
ifC#0and B#0. )
_Second, if one of A and C in (15.12) is zero, the curve is a parabola. Assume that
A#0and C =0. Then A(z + §)? = —2Ey — F + Z-. Thus setting
. F-DYA

=T+ —, =g+ _
Y=Y Yo

| O

arrives at the standard parabola equation. A similar process deals with the case of A =
_ N2
0,C # 0. If both of A and C are nonzero, WehaveA(m—i- ) —l—C(_ E) = D——2—|—E——2—

Therefore we can take a translation of 2’ = 7 + % D and ¢y = 3+ E to make the curve
equation in the standard form. Composmg the transformatlons in the above two steps
gives the required coordinate transformation.

Another method to parametrize a conic is to establish a one-one correspondence between
points on the curve and a family of lines through a point on the curve, which is called
a pencil-of-lines. This pencil-of-lines method is most easily illustrated by translating the
curve so that it passes through the origin, such as does the curve

w2 — 2 4+ 4 =0

which is an ellipse centered at (1,0). We next make the substitution y = tx and solve for
x as a function of t: z*(1 + 4t*) — 2z = 0. Then
2 ; 2t
= —_—— — r = —m8—
1+ 42 Y 1 + 4¢2

Notice that y = tx is a family of lines through the origin. The variable line y = tz
intersects the curve once at the origin, and at exactly one other point (because of Bezout’s
theorem: two algebraic curves of degree m and n intersect at either mn points or else
they have common components [49]). Thus, we have established a one-one correspondence
between points on the curve and values ¢t which correspond to lines containing that point
and the origin. The ellipse parametrized in this manner is shown in Figure 15.2.

To parametrize a genus zero cubic curve, one must first find its double point, which is
done by solving h(z,y) = hy(z,y) = hy(x,y) = 0. Once the location of the double point is
determined, one can translate the curve so that the double point lies on the origin. Then
the same trick in the pencil-of-lines approach for conics can be played with this cubic
curve since the curve now has an equation involving terms of degree two and three only.

Consider this example of the cubic curve

flz,y) =21 +46x —132° +2° + 25y — 232y + 322y — 9> +3x4y° +1° =0
for which

folw,y) =46 — 262 + 322 — 23y + 62y + 3y°
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t=y/x=1
Y t=y/x=1/3
(1.38,0.46)
(0./4,0.4
t=y/x=0

(2,0)

t=y/x=-1/2

Figure 15.2. Parametrizing an Ellipse

and
fy(x,y) =25 -230+ 32> — 18y + 62y +3¢°

We compute the x coordinates of the intersections of f, = 0 and f, = 0 by taking the
resultant of f, and f, with respect to y:

Resultant(f,, f,,y) = 174 — 159 x + 36 2

whose roots are x = 2 and z = %. Likewise the y coordinates of the intersections of

fz =0 and f, = 0 are found by taking the resultant of f, and f, with respect to x:
Resultant(f,, f,, ) = 297 — 207y + 36 y*

whose roots are y = 3 and y = L. ;From these clues, we find that the only values of

(x,y) which satisfy f(z,y) = fx(xf y) = fy(x,y) =0 are (x,y) = (2,3). This is therefore
the double point.

The double point can also be found by computing the Grébner basis of (f, fs, f,) using
lex ordering with x > y, the Grébner basis is {z — 2,y — 3}.

This curve can be parametrized by translating the implicit curve so that the double
point lies at the origin. This is done by making the substitution x =z + 2, y = y + 3,

yielding

2+ B+ 7Ty +3T2 G+ 69 +339°+75° =0

Parametrization is then performed using the method discussed earlier in this section,
6t% + 7t + 2 ) 61> + 7t* + 2t

B3 +3t+1 VT B3 +3t+1
and the parametrized curve is translated back so that the doubled point is again at (2, 3)
(see Figure 15.3):

6Tt 42 2t — t

T B I3 4341 T T BPL3213t+1

T =
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t=y/x=0 (2,3)

t=y/x=0.3

t=y/x=0.6"

t=y/x=0.9
t=y/x=1.2

X ,

Figure 15.3. Parametrizing a Cubic Curve

6t + 7t 4 2t . —3t° + 22 + Tt + 3
B+3t2+3t+1 B+ 3243+ 1
For a general algebraic curve, the parametrization problem involves two steps: deter-
mine whether it admits a rational parametric representation, and find one if so. The

algorithms, in general, are not as simple as for conics or cubics. References [1-4,47]
provide various computational techniques for parametrizing algebraic curves.

y:

15.6. INTERSECTION COMPUTATIONS

We now consider how to compute the points at which two curves intersect. Intersection
algorithms for two Bézier curves are commonly are based on subdivision, or using some
numerical algorithms such as a multivariate Newton method. The former takes advantage
of the properties of Bézier or B-spline representations and focuses on the intersection
points within the specified intervals. The latter method is not robust: it is difficult or
impossible to assure that all intersection points have been found.

Algebraic methods provide a systematic way for computing intersections. As noted
in Section 15.2, a variety V' (f1,..., fs) defined by more than one polynomial (s > 1) is
the intersection of the varieties V(f1),...,V(fs). Therefore, intersection computation is
equivalent to determining a variety. Using either resultants or Grobner bases, this finally
reduces to the problem of finding the roots of a polynomial on one variable.

15.6.1. Parametric curve and implicit curve

Given one curve defined by the parametric equation (x,y) = (z(¢), y(t)) and a second curve
defined by the implicit equation f(x,y) = 0, we replace all occurrences of 2 and y in the
implicit equation by x(t) and y(t), respectively. These substitutions create a polynomial
f(z(t),y(t)) = g(t) whose roots are the parameter values of the intersection points. The
(x,y) coordinates of these intersection points can be easily obtained by substituting the
parametric values into the equation of the parametric curve.
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(5/3,4/3)
(=5/4,//3)

(-13/12,5/12)

(1,0)

Figure 15.4. Circle and Hyperbola

15.6.2. Implicit curve and implicit curve
For two algebraic curves fi(z,y) = 0 and fo(z,y) = 0, the problem of computing the
intersection amounts to computing the variety V' (f1, fo).

One direct method for computing the variety V(fi, f2) is to take the resultant of f
and fy with respect to x or y. The z-resultant is computed by treating f; and f, as
polynomials in = whose coefficients are polynomials in y. The z-resultant eliminates x
and produces a polynomial in y whose roots are the y coordinates of the intersection
points.

We illustrate with a circle 622 + 6y?> — 2z — 15y — 4 = 0 and a hyperbola
2 — y> — 1 = 0 (see Figure 15.4).

The z-resultant of these two implicit equations is 144y* — 360y® + 269y> — 60y
whose roots are y = 0, y = 4/3, y = 3/4, and y = 5/12. These are the y-coordinates of
the points of intersection of the two curves.

We can use the y-resultant to find the z-coordinates of the points of intersection. The
y-resultant is 144z — 482% — 46122 + 40z + 325 which has roots x = 1, x = 5/3,
x = —5/4, and x = —13/12.

We now know the x and y components of the points of intersection, but we don’t know
which z goes with which y! One way to determine that is simply to evaluate each curve
equation with every x and every y to see which (x,y) pairs satisfy both curve equations
simultaneously. A more clever way is to use Euclid’s algorithm which computes the GCD
of two polynomials. In fact, Euclid’s algorithm spares us the trouble of computing both
the z-resultant and the y-resultant.

Suppose we had only computed the y-resultant and we wanted to find the y-coordinate
of the point of intersection whose z-coordinate is 5/3. That is to say, we want to
find a point (2,y) which satisfies both curve equations. We substitute 2 = 5/3 into
the circle equation to get 16/6 — y? = 0 and into the hyperbola equation to get
6y — 15y + 28/3 = 0. We now simply want to find a value of y which satisfies both of
these equations. Euclid’s algorithm tells us that the GCD of these two is 3y — 4 = 0,
and thus one point of intersection is (2, 3).

Grobner bases also provide a systematic computational method with the assurance
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that all intersection points have been found. The general strategy is based on the simple
observation that V(fi,..., fs) = V({f1,..., fs)). Consequently, if fi,..., fs and ¢1,..., g
are generators of the same ideal, then

V(f17~~-7fs) :V(gl,...,gt).

Consider the previous example of a circle V(622> + 6y> — 2x — 15y — 4) and a
hyperbola V(2? — y? — 1) . It can be verified that

(622 + 6y* — 20 — 15y — 4, 2* — y* — 1) =
(—122% 4 22 + 15y + 10, 1442® — 482° — 4612® + 40z + 325) (the Grobner basis)

Since any point of intersection must be zeros of all generators of the ideal, the only possible
x-coordinates for the intersection points must be roots of 1442* — 4823 — 461z? +40x +
325 = 0 (the roots are g, 1, —%, and —%). The corresponding y coordinates can then be
solved using —12z% + 2z + 15y + 10 = 0.

15.6.3. Parametric curve and parametric curve

If we begin with two parametric curves, we can first implicitize one of them, and then use
the substitution method to compute the intersection points. We illustrate this process by
intersecting the curve

(2.1) 1+s% 2s
z,y)=|—-——, ——
4 1—52"1—52

with the curve

(z.1) 2712 — 239t — 116 9t2 + 96t — 33
X =
24 662 + 811 + 165 662 + 81¢ + 165

(see Figure 15.5). The two curves intersect four times, which is the most that two
quadratic curves can intersect. We implicitize the first curve and get the implicit equation
2?2 —y?—1 = 0. Substituting the parametric equation of the second curve into this implicit

equation and clearing the denominator, we arrive at the intersection equation:
18t* — 459t + 991#* + 1031¢ — 437 = 0.

We now compute the roots of this degree four polynomial, which are 23,1/3,19/6 and
—1. These are the parametric values on the second curve for the intersection points.
From the parametric equation of the second curve, the corresponding (z,y) coordinates
can be easily found: (5/3,4/3),(—1,0),(=5/4,3/4),(5/3,—4/3). The parametric values
on the first curve for the intersection points can be found from the inversion formulas
s=y/(1—=x)and s = —(1+x)/y. They are —2,0,1/3 and 2, respectively.

Tests indicate that this implicitization-based intersection algorithm is several times
faster than subdivision methods for quadratic and cubic curves, but subdivision methods
are faster for curves of degree five and greater [38].
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(5/3,4/3)

(-5/4,3/4)

(_ll O)

(5/3,-4/3)

Figure 15.5. Intersections of Two Parametric Curves

Grobner bases and resultants can also be used for finding the intersections between two
parametric curves. The intersections of the curves (x,y) = (ai(s)/c1(s),bi(s)/c1(s)) and

(z,y) = (aa(t)/ca(t), ba(t)/ca(t)) satisfy

al(s) _ ag(t) bl(S) _ bg(t)

c(s)  e(t)  al(s)  eft)

This prompts us to compute the variety V' (ay(s)ca(t) — az(t)ci(s), bi(s)ca(t) — ba(t)ei(s))
in the (s,t)-space. The methods discussed in Section 15.6.2 can then be employed. For
the previous example, the Grobner basis using lexicographic ordering with ¢t > s is

(144¢% + 1944t — 4389s® — 6448s* + 32169s® + 11072s* — 27780s — 664,
48s — 6t + 65°t + 2 + 14s* — 69s® — 16s* + 215°, —4s + 125? + 55> — 15s* — 5 + 355).

Solving the third polynomial in the Grébner basis gives six roots: 0,1,2,1/3,—2, —1.
Note that the solutions of 1 and —1 are actually the roots of the denominator 1 — s? of
the first curve, and thus should be discarded. We then substitute the rest four roots into
the second polynomial in the Grobner basis and solve for the corresponding values of ¢.
These values of s and ¢ are the parametric values of the intersection points on the first
and second parametric curves.

15.7. SURFACES

This section briefly overviews some applications of algebraic methods to surfaces. A
rational parametric surface is usually defined by (15.2). We denote the maximum of the
total degrees of the polynomials a(s,t), b(s,t), c(s,t) and d(s,t) by n and call it the
parametric degree. The implicit equation of an algebraic surface is given by f(z,y,2) =0
where f(z,y,2) is a polynomial in z,y, 2z, and its maximum degree is denoted by m,
called the implicit degree. Like curves, it is always possible to find an implicit equation
of a parametric surface, but parametric equations can generally be found only for a very
select class of implicit surfaces. Algorithms for implicitization and inversion also exist for
surfaces [15,30], but the process for surfaces is much more complicated than the curve
case. For example, a degree n plane parametric curve has an implicit equation that is
also degree n. For surfaces, however, the implicit degree m can be as high as n? if the
parametric degree is n.
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15.7.1. Implicit degree of a rational parametric surface

The implicit degree can be thought of as the number of times that the surface is intersected
by a generic straight line [15,48]. Define a generic straight line as the intersection of two
distinct planes in general position a1x + asy + azz + a4 = 0 and byx + by + b3z + by = 0.
The planes intersect the parametric surface (15.2) in curves

aa(s,t) + asb(s,t) + aze(s,t) + asd(s,t) =0 (15.13)
and
bra(s,t) + bob(s,t) + bsc(s,t) + byd(s,t) =0 (15.14)

These curves are each degree n in s,t. By Bezout’s theorem, these two curves intersect
in n? points, which must also be the number of times that the straight line common to
the two planes intersects the surface. Thus, the degree of the surface, and of its implicit
equation, is n?.

It seems curious that there are gaps in the sequence of the implicit degrees of parametric
surfaces: 1,4,9,... . Are there no parametric surfaces whose implicit degree is 3 or 5 for
example, or under what conditions will the degree decrease?

It may happen that there are values s, and ¢, satistying a(sy, tp) = b(sp, ts) = c(Sp, tp) =
d(sp,ty) = 0. These parameter pairs (sy,t,) are referred to as base points. If a base
point exists, the intersection curve of any plane with the surface will contain the base
point. Thus, the above two curves will intersect at the base point and at n? — 1 other
points. However, since the base point does not map to a unique point on the surface
(x =y =2z =0/0 is undefined), this does not represent a point at which the straight line
intersects the surface, and the degree of the surface is therefore n? — 1. Each additional
simple base point diminishes the degree of the surface by one. Base points at infinity
occur when all plane sections have a common asymptotic direction.

To understand the influence of more complicated base points on the implicit degree,
consider the linear system of all curves given by (15.13), where each curve in the linear
system is the intersection of the surface with the plane a1x + asy + azz + a4 = 0. A base
point is any point in common with all members of the linear system. If two general curves
in the linear system are tangent at a base point, they intersect twice at the base point and
the degree of the surface becomes n? — 2. If two general curves in the linear system have
a double point in common, they intersect four times at that base point and the degree
becomes n? — 4. Thus, a general degree formula is n? — p where p is the total number
of times that two general curves in the linear system intersect at base points. This also
assumes that the surface has a one-to-one parametrization.

If the surface (15.2) is a tensor product surface—one of the most popular representations
for surfaces in CAGD—the parametrization is a bi-degree (ng,n;) parametrization in s
and ¢t. That means, n, and n; are the highest degrees of the parametric equations with
respect to s and ¢. In this case, the total parametric degree is n = ng + n;. But there
exist two base points at infinity, corresponding to s = 0o, t = 0o, counted at least n? and
n? times respectively [14]. Thus the implicit degree of a bi-degree (n,n;) parametrized
rational surface is at most (n, + ny)? — n? — n? = 2n,n,. For example, a bicubic surface
is usually of implicit degree 18.
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15.7.2. Surface intersection curves

Surface/surface intersection (i.e., finding the intersection curve of two surfaces) is an
important geometric operation in CAGD. The usual approach is to compute an approxi-
mation for the intersection curve. Algebraic geometry provides important information on
the nature of intersections of parametric surfaces. For example, the degree of the inter-
section curve is easy to determine using Bezout’s theorem which states that two surfaces
of degree m and n respectively intersect in a curve of degree mn. Therefore if two sur-
faces have implicit degree n; and no, the intersection curve has a degree niny (unless the
surfaces have common components). Thus, two bicubic patches generally intersect in a
curve of degree 324.

15.7.3. Implicitization

Resultants can be used to implicitize a rational parametric surface. Dixon’s resultant is
a good choice, because it works on three polynomials in two variables. Given a rational
parametric surface (15.2), construct three auxiliary polynomials:

p(z,s,t) =d(s,t)x — a(s,t),
Q(ya 8, t) = d(Sv t)y - b(Sv t),
h(z,s,t) =d(s,t)z — c(s,t)

Note that p(z,s,t) = q(y,s,t) = h(z,s,t) = 0 only for values of x,y,z and s,t¢ which
satisfy (15.2). View p(zx,s,t), q(y,s,t) and h(z,s,t) as polynomials in s and ¢ whose
coefficients are linear in z, in y and in z, respectively. Then applying Dixon’s resultant
to these polynomials to eliminate s and ¢, we obtain a polynomial in x,y and z which we
denote f(x,y,z). Thus f(z,y, 2z) = 0 defines the implicit equation of the rational surface.
In addition, by Cramer’s rule, taking the ratio of the determinants of the submatrices
from the Dixon’s matrix corresponding to the terms s¢/ and s*~'#/, or the terms s'¢/ and
s't/~1 yields the inversion equations of s = s't/ /s*"'t/ and t = s/ /s'¢/~!. Unfortunately,
if the surface has finite basepoints, the resultant is identically zero and the algorithm fails.

The implicitization of rational parametric surfaces can also be accomplished by com-
puting the elimination ideal. The Rational Implicitization Theorem [17] states that if
J = {dx — a,dy — b,dz — ¢,1 — dw), then V(J N R[z,y, 2]) is the smallest variety in R?
containing the parametric surface. The polynomial 1 — dw is introduced to assure that
the method will work even if base points are present. Otherwise, base points would cause
J N R[x,y, z] = {0}. In practical computation, we construct the Grébner basis with the
lexigraphic ordering for the ideal J with s > ¢ > x > y > 2. The Grobner basis will
contain a polynomial in x,y, 2. This is the implicit equation. If the parametrization of
the surface is a one-to-one map, two polynomials linear in ¢ and s are also contained in
the Grobner basis. They can produce the inversion maps.

Notwithstanding the robustness and elegance of the Grobner basis solution to sur-
face implicitization, it is not very computationally efficient. Recently, a promising new
method, called the moving surface method, has been proposed for implicitizing rational
surfaces [43]. Like resultants, the implicit equation is expressed as the determinant of a
matrix.
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We define a moving surface as
g(l’, Y, z,s, t) = Z fl(xv Y, Z)%(Sa t) =0
=1

where the equations f;(z,y,2) = 0,i =1, ...,0 define a collection of implicit surfaces and
where the v;(s,t),i = 1,...,0 are a collection of polynomials in s and t. We require the
7i(s,t) to be linearly independent and to be relatively prime. A moving surface is said to
“follow” a rational parametric surface (15.2) if

a(s,t) b(s,t) c(s,t) -
(d(S,t)’ d(S,t)’ d(S,t)7S7t> =0.

If we can find a set of ¢ moving surfaces

gj($7y7z7 Sat) = Zf]2($7y7z)72(57t) = 07 ] = 17 vy 0
=1

each of which follows a given rational surface, then

fll(xaya Z) e f1g(1',y, Z)
f(x,y,z): : : : =0

fal(x.aya Z) faa(xlaya Z)

gives the implicit equation — as long as the degree of f(x,y, 2) is equal to the degree of
the implicit equation of the rational surfaces.

In comparison, Grobner basis method theoretically provides an elegent solution to im-
plicitization of parametric surfaces, but involves a huge computation which limits its use
in practice. The method of resultants is efficient, but fails when base points occur. Mul-
tivariate resultants can also be used for implicitization [15]. The moving surface method
actually simplifies in the presence of base points. Furthermore, the method of moving
surfaces provides a very compact representation for the implicit equation of a surface.
For example, a bicubic patch can, in general, be written as a 9 x 9 determinant whose
elements are all degree two in x,y, z. By contrast, Dixon’s resultant produces an 18 x 18
determinant. However, further study is needed on the moving surface method.

In summary, the operation of surface implicitization has not yet gained widespread
use in practice, partly because the degree explosion that one encounters when moving
from the parametric to the implicit form counteracts most algorithmic advantages that
the implicit form might have over the parametric, and also because the computational
complexity is very large, especially in the event of base points.

15.7.4. Parametrizaion

For an algebraic surface of arbitrary degree, Castelnuovo gave a necessary and sufficient
condition for the existence of the rational parametrization [51]. Unfortunately, this crite-
rion does not provide a constructive approach to parametrization. A systematic method
for parametrizing a general rational algebraic surface is under investigation. Recently, var-
ious computational algorithms for parametrizing certain lower degree algebraic surfaces
have been developed.
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All degree two surfaces are rational. We can parametrize a quadric surface much like
we did for conics. For example, we can use a pencil-of-lines approach by first translating
the surface so that it touches the origin. Then define a line through the origin as the
intersection of two pencils of planes: y = sr and z = tx, say, and intersect the surface
with that line. We demonstrate the procedure with a sphere z? + y? + 22 — 2z = 0.
Substituting y = sz and z = tz, we obtain z%(1 + s + t?) — 2tx = 0. This gives the
x coordinates of the two points where the line intersects the sphere. Discarding the
intersection at the origin gives the parametrization

ot 2st 212
r=r————0 Y= F T
1+ 52 +¢2 1+ 52 +¢2 1+ 52+ ¢2

Most cubic surfaces are also rational. The only exception is the ruled cubic generated by
a non-rational cubic curve. The cubic surface has a fascinating geometry. For example, the
general cubic surface contains 27 straight lines, and those lines can be used in determining
a parametrization for the surface. A detailed discussion can be found in [9,39,41].

15.8. OTHER ISSUES

The algebraic approaches to implicitization, parametrization and inversion illustrate how
algebraic concepts and methods, such as resultants and Grobner bases, help us analyze and
solve some common problems in CAGD. Space limitations have prohibited the inclusion
of several additional related topics, such as the following:

e A curve or a surface is said to be properly parametrized if to each point on the
curve, except for possibly a finite number of points, there corresponds only one
parameter value. It is natural to ask whether any improperly parametrized curve or
surface can be reparamtrized to become properly parametrized. For a rational curve,
a classical theorem due to Liiroth guarantees the existence of a reparametrization
[49]. However, for a rational surface, it depends on the base field where the surface is
defined. Grobner basis methods can be used for detecting and correcting improper
parametrization [24].

e Geometric continuity was originally introduced as a smoothness measure for para-
metric curves and surfaces. This concept is also meaningful for implicit curves
and surfaces. The geometric continuity conditions for implicit surfaces is studied
in [25]. This consideration is important when using algebraic surfaces in geometric
modeling. One application is to construct blending algebraic surfaces with a spec-
ified continuity [50]. Algebraic surfaces have been shown to have advantages over
parametric surfaces when performing the blending operation.

e The fact that the most popular free-form surface patches — bicubic patches — are ac-
tually algebraic degree 18 has tempted some researchers to investigate the possibility
of using lower degree algebraic surfaces for modeling purposes. Surfaces in algebraic
geometry are usually global in nature while surfaces in CAGD are usually finitely
defined (i.e., patches). The main reasons that parametric surface patches have been
so popular in CAGD are that they can be pieced together with any desired degree of
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continuity, and that there exist many elegant, intuitively meaningful techniques for
controlling their shape. Therefore, to make algebraic surfaces useful in CAGD, the
Bernstein-Bézier techniques have been adapted in defining algebraic surfaces [36].
Meaningful and efficient methods, such as interpolation, least-squares approxima-
tion and interactive modification, have been developed to model complicated shapes
using piecewise implicit algebraic surfaces [7,8,20,21].

e Algebraic tools such as resultants and discriminants can help compute the intersec-
tion points between a ray and a surface (useful for performing ray tracing), and can
help compute the silhouette points or curves in a scene. Some techniques based on
algebraic methods have been developed to accurately render surfaces using computer
graphics, such as ray-tracing [29,35] or in scan-line algorithms [40].

e The methods in algebraic geometry assume the procedure is carried out using exact
(integer or rational number) arithmetic. Nevertheless, commercial computer sys-
tems dealing with CAGD use floating point arithmetic. This fact heavily hinders
applying algebraic geometry methods to the practical problems of CAGD. There-
fore computational theories and techniques of algebraic geometry in floating point
arithmetic are of high interest. Some strategies for using algebraic methods in a
floating point environment are discussed in [45].

Interest in algebraic techniques for the CAGD is growing, and it is evident that algebraic
geometry is a valuable resource for computer aided geometric design.
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