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Autoreservoir computing for multistep ahead
prediction based on the spatiotemporal information
transformation

Pei Chen® !, Rui Liu® "™, Kazuyuki Aihara 23 & Luonan Chen@® #>6.7%

We develop an auto-reservoir computing framework, Auto-Reservoir Neural Network
(ARNN), to efficiently and accurately make multi-step-ahead predictions based on a short-
term high-dimensional time series. Different from traditional reservoir computing whose
reservoir is an external dynamical system irrelevant to the target system, ARNN directly
transforms the observed high-dimensional dynamics as its reservoir, which maps the high-
dimensional/spatial data to the future temporal values of a target variable based on our
spatiotemporal information (STI) transformation. Thus, the multi-step prediction of the target
variable is achieved in an accurate and computationally efficient manner. ARNN is suc-
cessfully applied to both representative models and real-world datasets, all of which show
satisfactory performance in the multi-step-ahead prediction, even when the data are per-
turbed by noise and when the system is time-varying. Actually, such ARNN transformation
equivalently expands the sample size and thus has great potential in practical applications in
artificial intelligence and machine learning.
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t is a challenging task to make multistep-ahead predictions of a

nonlinear dynamical system based only on a short-term time

series due to its complicated nonlinearity and insufficient
information. Although many methods including statistical
regression (e.g., autoregression! and the autoregressive integrated
moving average (ARIMA)?), machine learning (e.g., the recurrent
neural network (RNN)3, the long-short-term-memory network
(LSTM)*3, support vector regression (SVR)®7, the radial basis
function network (RBF)S, single-variable embedding (SVE)?, and
multiview embedding (MVE)10), have been applied to the issue of
predictability! 115, most existing approaches require sufficient
training samples or data, e.g., multiple short-time series or a long-
term time series, thus failing to reliably predict the future evo-
lution only from a short-term time series. On the other hand,
neural networks including the RNN and LSTM can theoretically
learn the nonlinear dynamics from the observed datal®-18.
However, these methods typically suffer from the overfitting
problem due to the lack of sufficiently many samples when only a
single short-term time series is available to train the networks. In
addition, training a neural network sometimes costs considerable
time and computing resources'®20, which also preclude the tra-
ditional neural networks from being applied to many real-world
systems.

Reservoir computing (RC) is an extension of neural networks
recently developed following RNN frameworks that is suitable for
temporal/sequential information processing?!. The role of the
reservoir in RC is to nonlinearly transform sequential inputs into
a high-dimensional space such that the features of the inputs can
be efficiently read out by a simple learning algorithm. Generally,
the architecture of RC is feasibly formed by combining two
components: a reservoir, which is a hidden neural network of
recurrently interconnected nodes (e.g., the RNN itself), and an
output or readout layer?2. RC has drawn much attention because
of its dynamical property and easy scalability since the recurrent
connections in the network are (e.g., randomly) fixed in advance
rather than trained. In other words, training is performed only at
the readout stage due to the fixed/random reservoir, thus sig-
nificantly reducing the training parameters and the computa-
tional cost. RC has been applied to a series of real-world studies,
such as Great Lakes water level prediction?3, handwritten digit
image recognition?4, NARMA time-series prediction®’, limit cycle
generation®, and temporal parity tasks?’. However, the current
RC framework requires knowledge of the external/additional
dynamics that generates the reservoir, which is unrelated to the
observed/target system.

Compared with many existing studies on predictions based on
long-term time-series data, there have been only a few studies on
predictions from short-term but high-dimensional data?8-30.
Nevertheless, the most recent short-term time series usually
contains more information on its immediate future evolution
than the remote-past time series owing to the time-varying non-
stationary nature of many real-world dynamical systems31-34.
Thus, even if long-term data are measured, prediction effective-
ness depends mainly on recent short-term data. On the other
hand, notably short-term but high-dimensional data possess rich
information due to the high-dimensional variables, whose
dynamics is intertwined and thus can be exploited for the pre-
diction. Therefore, it is natural and important to predict future
states on the basis of a short-term high-dimensional series, which
is also widely available in real-world cases. Actually, by assuming
that the steady state is contained in a low-dimensional manifold
even for a high-dimensional system that is generally satisfied for
dissipative real-world systems, the spatiotemporal information
(STI) transformation has theoretically been derived from the
delay-embedding theory3>-37. This method can transform the
spatial information of high-dimensional data to the temporal

dynamics of any target variable. Based on the STI transformation,
the randomly distributed embedding (RDE) framework has been
developed for one-step-ahead prediction from the short-term
time series by separately constructing multiple maps using the
original primary STI equations or the linearized STI equations>°.
Furthermore, the multistep-ahead prediction was also performed
by adopting a multilayer neural network as the STI transforma-
tion3”. However, there are two issues that remain unsolved for the
prediction: one is the computation cost, and the other is the
robustness.

In this study, by taking advantage of both the RC structure and
STI transformation, we propose a novel auto-reservoir computing
approach, namely, the Auto-Reservoir Neural Network (ARNN),
to achieve an accurate, robust and computationally efficient
multistep-ahead prediction with short-term high-dimensional
data. In particular, we take a nonlinear function F as a reservoir
structure based on both the primary and conjugate forms of the
STI equations, thus constructing the ARNN-based equations.
Based on such equations, ARNN encodes F(X)! to Y! and decodes
Y! to F(X*), where Y is the temporal (one-dimensional) dynamics
across multiple time points and X’ is the spatial (high-dimen-
sional) information at one time point. Hence, ARNN transforms
the known spatial information of high-dimensional data to the
unknown temporal/dynamical information or prediction of any
target variable. On the other hand, the reservoir of ARNN is a
multilayer neural network F in which the weights among neurons
are randomly given and fixed in advance, while the weights of the
output are determined directly from solving the ARNN-based STI
equations with the dropout scheme38. In other words, there is no
traditional training process for the neural network in the ARNN
algorithm. Unlike traditional RC using external/additional
dynamics (irrelevant to the target system), ARNN transforms the
dynamics of the observed high-dimensional data as the reservoir,
therefore exploiting the intrinsic dynamics of the observed/target
system. ARNN actually has a similar form to the autoencoder
(i.e., the primary STI for encoding and its conjugate form for
decoding), as illustrated in “Methods”. Such a transformation
makes ARNN robust.

To validate ARNN, it is applied to a representative model, i.e., a
90-dimensional coupled Lorenz system under different noise and
parametric conditions. Furthermore, ARNN is applied to predict
many real-world systems. The results show that ARNN achieves
multistep-ahead prediction with only a short-term series, which is
better than other existing methods in terms of accuracy, efficiency
and robustness.

Results

ARNN framework with STI transformation. We first describe
the primary and conjugate STI equations before constructing
ARNN (also see “Methods”). For each observed high-dimensional
state X! = (x!,x%, ... ,x) with D variables and t=1, 2, ..., m,
we construct a corresponding delayed vector Yf=
',y ...,y for any target variable y to be predicted
(e.g., y' = x}) by a delay-embedding strategy with L>1 as the
embedding dimension (Fig. 1a), where symbol “/” is the transpose
of a vector. Clearly, X! is a spatial vector with many variables
observed at one time point ¢ while Y! is a temporal vector with
only one variable y but at many time points t, t+1, ..., t + L — 1.
According to Takens’ embedding theory and its generalized
versions, such a delay-embedding scheme Y’ can reconstruct
the topologically equivalent dynamics of the original system X if
L>2d>0 where d is the box-counting dimension of the attrac-
tor39-41, Thus, each spatial vector X! corresponds to one temporal
delayed vector Y* for each of t=1, 2, ..., m (Fig. la). Thus, the

2 | (2020)11:4568 | https://doi.org/10.1038/s41467-020-18381-0 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18381-0

ARTICLE

s N
a Known information (stat i
~—— Known information (states) High-dimensional Multi-step-ahead One-dimensional
—k— Unknown future information (states) “spatial” information ~ Prediction (L -1 steps) “temporal” information
—_—
5 STI equations
— (yt yttl t+L—1y/
X i o(xt) =yt  Y=(phyth oLyt
o Xt=| "2 Xt = (YY)
=t where¥ o & = id e ¢ .
xﬁ Xp (t=1,...m) Y= xiis tanl‘): tar1ge;t variable
among X, =12,...,D
L xt 7 g x ( ) )
it b N
High-dimensional information of X* Delay embedding of y* Ve (t= 1, m)
N \ ~ Known information
N y! \ /
X \/}/v\ﬁ" X (t=1,0m; k=1,...D) \/\yt/v\/\‘y Y (e metoma L 1)
N ! 1 Known information 3 \ o~ Unknown information
x% \\/E/J’/\/X;ﬁl . , . yz \/\%\\/\/\’J ymHL y1 y2 ym
A \ X1 X X1
x]\/ \/\{\J s P m y= y2 oy . ymil
: 3 0 x= |2 72 z : : S :
: : : b5 - yb bt ymi-1
" v : Xp Xp ... Xp \ ~\A Lxm
'E/‘WJ“/\/‘:" D>xm i \f\%\f\/\ ymet Linearized STI equations
R x5 *D Time AXE = Yt
Time -o~ Known information e~ Future information (D > L) Xt = BY! whereAB = I
- - /
(c Th i TN
e framework of auto-reservoir neural network (ARNN)
ARNN-based STI equations
Known high-dimensional/spatial data X* AFXY) = Yt
E olb t
Target y¢ = xf is any variable X1 X3 Xp (t=12,...m) { F(X®) = BY!
among x (k = 1,2,...,D)
where 4B = |
t B t
S y y
% s s Solving 4, B, Y™
e =
% : : simultaneously, the
5 future values
o3 _
g g g YAl ymz | ml=1
Byttt Weights are randomly given ytti-1 are predicted.
-
‘d oo . . ¢ ¢ ¢ N
Autoencoder-like information flow of ARNN transforming F(X*) - Y* — F(X")
Spatial information Spatial information
(i, x5, xp) (xf, x5, xp)
\_ AF(XH) =Y! (AB =1) BY! = F(XY) )

Fig. 1 Schematic illustration of the auto-reservoir neural network. a Given a short-term time series of a high-dimensional system, it is a challenging task
to predict future states of any target variable. For a target variable y to be predicted, a delay-embedding strategy is applied, forming a delayed-coordinate
vector Yt corresponding to the observed vector X via a function ®. Such a relation constitutes the spatiotemporal information (STI) transformation with
both primary and conjugate forms (STI equations). b The linearized STI equations also have primary and conjugate forms. Data can be represented in a

matrix form where the future/unknown information {y™*!,ym+2, .

., y™1 1} is located in the lower-right triangle of matrix Y and the known information

{y!, y2, ..., y™} in the upper-left part of Y. ¢ Auto-reservoir neural network (ARNN) is a model-free method to make the multistep-ahead prediction for a
target y. In the ARNN framework, the reservoir component contains a random/fixed multilayer neural network f, for which there are time-dependent inputs
Xt A target vector Yt formed by the delay embedding for the prediction is processed through neural network F with two weight matrices A and B. Such an
architecture of ARNN is designed to simultaneously solve both primary and conjugate forms of ARNN-based STI equations to enhance the robustness, thus
predicting the future information of the target variable y even with a short-term time series. d According to the information flow, ARNN has an
autoencoder-like framework, that is, F(X!) — Y! — F(X!), different from but similar to the autoencoder structure X! — ¥' — Xt
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STI equations are

o(X!) =Y,
{Xf( —)‘I’ ' @
= w(Y"),
where @ : R? — R and ¥ : RY — R” are nonlinear differ-
entiable functions satisfying ® o ¥ = id, symbol “0” is the func-
tion composition operation and id represents the identity
function (Fig. 1a). In Eq. (1), the first equation is the primary STI
equation, and the second is its conjugate form. Note that given m
observed states X! (t=1, 2, ..., m), there are actually L —1
unknown future values of the target variable y, ie,
{ymt ymt2 . y™H -1 in Y! (Fig. 1b). However, it is generally a
difficult task to find such a nonlinear function ® or ‘Y. They can
be linearized as follows (Fig. 1b) at t=1, 2, ..., m:
AX' =Y,
{W—BY @)
where AB=1, A and B are L x D and D x L matrices, respectively,
and I represents an L x L identity matrix.

By combining the RC structure and STI transformation, we
develop ARNN, which provides multistep-ahead prediction by
taking the nonlinear function F as a reservoir structure based on
both the primary and the conjugate forms of the STI equations
(Fig. 1c and Eq. (1)), thus greatly enhancing the prediction
robustness, accuracy and computation efficiency. Specifically, a
multilayer feedforward neural network F is employed for reservoir
computing, where the weights among neurons are randomly given
in advance. In this study, the neural network contains four layers,
with the hyperbolic tangent tanh as the activation function,
although other appropriate forms of layer designs can also be
adopted. Through the processing of the neural network F, the
original D variables X' = (x!,x}, ... ,x}))" are transformed into D
variables F(X!) = (F,(X!), F,(X"), ... , F5(X"))', where input X!
and output Y’ evolve over time. In other words, the dynamics of
the observed high-dimensional data X! is taken as the reservoir
instead of the external/unrelated dynamics as in the traditional
RC (see Eq. (7) or (9) in “Methods”), ie., ARNN can be
represented by the following ARNN-based STI equations (Fig. 1c)
att=1,2, ..., m:

{AHXQ:YQ o)

F(X!) = BY',

where AB=1, A is an Lx D matrix, B is a Dx L matrix, and I
represents an L x L identity matrix. Note that F, : R” — R is a
nonlinear function (reservoir), D may be distinct from D due to
the nonlinear transformation of the neural network F, and A and
B are two weight matrices that are determined based on the
observed data. Here, the first and second equations in Eq. (3) are
the primary and conjugate forms of the STI equations,
respectively. Clearly, by solving the ARNN-based STI equations
(Eq. (3)) for the given X and F, we can obtain the future values
{ymtl ymt2 . y™ T of the target variable as well as the
unknown weight matrices A and B, thus achieving multistep-
ahead prediction. Here, D > L is generally required.

Note that y* = x| is one variable among all observed variables
X' = (x, . ,xd, ,xf)),, and Y' = (y',y"t1 Lyt Let
X' =X +Lx =X +1y, where X'=(xf,... xi_,0,xi,,,
..,xb)" represents all variables except xi, and I =
(0,...,0,1,0,...,0) is a vector where the kth position is 1.
Then F(X') =f(W"X' + WLy"), where the function f =
(fisfas -+ »fp) represents the elementwise activation functions of
the reservoir units. Thus, by noting that Y~1 includes y?, the first

equation of Eq. (3) can be represented as
Y' = AF(X') = Af(W™X' + WL y') = W (WX + wy'™)
(4)

where W represents an appropriate matrix linking y* and Y!~1,
e.g, W= WnLI,. Clearly, Eq. (4) has a similar form to the
traditional RC (see Eq. (9) in “Methods”) with A = WOUt as the
weight matrix in the readout. However, instead of the external/
additional dynamics X! in the traditional RC, ARNN directly uses

the inherent dynamics X! or X' of the original system as reservoir.
In ARNN, W is randomly given and fixed, and only W' and
{ym+1 ymt2 . y™ L1} are unknown variables which are to be
solved based on the observed X! (t=1, 2, ..., m). Note that we

can also directly adopt (X', YI=1) as the input of f instead of

x', ¥') in the equation above. In the same way, the second
equation of Eq. (3) can be represented as another form of RC but
with the conjugate matrix B.

Interestingly, combining the primary and conjugate equations
of Eq. (3) leads to a form similar to that of the autoencoder shown
in Fig. 1d and Supplementary Fig. 1. Actually, the matrix A with F
maps/encodes the spatial information to the temporal informa-
tion in the primary STI equation, whereas the matrix B with F
maps/decodes the encoded temporal information to the original
spatial information in the conjugate STI equation (Eq. (3)). It
should be noted that there is no separate training process in the
ARNN scheme. Actually, the ARNN method makes the training
and predicting at the same time by solving the conjugated STI
equations Eq. (3). The detailed derivation is presented in the
“Methods”, and the ARNN algorithm is given in Supplementary
Note 3. Recently, there is much attention on physical reservoir
computing in which the external/additional reservoir is imple-
mented by electronic, photonic, spintronic, mechanical, and
biological systems and devices*2. Our method, however, clearly
shows that we can use the target complex system itself to form the
reservoir instead of physical implementation of the external/
additional reservoir.

Performance of ARNN on Lorenz model. To illustrate the
mechanism and the basic idea of the ARNN framework, a 90-
dimensional coupled Lorenz model*3

X(t) = G(X(1); P) ()

was employed to generate synthetic time-course datasets under
different noise conditions, where G(-) is the nonlinear function set
of the Lorenz system with X(f) = (x!,... ,x})" and P is a
parameter vector. The exact Lorenz system and detailed
description are provided in Supplementary Note 6.

Noise-free situation. First, by applying ARNN to a noise-free
situation, a series of predictions are presented in Fig. 2, including
the cross-wing cases (Fig. 2a, b, d, e), i.e., the known and to-be-
predicted series distributed in two wings of the attractor, and the
simpler case (Fig. 2¢, ), i.e., the known and to-be-predicted series
distributed in a single wing of the attractor. For each 3D case
(Fig. 2a—c), there are three target variables, y;, y,, and y;, each of
which is randomly selected from {x;, x5, ..., Xo0}. In one pre-
diction, we use the 90-dimensional data from the initial 50 steps
as known information/input, and ARNN outputs 18-step-ahead
prediction for the target variables, ie, D=90, m =50, and
L — 1 =18. For all the noise-free cases (Fig. 2d-f), the predictions
achieve high accuracy with root-mean-square errors (RMSEs) of
0.189 in Fig. 2d, 0.0577 in Fig. 2e, and 0.0556 in Fig. 2f, and the
predicted dynamical trends for each case agree with the real data.
In addition, we present the prediction results for the three targets
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¥1> ¥2» and y3, respectively, as a 3D prediction in Supplementary
Fig. 2. The prediction performance of ARNN from a global
perspective of the Lorenz system is provided in Supplementary

Fig. 3.
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Additive noise situation. Second, we discuss the situation when
there is additive noise. ARNN (Eq. (3)) and eight traditional
prediction methods were applied to the 90D Lorenz system in

Eq. (5) with different values of the noise strengths to predict the
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Fig. 2 Future state prediction of the Lorenz model based on ARNN. A synthetic time-course dataset was generated in noise-free and noisy situations
based on a 90-dimensional coupled Lorenz model. Among the D =90 variables {x;, x, ..., X903}, three targets were randomly selected as y;, y,, and ys.
Based on ARNN, future state prediction was carried out for y;, y», and ys, where the length of the known series/input is m = 50, and that of the predicted
series is L —1=18, i.e., 18-step-ahead prediction. For different initial conditions, there are three cases, where (a, d) and (b, e) are the cross-wing cases, i.e.,
both the known (past) and the unknown (future or to-be-predicted) series are distributed in two wings of the attractor, while (¢, f) is the simpler case, i.e.,
the known and to-be-predicted series are distributed in a single wing. There are three groups of comparisons for ARNN performance on the original Lorenz
system Eq. (5), i.e., the parameters are constants with noise strength 6 =0 (d-f), and noise strength ¢ =1 (g-i). For a Lorenz system, Eq. (6) applies with
time-varying parameters and noise strength 6 =0 (j-1). With different values of the noise strength, we demonstrated the performance of ARNN and the
other methods. The average root-mean-square errors (RMSEs) of 500 cases for ARNN and the other methods are shown in (m). The results also
demonstrate that ARNN can predict unexperienced dynamics (i.e., in a different wing from the observed data), different from most current deep learning
approaches, which generally require a large number of samples to learn all situations.

same target variable. The inputs included data from the former
m =50 steps, and the outputs were 18-step-ahead predictions
(L — 1=18). The performance of ARNN and that of the tradi-
tional prediction methods were compared. Specifically, three
cases are selected in Fig. 2g-i. When noise is added (0=1),
ARNN remains robust and is capable of providing accurate
prediction in both future states and dynamical tendency with
RMSE = 0.333 in Fig. 2g, 0.292 in Fig. 2h, and 0.277 in Fig. 2i,
better than the other methods (RMSE € [0.583, 2.750]). Overall,
although the performance slightly deteriorates compared with
that of the noise-free situation (Fig. 2d-f), ARNN still captures
the dynamics efficiently and is much more robust when the
system is perturbed by noise (Fig. 2m), confirming that ARNN
works effectively in multistep-ahead prediction based on short-
term time series even with noise. The performance of ARNN
under different noise conditions is shown in Supplementary
Fig. 4.

Time-varying system situation. Third, with the same setting (m =
50 steps as the input and a prediction L — 1 = 18 steps ahead as
the output), ARNN was applied to a 90D time-varying/time-
switching Lorenz system,

X(t) = G(X(1); P(1)), (6)

where G(-) is the nonlinear function of the Lorenz system with
X(t) = («f, ... ,x5)'s P(t) is the time-varying/time-switching
parameter vector. In other words, the parameters of the Lorenz
system change as time evolves; that is, when the time variable ¢
moves forward every 10 units, the parameters P(f) change once.
The exact expression of the time-varying Lorenz system and other
detailed information are provided in Supplementary Note 6.
From Fig. 2j-1, even when the system parameters change over
time, ARNN still predicts the future states with high accuracy
(RMSE = 0.258 in Fig. 2j, 0.150 in Fig. 2k, and 0.211 in Fig. 2I).

Comparison with existing methods. To validate the efficiency of
ARNN (Eq. (3)), its short-term prediction performance on the
Lorenz system was compared with that of the eight traditional
prediction methods, i.e., the traditional reservoir computing
(tRC)%>, AR!, LSTM%°, ARIMA2, SVR®7, RBF®, SVE’, and
MVE!0,

In Supplementary Table 1, we summarize the comparisons
among ARNN and eight other prediction methods for all 500
predictions of the Lorenz models (Eqgs. (5) and (6)). There are
three conditions: (i) time invariant and noise free, (ii) time
invariant and noise strength o=1, and (iii) time varying and
noise free. Under each condition, the performance of nine
prediction methods is compared based on short-term series with
parameter sets m =50, L—1=18 and m=15,L —1=6.

First, for the time-invariant and noise-free cases, when the
known length is m = 50 and the prediction length is L — 1 =18,
the average normalized RMSE of ARNN is 0.397, which is better

than those of the other prediction methods with RMSE & [0.608,
1.46]. When the known length becomes even shorter (m = 15),
the performance of ARNN (RMSE = 0.168) is still better than
that of the other methods with RMSE € [0.291, 0.796]; that is,
ARNN achieves at least 42% more accuracy than the other
methods and is at least 31% faster than the traditional neural
network methods. In particular, when the known length is only
15, the LSTM shows a poorer result (RMSE = 0.538) but still
incurs three times the running cost of ARNN (Supplementary
Table 1). A comparison between ARNN and LSTM on the
computational complexity is also demonstrated in Supplementary
Note 5.

Second, for the time-invariant and noisy cases with o=1,
ARNN performs better than the other methods; that is, the RMSE
of ARNN is 0.884 and RMSE € [1.08, 1.61] for the other methods
forthem=50and L — 1 =18 cases. Forthem=15and L — 1=
6 cases, the RMSE of ARNN is 0.483 and RMSE € [0.678, 1.062]
for the other methods, that is, ARNN achieves at least 29% more
accuracy than the other methods based on this particular-short-
term time series.

Third, for the time-varying and noise-free cases, the RMSE of
ARNN is 0.513 and RMSE € [0.863, 2.91] for the other methods
for the m =50 and L — 1 = 18 cases, and the RMSE of ARNN is
0.284 and RMSE € [0.470, 0.845] for the other methods for the
m=15and L — 1 =6 cases. That is, ARNN achieves at least 40%
more accuracy than the other methods.

The application of ARNN on real-world datasets. In the era of
big data, high-dimensional data are ubiquitous in many fields. We
apply ARNN to various real-world datasets. The description of
the datasets is given in Supplementary Note 6, and the perfor-
mance of ARNN and the other methods is shown in Table 1.

Wind speed prediction. First, ARNN was applied to a time-course
high-dimensional (155-dimensional) dataset of wind speed gen-
erated from 155 sampling sites (D =155) in Wakkanai, Japan,
provided by the Japan Meteorological Agency**. The wind speed
was recorded every 10 min during the total period of 138,600 min
in 2011. We take the length of the known series as m =110.
Based on ARNN, the wind speed of one randomly selected site
(i.e., target y in Fig. 1) was predicted from 155 sites (i.e., vector X
of ARNN structure in Fig. 1). The performance of ARNN and the
other prediction methods on two segments of time series selected
from the total period of 138,600 min are demonstrated in Fig. 3a,
b. Specifically, in one-time prediction, ARNN outputs/predicts
the wind speed in a future period of 450 min; that is, a prediction
of L —1=45 steps ahead, while the correlations between the
series of predicted points (in red) and that of the real data (in
cyan) are all above 0.90 (Fig. 3a, b), although the wind speed is
generally considered very difficult to predict. The results pre-
dicted by ARNN are better than those by the other methods
(Table 1).
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Table 1 Comparison of the performance among ten prediction methods.

Method

Metric?

Real-world
dataset

AR LSTM ARIMA SVR RBF SVE MVE Linear

tRC

ARNN

2.59
0.315
0.511
0.907
116
0.420
3.12
0.0949
0.772
0.991
1.70
0.213
1.91

2.08
0.588
1.28
0.614
1.29
0.481
1.51
0.458
1.56
0.161
1.49
0.0118
1.31

2.64
0.667
0.612
0.865
117
0.0453
1.50
—0.109
1.44
0.503
1.25
0.343
1.07
0.225
2.87
—0.0351
3.64
0.212

2.48
—0.301
217
-0.379
1.66

—0.397
1.47

—0.0364
333

—-0.741
1.52
0.132
1.45

2.48
—0.266
2.09
—0.387
1.43
—0.402
1.49
—0.102
3.49
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1.33
0.137
1.68
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RMSE
PCC
RMSE
PCC
RMSE
PCC
RMSE
PCC
RMSE
PCC
RMSE
PCC
RMSE

Wind speed
Solar irradiance
Sea-level
pressure
Temperature
Route of
typhoon

Gene
expression
Stock index

0.630 —-0.176 —0.180 0.366 0.443
174 291 2.88

—0.353

—0.0723

0.831 -0.329

0.551

PCC

1.96
0.139

14.1

2.95
—0.0385

1.56
0.0676

1.6
-0.21

2.07

15.5

RMSE
PCC

Patient

0.308
6.91
—-0.371

—0.0472
2.98

0.0972
2.38
—0.560

0.0579
5.59
—0.461

0.0274

3.08
—0.0414

0.814
1.01

admissions

7.69
—0.0792

RMSE
PCC

Traffic speed

0.209

0.154

0.895

aThe performance metrics include the values of the root-mean-square error (RMSE) and the Pearson correlation coefficient (PCC). The RMSE was normalized by the standard deviation of the real data. The running environment was MATLAB 2019b. The results of the linear

method are also summarized in this table.

To validate the robustness of ARNN toward the multistep-
ahead prediction of wind speed, we demonstrate the prediction
results for the whole time series (time point 1-13,860 with an
interval of 10 min, for a total of 96 days) with different prediction
steps (Fig. 3c—e). When the number of prediction stepsis L — 1 =
50 (Fig. 3e), the overall PCC between the real data of the wind
speed and the predicted points is 0.59. The correlation increases
to 0.82 and 0.95 if the prediction steps are set to be L — 1 =30
(Fig. 3d) and 10 (Fig. 3c), respectively. The results of the
robustness test for different prediction methods are also
demonstrated in Supplementary Fig. 7. Clearly, the performance
of ARNN with different prediction spans is robust and accurate
regardless of the selection of the time region. Thus, this result
shows the significant advantage of ARNN in its high robustness
because it works well almost everywhere within 138,600 min with
various prediction spans, considering that multistep-ahead
prediction of wind speed is usually a difficult task.

Solar irradiance prediction. The second real-world dataset con-
tains solar irradiance data generated from D = 155 sampling sites
in Wakkanai, Japan. The solar irradiance was recorded every
10 min in 2011. The length of the known series is m = 300, i.e.,
155-dimensional records from 3000 min (Fig. 4a). Each predic-
tion method outputs/predicts a period of 1400 min (ie., L —1=
140 future states). The correlation that reflects the consistency
between the real and predicted dynamical trends by ARNN
reaches 0.961.

Meteorological data prediction. Next, ARNN was applied to the
third dataset, a 72-dimensional ground meteorological
dataset (D = 72) recorded every 1h, collected from 1998 to 2004
in the Houston, Galveston and Brazoria areas?>. The sea-level
pressure (SLP) and average temperature were predicted as
shown in Fig. 4b, ¢, respectively. For each prediction, the inputs
were 72-dimensional data from the former m =60 steps,
and the outputs were the 25-step-ahead values of a target index
(L —1=25).

Typhoon Marcus prediction. The fifth dataset, satellite cloud
image records of typhoon Marcus, comes from the National
Institute of Informatics (http://agora.ex.nii.ac.jp/digital-typhoon/
summary/wsp/s/201820.html.en). The dataset is composed of a
series of 241 cloud images from 15 March 2018 to 24 March 2018
with one image taken per hour. There are D = 2402 variables in
each image. Thus, the 241 images can be regarded as a time series
within a period of 241 h. For each prediction, the initial m = 50
images were regarded as known information, and ARNN was
applied to forecast the central position of the tropical cyclone for
the next L — 1 =21 time points, i.e., 21-step-ahead prediction in
one output. The predicted results are shown in Fig. 4d and
Table 1. A movie that shows the dynamical motion route of
typhoon Marcus is given in Supplementary Movie 1. The latitudes
and longitudes of the central positions are provided in Supple-
mentary Fig. 8.

Gene expression prediction in rats. ARNN was then employed to
predict the dynamical evolution of gene expressions from a
dataset of 84 genes*®, From the D = 84 genes, ARNN was applied
to predict the expressions for six target genes, i.e., Nrldl, Arntl,
Pfkm, RGD72, Per2, and Cryl (Fig. 5a). These targets are
known as genes related to circadian rhythm, which is a funda-
mentally important physiological process regarded as the “central
clock” of mammals. For each prediction, the known information
includes expressions of 84 genes from the initial m =16 time
points, and the output is the expressions of the future L —1=6
time points, i.e., a 6-step-ahead prediction for the target gene. The
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Fig. 3 Wind speed prediction in Wakkanai, Japan. Based on the time-course data of D =155 sampling sites in Wakkanai, Japan, ARNN was applied to
forecast the wind speed (m =110). The prediction performance of different methods is shown over two periods (L —1=45) in (a, b). The performance of
ARNN s significantly better than that of the other methods. The Pearson correlation coefficients (PCCs) between the ARNN prediction result and the
original curve are 0.930 (a) and 0.953 (b). To demonstrate the robustness of our proposed method, ARNN was applied to the whole time series (time
point 1-13,860, interval 10 min, 96 days). The results are exhibited for different sets of prediction steps, that is, prediction steps L —1=10 (¢), L —1=30
(d), and L —1=50 (e). Clearly, given the fixed known length, predicting a shorter span is more accurate. Overall, the performance of ARNN with different
prediction steps is robust and satisfactory for the whole period of 138,600 min.

predicted expressions by ARNN agree with the observed
expressions.

Stock index prediction in the Shanghai Stock Exchange. Next, the
effectiveness of ARNN was demonstrated in the prediction of a
highly unstable system, that is, a high-dimensional stock index
dataset from the Shanghai Stock Exchange. This dataset contains
the daily (except Saturday and Sunday) values of D = 1130 stock
indices (variables) from 1 May 2018 to 22 November 2018. Due
to the linkage effect in the stock market, different sectors of the
stock market interact internally and form a complex system. By
applying ARNN with m =50 (days) and L —1=20 (days), we

predicted the B-Share index of the Shanghai Stock Exchange
(Fig. 5b).

Cardiovascular inpatient prediction. The prediction accuracy of
ARNN was also validated in a real-world dataset that contains several
time series, including the index series of air pollutants and the
number series of cardiovascular inpatients in major hospitals in Hong
Kong*”. According to the high correlation between the cardiovascular
inpatients and air pollutants*®, ARNN was applied to forecast the
inpatient number based on a set of air pollutant indices. Considering
the delay effect of every potential factor as well as a dummy vector of
the weekday effect*8, we obtained a 48-dimensional system (D = 48).
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Fig. 5 Predictions on gene expressions, the stock index, and patient admissions. a Based on the ARNN framework, the dynamical trends of gene
expressions in rats were accurately predicted for six circadian rhythm-related genes, i.e., Nridl, Arntl, Pfkm, RGD72, Per2, and Cryl. In each prediction, the
inputs included the expressions from the initial m =16 time points, and the outputs of the multistep-ahead prediction were the expressions for [ —1=6
time points ahead. b On the basis of D = 1130 stock indices of the Shanghai Stock Exchange, the short-term trend of the B-Share Index was predicted, which
shows that ARNN achieves relatively high accuracy and strong correlation with the real value. ¢ ARNN predicted the dynamical trend of daily
cardiovascular disease admissions. The time series ranging from O to 130 days were regarded as known information/input, and ARNN predicted the
admissions for the L — 1= 60 days ahead. We also compared the ARNN results with the other prediction results for each dataset, which are shown in gray
curves. Among the nine prediction methods, the performance of ARNN is the best.

10 NATURE COMMUNICATIONS | (2020)11:4568 | https://doi.org/10.1038/s41467-020-18381-0 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

a Sensor 1, RMSE = 0.394, PCC = 0.953 Sensor 2, RMSE = 0.531, PCC = 0.936
: : " . . 80 ! - :
100 +
70
80 | * .
60
® 60 | 3
[0 [0}
Q & 50
D 40}
40
20 | {
30 A
0 : |
0 20 40 60 80 100 0 20 40 60 80 100
Time (10 min) Time (10 min)
80 Sensor 3, RMSE = 1.49, PCC = 0.829 80 Sensor 4, RMSE = 1.59, PCC = 0.860
!
70 f 60
3 |3 1
Q 60 2 40
» 1% |
50 20 ‘
40 - : : : ‘ 0 : : ; ; :
0 20 40 60 80 100 0 20 40 60 80 100
Time (10 min) Time (10 min)
—#— Known Original —#— ARNN tRC AR LST™M
ARIMA SVR RBF SVE MVE
b —
100 (I Known 100 | Known 100 || Known
920 . Predicted by ARNN 90 l Predicted by ARNN 90 I Predicted by ARNN &
80‘ 9 Q ’ Sen;’;ﬂse"so;‘l 3 80 1) Q “Sansora Sensord 3 80 Q Q Seg;vsse"s°}4
70 i Sensor1 7S 70 Sensort A 70 Sensor1 i )
5 60 (% - 60
(] Q
2 50 2 50
] »n
40 |- 40 ¢
307 30 |
20N 208
20 20
ol LM 0
Loc1 Loc2 Loc3 Loc4 Loc1 Loc2 Loc3 Loc4 Loc1 Loc2 Loc3  Loc4

Prediction point 1

Prediction point 2

Prediction point 3
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Based on the daily concentrations of pollutants, ARNN predicted the
short-term dynamical trend of the daily cardiovascular disease
admissions (Fig. 5¢), leading to a better result than the other methods
(Table 1), where m =130 (days) and L — 1 =60 (days).

Traffic speed prediction in Los Angeles. The final application is the
prediction of traffic speed (mile/h) based on a dataset collected
from D =207 loop detectors in Highway 134 of Los Angeles
County®. Each detector was regarded as a variable. By applying
ARNN, a multistep prediction (L —1 =30 time points ahead),
was obtained from the high-dimensional data with m =80 time
points at four adjacent locations (Fig. 6a, b). Supplementary
Movie 2 shows the dynamical changes of the predicted and real
traffic speeds in four locations. Furthermore, an application of
ARNN to the handwriting digits 0-9 from the digit database
MNIST is provided in Supplementary Fig. 9, which also illustrates
that ARNN is capable of predicting spatial information.

Clearly, these results show that ARNN accurately predicted the
dynamical behaviors for non-periodic and highly-fluctuating
cases based on only short-term data.
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Discussion

In this study, we propose the ARNN framework to make
multistep-ahead predictions based on short-term high-dimen-
sional data in an accurate, efficient, and robust manner. The
delay-embedding theorem ensures that two vectors (the spatial
vector X! and temporal vector Y?) correspond to each other one-
by-one via a smooth map3>3°, and thus we obtain the primary
and conjugate STI equations (Eq. (1)), i.e., mapping from X’ to Y*
by @ and from Y’ to X! by ¥. The ARNN method works through
transforming the spatial information of high-dimensional vari-
ables to the temporal information of a target variable by using
both primary and conjugate ARNN-based STI equations
(Eq. (3)). Intuitively, as shown in Supplementary Fig. 1, the pri-
mary ARNN-based STI equation is an encoder that transforms
the spatial information of high-dimensional variables F(X)
to the temporal information of a target variable Y/, while the
conjugate equation decodes/recovers the (encoded) temporal
information Y’ to the high-dimensional variables F(X!), i.e.,
FgXt) — Y — F(X'), in contrast to the autoencoder
X' = Y" — X' Solving the conjugated ARNN-based STI
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equations simultaneously makes the prediction highly robust, as
shown in the wind speed prediction for example.

ARNN is computationally efficient and accurate because it
incorporates both the STI transformation and the RC structure.
On the one hand, by the STI transformation, ARNN transforms
the spatial information of high-dimensional data to the temporal
information of any target variable, thus equivalently expanding
the sample size and alleviating the small sample size problem. On
the other hand, by the RC structure, ARNN requires fewer
parameters to train, thereby avoiding the overfitting problem.
Moreover, in contrast to the external dynamics used in traditional
RC, ARNN takes the inherent dynamics of the high-dimensional
data themselves as the reservoir.

Notably, most long-term data, such as expression data from
biological systems and interest-rate swaps data from financial sys-
tems, may also be regarded as short-term data because those sys-
tems are generally not stationary but highly time-varying with
many hidden variables. Therefore, to characterize or forecast their
future states, it is more reliable to employ recent short-term data,
than a long-term series of past data. Therefore, ARNN is a general
method suitable for many real-world complex systems even when
only recent short-term data are available. To check the assumption
of STI equations, ie., the low dimensionality of the underlying
attractors, we estimated the box-counting dimensions®%>! of all
datasets used in this work in Supplementary Table 2, thus validating
the low dimensionality of those attractors even though their original
dynamics is situated in high-dimensional spaces. Actually, the low
dimensionality is relative to the observed high-dimensional vari-
ables. In the transient dynamics, the dimension is considered higher
than that of the attractor or steady states, but still lower than the
number of the observed high-dimensional variables. That is why we
can also predict the transient states in many cases in addition to the
attractor or steady states (as shown in Table 1 or Figs. 3-6),
although the accurate prediction by ARNN on the transient
dynamics cannot be theoretically proven. The specific unknown
parameters or variables against the known data in each dataset are
also summarized in Supplementary Table 3.

One limitation of ARNN is that it is unable to accurately
forecast sudden changes or critical transitions in real-world sys-
tems. The critical transitions in complex systems are often led by
changes in external factors, whose information is generally not
included in the measured data32°2. On the other hand, the critical
transitions resulting from bifurcation can be detected by dyna-
mical network marker methods®3->°. In addition, ARNN cannot
make accurate predictions for strongly noisy data because its
theoretical framework is mainly based on deterministic dynamics.
Besides, given a low-dimensional sequence, the prediction of
ARNN may be similar to the traditional approaches in terms of
accuracy due to insufficient spatial information to be transformed.

In summary, compared with traditional prediction methods,
ARNN possesses the following advantages. First, ARNN
achieves multistep-ahead prediction even with only short-term
data due to the transformation from high-dimensional spatial
information into temporal information. In contrast to many
deep learning methods that suffer from overfitting problems
when a large number of parameters are to be trained but with
only a single short-time series, ARNN has much fewer para-
meters due to its reservoir structure where most of the para-
meters are randomly given. Thus, in practical applications,
ARNN requires less computing resources. In particular, ARNN
takes the observed high-dimensional variables as the reservoir
which represents the inherent dynamics of the target variable,
rather than the external dynamics. Third, by simultaneously
solving a conjugated pair of STI equations (similar to an
autoencoder with both encoding and decoding), ARNN is
highly robust and performs well in both noise-perturbed and

time-varying-parameter cases, which widely exist in real-world
systems. In addition, ARNN has a solid theoretical background
based on the delay-embedding theorem. The results for the
applications to a variety of real-world problems demonstrate
the effectiveness and efficiency of our method. Therefore,
ARNN paves a new way for short-term prediction in terms of
computationally efficiency, accuracy, and robustness, which is
of high potential in real-world applications.

Methods

The descriptions on the parameters and variables in ARNN framework are sum-
marized in Supplementary Table 4.

Reservoir computing. Reservoir computing (RC) is a unified computational fra-
mework®0>7, derived from independently proposed RNN models, such as the echo
state network (ESN)>® and the liquid state machine (LSM)>°. Generally, ESN is the
widely studied RC framework.

ESN uses an RNN-based reservoir consisting of discrete-time artificial
neurons?!>8, When feedback from the output to the reservoir is absent, the time
evolution of the neuronal states in the reservoir is described as follows3:

v = f(WRX! + W), (7)

where t denotes the discrete time, r' is the state vector of the reservoir units, X! is the
input vector, Win is the weight matrix for the input-reservoir connections, and W is
the weight matrix for the recurrent connections in the reservoir. The function f;
among f= (fi, f5, ..., fu) represents the kth elementwise activation function of the
reservoir units, which is typically a sigmoid-type activation function. Equation (7)
represents a non-autonomous dynamical system forced by the external input X*. The
output is often given by a linear combination of the neuronal states in the reservoir as
follows:

Yt — ‘/Voutl_t7 (8)

where Y' is the output vector and WU is the weight matrix in the readout. In
supervised learning, this weight matrix is trained to minimize the difference between
the network output and the desired output for a certain time period. The performance
of ESN depends on the design of the RNN-based reservoir. Here, we consider a special
form of RC by combining the neuronal states and output from Egs. (7) and (8) as

Yt — Woutf( Winxt + WY[—1>. (9)

In RC, all Win and W are randomly given and fixed, and only W°" as unknown
variables is trained to minimize the difference between the network output and the
desired output, with the known time series (X, Y¥).

Delay-embedding theorem for dynamical systems. For a general discrete-time
dissipative system, the dynamics can be defined as

Xt+1 — ¢<Xt),
where ¢ : R” — R” is a nonlinear map, and its variables are defined in the n-
dimensional state space X! = (x!, x5, ... ,x")" at a time point ¢ where symbol “”” is

the transpose of a vector, and any time interval between two consecutive time
points is equal. After a sufficiently long time, all of states are converged into a
compact manifold V. The Takens’ embedding theorem is stated as follows340.
If V C R” is an attractor with the box-counting dimension d, for a smooth
diffeomorphism ¢ : V — V and a smooth function h : V — R, there is a generic
property that the mapping @, : V — R is an embedding when L > 2d, that is,
@y (X) = (4(X), ho 9(X), ..., ho ¢~ (X)),
where symbol “0” is the function composition operation. In particular, letting X =
X! and h(X*) = y* where ' € R, then the mapping above has the following form
with @, = ® and

(D(Xt) — (}’t7}’t+l- 7ytJrL—1>/ — Yr7

which is used in our primary STI equations (Eq. (1)). Moreover, since the
embedding is one-to-one mapping, we can also derive its conjugate form ¥ :

RE — R" as X' = ®71(Y") = ¥(Y*) (Supplementary Note 1). Note that X! is n-
dimensional variables here, but sometimes it is used as D-dimensional variables
(D < n) in this work.

STI transformation equations. The steady state or the attractor is generally
constrained in a low-dimensional space for a high-dimensional dissipative
system, which holds for most real-world complex systems (Supplementary

Table 2). By exploring such a low-dimensional feature, spatiotemporal (STI)
transformation3>-37 has theoretically been derived from the delay-embedding
theory3®4%, which can transform the spatial information of high-dimensional
data to the temporal information of any target variable. The related description is
given in Supplementary Note 2. Assuming L >2d where d is the box-counting
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dimension of the attractor, the STI equations (Fig. 1a) can be given as Eq. (1) at t =
1,2, ..., mie,

oXY) =Y,
{x o,

where @ : R® — RE and ¥ : RY — R are differentiable functions satisfying

® o ¥ = id, with symbol “o0” is the function composition operation, and id
represents the identity function. Clearly, X* of Eq. (1) is the spatial information of
D variables while Y? is the temporal information of the target variable. In Eq. (1),
the first equation is the primary form and the second equation is the conjugate
form of the STI equations. Intuitively, the primary form encodes the spatial
information X' to the temporal information Y’, while the conjugate form decodes/
recovers the encoded temporal information Y’ to the original spatial information
X! (Supplementary Fig. 1).

Based on the STI transformation, the RDE framework has been developed for
the one-step-ahead prediction from short-term high-dimensional time-series
data’, by separately constructing a large number of primary STI transformations.
Furthermore, the multistep-ahead prediction is also performed by using a
multilayer neural network to represent only the primary STI equation®’.

The STI equations (Eq. (1)) or one-to-one maps ® and ¥ hold when the
following conditions are satisfied based on the delay-embedding theorem3®37 even
if the system is high-dimensional and nonlinear.

1. The dynamics of the system is constrained to a low-dimensional attractor in
a steady state;

All variables used in predictions are from the same system;

The stochasticity or noise is sufficiently small;

The high-dimensional variables are measurable;

The system is time-invariant or stationary during a short-term period.

LR

Actually, all of the above conditions are generally approximately satisfied for a
real-world system. The conditions above are sufficient conditions to ensure a one-
to-one mapping. In practice, even if the conditions are not fully satisfied, e.g., the
system is not in a steady state but in a transient state, ARNN also gives an accurate
prediction for many cases, since usually the transient dynamics of a dynamical
system is also constrained to a lower dimensional space or manifold.

Linearized STI equations. Generally, ® and ¥ are nonlinear functions, which can
be linearized as Eq. (2) (Fig. 1b) at t = 1,2, ... ,m, ie,

AX' =Y,

X' = BY',
where AB=1, A and B are L x D and D x L matrices, respectively, and I represents
an L x L identity matrix. Clearly, the first and second equations represent the

linearized primary and conjugate forms, respectively. We can use the matrix form
to represent these equations, i.e., AX = Y and X = BY where X and Y are defined as

1 2 m 1 2 m
yo Y XX e XN
2 3 m+1 1 2 m
Yoy ey X X X
Y = . . . . ’ X = . . . . ’
L oL+l ... omiLl—1 1 2 m
Yoy y Lxm Xp  Xp -+ Xp / pxm

where the lower-right area of Y represents the unknown/future information
{ym*1,ymt2 .. ,y™ 71} The linearized STI equations provide an approximate
way to predict y by estimating the maps ® and ¥ via A and B, respectively, but the
accumulated error drastically increases with the prediction horizon. The prediction
performance of the linear method based on the linearized STI equations was
provided in Supplementary Figs. 3-5, 7 and 8, and in Table 1 for details.

ARNN-based STI equations. ARNN can be represented by the ARNN-based STI
equations Eq. (3) (Fig. Ic) at t = 1,2, ... ,m by lifting Eq. (2) to a neural network
form with X! as an input and Y! as an output, ie.,

AF(X') =Y,

F(X') = BY',
where AB=1, A is an Lx D matrix, B is a Dx L matrix, and I represents an L x L
identity matrix. Note that F : R® — RP, is represented by a neural network,
whose weights are randomly given and fixed in this work.

Equations above or Eq. (3) can also be represented in a matrix form, ie., AF
(X) =Y and F(X) = BY where F(X) = (F(X"), ... , F(X™)). Clearly, by solving the
ARNN-based STI equations (Eq. (3)) for given X’ or F(X) with t=1, 2, ..., m, we
can obtain the unknown future values {y"*1, y"+2 ... y™*L=1} of the target
variable as well as the unknown weight matrices A and B.

Computation of ARNN. The ARNN makes the prediction by simultaneously
solving both primary and conjugate ARNN-based STI equations Eq. (3).
Although solving any one of the pair equations in Eq. (3) can give the multistep-
ahead prediction of the target variable, simultaneously solving both the

primary and conjugate equations can provide robust results, different from

but similar to the mechanism of the autoencoder (see Fig. 1 and Supplementary
Fig. 1). Actually, the information flow of ARNN is F(X') — Y' — F(X")

(or X! —» F(X') = Y' — F(X') « X"), in contrast to the autoencoder

X' — Y' — X', Specifically, for given X! or F(X!), we solve the ARNN-based STI
equations Eq. (3), which yields the weight matrices A and B, and the future
information of y, i.e, {y"™ 1, y"*2 ... y"*L=1} There are many ways to solve the
conjugated equations Eq. (3), such as the Levenberg-Marquardt method®%¢!. An
applicable method for solving ARNN is provided in Supplementary Note 3. After
sufficient iterations, the to-be-predicted/future values {y™*1, ym+2 .. ym+l=1
can eventually be determined. The ARNN convergence property of RMSE vs.
iteration time is given in Supplementary Fig. 6.

It is clear that the future states including y™ !,y LY are obtained
simultaneously by solving ARNN Eq. (3) with the observed time series of length m,
which is indeed the (L — 1)-step-ahead prediction, rather than the one-step-ahead
prediction. It should be noted that when we solve the ARNN equations, {y’, ..., y"}
are known but {y"*1, ..., y"*+L=1} are unknown future values of the target variable
because of the delay embedding. Therefore, it is similar to a semi-supervised
learning process. The detailed algorithm of ARNN is given in Supplementary
Note 3.

Although high-dimensional data have rich information, they may also have a
noisy effect on the prediction if some of the high-dimensional variables contain
little information on the target variable. Thus, choosing relevant variables or
eliminating irrelevant variables to the target variable from the high-dimensional
data may significantly enhance the performance of ARNN in practical applications.
Given a time series of n-dimensional variables (x},x}, ... ,.x,)i_y, . by
calculating the mutual information between the time series
{x},x2, ... ,x{“}i:uw_ L and {y!, y2, ..., yM}, we select the most correlated

variables (e.g., D variables among all # variables) with the target variable y, i.e.,
variables with the high mutual information with y, and obtain the following input
vectors and matrix

m+2 m+L—1

t 1 2 m
X} X2
t 1 2 m
. x5 o P
X' = X =
‘ 1 2 m
XD/ =12, .m Xp Xp XD / Dxm

where D is the number of the selected variables with n > D, and m is the length of
the known time series.

Compared with traditional neural network method, ARNN takes much less
time and computing resources in decoding the intertwined information among
massive variables of a complex system, for the future value prediction of the target
variable. A comparison between the ARNN and traditional neural network method
on the computational complexity is demonstrated in Supplementary Note 5, from
which it is seen that ARNN is cost-effective and requires little computing resources
comparing with other neural networks such as LSTM.

Data availability
All data needed to evaluate the conclusions are present in the paper and/or
the Supplementary Materials. All data are available at https://github.com/RPcb/ARNN.

Code availability
The code used in this study is available at https://github.com/RPcb/ARNN.
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